MATH-578B: Assignment $\#$ 2

Due on Friday, October 15, 2015

Saket Choudhary 2170058637

Contents

Problem 1

Define $h(w)$ to be an indicator function:

$$
h(x) = \begin{cases} 1 & x \in A \\ -1 & x \notin A \end{cases}
$$

Now consider $E[h(W)]$:

$$
E[h(W)] = P(W \in A) \times 1 + P(W \notin A) \times -1
$$

= P(W \in A) - (1 - P(W \in A))
= 2P(W \in A) - 1 \t(1.1)

Similarly,

$$
E[h(Z)] = 2P(Z \in A) - 1 \tag{1.2}
$$

where $A \in Z^+$ From (1.1), (1.2)

$$
E(h(W)) - E(h(Z)) = 2P(W \in A) - 2P(Z \in A)
$$

\n
$$
|E(h(W)) - E(h(Z))| = 2|P(W \in A) - P(Z \in A)|
$$

\n
$$
max_{h:||h||=1} |E(h(W)) - E(h(Z))| = 2max_{A \in Z^+} |P(W \in A) - P(Z \in A)|
$$

\n
$$
= 2|P(W = 0) - P(Z = 0) + P(W = 1) - P(Z = 1) + \cdots|
$$

\n
$$
= \sum_{k \ge 0} |P(W = k) - P(Z = k)|
$$

Problem 2

 $w = 11011011$ Periods: $P(\omega) = \{p \in \{1, 2 \cdots, w - 1\} : w_i = w_{i+p}\}\ \forall i \in \{1, 2 \cdots, w - p\}$ $w_1 = w_4; w_2 = w_5; w_3 = w_6; \ldots w_5 = w_8$ $w_1 = w_7$ $w_1 = w_8$ Thus $P(\omega) = \{3, 6, 7\}$ $P(\omega) = 6$ can be written as multiple of $P(\omega) = 3$ and hence the principal period $P(\omega') = \{3, 7\}$ The mean $(n - w + 1)\mu(w)$ using poisson approximation for the number of clumps is given by: $P(\omega)$ – $\sum_{p\in P(\omega')} P(w^{(p)}w)$ $w = 11011011$ $P(\omega) = \{3, 6, 7\}$ $P(\omega') = \{3, 7\}$ $\mu(w) = P(11011011) - P(110w) - P(1101101w)$ $= p^6 q^2 - p^2 q (p^6 q^2) - p^5 q^2 (p^6 q^2)$

And hence the mean of the poisson approximation is given by $(n-7)p^6q^2(1-p^2q-p^5q^2)$ where C_i is the even that there are j consecutive occurrences of w starting at that particular location. $C_j = \{w^{(p_1)}w^{(p_2)}\dots w^{(p_{j-1}w)}\}$ where p_i is a principal period of w. and the mean of this process is given by $\mu_j(w) = P(C_j) - 2P(C_{j+1}) + P(C_{j+2})$ $P(C_j)$ calculation:

 $= p^6 q^2 (1 - p^2 q - p^5 q^2)$

Let there be $kw^{(3)}$ and $j-1-k$ with $w^{(7)}$ among the first $j-1$ occurrences of w starting at i. The probability of this is $\binom{j-1}{k} (p^2 q)^k (p^5 q^2)^{j-1-k}$ Thus,

$$
P(C_j) = P(w) \sum_{k=0}^{j-1} (P(w^{(3)})^k (P(w^{(7)}))^{j-1-k}
$$

= $p^6 q^2 (p^2 q + p^5 q^2)^{j-1}$
= $p^{2j+4} q^{j+1} (1 + p^3 q)^{j-1}$
 $P(C1) = p^6 q^2$
 $P(C2) = p^8 q^3 (1 + p^3 q)$
 $P(C1) - P(C2) = p^6 q^2 (1 - p^2 q - p^5 q^2)$
 $\mu_j(w) = p^{2j+4} q^{j+1} (1 + p^3 q)^{j-1} (1 - 2p^2 q (1 + p^3 q) + p^4 q^2 (1 + p^3 q)^2)$

