
MATH-578A: Homework # 1
Due on Tuesday, March 10, 2015

Saket Choudhary

2170058637

1

Saket Choudhary MATH-578A : Homework # 1

Contents

Question # 1 . 3

Question # 2 . 4

Question # 3 . 4

Question # 4 . 5

Question # 5 . 5

Question # 6 . 5

Page 2 of 5

Saket Choudhary MATH-578A : Homework # 1

Question # 1

Question # 2

Space required to store the nodes of suffix tree : O(n)

With edge label compression, each ege can be stored with two integers at each node denoting the start

and end positions of the substring collapsed.

Root: Stores nothing except at least two outgoing pointers. Each internal node stores two integers

representing the start and end position so that the total size taken by each internal node is 2 ∗ sizeof(int)

Number of internal nodes = n− 1. Hence total size occupied by nodes = (n− 1) ∗ 2 ∗ (sizeof(int∗)). The

leaves store just one integer representing the start position of the suffix, so occupy n ∗ sizeof(int∗) space.

The edges are represented by pointers, so for a total of 2n− 1 nodes, there are n− 2 edges for the internal

nodes, each taking sizeof(int∗) + sizeof(int∗) for representing the two integers at each node. Whike the

pointers to the leaves takeup n ∗ sizeof(int∗). In total: Internal nodes: (n− 1) ∗ 2 ∗ sizeof(int)

Leaves: n ∗ sizeof(int)

Internal Edges(Pointers): (n− 2) ∗ sizeof(int∗)

Terminal Edges(Pointers): n ∗ sizeof(int∗)

Total = 3(n− 1) ∗ sizeof(int) + (2n− 2)sizeof(int∗) = 3(n− 1) ∗ (8) + (2n− 2) ∗ (64) = 136(n− 1)

For a GST, on the leaves, we need to store the index of string that suffix came from, so an additional

n ∗ (sizeof(int∗)) + n ∗ (sizeof(int)) , totaling 136(n− 1) + 64n+ 8n = 208n− 136

continued on next page. . . Page 3 of 5

Saket Choudhary MATH-578A : Homework # 1 (continued)

Question # 3

At each internal node store the identity of the leaves below it whether they come from S1, S2..., Sk etc.

This can be done using depth first traversal occupying O(kn) space and O(kn) in time. Since each internal

node has atleast two children, the depth first traversal in a subtree is bounded by O(kn).

Construction of a GST is linear. It would require concatenating strings separated by unique delim-

iters($1$2$3...) and then follow suffix tree construction algorithm. Once the suffix tree has been con-

structed, a DFS from the root to leaves can then be used to store at each internal node which all string’s

suffixes are represented in the leaves below it. This is linear time too. The asymptotic space complexity

is O(kn) since each node can store at a maximum of k + 2 values where k represents number of different

strings. Finding occurences of P would involve tree traversal untill a fall off occurs at node v after m

matches and the string ids stored at v can be retrieved in constant time.

Question # 4

We will assume n is a of type 2k − 1. Make a O(n) query for a LSB of the n numbers. The number of 1

and 0 should ideally be same were all numbers present. Whichever occurence is smaller(0 or 1)(floor(N
2)),

we do this for next N
2 , then next N

4 and so on (total O(2N)) at each point storing which was lower 0or1

and then recontruct the missing sequence.

Example:

n = 23 − 1 = 7 so numbers from 0 to 7 should have been present. Let’s say 5 is missing. 000

001

010

011

100

110

111

First quesry on 7 digits gives 4 zeroes and 3 ones. So LSB of missing number os 1. Now repeat for next

significant bit for 3 numbers: 001

111

111

2 ones and 1 zeroes, so the next bit is 0. Finally: 001

1 zero and 0 ones. So missing bit is 1 Missing number: 101

Question # 5

Hash table sizes are often prime numbers to minimise probability of collisions of unlike quantities. Prime

number modules ensures the number being divided go to maximum possible buckets(because the dividend

and divisor will often be coprime). In the context of Rabin Karp, choosing a suitable prime is essential to

prevent false positives, which would increase running time.

continued on next page. . . Page 4 of 5

Saket Choudhary MATH-578A : Homework # 1 (continued)

Question # 6

Identifying longest substring starting at each position of T that occurs in P. This requires creating a suffix

tree for the pattern and not the text. Consider first m characters of text T and do a traversal of the suffix

tree of pattern P . The last visited node’s node edge depth will give the length of longest substring match

in T [1..m] to some corresponding substring in P . Now consider finding sucha substring that starts from

position 2 of T i.e T [2..m] . This would now make use of the suffix link property. If the deepest possible

visited during first step has path label xα then, the prefix of T [2..m+ 1] is α which infact is just the suffix

link and this saves explicit character matches. Explicit matches are now performed from the suffix link

node.

continued on next page. . . Page 5 of 5

