MATH-505A: Homework # 2

Due on Friday, September 5, 2014

Saket Choudhary 2170058637

Contents

Exerci	se	e	#	1	.5																							3
(1)																	•	 			•					•	 	3
(2)																	•	 			•					•	 	3
(3)																	•	 			•					•	 	4
(4)																	•	 			•					•	 	4
(5)											•							 									 	5
(7)																		 									 	6

Exercise # 1.5

(1)

Given: A, B are independent **To Prove:** (A^C, B) ; (A^C, B^C) are independent

Since A, B are independent:

$$P(A \cap B) = P(A)(B) \tag{1}$$

Thus,

$$P(A \cap B) = (1 - P(A^{C}))P(B) = P(B) - P(B)P(A^{C})$$
(2)

Rearranging 2:

$$P(B)P(A^C) = P(B) - P(A \cap B)$$
(3)

 $P(B) - P(A \cap B)$ signifies 'in B but not in A AND B'. Thus, it should belong to A^C AND B

$$P(B) - P(A \cap B) = P(A^C \cap B) = P(A^C)P(B)$$
(4)

From 3 and 4 : $A^C \cdot B$ are independent.

Similarly to prove A^C, B^C are independent, we perform substitute B^C in $P(B \cap A^C)$, since 4 is true to obtain:

$$P(B^C \cap A^C) = P(A^C)P(B^C) \tag{5}$$

(2)

 $A_{ij} = i^{th}$ and j^{th} rolls produce the same number. For any $i \neq j$, total outcome are 6 * 6 = 36 and number of favourable outcomes are $\binom{6}{1} * 1 = 6$, thus $p(A_{ij}) = \frac{6}{36} = \frac{1}{6}$ Consider $P(A_{ij} \cap A_{kj})$, such that $i \neq j \neq k$, then : $P(A_{ij} \cap A_{jk})$ refers to the probability when i^{th}, j^{th} and k^{th} rolls show the same number, which can be

caluclated as: $P(A_{ij} \cap A_{kj}) = \frac{\binom{6}{1}*1*1}{6*6*6} = \frac{1}{36} = P(A_{ij})P(A_{jk})$ Thus, A_{ij} are pairwise independent as it is true for any choice of i, j, k as long as $i \neq j \neq k$ Consider:

$$\begin{split} P(A_{ij} \cap A_{jk} \cap A_{kl}) &= \frac{\binom{6}{1}*1*1*1}{6*6*6} = \frac{1}{36} \neq P(A_{ij})P(A_{jk})P(A_{kl})\\ \text{Since } P(A_{ij} \cap A_{jk} \cap A_{k}l) \neq P(A_{ij})P(A_{jk})P(A_{kl}), \text{ it will not be true in general.} \end{split}$$
And since the independence criterion is not satisfied for the above case, it will not be true for the case when A_{ij} are considered together for all values of i, j.

(3)

To Prove:

(a) outcomes of coin tosses are independent

(b) Given a sequence of length m of heads and tails the chance of it occuring in first m tosses i s $2^{-}m$.

In order to prove (a) and (b) are equivalent it is sufficient to prove that if $a \implies b$ and $b \implies a$. If the outcomes are independent, probability of a head or tail in a sequence is $\frac{1}{2}$. Consider *m* tosses, since they are independent the probability of seeing any string of H and T is given by $\frac{1}{2} * \frac{1}{2} * ... * (m) times = \frac{1}{2^m} = 2^{-m}$. Hence $\implies b$. Now consider if *b* is true, then : $P(m) = 2^{-m} \implies P(m+1) = 2^{-(m+1)}$, . The P(m+1) case is similar to P(m) with an extra toss. $P(m+1) = 2^{-m} * \frac{1}{2}$. The extra half factor is accounted by the extra toss that is performed which must be independent with respect to the m tosses for yielding such a relation for $P(m+1) \implies a$ is true and this is true for any m. This inductive hypothesis proves that the tosses must be independent ($P(1) = \frac{1}{2}$ is trivially true)

and hence $a \iff b$ and $a \implies b$ so a and b are equivalent statements.

