
MATH-578A: Homework # 1
Due on Tuesday, March 10, 2015

Saket Choudhary

2170058637

1



Saket Choudhary MATH-578A : Homework # 1

Contents

Question # 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Question # 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Question # 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Question # 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Question # 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Question # 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Question # 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Page 2 of 11



Saket Choudhary MATH-578A : Homework # 1

Question # 1

Definition: SP (i) = max k < i such that P [1..k] = P [i− k + 1..i]

String: CACGCAACGA

NOTE: Iteration indexed at 0. So SP[0] = 0(by definition) and hence the loop iterations start from 1 and

goes till n− 1 = 9

Iteration SP [i] All other SP values examined # of times inner while loop executed

1 0 - 0

2 1 - 0

3 0 SP [0] 1

4 1 - 0

5 2 - 0

6 1 SP [0] 1

7 1 - 0

8 1 SP [0] 1

9 0 - 0

continued on next page. . . Page 3 of 11



Saket Choudhary MATH-578A : Homework # 1 (continued)

Question # 2

S = CACGGCACGG

NOTE: Indexing starts from 0. By definition Z[0] = |S| = 10

The ’cases’ are choosen out of:

Case 1: k > r. The index for which Z value is being calculated is greater than the right most ending of

all the previous(till k − 1) Z boxes calculated. Since this is as good as having no pre-calculated Z scores,

this case leads to explicit character comparison(starting at k) till a mismatch occurs.

Case 2: k ≤ r The current position k is inside one of the previoulsy calculated Z boxes. Hence there

exists a correpsonding position k′ = k − l+ 1 where l is the left ending of the Z box with its right ending

at r, such that S[k‘] = S[k]. In short, there is a corresponding Z box that occurs in the prefix of S, by

definition. There is a corresponding one to one match for S[k′..r − l + 1] with S[k..r] and we define this

to be another box β with |β| = r−k+1 . Z[k] can be caculated utilising the previoulsy calculated Z scores.

The following three cases arise(we list down explicit comparisons invloved for each case):

Case 2a: Z ′
k < |β| Starting at k′ the length of largest substring that matches the prefix of S is less than

size of that β box starting at k′. Since this β box appears starting from k too and Z ′
k < |β| implies

Zk = Z ′
k. This is easy to see, since the character appearing at position k′+1 does not have a matching char-

acter in the prefix of S impllying this is also the case with the character appearing at k. Total comparisons:

1. Comparison: k ≤ r

2. Assignment/Calculation: k′ = k − l + 1

3. Lookup: Z ′
k

4. Assignment/Caculation: |β| = r − k + 1

5. Comparison: Z ′
k < |β|

6. Assigment: Zk = Z ′
k

No character comparisons are involved. All the above ’comparisons’ are constant time.

Case 2b: Z ′
k > |β| The ubstring starting at k′ matches a prefix of S and has length equal to the β box. If

we call the box with it’s leftmost end=l and rightmost end=r as α, then we know that S[r+1] 6= S[|α|+1]

otherwise α would not have been the largest such box. Thus, Zk = β Thus no character comparisons

involved in this case too. Comparisons involved:

1. Comparison: k ≤ r

2. Assignment/Calculation: k′ = k − l + 1

3. Lookup: Z ′
k

4. Assignment/Caculation: |β| = r − k + 1

5. Comparison: Z ′
k > |β|

6. Assigment: Zk = Z ′
k

Again, all the operations are constant time.

[Question # 2] continued on next page. . . Page 4 of 11



Saket Choudhary MATH-578A : Homework # 1

Case 2c: Z ′
k = |β|

The substring starting at k might have a matching prefix in S, and hence explicit character comparions

are required from r + 1 to q ≥ r + 1 till the first mismatch occurs. These iterations are bound by O(|S|)
since the maximum possible mismatches are O(|S|).
Comparisons involved:

1. Comparison: k ≤ r

2. Assignment/Calculation: k′ = k − l + 1

3. Lookup: Z ′
k

4. Assignment/Caculation: |β| = r − k + 1

5. Comparison: Z ′
k == |β|

6. Iteration for explicit character comparison: while(Z[r + 1] == Z[α+ 1])..., bounded by O(|S|)

Except character comparison step, rest all steps are constant time.

