
CSCI-570: Homework # 3
Due on Friday, September 19 , 2014

Saket Choudhary

skchoudh@usc.edu

2170058637

1

Saket Choudhary CSCI-570 : Homework # 3

Contents

HW3 3

(2) . 3

(3: Ch#3 Ex#3) . 3

(4) . 3

(5: Ch#4 Ex#3) . 4

(6) . 4

(7: Ch#4 Ex#4) . 4

(8) . 4

Page 2 of 4

Saket Choudhary CSCI-570 : Homework # 3

HW3

(2)

A) The intersections can be viewed as the nodes of a directed graph. An intersection Ii can be reached

from Ij given that there is an edge incident from Ij to Ii that is (Ij , Ii) ∈ E where E= set of edges of

Graph G(V,E)

If such a directed graph allows to reach from any point to any other point, it needs to be strongly connected

implying there is a path from Ii to Ij and from Ij to Ii. Checking if a path from Ij exists to Ii will involve

reversing the edge directions in the directed graph and checking if Ii can be reached from Ij . So if the

mayor is right, it should be possible to traverse from Ij to Ii with the edges inverted.

Such a strongly connected directed graph can be traversed in linear time using DFS with a run time of

O(n+m)

B) Since the mayor’s original claim is false =⇒ G is not strongly connected. However the focus shifts

to the town hall being ”strongly connected” with the rest of the nodes. In order for this to happen the

node for town hall say T must be a sink of a strongly connected component. The approach would involve

determining all such components containing T such that they are strongly connected. Next run a DFS in

O(n+m) to determine all nodes reachable from T if all these nodes belong to to same strongly connected

component, it should be possible to travel from T to these and back.

(3: Ch#3 Ex#3)

For outputting a cycle G(if any) in G, we perform a BFS and keep track of nodes visited in an array.

Initially visitied[i] = 0∀i ∈ V and change the status of this array as we traverse the nodes checking

if visited[i] = 1; then cycle exists else we follow the following algorithm for creating a topological

ordering.

BSF traversal takes O(n+m) and so does topological ordering

(4)

Distance between neighboring gas stations is p miles. Let’s stop at stations {s1, s2,sk}. To minimise

the number of stops, we need to stop only if the distance to the next station(s) is larger than what can

be covered with the petrol in the car at present. Hence we should avoid stopping at Ii if distance to be

travelled till Ii+1, Ii+2... is less than p.

Consider {s′1, s′2, s′3,s′k} to be some other optimal solution. If s1 comes before s′1 that means greedy

worked at step 1. If it does not then s′1 can be avoided and replaced with s1. Now since s1 and s′1 both

were first steps they are each at least as far from starting point as the other, so this is an allowed solution.

Now travelling from s1 to last point and s′1 to last point can be greedily solved and thus this would be an

idnducitve process. Thus {s1, s2,sk} is an optimal solution.

The running time is O(n) as we search for all vertices till the distance does not exceed p and as such there

can be at worse n− 1 stations coming up.

HW3 continued on next page. . . Page 3 of 4

Saket Choudhary CSCI-570 : Homework # 3 HW3 (continued)

(5: Ch#4 Ex#3)

Consider that the greedy algorithm in use makes use of k trucks loading boxes b1, b2, ...bi and the optimal

algorithm uses k trucks to load b1, b2, ...bj . If the greedy algorithm stays ahead it should ensure i ≥ j

Consider k = 1, then the greedy algorithm fits as many boxes as the optimal solution

Then consider the case that it holds true for k = r-1, so the greedy algorithm fits i′ and the optimal

algorithm fits j′ such that i′ ≥ j′. Then for the k = r truck, greedy algorithm can pack bi′+1, bi′+2...bi
and the other algo packs bj′+1, bj′+2, ...bj but i′ > j′ and i > j so essentially greedy algo is able to pack

all boxes from bi′+1...bj and the other algo packs bj′+1...bj but greedy can pack more since it covers box

till bj as (i > j) but can go upto i

(6)

Given two sets A and B, each containing n positive integers. Perform reordering maximising Πn
i=1a

bi
i .

There are 4 ways to proceed.

1. Larger values of a raised to larger values of b

2. Smaller values of a raised to larger values of b

3. Larger values of a raised to smaller values of b

4. Smaller values of a raised to smaller values of b

It is easy to rule out Case 4, since it would the smallest possible product. The case maximising the payoff

is Case 1 since the product is maximised when the individual terms are masimised which is possible if the

larges number has the largest exponent. So a1 > a2 and b1 > b2 then we consider P=ab11 ∗ a
b2
2

Consider an alternate optimal arrangement where a1 is paired with b2 6= b1 Then P ′ = ab21 ∗ a2 ∗ b1 Then
P ′

P = (a1

a2
)−b1+b2 < 1 This can be extended to be true for n term product and hence greedy algorithm

yields optimal solution.

The sorting is possible in O(nlogn) and the assuming multiplication and exponentiation to be elementary

operations, the complexity would be O(nlogn)

(7: Ch#4 Ex#4)

Given two sequence S′ of size m and S of size n, to determine if S′ ⊂ S

S′ can be visualised as a DAG or more specifically as a topological ordering. Also treat S as a DAG. We

keep two pointers, one for S′ and one for S and perform a DFS on S till we hit a element from S′ starting

with S′[0], once S′[0] is found in S we start a DFS again after deleting all preceding elements of S now

continuing till we find S[1] and deleting the intermediate hits if any.

(8)

Choose the largest denomination of (25,10,1) such that (n−maxdenomination) is positive and then keep

doing this until n = 0. This is also equivalent to adding n/maxdenomination as the coin count and the

new amount being nmodmaxdenomination

Let the first choice of greedy be n1 value of coins of denomination d1. If a set G represents this greedy

solution for n coins then G − {d1} is a greedy solution for n − n1 Let another optimal solutiuon for this

be O, then U ∪ {d1} should contains fewer coins than G, that would mean a total of n is possible in fewer

than d1 (max possible) value coins which is a contradiction. Hence G is the optimal solution O

Part b) Consider n = 6 and denominations = 1,3,4 Then greedy gives : 1, 1, 4 while the optimal is 3, 3

Page 4 of 4

