# End Term

## *Saket Choudhary*

*December 9, 2015*

## **Problem 1**

Define the likelihood function:  $L(\theta|N, n, k)$  Then,

$$
L(\theta|N,n,k) = \frac{\binom{\theta}{k}\binom{N-\theta}{n-k}}{\binom{N}{n}}
$$

We find the MLE using first principle.

In order to ensure MLE, we need to ensure:  $\frac{L(\theta|N,n,k)}{L(\theta-1|N,n,k)} > 1$ 

$$
\frac{L(\theta|N, n, k)}{L(\theta - 1|N, n, k)} > 1
$$

$$
\frac{\binom{\ell}{k}\binom{N-\theta}{n-k}}{\binom{N}{n}}}{\frac{\binom{\theta-1}{k}\binom{N-\theta+1}{n-k}}{\binom{N}{n}}} > 1
$$

$$
\frac{\theta(N-\theta+1-(n-k))}{(\theta-k)(N-\theta+1)} > 1
$$

$$
\theta n > -kN - k
$$

$$
\theta < \frac{k(N+1)}{n}
$$

Similarly,  $\frac{L(\theta|N,n,k)}{L(\theta+1|N,n,k)} > 1$ 

$$
\frac{L(\theta|N, n, k)}{L(\theta + 1|N, n, k)} > 1
$$

$$
\frac{(\theta - k + 1)(N - \theta)}{(\theta + 1)(N - \theta - (n - k))} > 1
$$

$$
\theta > \frac{k(N + 1)}{n} - 1
$$

Thus,  $\frac{k(N+1)}{n} - 1 < \theta < \frac{k(N+1)}{n}$ and hence a valid choice for MLE is  $\hat{\theta} = \frac{N(k+1)}{n}$  $\frac{\frac{n+1}{n}}{n}$ 

## **Part (b)**

N=19, n=4, k=3

 $N < - 10$  $n \sim 4$  $k \sim 3$ theta  $\leq$  ceiling( $k*(N+1)/n$ )

 $\hat{\theta} = 9$ 

To find one p-value for  $H_{\theta}$ :  $\theta = 4$  we need to calculate:  $\sum_{\theta=4}^{9} Pr(X = k)$ 

```
#theta = seq(4,9,1);
#s <- sapply(theta, function(x) choose(x,3) *choose(10-x,1)/(choose(10,4)))
k \leftarrow \text{seq}(3, 4, 1);s <- sapply(theta, function(x) choose(4,k) * choose(10-4,k)/(choose(10,4)) )
sum(s)
```
#### ## [1] 0.452381

**Thus, one sided p-value is 0.452381** and based on a threshold of  $\alpha = 0.05$  we fail to reject the null hypothesis that  $\theta = 4$ 

### **Problem 2**

*Y* ∼ *Binomial*(*n*, *π*) and  $\hat{\pi} = \frac{Y}{n}$  Define  $g(\pi) = \log \frac{\pi}{1-\pi}$  Then by delta method  $E[g(\pi)] = g(E[\hat{\pi}])$ 

$$
E[g(\hat{\pi})] = g(E[\hat{\pi}])
$$

$$
= \log \frac{\hat{\pi}}{1 - \hat{\pi}}
$$

$$
= \log \frac{\frac{Y}{n}}{1 - \frac{Y}{n}}
$$

$$
= \log \frac{Y}{n - Y}
$$

$$
Var(g(\hat{\pi})) = g'(\pi)^2 Var(\hat{\pi}) = E[g(\hat{\pi})^2] - (E[g(\hat{\pi})])^2
$$