The Z and associlated l, r values for different iterations are given by:

i Z[i] li ri Case

1 2 1 0 1

2 3 3 1 1

3 4 3 0 1

4 5 4 0 1

5 6 10 5 1

6 6 10 0 2a

7 6 10 1 2a

8 6 10 0 2a

9 6 10 0 2a

Question # 3

In order to determine if α is a circular rotation of β, we make the following observations:

1. All possible |β|+ 1 length |β| substrings of ββ represents all possible circular rotations of β. This is

intuitive, since a cicular rotation would involve concatenating the start of string to its end.

2. The next step involves searching for P in TT . This is possible in linear time using either Z algorithm

or any other linear time exact matching algorithm.

3. If P appears in TT , then P should appear atleast twice in P$TT . The Z start indices of occurence

of P in P$TT can be determined by querying all those points in the Z value array, which exceed |α|.

The psuedocode is listed as Algorithm 1. It is bounded by O(|α|+ 2|β|)

continued on next page. . . Page 5 of 11



Saket Choudhary MATH-578A : Homework # 1 (continued)

Algorithm 1 Find circular rotation

Input: Two string α, β and a linear time algorithm say Z algorithm to solve exact string matching problem

in linear time

Output: Determine if α is a circular rotation of β

S ⇐ α$ββ

Zvalues ⇐ getZV alues(S)

N ⇐ |S|
while N 6= 3|S|+ 1 do

if Zvalues[i] ≥ |α| then
return true

end if

N ⇐ N + 1

end while

return false

Question # 4

Question 6:

Case 2b of Z algorithm can be split into following sub cases:

Case 2b Z ′
k > |β|

Case 2c Z ′
k = |β|

Let r denote the right most edge of the Z box(call it α) such that k ≤ r. Let l denote the left most edge

of this Z box. When Z ′
k > β, let S[r+ 1] = X and k′ = k− l+ 1 denote the cooresponding position(there

is an α box that appears as the prefix of S by definition) in the prefix of S, such that S[1...k′] matches

S[l...k] and also S[1...r − l + 1] matches S[l..r](The α box)

Consider r′ = r − l + 1 let S[r′ + 1] = Y , then X 6= Y , else the Z box would have been longer than |α|,
contrary to the definition.

Now consider Z ′
k > |β| =⇒ there exists a matching prefix of S for substring starting at k′ which also

implies that S[Z ′
k + 1] = S[r′ + 1] = Y because Z ′

k will be at least |β|+ 1 in size.

Since X 6= Y , Zk = |β|, because |β| is the length of longest matching prefix given S[|β|+ 1] = S[r′ + 1] 6=
S[r + 1]

Question 7:

No. there is no extra speedup if we take into consideration all comparisons.

Case 2a, 2b approach: Comparison required: 1 character comparison(at max) on failure of conditional

check Zk < |β|

Case 2a,2b,2c approach: Comparison required: 1 integer comparison Zk == |β|

continued on next page. . . Page 6 of 11



Saket Choudhary MATH-578A : Homework # 1 (continued)

Question # 5

Observations:

1. The first occurence of parameters is very flexible, since they can be made to match to any other

parameter.

2. Any parameter appearing more than is as good as a constraint

Approach:

1. In one pass, store the indexes where parameters appear and the total number of parameters appearing

till each index

2. The first appearance of any parameter in the string is marked 0

3. All subsequent appearances of a parameter are changed to an integer denoting the number of pa-

rameters that appeared since it’s last occurence(see Example). The tokens are left as is while the

parameters get mapped to integers.

