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Saket Choudhary CSCI-567 : Assignment #3

Problem 1

Problem 1: (a)

Let o(a) = H% and

PY=1X=2)=0b+w 2)PY =0/ X =2)=1-0(b+w"x)

Observe that Y = 1 when b+ wPz >0 and Y = 0 when b+ wlz < 0
Thus,

P(Y =y|X =2)=o(b+w")! (1 —o(b+w'z))1-y)
log(P(Y = y|X = 1)) = ylog(o(b+w'z)) + (1 - y)log(1l — o (b +w'z))
o(b+wT)
1—0o(b+wTz)
ef(berTw)

= ylog( ) +log(1 — o (b+w'z))

_ T
= ylb-+ w"a) + log( )

1
1+ e(b+wTz) )

= y(b+w'x) —log(1 + e(b+“’T‘”)) ([1.1)

— y(b+w ) + log(

£w) = ~tog(I] POY = X = )
=— ) log(P(Y =y| X =x;))

g

(yi(b+w"a;) —log(1 + e(b‘*‘wTwi)))

-

i=1

COHSideI' ,C(’w) = —y(b + wa) + log(l + e(b""wT-’L'i,))

OL(w) T elb+w’e)

w - _(xy ) + 1+ 6(b+wTa:)
0?L(w) 0 x

ow? =0+ %(.’B - 1+ e(b—i—wa))
PL(w)  a(elrw @), T
= >

w2 (1+ etwTa))2 = OvzeR

2
88511531) =2To(b+wlz)1—ob+wlz)z >0 (1.2)

2
From (1.2) %(;”) > 0 and hence, from the definition of convex functions, £(w) is indeed a convex function.

Problem 1 continued on next page. .. Page 3 of 16



Saket Choudhary CSCI-567 : Assignment #3 Problem 1 (continued)

Problem 1: (b)

When the data is perfectly linearly separable, (assume first n/2 of the n training points belong to class 0
and the remaining to class 1), thus our regression model should assign the first n/2 points to class 1 with
cent percent certainty or with probability 1 and the remaining n/2 to class 0 with probability 1. For this
to happen, P(Y = 1|X = X;) =1 and P(Y = 0|X = X) = 1 where X is the set of points belonging to
class 1 and X is the set of points belonging to class 0.

Clearly this scenario is possible when ||w|| — oo

Problem 1: (c)

A simple example with two points would be (0,0), (1,1). Intuitively the step function’s step branches (the
horizontals of a sigmoid function) will be located at infinity. Also the line separating the points (0,0) and
(1,1) can be anywhere in between 0 and 1, thus there will be multiple solutions.

Problem 1: (d)

Lw) =" (—y;(b+wTa;) +log(1+ e #))) 4 A||wl[3

j=1
I(L)(w) - Jijie(b‘*'le‘j)ww B
ow; ; (=(j0) + W) + 2 w; =0
9*(L)(w) = $?i€(b+wTIj)$ij
o2 = 2 G wrermy) T2 >0

. (b+wTa:~)wi<
where the last inequality holds since A > 0 Consider f(w;) = 2?21 (—yj(xj:) + %)

And u,v are the two solutions of f(w;) = 0, i.e. f(u) = f(v) = 0 (Without loss of generality, assume
u < v)
By Rolle’s theorem, If f(u) = f(v) = 0 then there exists a point in [u, v] say ¢ such that f/'(c) = 0 for
¢ € [u,v]

2 (b+wij)1ij

But, f'(w;) = Z?:l (Iﬁe

7T) 4+ 2X > 0 and hence there exists no such c.
(1+e(b+“’ w]))z

and hence the function is convex, thus the solution to the partial differential W is unique.
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Saket Choudhary CSCI-567 : Assignment #3 Problem 1

Problem 2

Problem 2: (a)

Consider ||w||o = #i : w; # 0 for a 1D case. Where, 1 = (0) and z3 = (€) where 0 < e << 1

flw) =32 H{w; # 0}

Since we are in 1D:

0 if w=0
Flw) = {1 otherwise
Thus,
fo)y=0
fle)=1
F(A=XNe) =1
FOAX0+(1-N)xe=1V0<A<1 (2a.1)
MO +(1=Nfle)=1=-A<1=fAx0+(1—-X) xe) (2a.2)

From (2a.1), (2a.2) we see:
FOOX 0+ (1= A) x€) > Af(0) + (1— N\ f(e)
Thus, ||w||o is not a convex function!

