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Saket Choudhary CSCI-567 : Assignment #1

Problem 1

Problem 1: (a) 1

Given: Xi ∼ Beta(α, 1) MLE for α:

Consider X = (X1, X2, . . . , Xn) Likelihood function: L(α|X) L(α|X) =
∏n
i=1 f(xi) where

f(xi) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 =

Γ(α+ 1)

Γ(α)Γ(1)
xα−1

=
αΓ(α)

Γ(α)
xα−1

= αxα−1

L(α|X) =
( Γ(α+ 1)

Γ(α)Γ(1)

)n n∏
i=1

(xi)
α−1

LL = log(L(α|X)) = n log(α) + (α− 1)

n∑
i=1

xi

dLL

dα
=
n

α
+

n∑
i=1

log(xi)

dLL

dα
= 0 =⇒ α̂ =

n∑n
i=1 log(1/xi)

Minima at α̂ = n∑n
i=1 log(1/xi)

is guaranteed due to log being a concave function.

Thus, ˆαMLE =
n∑n

i=1 log(1/xi)

Problem 1 continued on next page. . . Page 3 of 20



Saket Choudhary CSCI-567 : Assignment #1 Problem 1 (continued)

Problem 1: (a) 2

Given: xi ∼ N(θ, θ) i.e f(xi) = (2πθ)−
1
2 e−

(xi−θ)
2

2θ MLE estimate for θ:

L(θ|X) = (2πθ)−
N
2 e−

∑n
i=1

(xi−θ)
2

2θ

LL = log(L(θ|X)) = −N
2

log((2πθ))−
n∑
i=1

(xi − θ)2

2θ

dLL

dθ
= −N

2
(
1

θ
) +

∑n
i=1 x

2
i

2θ2
− Nθ

2

dLL

dθ
= 0 =⇒ Nθ2 +Nθ −

n∑
i=1

x2
i = 0

The above equation is a quadratic and will have two solutions, Since, θ ≥ 0 (a constraint that comes from

θ being the variance), the

θ =
−N ±

√
N2 + 4N

∑n
i=1 x

2
i

2N

Since, θ̂ ≥ 0 =⇒ ˆθMLE =
−N +

√
N2 + 4N

∑n
i=1 x

2
i

2N

Problem 1: (b) 1

Given: ˆf(x) = 1
n

∑n
i=1

1
hK(x−Xih ) To show: EX1,X2,...Xn [ ˆf(x)] = 1

h

∫
K(x−th )f(t)dt

Proof:

E[ ˆf(x)] = E[
1

n

n∑
i=1

1

h
K(

x−Xi

h
)]

=
1

nh
E[K(

x−Xi

h
)]

=
1

h
E[K(

x−X1

h
)]

=
1

h
E[K(

x− t
h

)]

where the penultimate equality comes from the fact that Xi are iid for all i ∈ [1, n]. and t X

and hence.

E[ ˆf(x)] =
1

h
E[K(

x−X1

h
)]

=
1

h

∫
K(

x− t
h

)f(t)dt

= RHS

Problem 1 continued on next page. . . Page 4 of 20



Saket Choudhary CSCI-567 : Assignment #1 Problem 1 (continued)

Problem 1: (b) 2

Consider z = x−t
h =⇒ t = x− hu

Then,

E[ ˆf(x)] =
1

h

∫
K(z)f(x− hz)dz

f(x− hz) = f(x)− f ′(x)hz +
1

2
f ′′(x)

(hz)2

2
− 1

3
f ′′′(x)

(hz)3

3!
+ · · ·+ (−1)n

1

n!
f (n)(x)(

(hu)n

n!
)

By definition,
∫
k(z)dz = 1.

Also define an auxillary variable Mj =
∫
k(z)zjdz for the jth moment of the kernel function, and hence,

∫
K(z)f(x− hz)dz = f(x)− hf ′(x)M1 +

1

2
(h2)f

′′
(x)M2 + · · ·+ (−1)n

1

n!
f (n)Mn

Now,

Bias = E[ ˆf(x)]− f(x) = −hf ′(x)M1 +
1

2
(h2)f

′′
(x)M2 + · · ·+ (−1)n

1

n!
f (n)Mn

M1 =
∫
xK(x)dx = 0

Hence,

E[ ˆf(x)]− f(x) =
1

2
(h2)f

′′
(x)M2 + · · ·+ (−1)n

1

n!
f (n)Mn where Mj =

∫
k(z)zjdz

And as h −→ 0, Bias −→ 0

Page 5 of 20



Saket Choudhary CSCI-567 : Assignment #1 Problem 1

Problem 2

Problem 2: (a)

