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Exercise # 1.2

(3)

At the start of the tournament we have 2n players to begin with. At each round there will be one winner

emerging from each of the pairs while the other gets ’knocked out’. One possible configuration for the

first round of the tournament would be: Player1 v/s Player2; Player3 v/s Player4;...;, Player(2n−1)
v/s Player(2n). At the end of first round, there are exactly 2n

2 = 2n−1 winners and an equal number of

knocked out players.

At round 1 the set of 2n−1 pairs can be represented as :P1, P2, P3, P4, .., P2n−1. The total number of such

pairs is 2n divided by 2 since each pair has 2 players. The outcome of first round can generate two values

for each of these pairs depending on who amongst the two players is the winner. For e.g. Player1 can win

while playing in P1 or Player2 can, Thus total number of such configurations for the round 1 would be

2 ∗ 2 ∗ 2 ∗ ... ∗ 2 (n− 1) times which is equal to 22
n−1

.

Now at round 2 we would have 2n−1

2 = 2n−2 pairs of players to play with and the possible configuration for

choosing a winner of such a configuration is 22
n−2

, since again each pair of players has 2 possible outcomes.

Thus, the sample space representing how the winners are chosen (or the knocked out persons are knocked

out) can be calculated by multiplying configurations as obtained in round1 round2, ... roundn by the rule

of product as: 22
n−1 ∗ 22

n−2 ∗ .... ∗ 21 = X

log2X = 2n−1 + 2n−2 + ... + 1 (1)

log2X =
2n−1+1 − 1

2− 1
(2)

Thus X = 22
n−1
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5

5: (a)

Given: A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) (3)

Let x ∈ A ∪ (B ∩ C) =⇒ x ∈ A OR x ∈ B ∩ C.

Case 1: x ∈ A Then x ∈ (A ∪ B) ′AND′ x ∈ (A ∪ C). That is given x is contained in A it is for sure

contained in union of A with B, and also in the union of A with C. From the definition of intersection,

this would imply: x ∈ (A ∪B) ∩ (A ∪ C)

Case 2: x ∈ (B ∩ C) Then x ∈ B ′AND′ x ∈ C =⇒ x ∈ (A ∩ B) ′AND′ x ∈ (A ∩ C) where A can be

any set, since B ⊆ (A ∩B)

Thus from both the cases we get: x ∈ (A ∪B) ∩ (A ∪ C)

This implies

A ∪ (B ∩ C) ⊆ (A ∪B) ∩ (A ∪ C) (4)

Now consider a y ∈ (A ∪B) ∩ (A ∪ C) =⇒ y ∈ (A ∪B) ′AND′ y ∈ (A ∪ C).

This implies x belongs to A ′OR′ B ′AND′ A ′OR′ C

Two cases again:

Case 1: x ∈ A =⇒ x ∈ A ∪ (B ∩ C) as A ⊆ (A ∪ (B ∩ C))

Case 2: x ∈ B AND x ∈ C =⇒ x ∈ (B ∩ C) ∪A as (B ∩ C) ⊆ (A ∪ (B ∩ C))

Thus from both the cases we draw the same conclusion:

x ∈ (A ∪ (B ∩ C)) =⇒ (A ∪B) ∩ (A ∪ C) ⊆ A ∪ (B ∩ C) (5)

From 4 and 5, it is implied that:

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

, since LHS and RHS are subsets of each other.

Ans. TRUE

5: (b)

Given: A ∩ (B ∩ C) = (A ∩B) ∩ C (6)

Let x ∈ (A ∩ (B ∩ C)) =⇒ x ∈ A ′AND′ x ∈ B ′AND′ xinC, which can be easily regrouped as (x ∈ A

AND x ∈ B) ′AND′ x ∈ C, which is same as x ∈ (A ∩B) ∩ C.

Another approach would be what we used in part (a) above to show that the L.H.S and R.H.S are

subsets of each other. However the ′AND′ solution is straight forward, since there are no OR′s involved.

Ans. TRUE

5 continued on next page. . . Page 4 of 9
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5: (c)

Given: (A ∪B) ∩ C = A ∪ (B ∩ C) (7)

From part (a) of this problem, we proved that the following equation is true:

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) (8)

Substituting the R.H.S of 7 as the L.H.S of 8 we get:

(A ∪B) ∩ C = (A ∪B) ∩ (A ∪ C) (9)

Comparing 7 and 9 we see, that for 7 to be always true, the following should hold:

C = A ∪ C (10)

which will only be TRUE iff A ⊆ C.