Problem 2: (b)
lwlly = 325 [wil

Consider two vectors u, v(same dimension say in RP)
Assume: 0A < 1

[|[Adu+ (1= Nvl|| = [Aw; + (1 — Ay

e

=1

NE

(|Aus] + [(1 = A)v|) (since |a+b| < |a| + bV a,b € R)

D
Mlwil + > 11 = Alfus]
=1

i= =1
= AJulls + (1 = N)|Jo]]; since(0 < A < 1) (2a.1)

From (2b.1), we see. || u—+ (1 — AN)v||1 < Alullr + (1 = N)||v]|1
And hence, ||wl||; is a convex function.

Problem 2 continued on next page. .. Page 5 of 16
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Problem 2 (continued)
Problem 2: (c)

Let’s redefine(for the sake of easense)x; to be column vector i.e z; isD x 1 wTis1 x D and and Y = (3

. Yn)
the equivalent porblem then becomes:

ming Y (yi —z}’)?
7
min Z(yi —aj w)? + Al[wl|h
K3

min(y — XTw)T (y — XTw) 4+ M|w||;
w
min(wTXXTw — YT Xw+ YTY) + min A||wl||;

min(w? X XTw — 2Y7 Xw) + min A||w||,

We introduce dummy variables ¢; such that:

szH <t, = t; > wiandti > —w;
Now,

min A[|Jw||; <Aty +ta+ -+ tn)
w
Constraint:

ti+w; >0
ti — Ww; Z 0
which in the matrix form looks like:
L1y ().,
1 -1 w; )
Now consider this vector,:
tq
ta
t3
it
wq
“wy,

which in short form is :

(v)

The matrix A for reducing this constraint to the form Au < b is then given by: Let

p-(1 )

Problem 2 [Problem 2: (c)] continued on next page. .. Page 6 of 16



Saket Choudhary CSCI-567 : Assignment #3 Problem 2

1 (n—1)zeroes... 1 0... 0 0 0

1 (n—1)zeroes... -1 0... 0 0 0 bt

0 1 (n —1)zeroes 1 0... 0 0 t2

0 1 (n —1)zeroes -1 0... 0 0 ts

0 0 1 (n—1)zeroes 1 0... 0 ‘¢t 20
0 0 1 (n—1)zeroes —1 0... wy

: 0... 1 :
0 . Wn/ onx1

2nx2n

Our optimisation problem now looks like:

T
. t) (0 0 ) (t) i i T t
min T +(1 ...(n—2)times1 0... ntimes0...) .
bw (w 1x2n 0 XX anxan \W/ anxi 12 W/ onx1

with the constraint:

1 (n—1)zeroes... 1 0... 0 0 0
1 (n—1)zeroes... -1 0... 0 0 0
0 1 (n —1)zeroes 1 0... 0 0
0 1 (n — 1)zeroes -1 0... 0 0 ¢
0 0 1 (n—1)zeroes 1 0... 0 (w) =0
0 0 1 (n—1)zeroes —1 0... At
: 0... 1
0... -1

2nx2n

which is a QP formulation. of the form:

minu?’ Qu + cT'u
u

AuT < b
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Saket Choudhary CSCI-567 : Assignment #3 Problem 2

Problem 3

Problem 3: (a)

min (32, (yi — w'z:)? + N|w|3)
In more compact matrix notation, let:

Ynx1= (Y1 Y2 =+ Yn)"

XpxD = (:ElT xg QZT)T

This notation, reduces the above function to:
miny (|ly — w" X3 + AlJwl[3)

£(w) = minu(lly — XulB + Alwl3)
=(y— Xw)'(y — Xw) + wTw
=T —w' X" (y — Xw) + M w
= vy —y" Xw—w" Xy + 0" X" Xw + dw"w
=Ty — (XTy) w—w"XTy + X7 Xw + rwTw

0f (w)

= X"y - XTy+ 20w+ (XTXw+ (XXTw) =0

=2 w+2XTXw—-2XTy =0
w(Mp + XTw) = XTy

w* = (XTXw + Xp) ' XTy

Problem 3: (b)

ming (|ly — w? ®||3 + M|w||3) From the previous part, the solution should be of similar form:
w = (TP + \p) 1@y
Using the identity:
(P*+B"R'B)"'B"R™! = PBT(BPBT + R)™*
Thus,

((Mp +&T) ) a7y = o7 (0T + AIy) 'y

‘ w* = ®T(®0T + Ay) "'y ‘

Problem 3 continued on next page. .. Page 8 of 16



Saket Choudhary CSCI-567 : Assignment #3 Problem 3 (continued)

Problem 3: (c)

§= (@7 (@0" + AIn)1y) B(x) = 4 (9T + Ay) ") 07D ()

Now using the property,
(A_l)T _ (AT)_l

T((@07 + Ay) ") BT d(x)
T((@0" + A1y)T) ™ 1<1>Tq> ()
( )
(

T((@T® + My))~ "7 d(x)
T(K 4+ My) " tk(z)

=Y
Y
Y
Y

Where K;; = ®7'®; and r(x) = ¢T o7 (z)

Problem 3: (d)

Kernel ridge regression is O(n?) for n data points. Linear regression was formulated as quadratic pro-
graming and hence is O(n?).

