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Problem 1

Define the likelihood function: L(θ|N,n, k) Then,

L(θ|N,n, k) =
(
θ
k

)(
N−θ
n−k

)(
N
n

)
We find the MLE using first principle.

In order to ensure MLE, we need to ensure: L(θ|N,n,k)
L(θ−1|N,n,k) > 1

L(θ|N,n, k)
L(θ − 1|N,n, k) > 1

(θk)(N−θ
n−k)

(Nn)
(θ−1
k )(N−θ+1

n−k )
(Nn)

> 1

θ(N − θ + 1− (n− k))
(θ − k)(N − θ + 1) > 1

θn > −kN − k

θ <
k(N + 1)

n

Similarly, L(θ|N,n,k)
L(θ+1|N,n,k) > 1

L(θ|N,n, k)
L(θ + 1|N,n, k) > 1

(θ − k + 1)(N − θ)
(θ + 1)(N − θ − (n− k)) > 1

θ >
k(N + 1)

n
− 1

Thus, k(N+1)
n − 1 < θ < k(N+1)

n

and hence a valid choice for MLE is θ̂ = bN(k+1)
n c

Part (b)

N=19, n=4, k=3
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N <- 10
n <- 4
k <- 3
theta <- ceiling(k*(N+1)/n)

θ̂ = 9

To find one p-value for Hθ : θ = 4 we need to calculate:
∑9
θ=4 Pr(X = k)

#theta = seq(4,9,1);
#s <- sapply(theta, function(x) choose(x,3) *choose(10-x,1)/(choose(10,4)))
k <- seq(3,4,1);
s <- sapply(theta, function(x) choose(4,k) * choose(10-4,k)/(choose(10,4)) )
sum(s)

## [1] 0.452381

Thus, one sided p-value is 0.452381 and based on a threshold of α = 0.05 we fail to reject the null
hypothesis that θ = 4

Problem 2

Y ∼ Binomial(n, π) and π̂ = Y
n Define g(π) = log π

1−π Then by delta method E[g(π)] = g(E[π̂])

E[g(π̂)] = g(E[π̂])

= log π̂

1− π̂

= log
Y
n

1− Y
n

= log Y

n− Y

V ar(g(π̂)) = g′(π)2V ar(π̂) = E[g(π̂)2]− (E[g(π̂)])2

Thus mean square error is given by

E[g(π̂)2] = g′(π)2V ar(π̂) + (E[g(π̂)])2

where V ar(π̂) = π̂(1− π̂) = Y
n (1− Y

n ) and g′(π̂) = 1
π̂ + 1

1−π̂ = 1
π̂(1−π̂)

Thus, V ar(π̂) = 1
π̂2(1−π̂)2 × π̂(1− π̂) = 1

π̂(1−π̂)

Thus, E[g(π̂)2] = 1
π̂(1−π̂) + log2 π̂

1−π̂ = n2

Y (n−Y ) + log2 n
n−Y

Problem 3

A possible model to describe the given two-way factorial experiment would be two-way factorial ANOVA.
Since there are several treatment groups, we will test for within group versus between group variance for the
two independent factors (and their interaction)
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Problem 4

Part (a)

In this part, the variables X1 and X2 are correlated. The main diffciulty that would potentially arise would
be in interpreting the cofficients associtated with these variables. Cofficients by definition imply the amount
by which the mean response changes when all other covariates are held fixed. However in this case since X1
and X2 are highly correlated, changing one would also imply chaning the other.

In order to overcome this, we need to choose either of X1 or X2 as a covariate in the linear regression
model(essentially discarding the other) based on which one of these predictors best captures the ‘reality’ of
the independent variable.

Part (b)

There exists two outliers one on the top right and one on the bottom left. They are outliers considering
(X1, X2) together but not individually. Since we are minimizing the squared error to determine the coefficients,
the presence of such outlier points will affect the cofficients (and they will turn out to be smaller in magnitude).
One way isto completely neglect such outliers in the model.

Problem 5

Given log p
1−p = 3.2− 0.078× age for females and log p

1−p = 1.6− 0.078× age for males where p denotes the
probability of survival.

Consider

log p

1− p = β0 + β1x

1− p
p

= exp(−(β0 + β1x))

p = 1
1 + exp(−(β0 + β1x))

pwoman <- 1/(1+exp(-(3.2-0.078*25)))
pman <- 1/(1+exp(-(1.6-0.078*50)))

Thus, Estimated probability of survival of man of age 25 = 0.091123 and of woman aged 50 = 0.7772999

Age at which probability of survival is 0.5:

β0 + β1x = log(0.5/0.5)

x̂ = β0

β1

Thus, man’s age at which probability of surviving is 0.5: 20.5128205 and for woman: 41.025641
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Problem 6

library(car)
problem6 <- read.csv('problem6.csv')
model <- lm(y~x1+x2, problem6)

We first consider V IF1 X1 = β0 + β1X2 X̄1 = 2.5 and X̄2 = 0 Also,
∑
i(X2i − X̄2)2 = (−1− 0)2 + (0− 0)2 +

(1− 0)2 + (0− 0)2 = 2

β1 =
∑
i

(X1i−X̄1)(X2i−X̄2)∑
i
(X2i−X̄2)

