MATH-505A: Homework $\#$ 4

Due on Friday, September 19, 2014

Saket Choudhary 2170058637

$Contents$

Exercise $# 2.1$

(1)

Given: X is a random variable \implies $\{\omega \in \Omega : X(\omega) \leq x\} \in \mathcal{F} \ \forall x \in R$ (1) **Part A)** To Prove: aX is a random variable Consider $Y = aX$, then since equation 1 holds: Case1: $a > 0$ Then $\{\omega \in \Omega : aX(\omega) \leq x'\} \in \mathcal{F} \ \forall x' \in R$ where $x' = ax$ Case2: $a \leq 0$ Then $\{\omega \in \Omega : aX(\omega) \geq x'\} \forall x' \in R$ where $x' = ax \implies \bigcup {\{\omega \in \Omega : aX(\omega) \leq x''\}}^c \in \mathcal{F}$ where $x'' = x'$ Case3: a is 0 Then, $aX = 0$ Case i: $x < 0$ $\{\omega \in \Omega : aX(\omega) = \phi\} \in \mathcal{F}$ Case ii: $x > 0$ $\{\omega \in \Omega : aX(\omega) = \Omega\} \in \mathcal{F}$ Thus from all the above cases. Part (b)): Consider $Y = X - X$, Then: $Y = X(\omega) - X(\omega) \forall \omega \in R \implies Y = 0$ Consider $Y = X + X$, Then $Y = X(\omega) + X(\omega) \forall \omega \in \Omega \implies Y = 2X(\omega) \forall \omega \in \Omega$ Thus $Y = 2X$.

(2)

For part 1, $Y' = aX$ is also a random variable: **To Find:** Distribution fucntion of $Y = aX + b$ Consider $P(Y \le y) = P(aX + b \le y) = P(X \le \frac{y-b}{a}) \implies P(Y \le y) = P(X \le \frac{x-b}{a})$

(3)

 $p(H) = p$; $p(T) = 1 - p$ Tossing a coin n times is a binomial process(each individual toss is a bernoulli process) and let A be the event such that k out of n tosses are heads and this can occur in $\binom{n}{k}$ ways with probability p^k . There would also be $n - k$ tails and the probability for that is $(1 - p)^{n-k}$. Thus,: $p(A) = {n \choose k} p^k * (1-p)^{n-k}$ For a fair coin, $p = \frac{1}{2}$ and hence $p(A) = {n \choose k} (\frac{1}{2})^k (\frac{1}{2})^{n-k} = {n \choose k} (\frac{1}{2})^n$

(4)

A distribution function satisfies the following set of properties: a) $\lim_{x\to-\infty} F(x) = 0$, $\lim_{x\to\infty} F(x) = 1$ b) if $x < y$ then $F(x) \leq F(y)$, c) F is right continuous, $c < x < c + \delta$ then $|F(x) - F(c)| < \epsilon$ for $\epsilon > 0, \delta > 0$ Consider $Y = \lambda F + (1 - \lambda)G$, Both G,F satisfy a, b, c Then $\lim_{x\to -\infty} Y(x) = \lambda \lim_{x\to -\infty} F(x) + (1 \lambda$) lim_{x→−∞} $G(x) \implies$ lim_{x→−∞} $Y(x) = 0$ Similarly considering limit as $x \to \infty$: Then $\lim_{x\to\infty} Y(x) = \lambda \lim_{x\to\infty} F(x) + (1-\lambda) \lim_{x\to\infty} G(x) \implies$ $\lim_{x\to-\infty} Y(x) = \lambda * 1 + (1-\lambda) * 1 = 1$ Since for $x < y$, then $F(x) < F(y)$; $G(x) < G(y) \implies \lambda F(x) < \lambda F(y)$; $(1 - \lambda)G(x) < (1 - \lambda)G(y)$ since $0 \leq \lambda \leq 1$ Adding the two inequalities we get: $\lambda F(x) + (1 - \lambda)G(x) < \lambda F(y) + (1 - \lambda)G(y) \implies Y(x) < Y(y).$ Since F,G are right continuous, any linear combination of these would be right continuous too. Hence $Y = \lambda F + (1 - \lambda)G$ satisfies all the 3 required properties and is a distribution function.