Kernel n x n instead of d x d(for vanilla ridge regression without kernel). In cases where d < n this leads
to an additional n operations for calculating K itself.

Problem 4

Given: ki(.,.) and ko(.,.) are kernel function. Thus, for any vector y € R, y” Ky > 0 where K;; = k(z;, ;)
Mercer’s theorem requires K to be positive semi-definite.

Problem 4 continued on next page. .. Page 9 of 16



Saket Choudhary CSCI-567 : Assignment #3 Problem 4 (continued)

Problem 4: (a)

ks(z,2") = a1k (z,2') + agks(x,2') whereay,as >0
Since ki (x,2’) is positive definite, Vy € R,

y"KWy >0, (4a.1)
where
Kv(]l) = kl(xlvx;)

Similarly,

y" K@y >0, (4a.2)
where

Thus, from (4a.1) and (4a.2), we get

y (KW + K@)y >0vy e R =
yTK®y>0vyeR
where

Problem 4: (b)

Ba(w,2') = f(2)f (') Let K = ka (i, 25) = f(a0) ()
Since f(z) is a real valued function, consider K*)

) f(@y)  fle)f(ey) - fle)f(er)

K® — :
flan)f(@h)  flan)f(ag) - flan)f(27,)
K@ = F(‘r)nxlF(x)fxn
where
f(z1)
F)T,, = f(z2)
f(@n)

Now consider 47 KWy = T F(2)F()Ty = y" P() (" F(2))" = [y F@)|}3 > 0
Thus, ko(.,.) is a valid kernel function!.

Problem 4 continued on next page. .. Page 10 of 16



Saket Choudhary CSCI-567 : Assignment #3 Problem 4 (continued)

Problem 4: (c)

ks(z,2") = g(ki(x,2")) where g is a polynomial with positive coeflicients.
Since ¢ has positive coefficients, g(x) > 0Vax > 0
Now consider,

g(ki(z1,2)))  g(ki(z,2h)) - g(ki(z1,27,)) Z:
yTK®y = (y1 yo - yn) ¥ : x|

9(k1(zn, 21))  g(kr(@n, 25)) - g(ki(wn, 2,)) "

Since K is positive definite, it is possible to compute its diagonal formulation:
K, = PAP™!
where A is a diagonal matrix with the diagonals equal to the eigen values (all non-negative).

yT Ky = yT(Pg(A) P~ 1)y

g(\) 0 0 Zl
YTK®y = (y1 yo--yn) x | x|
0 0 Q(An) yn

where \; > 0 and hence g(A) is semi=positive definite since g(A\1) > 0 (as A; > 0 and g is polynomial with
positive coefficients)
Thus,

y" KOGy >0

Problem 4 continued on next page. .. Page 11 of 16



Saket Choudhary CSCI-567 : Assignment #3 Problem 4 (continued)

Problem 4: (d)

kﬁ(xv ZC/) = kl (.73, Jfl)kg(l‘, 33/)
Thus, in terms of our earlier defined matrix notation, K = K1) o K where o denotes element wise
multiplication (also known as the Hadamard product).
Since, k1 and ky are valid kernel function Jv;w; the eigen vectors of matrix Ky and Ky defines such that:
KW =37, \vo] and K®) =37 pjwjw;™
Now,
K© — g o )
= Z )\ﬂ}ﬂ)iT O Z ‘LLj’LUj’LUjT
i J
= di(wl) o wjw,”
,J
=) Xip(vi 0 wy) (v 0 wy)T
,J
>0
Because (v; o w;)(vj o w;)T = [lv;w;]|3 >0

Problem 4: (e)

kr(z,2") = exp(ki(z, "))
Just like subpart (c), here g(x) = exp(x) = 1+z+2%/2!+2%/3!... (it’s an polynomial with infinite terms
and all coefficients are positive )

Problem 5

Problem 5: (a)

g MSE Bias® Variance
g1 | 0.463977 | 0.108996 0.00

g2 | 0.356683 | 0.002941 | 0.003295
g3 | 0.354618 | 0.002844 | 0.007814
g4 | 0.004551 | 0.000151 | 0.003862
g5 | 0.005546 | 0.000151 | 0.004782
gs | 0.006223 | 0.000125 | 0.005273