Mean x̄ = 1
N

∑
x = 1

10

∑10
i=1 xi = 8.6

Mean ȳ = 1
N

∑
y = 1

10

∑10
i=1 yi = 19.6

Standard deviation xsd =

√∑10
i=1(xi−x̄)2

10−1 = 21.3269

Standard deviation ysd =

√∑10
i=1(xi−x̄)2

10−1 = 25.1960

Student with unknown major: (9, 18):

Normalised to : (0.0187,−0.0635)

ID x y xn yn L1 L2

M1 10 49 0.0623 1.107 1.2117 1.168

M2 -12 38 -0.9163 0.6928 1.6871 1.1998

M3 -9 47 -0.7829 1.0317 1.8926 1.354

EE1 29 19 0.9074 -0.0226 0.9272 0.8904

EE2 32 31 1.0409 0.4292 1.5125 1.1341

EE3 37 38 1.2633 0.6928 1.9985 1.4554

CS1 8 9 -0.0267 -0.3991 0.3834 0.3418

CS2 30 -28 0.9519 -1.7922 2.6661 1.9678

CS3 -18 -19 -1.1832 -1.4534 2.5942 1.8394

CS4 -21 12 -1.3167 -0.2862 1.5605 1.3535

Procedure: We first normalise the data point with unknown major using the mean and standard deviation

of the known points, and then calculated the L1 and L2 distances. L1 distance between two points (x1, y1)

and (x0, y0) is defined as : L1 = |x1 − x0|+ |y1 − y0|
L2 distance is defined as L2 =

√
(x1 − x0)2 + (y1 − y0)2

For L1:

K = 1: For K = 1 the nearest neighbor is CS1 and hence the unknown sample ’could’ be a computer

science

K = 3: For K = 3 the nearest neighbors are M1, EE1, CS1 and hence there is a ’tie’. Choosing the label

of the least distance would again result in CS1 as CS1 < EE1 < M1.

For L2:

K = 1: For K = 1 the nearest neighbor is CS1 and hence the unknown sample ’could’ be a computer

science

K = 3: For K = 3 the nearest neighbors are M1, EE1, EE2. Since two nearest neighbors are from EE, we

assign it the unknown sample to be from Electrical engineering.

Problem 2 [Problem 2: (a)] continued on next page. . . Page 6 of 20



Saket Choudhary CSCI-567 : Assignment #1 Problem 2

Comparison For K = 1, both L1 and L2 distance metric give the same results, however for K = 3, the

L1 metric yields a tie, since the distances are similar but L2 metric being a square quantity of a number

smaller than 1 further reduces the distances. The fact to realise is that |x+y| is similar to
√
x2 + y2 when

x, y << 1 that is when the points are close, but when x, y are large, the L2 metric is going to be higher,

and hence L2 norm applies more ’penalty’ to distant points in the sense that they are larger.

This also implies that in case of outliers, while L1 norm will not penalise, L2 norm will penalise in the

sense that
√
x2 + y2 will be high. In case of outliers L2 is more robust. In this example, ’M1’ is likely an

outlier.

Problem 2: (b)

Total points: N

Total points with label class c: Nc
Given: p(x|Y = c) = Kc

NcV
and

∑
Kc = K Class prior: p(Y = c) = Nc

N

Unconditional density p(x) =
∑
c p(x|Y = c)p(Y = c) =

∑
c
Kc
NcV
× Nc

N =
∑
c
Kc
NV = K

NV

Posterior P (Y = c|x) =
P (x|Y = c)× P (Y = c)

P (x)
=

Kc
NcV
× Nc

N
K
NV

=
Kc

K

Problem 3

Problem 3: (a)

Information gain G = H[Y ] −H[Y |X] where Y is the outcome variable and X is an attribute to be split.

In our case Y= ’Rains or not’ In order to maximise gain for a fixed Y we need to minimise the conditional

entropy H[Y |X] prain = 9+5+6+3+7+2+3+1
80 = frac3680 = 0.9 and hence pno−rain = 0.1

H[Y ] = −prain log(prain)− pno−rain log(pno−rain)

= −(0.9 log2(0.9) + 0.1 log2(0.1)

= 0.99277

Instead of maximising gains, it is sufficient to simply minimise the conditional entropy H[Y |X] in this case.

