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Todo list

Problem 1

Problem 1: (a)

Linear regression assumes that the regressors have been observed ’truly’ and as such the dependent variables

Y are the ones that are uncertain. The analogy is simpler to think when Y is a ’response’, caused due to

some indepndent variableX. hence thoughX is measured absolutely, (dependent varible) Y ’s measurement

should be accounted for errors.

Problem 1: (b)

In order to make linear regression robust to outliers, a näive solution will choose ”absolute deviation”(L1

norm) over ”squared error”(L2 norm) as the criterion for loss function. The reason this might work out in

most cases(especially when the outliers belong to a non normal distribution) is that ”squared error” will

blow up errors when they are large. Thus L2 norm will give more weight to large residuals(|y−wTx|2 >>
|y−wTx| and we are trying to minimise this error), while the L1 norm gives equal weights to all residuals.

Problem 1: (c)

A quick way to realise this is to consider the ”scale” of any two independent variables. Say one of the depen-

dent variables is ’time’. Rescaling time from hours to seconds will also rescale its coefficient(approximately

by a factor of 60), but the importance remains the same!

Another example is to consider a model with two dependent variables that affect the dependent variable

in a similar manner(or are equally important regressors). However they are on different scales say X1 on

[1-100] and X2 on [0-1], resulting in the coefficient of X1 being too smaller than that of X2 in a linear

regression setting.

Problem 1: (d)

If the dependent variables are perfect linear combination, the matrix XXT will be non invertible.

Problem 1: (e)

A simple solution would be to use k − 1 bits instead of k bits for k categories. For example, using the

following setup for a 3 category setup:

Red = 0 0

Green = 1 0

Blue = 0 1

Here is an alternate solution that exploits the property of features still being equidistant from the ori-

gin(though they are no longer equidistant from each other)

Problem 1 continued on next page. . . Page 3 of 14
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Problem 1: (f)

If the independent variables are highly correlated, the coefficients might still be entirely different. From

the example in Part (c) abov

Problem 1: (g)

Using a posterior probability cutoff of 0.5 in linear regression is not same as 0.5 for logistic. A 0.5 rehsold

on logistic guarantees that the point all points lying to the right belong to one class. However for a

regression problem, this is not true, because the predicted value of y is an ’intepolated or extraplolated’ In

any case, logistic regression is a better choice, since the output is constrained in the range of 0− 1, which

can be treated directly as a probability values as compared to the less intuitive relation with the output

of the linear regression.

Problem 1: (h)

When the number of variables exceed the number of samples, the system is undetermined. And yes, it can

be solved by simply obtaining psuedo-inverse of X which is always defined.
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Problem 2

Problem 2: (a)

Class 1: ~x = (x1, x2, · · ·x2D) where each xi ∼ N(0, σ2)

Class 2: ~x = (x1, x2, · · ·xD, xD+1 + δ, · · ·x2D)

From first principles, the discriminant curve is given by:

P (y = 1|x) ≥ P (y = 0|x)

And hence we have:

log(P (y = 1|x)) ≥ log(P (y = 0|x))

log(P (x|y = 1)p(y = 1) ≥ log(P (x|y = 0)p(y = 0)

log(P (x|y = 1)) + log(P (y = 1)) ≥ log(P (x|y = 0)) + log(p(y = 0)) (1)

Now, since x is 2D dimensional and assuming independece of all attributes:

P (x|y = 1) =

2D∏
i=1

p(xi|y = 1)

log(P (x|y = 1) =

2D∑
i=1

log(p(xi|y = 1))

log(P (x|y = 1)) = −D log(2πσ2)−
2D∑
i=1

x2i
2σ2

(2)

Similarly for class 0: xi ∼ N(0, σ2)∀x ∈ {1..D} and xi ∼ N(δ, σ2)∀x ∈ {D+ 1..2D} Notice that the latter

is a shifted normal.

P (x|y = 0) =

2D∏
i=1

p(xi|y = 0)

log(P (x|y = 0) =

D∑
i=1

log(p(xi|y = 1)) +

D∑
i=1

log(p(xi|y = 1)

log(P (x|y = 0)) = −D log(2πσ2)−
D∑
i=1

x2i
2σ2
−

2D∑
i=D+1

(xi − δ)2

2σ2
(3)

Problem 2 [Problem 2: (a)] continued on next page. . . Page 5 of 14



Saket Choudhary CSCI-567 : Assignment # 2Problem 2 [Problem 2: (a)] (continued)

Plugging (2), (3) in (1) we get:

−D log(2πσ2)−
2D∑
i=1

x2i
2σ2

+ log(p(y = 1)) ≥ −D log(2πσ2)−
D∑
i=1

x2i
2σ2
−

2D∑
i=D+1

(xi − δ)2

2σ2
+ log(p(y = 0))

log(p(y = 1)) +−
2D∑

i=D+1

x2i
2σ2
≥ −

2D∑
i=D+1

x2i − 2δxi + δ2

2σ2
+ log(p(y = 0))

log(p(y = 1))− log(p(y = 0)) ≥ Dδ

σ2

2D∑
i=D+1

xi −D
δ2

2σ2

log(p(y = 1))− log(p(y = 0)) ≥ Dδ

σ2

D∑
i=1

xi −D
δ2

2σ2

−Dδ
σ2

D∑
i=1

xi +D
δ2

2σ2
+ log(p(y = 1))− log(p(y = 0)) ≥ 0

Problem 2 [Problem 2: (a)] continued on next page. . . Page 6 of 14
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Where the change of indices in the penultimate step is permitted since xi are i.i.d(after taking care of the

shifted mean)

Now consider the general form solution of LDA and GDA:

∑
i

bixi + c ≥ 0 (LDA)∑
i

aix
2
i +

∑
bixi + c ≥ 0 (GDA)

Where xi represents the ith dimension indepdent variable, where each xi is a feature/attribute and hence

is not limited to 2 dimensional special case.

In this case, owing to the homoscedasticity assumption(the variance of the two class conditions being equal

to σ2) LDA and GDA return the same solution.

Solution form for LDA:

−Dδ
σ2

D∑
i=1

xi +D
δ2

2σ2
+ log(p(y = 1))− log(p(y = 0)) ≥ 0

Assuming equal priors, p(y = 1) = p(y = 0),

−Dδ
σ2

D∑
i=1

xi +D
δ2

2σ2
≥ 0

−
D∑
i=1

xi +
δ

2
≥ 0

and hence for LDA bi = 0∀i ∈ {1..D} and bi = −Dδσ2 ∀i ∈ {D + 1..2D}(simpliifies to −1 for the case with

equal priors). and c = Dδ2

2σ2 (simplifies to δ
2 for the case with equal priors )

In either case it does depend on δ

Solution for GDA:

−Dδ
σ2

D∑
i=1

xi +D
δ2

2σ2
+ log(p(y = 1))− log(p(y = 0)) ≥ 0

and hence ai = 0∀i and bi = 0∀i ∈ {1..D} and bi = −Dδσ2 ∀i ∈ {D + 1..2D}(simplifies to −1 for the case

with equal priors).

In either case it does depend on δ

Problem 2 continued on next page. . . Page 7 of 14
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Problem 2: (b1)

P (X|Y = c1) ∼ N(µ1,Σ) and p(X|Y = c2) ∼ N(µ2,Σ)

where µ1, µ2 ∈ RD,Σ ∈ RD×D

P (Y = 1|X) =
P (X|Y = 1)P (Y = 1)

P (X)

=
P (X|Y = 1)P (Y = 1)

P (X|Y = 1)P (Y = 1) + P (X|Y = 2)P (Y = 2)

=
1

1 + P (X|Y=2)P (Y=2)
P (X|Y=1)P (Y=1)

=
1

1 + exp(log(P (X|Y=2)P (Y=2)
P (X|Y=1)P (Y=1) ))

=
1

1 + exp(log(P (X|Y = 2)P (Y = 2))− log(P (X|Y = 1)P (Y = 1)))

=
1

1 + exp(−(log(P (Y=1)
P (Y=2) )) + log(P (X|Y = 2))− log(P (X|Y = 1)))

(4)

log(P (X|Y = 1)) = −1

2
ln(|Σ|)− D

2
ln(π)− 1

2
(x− µ1)TΣ−1(x− µ1)

log(P (X|Y = 2)) = −1

2
ln(|Σ|)− D

2
ln(π)− 1

2
(x− µ2)TΣ−1(x− µ2)

log(P (X|Y = 2))− log(P (X|Y = 1)) =
1

2
(x− µ1)TΣ−1(x− µ1)− 1

2
(x− µ2)TΣ−1(x− µ2)

log(P (X|Y = 2))− log(P (X|Y = 1)) = (µT1 − µT2 )Σ−1x+ xTΣ−1(µ1 − µ2)

log(P (X|Y = 2))− log(P (X|Y = 1)) = 2(µT1 − µT2 )Σ−1x+ µT1 Σ−1µ1 − µT2 Σ−1µ2

Plugging (5) in 4:

P (Y = 1|X) =
1

1 + exp(−(log(P (Y=1)
P (Y=2) ) + µT1 Σ−1µ1 − µT2 Σ−1µ2 + 2(µT1 − µT2 )Σ−1x))