4. These steps are run on P and T individually and gives back P ′ and T ′ such that tokens remain

the same while the parameters have been converted to an integer equivalent. This can be done in

O(|P |+ |T |) time. This is done by parameterEncoder() method in Algorithm 3.

5. In another O(|P |+|T |) pass we run traditional Z algorithm, calculating the Zp
i values on the modified

string S′

6. A p−match is equivalent to having Zp
i values equal to |P |. This is done in Algorithm 2

Complexity:

O(|P |+ |T |) for converting the string P to P ′, T to T ′. This is linear time and space since every parameter

is accessed just once. And, O(|P |+ |T |) for running Z algorithm on S = P$T . Thus in total bounded by

O(|P |+ |T |)
Correctness: The first occurence of parameters can be matched to any other parameter and hence this

is reflected by assigning the same value of ’0’ to all such first occurences. Everytime a parameter appears

again, Consider S1 = abXab and S2 = baXba Then S1 gets mapped to 00X22 and S2 gets mapped to

00X22. NOTE: The ’2’ appears counting the total number of parameters including the one at i itself.

It is easy to see that S1 and S2 get converted to the same string by parameterEncoder(). The main

property being exploited in this algorithm is that the first appearance of parameters can be mapped to

any parameter, but all subsequent occurences have a fixed mapping and it is fixed by the number of

parameters between two consequent occurences of a parameter.

Another example:

S1 = XY abCaCXZddbW and

S2 = XY dxCdCXZccxW so

parameterEncoder(S1) = XY 00C2CXZ014W and

parameterEncoder(S2) = XY 00C2CXZ014W

continued on next page. . . Page 7 of 11



Saket Choudhary MATH-578A : Homework # 1 (continued)

Algorithm 2 Find p-matches of P in T

Input: String P, T

Output: Find all p-matches of P in T in O(P + T )

m⇐ |P |
n⇐ |T |
P ′ ⇐ parameterEncoder(P )

T ′ ⇐ parameterEncoder(T )

S ⇐ P ′$T ′

zvalues ⇐ getZV alues(S′)

return all positions where zvalues == m

Algorithm 3 parameterEncoder(P, lastPa)

m⇐ |P |
P ′ ⇐ null

lastParameterMap⇐ {}
parametersTotal⇐ []

for i⇐ 1 to m do

if isParameter(P [i]) then

if P [i] in lastParameterMap then

parametersTotal[i]⇐ parametersTotal[i− 1] + 1

lastOccurenceAt⇐ lastParameterMap[P [i]]

numParamsFromLastOccurnce⇐ parametersTotal[i]− parametersTotal[lastOccuredAt]
P ′ ⇐ concat(P ′, numFromLastOccurence)

else

lastParameterMap[P [i]] = i

end if

else

P ′ ⇐ concat(P ′, P [i])

end if

end for

return P’

continued on next page. . . Page 8 of 11



Saket Choudhary MATH-578A : Homework # 1 (continued)

Question # 6

Observations:

1. Any substring in T that can be formed from characters in S must have the same number of characters

of each type.

Complexity:

O(|S|) to create frequency table of characters in S. O(|S|) to create the frequency table of first |S|
characters in T and then another O(|S| − |T |) to loop through the rest of characters in T (This is done to

maintain an aray of maximum possible length of substring that can be formed out of T [i]).

Correctness:

The only criteria for a substring to be made of characters in S is that the substring should have an exact

match with the frequency map of characters in S, or the total sum of these frequencies matches(ensuring

the sum is over the same keys for both S and substring in T ). We iterate through first S characters in T to

create an initial map, while maintaining a sum(initially set to 0). If the incoming character belongs to the

frequency map of S and the current frequency of this incoming character is less than what it is in S, say

fx, we increment the count. On other hand, if it exceeds fx we penalise the sum by subtracting one. Also,

as the loop iterates through i, the i+ |S| element is being added to the frequency map, while the i− |S|
is being removed. Depending on whether the elements being added and deleted are present/absent in the

frequency map of S, the sum is increased/decreased and is maintained in an array. This array stores the

length of maximum possible substrings possible(such that its characters belong to S) at each i. The sum

stored at each iteration is correctly updated, and hence returns the maximum length of substring possible

at each position i.