For Temperature

H[Rainy or Not rainy — Temperature] = −phot × (prain,hot log(prain,hot) + pnorain,hot log(pnorain,hot)

− pcold × (prain,cold log(prain,cold) + pnorain,cold log(pnorain,cold))

= −1

2
× (

23

40
log(

23

40
) +

13

40
log(

13

40
))

− 1

2
× (

13

40
log(

13

40
) +

27

40
log(

27

40
))

= 0.9467

Similarly,

H[Rain or Not rainy — Sky] =
1

2
H[Rainy or Not rainy — Sky=Cloudy]

+
1

2
H[Rainy or Not rainy — Sky=Clear]

= 0.9015

Problem 3 [Problem 3: (a)] continued on next page. . . Page 7 of 20



Saket Choudhary CSCI-567 : Assignment #1 Problem 3

Similarly,

H[Rain or Not rainy — Humidity] =
1

2
H[Rainy or Not rainy — Humidity=High]

+
1

2
H[Rainy or Not rainy — Humidity=Low]

= 0.9467

We choose Sky as the *root* because H[RainorNotrainy|Sky] is minimum.

Further on,

H[Rainy or not—Cloudy,Temperature] = −1

2
(
15

20
log(

15

20
) +

5

20
log(

5

20
))

− 1

2
(
10

20
log(

10

20
) +

10

20
log(

10

20
))

= 0.9056

H[Rainy or not—Cloudy,Humidity] = −1

2
(
16

20
log(

16

20
) +

4

20
log(

4

20
))

− 1

2
(

9

20
log(

9

20
) +

11

20
log(

11

20
))

= 0.8574

Thus, we choose condition Humidity for Cloudy Sky.

Further more,

H[Rainy or not—Clear,Temperature] = 0.7903

H[Rainy or not—Clear,Humidity] = 0.8280

So we choose Temperature condition for Clear Sky. Now for Temperature = Hot, Sky = Clear we have

prain = 8
20 , and pnorain = 12

20 . So we choose ’Not Rainy’ for Temperature = Hot branch.

For, Temperature = Cold, Sky = Clear we have prain = 3
20 and hence once again we choose ’Not Rainy’

for Temperature = Cold branch.

For Humidity = High, Sky = Cloudy, prain = 16
20 and hence we choose Rain for Humidity = High, Sky =

Cloudy

And, finally for Humidity = Low, Sky = Cloudy , prain = 9
20 and hence we choose Not Rainy .

The decision and the pruned decision tree is shown in Figure 1,2.

Problem 3: (b)

Consider f(pk) = (1 − pk) − (− log pk) We know that 0 ≤ pk ≤ 1 Then f ′(pk) = −1 + 1
pk

= − 1−pk
pk
≤

0∀pk ∈ [0, 1]

And hence f ′(pk) is a non-increasing function which =⇒ f(pk) ≥ f(1)∀pk ∈ (0, 1] and hence, (1− pk)−
(− log pk) ≥ 0 =⇒ pk(1− pk)− (−pk log pk) ≥ 0 =⇒ pk(1− pk) ≥ −pk log pk =⇒

∑K
k=1 pk(1− pk) ≥∑K

k=1−pk log pk =⇒ Gini index is less than corresponding value of Cross Entropy

Problem 3 continued on next page. . . Page 8 of 20



Saket Choudhary CSCI-567 : Assignment #1 Problem 3 (continued)

Figure 1: Problem 3 Decision Tree

Figure 2: Problem 3 Pruned Decision Tree

Problem 3 continued on next page. . . Page 9 of 20



Saket Choudhary CSCI-567 : Assignment #1 Problem 3 (continued)

Problem 3: (c)

By default the rightmost branch corresponds to the parent condition being a YES[FIX ME]

a:

X1 > x

X2 > y

◦ ∆

∆

b:

X1 > x

X2 > y

◦ ∆

X2 > y

∆ ◦

c:

The only case where it is not possible to have a depth 6 decision tree is case (c). The

decision boundary in this case is a ’zig-zag’ ladder and hence the depth of decision tree is unbounded.

Problem 3 [Problem 3: (c)] continued on next page. . . Page 10 of 20



Saket Choudhary CSCI-567 : Assignment #1 Problem 3

d:

X1 > x2

X1 > x1

∆ X2 > y2

∆ Y > y1

◦ ∆

∆

Page 11 of 20



Saket Choudhary CSCI-567 : Assignment #1 Problem 3

Problem 4

Problem 4: (a)

Given a random variable X ∈ RD and Y ∈ [C] naive bayes defines the joint distribution:

P (X = x, Y = y) = P (Y = y)P (X = x|Y = y)

= P (Y = y)

D∏
d=1

P (Xd = xd|Y = y)

Y is a categorical variable with P (Y = k) = pk for k ∈ [1,K]

Given: P (xj |Y = yk) ∼ N(µjk, σjk) =⇒

log(P (xj |Y = k)) = − log(2πσjk)

2
− (xj − xjk)2

2σjk
(1)

For all j 6= j′ xj , Xj′ are independent attributes.