¶(Y = 1|X) =
1

1 + exp(−(C) + θTx))

Where

C =
P (Y = 1)

P (Y = 2)
− µT1 Σ−1µ1 + µT2 Σ−1µ2

θ = 2(µ1 − µ2)Σ−1

since

(Σ−1)T = Σ−1)

Problem 2 continued on next page. . . Page 8 of 14
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Problem 2: (b2)

Given p(y|x) is logistic P (Y = 1|X) = 1
1+exp(−(C+θT x))

Consider the simplification using first principles as in part(b1):

P (Y = 1|X) =
1

1 + exp(−(log(P (Y=1)
P (Y=2) )) + log(P (X|Y = 2))− log(P (X|Y = 1)))

Now, consider the distribution P (X = x|Y = 1) = e−λ1 λ
x
1

x! and P (X = x|Y = 2) = e−λ2 λ
x
2

x!

log(P (X|Y = 2))− log(P (X|Y = 1) = λ1 − λ2 + x(log λ1

λ2
)

and hence,

P (Y = 1|X) =
1

1 + exp(−(log(P (Y=1)
P (Y=2) )) + λ1 − λ2 + x(log λ1

λ2
)))

implying it is possible to arrive at a logistic regression expression even from a poisson distribution and

hence the p(x|y) need not be gaussian.

Problem 3

3

L(wi+1, λ) = ||wi+1 − wi||22 + λ(wTi+1xi)yi

= (wi+1 − wi)T (wi+1 − wi) + λ(wi+1)

∆wi+1
L = 2wi+1 − 2wi + λxiyi = 0 (3.1)

∆λL = wTi+1xiyi = 0 (3.2)

Thus, from 3.1 and 3.2,

wi+1 = wi −
1

2
λxi

where

wTi+1xiyi = 0

Problem 4

4

Problem 4 continued on next page. . . Page 9 of 14
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Problem 4: (a)

Variable #Missing

pclass 0

survival 0

name 0

sex 0

age 263

sibsp 0

parch 0

ticket 0

fare 1

cabin 1014

embarked 2

boat 823

body 1188

home 564

Problem 4: (b)

From the graph above we see that pclass and ’age’ might not be really informative. (Given they do not have

any monotonicity). whereas the rest all variables have.

Problem 4: (c)

Variable Information

home 0.999467

name 0.963746

sex 0.963746

ticket 0.963746

embarked 0.963129

cabin 0.940286

fare 0.493161

boat 0.095333

pclass 0.066290

parch 0.034475

age 0.026518

sibsp 0.012308

body 0.00

Problem 4 continued on next page. . . Page 10 of 14
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Figure 1: 4a. Montonic relationship

Problem 4 continued on next page. . . Page 11 of 14



Saket Choudhary CSCI-567 : Assignment # 2 Problem 4 (continued)

Problem 4: (d)

MM: Multiple Models

SM: Substituted Models

IM: Individual Model

With age column(IM) Without Age column(IM) With NaN substituted(SM) MM

Training Accuracy 0.776758 0.801223 0.793578 0.629969

Testing Accuracy 0.769466 0.781679 0.775573 0.781679

Thus, the individual model(IM) with the age column completely removed seems to have worked better

than the MM. Though in training MM perfroms poorer than SM, its performance is at part with SM for

the test dataset. In totality, Substituted model seems to have worked better.(considering both training

and test datasets).

This is an indicative that the ’age’ factor is not really informative as is also evident from part (c) above

where ’age’ features low in the information table.

Problem 4: (e)

Total number of columns: 602.

Problem 4: (f)

The method of forward selection seems to have worked well. The training accuracy increased by increasing

the number of features iteratively. This also lead to an increase in test accuracy though only marginally. As

evident, the training accuracy plot seems to flatten (and hence saturate) near 0.85 for around 10 features.

So 10 features can be assumed to be an optimal choice for number of features.

Problem 4: (g)