Problem 5 continued on next page. .. Page 12 of 16



Saket Choudhary CSCI-567 : Assignment #3 Problem 5 (continued)

i}
03 031 0.3z 033 034 0.35 036 037 0.38 0.39 0.4
MSE

(a) Problem 5.a g1 MSE (b) Problem 5.a go MSE

03 031 0.3z 033 0.34 0.35 036 037 0.38 039 04 o 000z 0.004 0006 0.008 0.01 0.o12
MSE MSE
(a) Problem 5.a gs MSE (b) Problem 5.a g4 MSE

a 0.002 0.004 0.006 0002 0.01 0012 o 0002 0.004 0006 0.008 0.01 0.012
MSE MSE
(a) Problem 5.a g5 MSE (b) Problem 5.a g¢ MSE

Problem 5 continued on next page. .. Page 13 of 16
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CSCI-567 : Assignment #3

Problem 5 (continued)

g1 MsE

(a) Problem 5.b g1t MSE

gIMSE
T

026 0.z2e 03 0.3z 0.34 036 038
MSE

(a) Problem 5.b g3 MSE

04 04z 044

9 MSE

(b) Problem 5.b g» MSE

g4 MSE
T T

0.012 0014 oo1g 0.018

(b) Problem 5.b g4 MSE

Problem 5: (b)

g MSE Bias? Variance
g1 | 0.466517 | 0.118490 0.00

g2 | 0.349509 | 0.003121 | 0.004464
g3 | 0.345009 | 0.003141 | 0.010835
g4 | 0.003469 | 0.000002 | 0.003411
g5 | 0.004510 | 0.000002 | 0.004441
ge | 0.005375 | 0.000004 | 0.005292

Problem 5 continued on next page. ..
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Saket Choudhary CSCI-567 : Assignment #3 Problem 5 (continued)

95 MSE 9t MSE

a opoz 0.004 0.006 0.002 0.01 0.012 0.014 0016 o01e 0.0z o 000z 0.004 0.006 0002 0.01 0.0tz 0.014 006 oo1g 0.0z
MSE MSE
(a) Problem 5.b g5 MSE (b) Problem 5.b g¢ MSE

Problem 5: (c)

As the model complexity increase the squared bias decreases and the variance increases and the mean
squared error decreases. However for some reason, the variance attributed with gs is a bit more than the
normal trend. I could not think of a possible explanation for this.

Another point to realise is that the variance is decreases for g4 since it is a second order polynomial just
like f(z) = 222

Problem 5: (d)

lambda MSE Bias? Variance
0.01 0.006682 | 0.000356 | 0.003399
0.1 0.014202 | 0.001268 | 0.003537

1 0.024060 | 0.002480 | 0.003716

10 0.035110 | 0.003843 | 0.003891

Thus, as the A increases the bias increases and the variance seems to increase too(unexpected, but anyway
it is marginal). Since this is regularization problem, a higher A will try to further penalise the larger
coefficients and hence the coeflicients tend to be close to zero, thus the bias increases. Ideally the variance
should have decreased(again because the coefficients are now smaller!) but this does not seem to be
reflected in my simulation.

Problem 6

Linear Ridge Regression

Split | Optimal A MSE
1 0.01 0.016042
2 0.0001 0.016664
3 0 0.017038

Mean test error: 0.016581

Problem 6 continued on next page. .. Page 15 of 16
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Problem 6 (continued)

Linear Kernel Ridge Regression

Split | Optimal A MSE
1 0.01 0.016101
2 0.0001 0.016829
3 0.0 0.017040

Mean test error

: 0.016657

Polynomial Kernel Ridge Regression

Split | Optimal A | Optimal a | Optimal b MSE
1 0.01 0.5 2 1.268206 * 10702
2 1 0.0 3 1.227860 x 10792
3 10 1.0 3 1.286726 % 10792
Mean test Error: 0.012609

RBF Gaussian Kernel Ridge Regression

Split | Optimal A | Optimal o2 MSE
1 0.001 8 0.013382
2 0.01 8 0.012444
3 0.01 8 0.012080

Mean test Error: 0.012635

Comparison

Linear Ridge Regression mean test error : 0.016581
Linear Kernel Ridge Regression mean test error : 0.016657

Kernel ridge regression with linear kernel does not give the ”same” results(they are very close though),
and the thing to realise in this case is that linear kernel projects the data into N x N dimensions, while
the ridge regression still has the ’kernel’ in D x D dimensions. There is extra information being used here
(in cases where N > D) In a a situation where D > N the linear kernl might perform better.(I don’t have

a proof for this)

From the table we see, the Polynomial kernel with an average polynomial degree of 2.5 performs the
best, though Gaussian comes close. It looks like the poylnomial kernel in this case is better able to
capture the non linearity in 2 or 3 dimensions, while the gaussian uses infinite dimensions.

Kernel Mean Test Error
Linear no Kernel 0.016581
Linear Kernel 0.016657
Polynomial Kernel 0.012609
Gaussian Kernel 0.012635
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