Thus mean square error is given by

$$
E[g(\hat{\pi})^2] = g'(\pi)^2 Var(\hat{\pi}) + (E[g(\hat{\pi})])^2
$$

where  $Var(\hat{\pi}) = \hat{\pi}(1 - \hat{\pi}) = \frac{Y}{n}(1 - \frac{Y}{n})$  and  $g'(\hat{\pi}) = \frac{1}{\hat{\pi}} + \frac{1}{1 - \hat{\pi}} = \frac{1}{\hat{\pi}(1 - \hat{\pi})}$ Thus,  $Var(\hat{\pi}) = \frac{1}{\hat{\pi}^2 (1-\hat{\pi})^2} \times \hat{\pi} (1-\hat{\pi}) = \frac{1}{\hat{\pi} (1-\hat{\pi})}$ Thus,  $E[g(\hat{\pi})^2] = \frac{1}{\hat{\pi}(1-\hat{\pi})} + \log^2 \frac{\hat{\pi}}{1-\hat{\pi}} = \frac{n^2}{Y(n-Y)} + \log^2 \frac{n}{n-Y}$ 

## **Problem 3**

A possible model to describe the given two-way factorial experiment would be two-way factorial ANOVA. Since there are several treatment groups, we will test for within group versus between group variance for the two independent factors (and their interaction)

#### **Part (a)**

In this part, the variables  $X_1$  and  $X_2$  are correlated. The main diffciulty that would potentially arise would be in interpreting the cofficients associtated with these variables. Cofficients by definition imply the amount by which the mean response changes when all other covariates are held fixed. However in this case since  $X_1$ and  $X_2$  are highly correlated, changing one would also imply chaning the other.

In order to overcome this, we need to choose either of  $X_1$  or  $X_2$  as a covariate in the linear regression model(essentially discarding the other) based on which one of these predictors best captures the 'reality' of the independent variable.

#### **Part (b)**

There exists two outliers one on the top right and one on the bottom left. They are outliers considering  $(X_1, X_2)$  together but not individually. Since we are minimizing the squared error to determine the coefficients, the presence of such outlier points will affect the cofficients (and they will turn out to be smaller in magnitude). One way isto completely neglect such outliers in the model.

## **Problem 5**

Given  $\log \frac{p}{1-p} = 3.2 - 0.078 \times age$  for females and  $\log \frac{p}{1-p} = 1.6 - 0.078 \times age$  for males where *p* denotes the probability of survival.

Consider

$$
\log \frac{p}{1-p} = \beta_0 + \beta_1 x
$$

$$
\frac{1-p}{p} = \exp(-(\beta_0 + \beta_1 x))
$$

$$
p = \frac{1}{1 + \exp(-(\beta_0 + \beta_1 x))}
$$

pwoman <- 1/(1+**exp**(-(3.2-0.078\*25))) pman <- 1/(1+**exp**(-(1.6-0.078\*50)))

Thus, Estimated probability of survival of man of age  $25 = 0.091123$  and of woman aged  $50 = 0.7772999$ Age at which probability of survival is 0.5:

$$
\beta_0 + \beta_1 x = \log(0.5/0.5)
$$

$$
\hat{x} = \frac{\beta_0}{\beta_1}
$$

Thus, man's age at which probability of surviving is 0.5: 20.5128205 and for woman: 41.025641