Alpha: 1.000000e-03 Iterations to Converge: 4862 Accuracy: 7.022901e-01

Alpha: 2.000000e-03 Iterations to Converge: 6114 Accuracy: 7.423664e-01

Alpha: 3.000000e-03 Iterations to Converge: 5807 Accuracy: 7.843511e-01

Alpha: 4.000000e-03 Iterations to Converge: 5731 Accuracy: 8.015267e-01

Alpha: 5.000000e-03 Iterations to Converge: 5393 Accuracy: 8.091603e-01

Alpha: 6.000000e-03 Iterations to Converge: 5192 Accuracy: 8.187023e-01

Alpha: 7.000000e-03 Iterations to Converge: 4914 Accuracy: 8.339695e-01

Alpha: 8.000000e-03 Iterations to Converge: 4730 Accuracy: 8.473282e-01

Alpha: 9.000000e-03 Iterations to Converge: 4624 Accuracy: 8.454198e-01

Alpha: 1.000000e-02 Iterations to Converge: 4513 Accuracy: 8.454198e-01

Alpha: 1.100000e-02 Iterations to Converge: 4371 Accuracy: 8.492366e-01

Alpha: 1.200000e-02 Iterations to Converge: 4218 Accuracy: 8.549618e-01

Alpha: 1.300000e-02 Iterations to Converge: 4102 Accuracy: 8.625954e-01

Alpha: 1.400000e-02 Iterations to Converge: 4036 Accuracy: 8.645038e-01

Alpha: 1.500000e-02 Iterations to Converge: 4024 Accuracy: 8.664122e-01

Alpha: 1.600000e-02 Iterations to Converge: 4078 Accuracy: 8.721374e-01

Alpha: 1.700000e-02 Iterations to Converge: 4198 Accuracy: 8.740458e-01

Alpha: 1.800000e-02 Iterations to Converge: 4366 Accuracy: 8.759542e-01

Alpha: 1.900000e-02 Iterations to Converge: 4564 Accuracy: 8.797710e-01

Alpha: 2.000000e-02 Iterations to Converge: 4760 Accuracy: 8.835878e-01

Problem 4 [Problem 4: (g)] continued on next page. . . Page 12 of 14
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Figure 2: 4f. Training/testing accuracy v/s iteration
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Alpha: 2.100000e-02 Iterations to Converge: 4897 Accuracy: 8.835878e-01

Alpha: 2.200000e-02 Iterations to Converge: 4953 Accuracy: 8.874046e-01

Alpha: 2.300000e-02 Iterations to Converge: 4948 Accuracy: 8.874046e-01

Alpha: 2.400000e-02 Iterations to Converge: 4913 Accuracy: 8.912214e-01

Alpha: 2.500000e-02 Iterations to Converge: 4864 Accuracy: 8.912214e-01

Alpha: 2.600000e-02 Iterations to Converge: 4811 Accuracy: 8.931298e-01

Alpha: 2.700000e-02 Iterations to Converge: 4759 Accuracy: 8.912214e-01

Alpha: 2.800000e-02 Iterations to Converge: 4710 Accuracy: 8.931298e-01

Alpha: 5.000000e-02 Iterations to Converge: 4292 Accuracy: 9.217557e-01

Alpha: 5.100000e-02 Iterations to Converge: 4270 Accuracy: 9.236641e-01

Alpha: 5.200000e-02 Iterations to Converge: 4248 Accuracy: 9.236641e-01

Alpha: 5.300000e-02 Iterations to Converge: 4226 Accuracy: 9.236641e-01

Alpha: 5.400000e-02 Iterations to Converge: 4204 Accuracy: 9.217557e-01

Alpha: 5.500000e-02 Iterations to Converge: 4183 Accuracy: 9.217557e-01

Alpha: 5.600000e-02 Iterations to Converge: 4162 Accuracy: 9.217557e-01

Alpha: 5.700000e-02 Iterations to Converge: 4142 Accuracy: 9.217557e-01

Alpha: 1.300000e-01 Iterations to Converge: 3801 Accuracy: 9.408397e-01

Alpha: 1.310000e-01 Iterations to Converge: 3805 Accuracy: 9.408397e-01

Alpha: 1.320000e-01 Iterations to Converge: 3808 Accuracy: 9.408397e-01

Alpha: 1.330000e-01 Iterations to Converge: 3811 Accuracy: 9.408397e-01

Alpha: 1.340000e-01 Iterations to Converge: 3814 Accuracy: 9.408397e-01

Alpha: 1.350000e-01 Iterations to Converge: 3818 Accuracy: 9.408397e-01

Alpha: 1.360000e-01 Iterations to Converge: 3821 Accuracy: 9.408397e-01

Alpha: 1.370000e-01 Iterations to Converge: 3825 Accuracy: 9.408397e-01

Alpha: 1.380000e-01 Iterations to Converge: 3828 Accuracy: 9.408397e-01

Thus, it takes approximately 4000 iterations to converge with the choice of the slope parameter around 0.1

and gives an accuracy of 0.94. (Also very low values of the slope parameter seems to hit a local minima)

It does seem to be converging in a stable way.

glmfit accuracy: 0.984733

Problem 4: (h)

Number of iterations: 25 Accuracy: 0.583969

glmfit accuracy: 0.984733

Newton’s methods implementation seems to be buggy somewhere.
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