(5)

Since F is a distribution function: (i) $\lim_{x\to-\infty} F(x) = 0; \lim_{x\to\infty} f(x) = 1$ (ii) If $x < y$ then, $F(x) < F(y)$ (iii) F is right continuous Part a) $F(x)^r$ (i) $\lim_{x \to -\infty} F(x)^r = 0$ since $\lim_{x \to -\infty} F(x) = 0$ and $r > 0$ (ii) If $x < y$ as $F(x) < F(y)$ and $r > 0 \implies F(x)^r < F(y)^r$ (iii) Since $r > 0$ and $F(x)$ is right-continuous $F(x)^r$ is right continuous. (One possible case ehere $F(x)^r$ would not have been right continuous is for $r < 0$ say $r = -1$ where $F(x)^{-1}$ is not right continuous at all x_0 such that $F(x_0) = 0$. **Part b)** $1 - (1 - F(x))^r$ (i) ; $\lim_{x \to -\infty} (1 - (1 - F(x))^r) = 1 - \lim_{x \to -\infty} (1 - F(x))^r = 1 - (1 - 0)^r = 0$ Similarly for $;\lim_{x\to\infty}(1-(1-F(x))^r)=1-(1-1)^r=1$ (ii) If $x < y$, $F(x) < F(y) \implies -F(x) > -F(y) \implies 1 - F(x) > 1 - F(y) \implies (1 - F(x))^r > 1 - F(y)$ $(1 - F(y))^r∀r > 0$ Thus, $1 - (1 - F(x))^r < 1 - (1 - F(y))^r$ (iii) Since F(x) is right continuous, $1 - F(x)$ is right continuous $\implies (1 - F(x))^r$ is right continuous(since $(r > 0)$ implies $1 - (1 - F(x))^r$ is right continuous Part c) $F(x) + (1 - F(x))log(1 - F(x))$ (i) $\lim_{x\to-\infty}(F(x) + (1 - F(x))\log(1 - F(x))) = \lim_{x\to-\infty}F(x) + \lim_{x\to-\infty}(1 - F(x))\log(1 - F(x)) =$ $0 + (1 - 0)log(1 - 0) = 0$ Consider $\lim_{x\to\infty} (F(x) + (1 - F(x))log(1 - F(x))) = \lim_{x\to\infty} F(x) + \lim_{x\to\infty} (1 - F(x))log(1 - F(x)) =$ $1 + (1 - 1)log(1 - 1) = 0$ (ii) If $x < y$ then $F(x) < F(y) \implies 1 - F(x) > 1 - F(y)$. Since log is a monotonic non-increasing function in [0, 1] and is in fact negative definite: $log(1 - F(x)) < log(1 - F(y))$ and $1 - F(x) > 1 - F(y)$ $\implies -F(x)log(1-F(x)) < -F(y)log(1-F(y))$ (This holds only because log is negative definite in [0,1]) Thus, $F(x) - F(x)log(1 - F(x)) < F(y) - F(y)log(1 - F(y))$ (iii) $F(x) - F(x)log(1 - F(x))$ is right continuous as $log(1-F(x))$ is right continuous Part d) $(F(x) - 1)e + exp(1 - F(x))$ (i) $\lim_{x\to-\infty}(F(x) - 1)e + exp(1 - F(x)) = \lim_{x\to-\infty}(F(x) - 1)e + exp(\lim_{x\to-\infty}(1 - F(x))) =$ $(0-1)e + exp(1-0) = -e + e = 0$ lim_{x→∞}(F(x)−1)e+exp(1−F(x)) = lim_{x→∞}(F(x)−1)e+exp(lim_{x→∞}(1−F(x))) = (1−1)e+exp(1−1) = $0 + 1 = 1$ (ii) if $x < y$, $F(x) < F(y) \implies F(x) - 1 < F(y) - 1 \implies (F(x) - 1)e \leq (F(y) - 1)e$ Also, $1 - F(x) > 1 - F(y)$ Since exp is a non-increasing function in [0, 1] $exp(1 - F(x)) < exp(1 - F(y))$ Thus, $(F(x) - 1)e + exp(1 - F(x)) < (F(y) - 1)e + exp(1 - F(y))$ (iii) $(F(x) - 1)e + exp(1 - F(x))$ is right continuous as exp is right continuous. FG is also a density function since it satisfies: (i) $\lim_{x\to-\infty} F(x)G(x) = \lim_{x\to-\infty} F(x) * \lim_{x\to-\infty} G(x) = 0$ And $\lim_{x\to\infty} F(x)G(x) = \lim_{x\to\infty} F(x) * \lim_{x\to\infty} G(x) = 1$ (ii) If $x < y$, $F(x) < F(y)$ and $G(x) < G(y) \implies F(x)G(x) < F(y)G(y)$ (iii) Since $F(x)$, $G(x)$ are right continuous