**library**(car) problem6 <- **read.csv**('problem6.csv') model <- **lm**(y~x1+x2, problem6)

We first consider *VIF*1  $X_1 = \beta_0 + \beta_1 X_2$   $\bar{X_1} = 2.5$  and  $\bar{X_2} = 0$  Also,  $\sum_i (X_{2i} - \bar{X_2})^2 = (-1 - 0)^2 + (0 - 0)^2 +$  $(1-0)^2 + (0-0)^2 = 2$  $\beta_1 = \sum_i \frac{(X_{1i} - \bar{X}_1)(X_{2i} - \bar{X}_2)}{\sum_i (X_{2i} - \bar{X}_2)} = \frac{(1 - 2.5)(-1 - 0) + (2 - 2.5)(0) + (3 - 2.5)(1 - 0) + (4 - 2.5)(0)}{2} = 1$  $\beta_0 = \bar{X}_1 - \beta_1 \bar{X}_1 = 2.5 - 0 = 2.5$  $X_2 = 2.5 + X_1$  $SS_{Total} = \sum_{i} (X_{1i} - \bar{X}_1)^2 = (1 - 2.5)^2 + (2 - 2.5)^2 + (3 - 2.5)^2 + (4 - 2.5)^2 = 5$  $SS_{Res} = (1 - 2.5)^2 + (2 - 2.5)^2 + (3 - 2.5)^2 + (4 - 2.5)^2 = 3$ Thus  $R_1^2 = 1 - SS_{Res}/SS_{Total} = 1 - 3/5 = 0.4$ And  $VIF1 = 1/(1 - R_1^2) = 1.6667$ Similarly for *VIF*2 we consider  $X_2 = \beta_0 + \beta_1 X_1$  $\sum_i (X_{1i} - \bar{X}_1)^2 = 5$  and hence  $\beta_1 = \frac{2}{5}$  Thus,  $\beta_0 = \bar{X}_2 - \beta_1 \bar{X}_1 = 0 - 2.5 * 2/5 = -1$ Thus,  $X_2 = -1 + 0.4X_1$  $SS_{Tot} = \sum_i (X_{2i} - \bar{X}_2)^2 = 2$ And  $SS_{Res} = (-1 + 0.6)^2 + (0 + 0.2)^2 + (1 - 0.2)^2 + (0 - 0.6)^2 = 1.2$ and hence  $R_2^2 = 1 - 1.2/2 = 0.4$  and  $VIF2 = 1/(1 - R_2^2) = 1.667$  $S_{X_2} =$ √ 2 and  $S_{X_1}$  = √ 5

$$
\frac{SE(\beta_1)}{SE(\beta_2)} = \frac{\sigma \sqrt{\frac{1}{(n-1)s_{X_1}^2}}}{\sigma \sqrt{\frac{1}{(n-1)s_{X_2}^2}}}
$$

$$
= \frac{s_{X_2}}{s_{X_1}}
$$

$$
= \sqrt{\frac{2}{5}}
$$

$$
= 0.632455
$$

 $VIF1 = 1.667$ ;  $VIF2 = 1.667$  which can be verified as per R output:

**vif**(model)

 $\#$   $\#$   $\frac{1}{2}$   $\frac{1}{2}$  ## 1.666667 1.666667

**Part (b)**

c <- **summary**(model) s <- c\$coefficients  $SE1 \leftarrow s[2,2]$  $SE2 \leq s[3,2]$ b0  $\leftarrow s[1,1]$ b1  $\leftarrow s[2,1]$ b2  $\leftarrow s[3,1]$ 

Thus

$$
\hat{\beta}_0 = -3.33333333
$$
\n
$$
\hat{\beta}_1 = 2.33333333
$$
\n
$$
\hat{\beta}_2 = -4.3333333
$$
\n
$$
SE(\hat{\beta}_1) = 1.8856181
$$
\n
$$
SE(\hat{\beta}_2) = 2.981424
$$
\n
$$
SE(\hat{\beta}_1)/SE(\hat{\beta}_2) = 0.6324555
$$

which can be verified as per this summary of the model

**summary**(model)

```
##
## Call:
## lm(formula = y ~ x1 + x2, data = problem6)##
## Residuals:
## 1 2 3 4
## -1.333e+00 2.667e+00 -1.333e+00 -3.886e-16
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.333 4.989 -0.668 0.625
## x1 2.333 1.886 1.237 0.433
## x2 -4.333 2.981 -1.453 0.384
##
## Residual standard error: 3.266 on 1 degrees of freedom
## Multiple R-squared: 0.6952, Adjusted R-squared: 0.08571
## F-statistic: 1.141 on 2 and 1 DF, p-value: 0.5521
```

$$
\mu_{11} = \mu + \alpha_1 + \gamma_1 + \theta_{11} \n\mu_{12} = \mu + \alpha_1 + \gamma_2 + \theta_{12} \n\mu_{21} = \mu + \alpha_2 + \gamma_1 + \theta_{21} \n\mu_{22} = \mu + \alpha_2 + \gamma_2 + \theta_{22} \n\mu_{31} = \mu + \alpha_3 + \gamma_1 \n\mu_{32} = \mu + \alpha_3 + \gamma_2
$$