Naive bayes:

P (Xi = ~x, Yi = y) = P (Yi = y)P (Xi1 = x1, Xi2 = x2 . . . XiD = xD|Y = yk)

= P (Yi = y)

D∏
j=1

P (Xij = xj |Y = yi) Assuming independence of attributes xi

Each Yi belongs to one of the K classes, thus
∑K
k=1 pk = 1 for any Yi

Let Nk represent the number of elements in class k for k ∈ [1,K]

Then,
∑N
i=1 log(Yi = yi) =

∑K
k=1 P (Y = k)×Nk

Consider the likelihood function

L(µ, σ, p|(X,Y )) =

N∏
1

P (Yi = yi)×
D∏
j=1

P (Xi = xij |Y = yi)

log(L) =

N∑
i=1

log(P (Yi = yi)) +

N∑
i=1

D∑
j=1

log(P (Xi = xij |Y = yi))

=

N∑
i=1

log(P (Yi = yi)) +

N∑
i=1

D∑
j=1

log(P (Xij = xij |Y = yi))

=

K∑
k=1

P (Y = k)×Nk +

K∑
k=1

D∑
j=1

log(P (Xij = xij |Y = k))×Nk

Now,

∂LL

∂pk
= 0 (2)

∂LL

∂µjk
= 0 (3)

∂LL

∂σjk
= 0 (4)

(5)

Problem 4 [Problem 4: (a)] continued on next page. . . Page 12 of 20



Saket Choudhary CSCI-567 : Assignment #1 Problem 4

For for equation 2 and constraint
∑
k pk = 1, we get: pk

Nk
N

For equation 3,

∂
∑K
k=1

∑D
j=1 log(P (Xi = xij |Y = k))×Nk

∂µjk
= 0∑

i;Yi=k
(xij − µjk)

σjk
= 0

µ̂jk =

∑
i;Yi=k

xij

Nk

For equation 4,

∂
∑K
k=1

∑D
j=1 log(P (Xi = xij |Y = k))×Nk

∂σjk
= 0

∂

∂σjk

∑
i;Yi=k

(
− log(2πσjk)

2
− (xij − xjk)2

2σjk

)
= 0

∂

∂σjk

∑
i;Yi=k

(
− 1

σjk
+

(xij − xjk)2

2σ2
jk

)
= 0

σ̂jk =

∑
i;Yi=k

(xij − µ̂jk)2

Nk

Constraint
∑
k

pk = 1 Given K number of classes, the above constraint the MLE estimate of pk is given

by:
Nk
N

Problem 4 continued on next page. . . Page 13 of 20



Saket Choudhary CSCI-567 : Assignment #1 Problem 4 (continued)

Problem 4: (b)

Given: P (Y = 1) = π; For Xj feature, P (Xj = xj |Yk) = θ
xj
jk(1− θjk)1−xj

P (Y = 1|X) =
P (X|Y = 1)P (Y = 1)

P (X)

=
P (X|Y = 1)P (Y = 1)

P (X|Y = 1)P (Y = 1) + P (X|Y = 0)P (Y = 0)

=
1

1 + P (X|Y=0)P (Y=0)
P (X|Y=1)P (Y=1)

=
1

1 + exp(log(P (X|Y=0)P (Y=0)
P (X|Y=1)P (Y=1) ))

=
1

1 + exp(log(P (X|Y = 0)P (Y = 0))− log(P (X|Y = 1)P (Y = 1)))

=
1

1 + exp(−(log(P (Y=1)
P (Y=0) )) + log(P (X|Y = 0))− log(P (X|Y = 1)))

Now assuming features satisfy the independence property, P (X|Y = 1) =
∏D
j=1 P (Xj |Y = 1) =∏D

j=1 θ
xj
jk(1− θjk)1−xj

Alternatively,

log(P (Xj |Y = 1)) = log(θ
xj
j1 (1− θj1)1−xj ) (6)

= xj log(θj1) + (1− xj) log((1− θj1) (7)

= xj log(
θj1

1− θj1
) + log(1− θj1) (8)

and,

log(P (Xj |Y = 0)) = log(θ
xj
j0 (1− θj0)1−xj ) (9)

= xj log(θj0) + (1− xj) log((1− θj0) (10)

= xj log(
θj0

1− θj0
) + log(1− θj0) (11)

Hence,

log(P (Xj |Y = 0)− log(P (Xj |Y = 1)) = xj log(
θj0(1− θj1)

θj1(1− θj0)
) + log

(1− θj0)

(1− θj1)
(12)