Exercise $#2.3$

(1)

Given: $\lim_{m\to\infty} a_m \to -\infty$ and $\lim_{m\to\infty} a_m \to \infty$; $G(x) = P(X \le a_m)$ when $a_{m-1} \le x \le a_m$; a_m is a strictly increasing sequence.

Sequence a is chosen so that $sup_{m}|a_{m}-a_{m-1}|$ becomes smaller and smaller so even though the sequence is increasing the successive difference between the terms keep on decreasing essentially indicating a_m saturates as $m \to \infty$

so $F(x)$ approaches $G(x) \forall x$

(2)

Given: $q(x)$ is continuous and strictly increasing, X is a random variable:

Since $g(X)$ is continuous and strictly increasing $\implies g^{-1}$ exists. Consider $\{Y \leq y\} \implies \{g(X) \leq y\}$. Since g^{-1} exists, such a set is equivalent to: $\{X \leq g^{-1}(y)\}\$ which belongs to F as $g: R \to R$. Since the last equations hold true and hence $\{Y \leq y\} \in \mathcal{F}$ so $g(X)$ is a RV

(3)

 $F(x) = P(X \leq x) =$ $\sqrt{ }$ \int $\overline{\mathcal{L}}$ 0 if $x \leq 0$, $x \quad \text{if } 0 < x \leq 1,$ 1 if $x > 1$, **To Prove:** $Y = F^{-1}(x)$ is a random variable: Consider $\{Y \leq \}$ $y=\{F^{-1}(x)\leq y\}$. Since F is continuous and strictly increasing $\implies F^{-1}(x)$ exists in R so $\{Y\leq y\}$ ${F^{-1}(x) \le y} = {(x) \le F(y)} = {x \le P(X \le y)} \in \mathcal{F}$ Since the last equation holds true, it $\implies \{Y \leq y\} \in \mathcal{F} \implies Y = F^{-1}$ is a RV. F should necessarily be continuous and monotonic for the inverse to exist!

(4)

 f, g are density functions: $\int_{-\infty}^{\infty} f(x) = 1$ and $\int_{-\infty}^{\infty} g(x) = 1$ Consider $y(x) = \lambda f(x) + (1 - \lambda)g(x)$ Thus, $\int_{-\infty}^{\infty} y(x)dx = \int_{-\infty}^{\infty} \lambda f(x)dx + \int_{-\infty}^{\infty} (1 - \lambda)g(x)dx = \lambda *$ $\int_{-\infty}^{\infty} f(x)dx + (1 - \lambda) * \int_{-\infty}^{\infty} g(x)dx = \lambda * 1 + (1 - \lambda) * 1 = 1$ Thus $\lambda f(x) + (1 - \lambda)g(x)$ is a density function too. Now consider $y(x) = f(x)g(x)$, then: $\int_{-\infty}^{\infty} y(x)dx = \int_{-\infty}^{\infty} f(x)g(x)dx$ Clearly this is nor necessarily equal to 1 so fg is not a density function!

(5)

Part a)
$$
f(x) = \begin{cases} cx^{-d} & x > 1, \\ 0 & otherwise, \end{cases}
$$
\n $F(x) = \int_{-\infty}^{\infty} f(c)dx = \int_{1}^{\infty} cx^{-d} = 1 \implies \frac{-c}{-d+1} = 1 \implies c = d-1$ \nand\n $-d+1 \leq 1$ \ni.e.\n $d \geq 0$ \nelse the integral blows up to ∞ \nThus for $d \geq 0$ this is a density function satisfying $c = d - 1$ \n**Part b)** $f(x) = ce^x(1 + e^x)^{-2}x \in R$ \n $F(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} ce^x(1 + e^x)^{-2} \, dx$ \n $t = e^x + 1$ \nthen $e^x dx = dt$ \n $F(x) = \int_{1}^{\infty} ct^{-2} \, dt$ \n $F(x = 1) = -(c * 0 - c) = 1$ \nThus $c = 1$.