Applying contraints  $\sum_i \alpha_i = 0$  we get :

$$
\alpha_1 + \alpha_2 + \alpha_3 = 0
$$
  

$$
2 - 3 + \alpha_3 = 0
$$
  

$$
\alpha_3 = 1
$$

Similarly  $\sum_i \gamma_i = 0$ 



Now,  $\sum_{j} \theta_{ij} = 0 \ \forall \ i$ 

$$
\theta_{11} + \theta_{12} = 0
$$

$$
\theta_{12} = -4
$$

Similarly,  $\sum_i \theta_{ij} = 0 \ \forall \ j$ 

$$
\theta_{11} + \theta_{21} = 0
$$

$$
\theta_{21} = -4
$$

Similarly  $\theta_{22}=4$ Thus,

$$
\mu_{11} = \mu + \alpha_1 + \gamma_1 + \theta_{11} = 12
$$
  
\n
$$
\mu_{12} = \mu + \alpha_1 + \gamma_2 + \theta_{12} = -6
$$
  
\n
$$
\mu_{21} = \mu + \alpha_2 + \gamma_1 + \theta_{21} = -1
$$
  
\n
$$
\mu_{22} = \mu + \alpha_2 + \gamma_2 + \theta_{22} = -3
$$
  
\n
$$
\mu_{31} = \mu + \alpha_3 + \gamma_1 = 7
$$
  
\n
$$
\mu_{32} = \mu + \alpha_3 + \gamma_2 = 3
$$

Given model:  $T = A(t - t_0)^p z^q$ ;  $T(t, z)$ 

#### **Part (a)**

To estimate A,p and q, we consider the log transformed model:  $\log(Z) = \log(A) + p \log(t - t_0) + q \log(z)$ , this is essentially a linear regression model of the following form :  $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$  where:

> $Y = \log(T)$  $\beta_0 = \log(A)$  $\beta_1 = p$  $X_1 = \log(t - t_0)$  $\beta_2 = q$  $X_2 = \log(z)$

and the coefficients  $(\beta_0, \beta_1, \beta_2)^T = (X^T X)^{-1} X^T Y$ 

#### **Part (b)**

To test the hypothesis that temperature does not change in time for each depth, we need to check for(in the above restated log model)  $H_0: \beta_1 = 0; H_1: \beta_1 \neq 0$  or alternatively  $H_0: p = 0; H_1: p \neq 0$ 

#### **Part (c)**

To test the hypothesis that temperature does not depend on both time and depth we need to do the following test in lieu of the above model:

*H*<sub>0</sub> :  $\beta_1 = 0, \beta_2 = 0$  and  $H_1 : \beta_1 \neq 0, \beta_2 \neq 0$  alternatively  $H_0 : p = 0, q = 0$  and  $H_1 : p \neq 0; q \neq 0$ 

#### **Part (d)**

She can use the model for prediction of Temperature conditions in a given region for 1 year, since there is autocorrelation involved and hence the next year's prediction will depend on the current year's parameters(which are known). This is not true for predicting temperature after 2 years, since the true temperature conditions after 1 year would not be known.

#### **Part (e)**

Prediction for 20 years will not be accurate since the data for next year depends on knowing the actual parameters for the current year(since the temperature readings are correlated). Though the model can in principle be used for 20 years prediction, the residuals might be very large.

#### **Part (f)**

This model cannot be used to make predictions in other parts of North America accurately since the model used to infer the coefficients used *z<sup>i</sup>* from a specific area. The model was trained using data from a specific area and hence cannot necessarily be generalised.