5: (d)

Given: (A\(B ∩ C)) = (A\B) ∪ (A\C) (11)

X\Y =⇒ X but not Y =⇒ X ∩ (X ∩ (X ∩ Y )C)

Thus 11 can be expanded as follows:

A ∩ (A ∩ (B ∩ C))C = (A ∩ (A ∩B)C) ∪ (A ∩ (A ∩ C)C) (12)

Expanding L.H.S using results from above problem (5b) we get

L.H.S = A ∩ (A ∩ (B ∩ C))C = A ∩ (A ∩B ∩ C)C = A ∩ (AC ∪BC ∪ CC) (13)

Again using distribution of union over intersection property :

L.H.S = (A ∩ (AC)) ∪ (A ∩ (BC)) ∪ (A ∩ (CC)) = (A ∩BC) ∪ (A ∩ CC) (14)

Expanding R.H.S similarly we get:

R.H.S = (A ∩ (A ∩B)C) ∪ (A ∩ (A ∩ C)C)

= (A ∩ (AC ∪BC)) ∪ (A ∩ (AC ∪ CC))

= (A ∩AC ∪A ∩BC) ∪ (A ∩AC ∪A ∩ CC) = (A ∩BC) ∪ (A ∩ CC)

Thus L.H.S = R.H.S = (A ∩BC) ∪ (A ∩ CC)

Ans. TRUE
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Exercise # 1.3

1

Given: P (A) = 3
4 P (B) = 1

3

To Prove: 1
12 ≤ P (A ∩B) ≤ 1

3

Solution: P (A∩B) has an upper bound coming from either A or B depending on whichever is a smaller

set. Thus :

P (A ∩B) ≤ max(P (A), P (B)) where max() represents the maximum function.

max(P (A), P (B)) = P (B) =
1

3
=⇒ P (A ∩B) ≤ 1

3
(15)

Now consider P (A ∪B) :

P (A ∪B) = P (A) + P (B)− P (A ∩B).

Also, from the law of probability:

P (A ∪B) ≤ 1 =⇒ P (A ∩B) ≥ P (A) + P (B)− 1 =⇒ P (A ∩B) ≥ 13
12 − 1.

Thus

P (A ∩B) ≥ 1

12
(16)

From 15 and 16

1
12 ≤ P (A ∩B) ≤ 1

3

Now for P (A ∪B):

By law of probability, the upper bound is: P (A ∪B) ≤ 1.

For lower bound consider:

P (A ∪B) = P (A) + P (B)− P (A ∩B) (17)

and
−1

12
≥ −P (A ∩B) ≥ −1

3
(18)

From 17 and 18:

P (A ∪B) ≥ P (A) + P (B)− 1

3
(19)

=⇒ P (A ∪B) ≥ 3
4

Ans. 1 ≥ P (A ∪B) ≥ 3
4

1
12 ≤ P (A ∩B) ≤ 1

3
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3

Given: 2 red, 2 white, 2 stars pairs of (cup, saucer). Probablity that no cup is on the saucer of the same

pan.

Assumption: Same colored cups are not identical and hence the total number of possible configurations

is 6!

Consider the 6 saucers. Let same colored saucers first choose same colored cups. So red saucers pair up

with whites, white saucers can then pair up with only star cups and star saucers choose red cups. This an

be done in 2 ∗ 2 ∗ 2 = 8 ways.(Treating same colored cups as non identical) Since each pair of same colored

saucers can get paired with some other colored cup in 2 possible ways and there are total of 3 such pairs.

An alternate configuration would require red saucers pair up with stars, stars with white and white with

red. Again 2 ∗ 2 ∗ 2 = 8 possible ways.

Lastly, let white saucers choose red cup and star cup, red saucers choose white cup and star cup, star

saucers choose white and red cups.

The first white saucer has 4 cups to choose from(2 red, 2 star) and once it chooses the second white

saucer can choose from only remaining 2(either red or white), next two white cups can have 2 ∗ 2 possible

configuarations (choosing between two reds and one star for each so 2∗1∗2) and next now that everything is

already chosen the remaining two star saucers can just permute the red and white cups amongst themselves

so 2 ways. In total: 4 ∗ 2 ∗ 2 ∗ 1 ∗ 2 ∗ 2 = 64 ways for this entire case.