=⇒

log(P (X|Y = 0)− log(P (X|Y = 1)) =

D∑
j=1

xj log(
θj0(1− θj1)

θj1(1− θj0)
) +

D∑
j=1

log
(1− θj0)

(1− θj1)
(13)

Problem 4 [Problem 4: (b)] continued on next page. . . Page 14 of 20
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−(log(
P (Y = 1)

P (Y = 0)
)) + log(P (X|Y = 0)− log(P (X|Y = 1)) =

D∑
j=1

xj log(
θj0(1− θj1)

θj1(1− θj0)
)+

+
(

log(
(1− θj0)

(1− θj1)
+−(log(

P (Y = 1)

P (Y = 0)
))
)

=

D∑
j=1

xj log(
θj0(1− θj1)

θj1(1− θj0)
)+

+
(

log(
(1− θj0)

(1− θj1)
+ (log(

P (Y = 0)

P (Y = 1)
))
)

=

D∑
j=1

xj log(
θj0(1− θj1)

θj1(1− θj0)
)+

+
(

log(
(1− θj0)

(1− θj1)
+ (log(

(1− π)

π
))
)

And hence ~wj = log(
θj0(1− θj1)

θj1(1− θj0)
)

w0 = − log(
1− π
π
× (

1− θj0
1− θj1

)D)

Page 15 of 20
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Problem 5

Problem 5: (5.1)

Problem 5 [Problem 5: (5.1)] continued on next page. . . Page 16 of 20
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Figure 3: Integrated Variance distribution with respect to h for various kernels

Problem 5 [Problem 5: (5.1)] continued on next page. . . Page 17 of 20
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From figure 3 we see that Gaussian kernel guarantees the minal variance for all values of h. Histogram con-

sistently leads to higher variance and Epanechnikov kernels’ variance is bounded between the former two.

And hence we conclude Gaussian kernel outperforms Epanechnikov kernel which outperforms histogram

for kernel density estimation(based on the criteria of minimising the variance)

An optimum value of h is found at the knee of the graph and is approximately h = 0.1. Selecting the knee

guarantees minimal varaince and an optimum choice for a smaller h, because higher h are guaranteed to

minimise the variance.

Problem 5 continued on next page. . . Page 18 of 20
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Problem 5: (5.2d)

Accurcy table for k-nn

K Training Accuracy Validation Accuracy Testing Accuracy

K=1 0.788973 0.759259 0.776744

K=3 0.768061 0.717593 0.744186

K=5 0.798479 0.782407 0.753488

K=7 0.861217 0.842593 0.809302

K=9 0.897338 0.902778 0.865116

K=11 0.908745 0.907407 0.883721

K=13 0.866920 0.861111 0.823256

K=15 0.817490 0.782407 0.762791

Based on the maximum training accuracy, we can choose K to be 11

Gini Index = GDI

Cross Entropy = DEV

Accuracy table for Decision Tree

MinLeaf Training(GDI) Training(DEV) Validation(GDI) Validation(DEV) Testing(GDI) Testing(DEV)

1 0.950664 0.950664 0.870370 0.842593 0.860465 0.865116

2 0.950664 0.950664 0.870370 0.842593 0.860465 0.865116

3 0.950664 0.950664 0.870370 0.842593 0.860465 0.865116

4 0.948767 0.948767 0.875000 0.847222 0.883721 0.883721

5 0.941176 0.939279 0.875000 0.856481 0.874419 0.869767

6 0.935484 0.933586 0.861111 0.842593 0.888372 0.883721

7 0.927894 0.925996 0.870370 0.851852 0.897674 0.893023

8 0.920304 0.918406 0.856481 0.837963 0.897674 0.893023

9 0.914611 0.882353 0.879630 0.824074 0.860465 0.823256

10 0.912713 0.880455 0.856481 0.800926 0.888372 0.851163

Naive Bayes Classifier

Dataset Training Accuracy Validation Accuracy Testing Accuracy

Nursery 0.9065 0.9059 0.8970

TTT 0.7827 0.7130 0.7302

As evident from the results for Naive Bayes, it performs pretty good on Nursery dataset, since its

attributes can be treated to be independent. On the other hand, tic tac toe dataset has an inherent

dependence built in that decides the labels. For example, a XXX is a ’Positive’ for sure and XXO can

never be. This violates the inherent assumption of independence of features in Naive Bayes and hence the

lower accuracy.
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Problem 5: (5.2e)

As evident from the plots above, increasing K results in more smooth boundaries. This is expected,because

k increasing leads to more neihbors being weighted for deciding the final label, and this will often involve

neighbors that are far apart, thus creating the soft boundaries
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