= (1−2.5)(−1−0)+(2−2.5)(0)+(3−2.5)(1−0)+(4−2.5)(0)
2 = 1

β0 = X̄1 − β1X̄1 = 2.5− 0 = 2.5

X2 = 2.5 +X1

SSTotal =
∑
i(X1i − X̄1)2 = (1− 2.5)2 + (2− 2.5)2 + (3− 2.5)2 + (4− 2.5)2 = 5

SSRes = (1− 2.5)2 + (2− 2.5)2 + (3− 2.5)2 + (4− 2.5)2 = 3

Thus R2
1 = 1− SSRes/SSTotal = 1− 3/5 = 0.4

And V IF1 = 1/(1−R2
1) = 1.6667

Similarly for V IF2 we consider X2 = β0 + β1X1∑
i(X1i − X̄1)2 = 5 and hence β1 = 2

5 Thus, β0 = X̄2 − β1X̄1 = 0− 2.5 ∗ 2/5 = −1

Thus, X2 = −1 + 0.4X1

SSTot =
∑
i(X2i − X̄2)2 = 2

And SSRes = (−1 + 0.6)2 + (0 + 0.2)2 + (1− 0.2)2 + (0− 0.6)2 = 1.2

and hence R2
2 = 1− 1.2/2 = 0.4 and V IF2 = 1/(1−R2

2) = 1.667

SX2 =
√

2 and SX1 =
√

5

SE(β1)
SE(β2) =

σ
√

1
(n−1)s2

X1

σ
√

1
(n−1)s2

X2

= sX2

sX1

=
√

2
5

= 0.632455

V IF1 = 1.667;V IF2 = 1.667 which can be verified as per R output:

vif(model)

## x1 x2
## 1.666667 1.666667

Part (b)
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c <- summary(model)
s <- c$coefficients
SE1 <- s[2,2]
SE2 <- s[3,2]
b0 <- s[1,1]
b1 <- s[2,1]
b2 <- s[3,1]

Thus

β̂0 = −3.3333333
β̂1 = 2.3333333
β̂2 = −4.3333333

SE(β̂1) = 1.8856181
SE(β̂2) = 2.981424

SE(β̂1)/SE(β̂2) = 0.6324555

which can be verified as per this summary of the model

summary(model)

##
## Call:
## lm(formula = y ~ x1 + x2, data = problem6)
##
## Residuals:
## 1 2 3 4
## -1.333e+00 2.667e+00 -1.333e+00 -3.886e-16
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.333 4.989 -0.668 0.625
## x1 2.333 1.886 1.237 0.433
## x2 -4.333 2.981 -1.453 0.384
##
## Residual standard error: 3.266 on 1 degrees of freedom
## Multiple R-squared: 0.6952, Adjusted R-squared: 0.08571
## F-statistic: 1.141 on 2 and 1 DF, p-value: 0.5521
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Problem 7

µ11 = µ+ α1 + γ1 + θ11

µ12 = µ+ α1 + γ2 + θ12

µ21 = µ+ α2 + γ1 + θ21

µ22 = µ+ α2 + γ2 + θ22

µ31 = µ+ α3 + γ1

µ32 = µ+ α3 + γ2

Applying contraints
∑
i αi = 0 we get :

α1 + α2 + α3 = 0
2− 3 + α3 = 0

α3 = 1

Similarly
∑
i γi = 0

γ1 + γ2 = 0
5 + γ2 = 0

γ2 = −5

Now,
∑
j θij = 0 ∀ i

θ11 + θ12 = 0
θ12 = −4

Similarly,
∑
i θij = 0 ∀ j

θ11 + θ21 = 0
θ21 = −4

Similarly θ22 = 4

Thus,

µ11 = µ+ α1 + γ1 + θ11 = 12
µ12 = µ+ α1 + γ2 + θ12 = −6
µ21 = µ+ α2 + γ1 + θ21 = −1
µ22 = µ+ α2 + γ2 + θ22 = −3
µ31 = µ+ α3 + γ1 = 7
µ32 = µ+ α3 + γ2 = 3
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Problem 8

Given model: T = A(t− t0)pzq; T (t, z)

Part (a)

To estimate A,p and q, we consider the log transformed model: log(Z) = log(A) + p log(t− t0) + q log(z) ,
this is essentially a linear regression model of the following form : Y = β0 + β1X1 + β2X2 where:

Y = log(T )
β0 = log(A)
β1 = p

X1 = log(t− t0)
β2 = q

X2 = log(z)

and the coefficients (β0, β1, β2)T = (XTX)−1XTY

Part (b)

To test the hypothesis that temperature does not change in time for each depth, we need to check for(in the
above restated log model) H0 : β1 = 0;H1 : β1 6= 0 or alternatively H0 : p = 0;H1 : p 6= 0

Part (c)

To test the hypothesis that temperature does not depend on both time and depth we need to do the following
test in lieu of the above model:

H0 : β1 = 0, β2 = 0 and H1 : β1 6= 0, β2 6= 0 alternatively H0 : p = 0, q = 0 and H1 : p 6= 0; q 6= 0

Part (d)

She can use the model for prediction of Temperature conditions in a given region for 1 year, since there
is autocorrelation involved and hence the next year’s prediction will depend on the current year’s parame-
ters(which are known). This is not true for predicting temperature after 2 years, since the true temperature
conditions after 1 year would not be known.

Part (e)

Prediction for 20 years will not be accurate since the data for next year depends on knowing the actual
parameters for the current year(since the temperature readings are correlated). Though the model can in
principle be used for 20 years prediction, the residuals might be very large.

Part (f)

This model cannot be used to make predictions in other parts of North America accurately since the model
used to infer the coefficients used zi from a specific area. The model was trained using data from a specific
area and hence cannot necessarily be generalised.
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