Given a clump, rhe number of occurrences of w can be approximated by:

$$
P(L_i = j) = \frac{u_j(w)}{\sum_{i \ge 1} \mu_j(w)}
$$

=
$$
\frac{p^{2j+4}q^{j+1}(1+p^3q)^{j-1}(1-2p^2q(1+p^3q)+p^4q^2(1+p^3q)^2)}{p^6q^2(1-p^2q-p^5q^2)}
$$

Exercise 6.1

Expected number of apparent islands = $Ne^{-c(1-\theta)}=cge^{-c(1-\theta)}$ where $g = \frac{G}{L}$ (since $cg \to \infty$) as $g \to \infty$ $f(c) = cge^{-c(1-\theta)}$ $\frac{\partial f(c)}{\partial c} = g(e^{-c(1-\theta)} + -c(1-\theta)e^{-c(1-\theta)}) = 0$ $\implies 1 - c(1 - \theta) = 0$ $c^* = (1 - \theta)^{-1}$ and the maximum number of apparent islands is $Ne^{-c^*(1-\theta)} = Ne^{-1} = \frac{G}{L}e^{-1}(1-\theta)^{-1}$

Exercise 6.5

From our solution for *Excersice*6.1 we see that the the maximum number of apparent islands occur at $c^* = (1 - \theta)^{-1}$ Now c was defined to be the expected number of clones covering a point. and c^* is the maximum number of clones arranged such that no two clones overlap. (overlap if at all is less than θ) Then the maximum number of islands at any point would be $ceil((1 - \theta)^{-1}) = 1 + max\{k : k \text{ integer}, k < \theta\}$ $(1 - \theta)^{-1}$

Excercise 11.14

Stein equation: $(Lf)(x) = \lambda f(x+1) - xf(x)$ and $W = \sum_{i=1}^{n} X_i$ $E((Lf)(W)) = 0$ And $Z \sim Poisson(E(W))$ Since X_i is iid. Note: $J_i = \{i\}$ i.e since this is an iid scenarios, the only dependent variable to X_i , is X_i itself (this requires p to be $\neq 0$ and $\neq 1$)

$$
b_1 = \sum_{i \in I} \sum_{j \in J_i} E(X_i)E(X_j) = \sum_{i=1} p^2 = np^2
$$

$$
b_2 = \sum_{i \in I} \sum_{i \neq j \in J_i} E(X_i X_j) = \sum_i \sum_{i \neq j \in I_i} E(X_i X_j) = 0
$$

And hence, by Theorem 11.22:

$$
||W - Z|| \le 2np^2 \frac{1 - e^{-\lambda}}{\lambda} \le 2np^2
$$

where $EZ=EW=\lambda$

Exercise 11.10

 $X_i =$ \prod^{i+t-1} $j=1$ D_j $W = \sum$ i∈I X_i $I = \{1, 2, \dots, n - t + 1\}$ and $J_i = \{j \in I : |i - j| < t\}$ $EW = \lambda = (n - t + 1)p^t$ Since $p<1$ define $q=1/p$ Now, $EW = \frac{n-t+1}{q^t}$ and as $n \to \infty$ In order to prevent $EW \to \infty$, we make $t \to n$ when $n \to \infty$ $i - (t - 1) \leq j \leq i + (t - 1)$ $b_1 = \sum$ i $p^t \times ((2t-2)+1)p^t = (n-t+1)(2t-1)p^{2t}$ $b_2=\sum$ i $p^{(2t-2)+1} = (n-t+1)p^{2t-1}$ Now, Let $q = 1/p$ $\lim_{n \to \infty} b_1 = \lim_{n \to \infty} \frac{(n - t + 1)(2t - 1)}{q^{2t}}$ q^{2t} $=\frac{2(n-t+1)+(-1)(2t-1)}{2t+(-1)}$ $\frac{q^{2t}\ln(q)}{q^{2t}\ln(q)}$ Using LHospital Rule $=\frac{2n-4t+3}{2t+4}$

Thus, for b_1 to be finite, $t \to n/2$ as $n \to \infty$ and similar is the case for b_2 . Thus for $t \to \infty$, b_1 , b_2 are both bounded and infact b_1 , $b_2 \to 0$ as $n\infty$ or as $t \to n$

 q^{2t} $\ln(q)$