The algorithm correctly finds occurence of all substrings of T that can be formed from bag of characters

in S.

Implementation:

1. createFrequencyOfCharacters method in Algorithm 4 takes a string and creates a hash table out

of it where the keys represent unique characters and the associated value represents the frequency

of occurence.

continued on next page. . . Page 9 of 11



Saket Choudhary MATH-578A : Homework # 1 (continued)

Algorithm 4 Find multisets

Input: String S, T

Output: Find all substrings of T that are formed by characters of S. For each position in T, the maximum

possible length substring that can be formed using character in S

patternMap⇐ CreateFrequencyOfCharacters(S)

longestSubstringPossible⇐ []

m⇐ |S|
n⇐ |T |
i⇐ 2

sum⇐ 0

while i ≤ m do

if S[i] in sequenceMap.keys() then

sequenceMap[S[i]]⇐ sequenceMap[S[i]] + 1

end if

if patternMap[S[i]] >= 1 and sequenceMap[S[i]] < sequenceMap[S[i]] then

sum⇐ sum+ 1

else

sum⇐ sum− 1

end if

i⇐ i+ 1

end while

longestSubstringPossible[1] = sum

previous⇐ S[1]

for i⇐ 2 to n−m do

next⇐ S[i+m]

if sequenceMap[previous] > patternMap[previous] then

sum⇐ sum+ 1

else

sum⇐ sum− 1

end if

if patternMap[next] >= 1 and sequenceMap[next]] < sequenceMap[S[i]] then

sum⇐ sum+ 1

else

sum⇐ sum− 1

end if

longestSubstringPossible[i] = sum

previous⇐ S[i]

end for

continued on next page. . . Page 10 of 11



Saket Choudhary MATH-578A : Homework # 1 (continued)

Question # 7

Observations:

1. Z = PT can have Z values greater than |P | in case of multiple repeats.

2. If sp value of any index is greater than |S| then, it for sure has a P occuring in the prefix, by

definition.

3. If the start and end of a substring in PT have sp values ≥ |P | and they can be matched to P [1] and

P [|P ], then this substring in T is an exact match of P

Code Attached. It is a modification of the kmpalgorithm.cpp that was provided.

Complexity:

O(|P |+ |T |) for running the sp algorithm on PT and another pass over |P |+ |T | values to determine which

i are greater than or equal to |P | such that S[i] == P [|P ] and S[i− |P |] == P [1].

Correctness:

Anywhere along the string S = PT , if sp value at position i is greater than equal to |P |, it implies there

exists a substring in S[|P |...i] that is an exact match to P . If it is exactly equal to |P |, then P occurs in

T(by definition). but if it is strictly greater, then we need at most 2 character comparisons to check if the

substring is indeed P . sp values can be strictly greater, given that there is no separator between P and T .

Example:

P = abc,

T = bcabcbabcabcbcabc

PT = abcabcbabcabcbcabc

sp = 00123012312345678

In SP consider positions 14, 15, 16[bca] with sp values 4, 5, 6 sp16 > |P |. But S[16] = a 6= P [3] = c and

hence this can be disregarded for occurence of P in T .

Algorithm 5 Find occurence of P in T in linear time using sp values

Input: Strings P and T

Output: Find all occurences of P in T in linear time using sp values

S ⇐ PT

spvalues ⇐ SPCalculator(S)

N ⇐ |S|
Poccurences = []

while N ≥ |P |+ 1 do

if spvalues[i] ≥ |P | then
if S[N ] == P [|P |]andS[N − |P |] == P [1] then

Poccurences.push(i)

N ⇐ N − |P |
else

N ⇐ N − 1

end if

else

N ⇐ N − 1

end if

end while

return Poccurences

continued on next page. . . Page 11 of 11