Thus total such configurations where the saucer and cup are of not the same color = 8 + 8 + 64 = 80 and

hence the required probability is 80
720 = 1

9

Ans. 1
9
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4

To Prove:

P (∪ni=1Ai) =

n∑
i

P (Ai)−
∑
i<j

P (Ai ∩Aj) +
∑

i<j<k

P (Ai ∩Aj ∩Ak))... + (−1)n+1P (A1 ∩A2... ∩An) (20)

20 clearly holds for n = 1. Also for n = 2:

P (A ∪B) = P (A) + P (B)− P (A ∩B) (21)

Assume 20 holds for n = s:

P (∪si=1Ai) =

s∑
i

P (Ai)−
∑
i<j

P (Ai ∩Aj) +
∑

i<j<k

P (Ai ∩Aj ∩Ak))... + (−1)s+1P (A1 ∩A2... ∩An) (22)

Now for n = s + 1, using results from 22 and 21 we get:

P (∪s+1
i=1Ai) = P (∪si=1Ai ∪As+1) = P (∪si=1Ai) + P (As+1)− P (∪si=1Ai ∩As+1) (23)

Consider

P (∪si=1Ai ∩As+1) = P (∪si=1(Ai ∩As+1)) (24)

Expanding 24 using 22 we get:

P (∪si=1(Ai∩As+1)) =

n∑
i=1

P (Ai∩As+1)−
n∑

i<j

P (Ai∩Aj∩As+1)+..+(−1)s+1P (Ai∩Aj∩Ak...∩As∩As+1)

(25)

Expanding
∑s

i P (Ai) in 23 using 22 we get:

P (∪s+1
i=1Ai) =

s∑
i

P (Ai)−
∑
i<j

P (Ai ∩Aj) +
∑

i<j<k

P (Ai ∩Aj ∩Ak))...

+ (−1)s+1P (A1 ∩A2... ∩An)) + P (As+1)− (

n∑
i=1

P (Ai ∩As+1)

−
n∑

i<j

P (Ai ∩Aj ∩As+1) + .. + (−1)s+1P (Ai ∩Aj ∩Ak... ∩As ∩As+1)) (26)

Rearranging 26 we get:

RHS = (

s∑
i

P (Ai) + P (As+1)− (
∑
i<j

sP (Ai ∩Aj)

+
∑
i=1

sP (Ai ∩As+1).... + (−1)s+1P (Ai ∩Aj ∩Ak... ∩As)− (−1)sP (Ai ∩Aj ∩Ak.. ∩As ∩As+1)

26 is same as P (∪s+1
i=1Ai)

Hence proved.
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4

Corn flakes problem: Consider the vice chancellors to be V1, V2, V3, V4, V5 Given 6 boxes, with each

containing packet for Vi with probability 1
5

To Find: Probability that each of V3, V4 and V5 packets show up inside the corn flakes boxes.

Inclusion-Exclusion:

P (X) = P (V3, V4, V5 packets show up) = 1 - P (V3/V4/V5 is missing ) +P (any two of V3, V4, V5missing )

−P (V3, V4, V5 all missing)

Consider:

P (V3 is missing) = (1− 1
5 )6 = ( 4

5 )6

P (V3 + V4 missing) = (1− 1
5 −

1
5 )6 = ( 3

5 )6

P (V3 + V4 + V5 missing) = (1− 1
5 −

1
5 −

1
5 )6 = ( 2

5 )6

Thus, P (X) = 1−
(
3
1

)
( 4
5 )6 +

(
3
2

)
( 3
5 )6 −

(
3
3

)
( 2
5 )6

Exercise # 1.4

2

To Prove:

P (A1 ∩A2 ∩A3.. ∩An) = P (A1)P (A2|A1)P (A3|A1 ∩A2).....P (An|A1 ∩A2 ∩A3.. ∩An−1) (27)

From the definition of conditional probability:

P (A1 ∩A2) = P (A1|A2)P (A2) (28)

Expanding the LHS of 27 using results from 28 we get:

P (A1 ∩A2 ∩A3.... ∩An) = P (X ∩An) = P (An|X)P (X) (29)

where X = A1 ∩A2 ∩A3... ∩An−1 Thus from 29 and definition of X we get:

P (A1 ∩A2 ∩A3.... ∩An) = P (A1 ∩A2... ∩An−1)P (An|A1 ∩A2... ∩An−1) (30)

The RHS of 30 can be similarly expanded as:

P (A1 ∩ A2 ∩ A3.... ∩ An−1) = P (A1 ∩ A2... ∩ An−2)P (Am−1|A1 ∩ A2... ∩ An−2) (31)

Hence combining 30 and 31 and doing similar such operations we get:

P (A1 ∩A2 ∩A3.. ∩An) = P (A1)P (A2|A1)P (A3|A1 ∩A2).....P (An|A1 ∩A2 ∩A3.. ∩An−1) (32)

as required.

Hence proved.
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