(4)

Given: $\Omega = \{1, 2, 3, ...p\}$ where p is prime. F is set of all subsets of ω ; $P(A) = \frac{|A|}{p}$ **To Prove:** A 'or' B is a null set or is the set Omega $P(A) = \frac{|A|}{p}$ $P(B) = \frac{|B|}{p}$ Now, from the definition of P(A):

$$P(A \cap B) = \frac{|A \cap B|}{p} \tag{6}$$

Since A, B are independent:

$$P(A \cap B) = P(A)P(B) = \frac{|A \cap B|}{p} = \frac{|A|}{p}\frac{|B|}{p}$$
(7)

Thus:

$$p * |A \cap B| = |A||B| \implies |A||B| \mod p = 0 \tag{8}$$

where mod operator gives the remainder. and

Ì

 $0 \leq |A|, |B| \leq p \text{ AND } |A||B| \text{ mod } p = 0 \implies (|A| \text{ or}|B| = p) \text{ OR } (|A| \text{ OR } |B| = 0) \implies A, B \text{ are either null or complete sets}(\text{with } |A|, |B| = |\Omega|).$

(5)

Given:

$$P(A, B|C) = P(A|C)P(B|C)$$
(9)

for all A,B. If A, B are independent :

$$P(A|B) = P(A) \tag{10}$$

$$P(A, B|C) = \frac{P(A, B, C)}{P(C)} = P(A|B, C) * \frac{P(B, C)}{P(C)} = P(A|B, C) * P(B|C)$$
(11)

Hence the conditional independence of A and B given C is dependent on conditional independence of A given B and C and B given C and neither implies P(A|B) = P(A) nor is implied by this.

Part2:

For which event C, are A and B(for all A,B) independent **iff** they are conditionally independent given C: ? If $P(A, B|C) = P(A|C) * P(B|C) \implies P(A|B) = P(A)$ then what is C?. This relation can be set to true for all values of A,B if P(C) is set to 1. because that would automatically imply P(A, B) = P(A)P(B)

Thus P(C) = 1

(7)

 $A = \{ all children of same sex \}$ $B = \{$ there is at most one boy $\}$ $C = \{ \text{ one boy and one girl included } \}$ $P(A) = P(\text{ all boys }) + P(\text{all girls}) = (\frac{1}{2} * \frac{1}{2} * \frac{1}{2}) * 2 = \frac{1}{4}$ $P(B) = P(0 \text{ boys }) + P(1boy) = (\frac{1}{8}) + 3 * (\frac{1}{8}) = \frac{1}{2}$ $P(C) = P(1 \text{ boy} + 1 \text{ girl}) = 2 * (\frac{1}{2} * \frac{1}{2} * \frac{1}{2}) * 3 = \frac{3}{4}$ **Part a):** A is independent of B and B is independent of C $P(A \cap B) =$ all children are of same sex AND there is at most one boy \implies all children are boys $\implies P(A \cap B) = \frac{1}{2} * \frac{1}{2} * \frac{1}{2} = \frac{1}{8} = P(A) * P(B).$ Hence A,B are independent $P(B \cap C)$ = there is at most one boy AND there is one boy and a girl \implies there is one boy and two girls. $P(B \cap C) = \frac{1}{2} * \frac{1}{2} * \frac{1}{2} * 3 = \frac{3}{8} = P(B) * P(C)$ Hence B,C are independent **Part b):** Is A independednt of C? $P(A \cap C)$ = the family includes boy and girl AND all children are of same sex Clearky $P(A \cap B) = \phi$ and hence A,B are NOT necessarily independent! (null intersection does not imply

independence)

Part c): Do the results hold if boys and girls are not equally likely?

NO. if the girls and boys are not likely these events will have different probabilitie

Part d): Do these results hold if there are 4 children?

No, the results might not necessarily be valid for 4 children as the number of permutations would be the