
CSCI-561	-	Fall	2016	-	Foundations	of	Artificial	Intelligence	
Homework	1	

	
Due	September	21,	2016	23:59:59	

	

					 	
image	from	Google	maps		 	 	 	 	 	 			photo	from	caranddriver.com	

	
Guidelines	
	
This	is	a	programming	assignment.	You	will	be	provided	sample	inputs	and	outputs	(see	below).	
Please	 understand	 that	 the	 goal	 of	 the	 samples	 is	 to	 check	 that	 you	 can	 correctly	 parse	 the	
problem	definitions,	and	generate	a	correctly	formatted	output.	The	samples	are	very	simple	and	
it	should	not	be	assumed	that	if	your	program	works	on	the	samples	it	will	work	on	all	test	cases.	
There	will	be	more	complex	test	cases	and	it	is	your	task	to	make	sure	that	your	program	will	
work	correctly	on	any	valid	input.	You	are	encouraged	to	try	your	own	test	cases	to	check	how	
your	program	would	behave	in	some	complex	special	case	that	you	might	think	of.	Since	each	
homework	 is	 checked	 via	 an	 automated	 A.I.	 script,	 your	 output	 should	match	 the	 example	
format	exactly.	Failure	to	do	so	will	most	certainly	cost	some	points.	The	output	format	is	simple	
and	examples	are	provided.	You	should	upload	and	test	your	code	on	vocareum.com,	and	you	
will	submit	it	there.	You	may	use	any	of	the	programming	languages	provided	by	vocareum.com.	
	
Grading	
	
Your	 code	 will	 be	 tested	 as	 follows:	 Your	 program	 should	 not	 require	 any	 command-line	
argument.	 It	 should	 read	a	 text	 file	 called	 “input.txt”	 in	 the	 current	directory	 that	 contains	a	
problem	definition.	It	should	write	a	file	“output.txt”	with	your	solution.	Format	for	input.txt	and	
output.txt	is	specified	below.	End-of-line	convention	is	Unix	(since	vocareum	is	a	Unix	system).	
	
The	grading	A.I.	script	will,	50	times:	
	
- Create	an	input.txt	file,	delete	any	old	output.txt	file.	
- Run	your	code.	
- Compare	output.txt	created	by	your	program	with	the	correct	one.	



- If	your	outputs	for	all	50	test	cases	are	correct,	you	get	100	points.	
- If	one	or	more	test	case	fails,	you	get	50	–	N	points	where	N	is	the	number	of	failed	test	

cases.	
	
Note	that	if	your	code	does	not	compile,	or	somehow	fails	to	load	and	parse	input.txt,	or	writes	
an	 incorrectly	 formatted	output.txt,	 or	 no	output.txt	 at	 all,	 or	OuTpUt.TxT,	you	will	 get	 zero	
points.	Anything	you	write	to	stdout	or	stderr	will	be	ignored	and	is	ok	to	leave	in	the	code	you	
submit.	Please	test	your	program	with	the	provided	sample	files	to	avoid	this.	
	
Academic	Honesty	and	Integrity	
	
All	homework	material	is	checked	vigorously	for	dishonesty	using	several	methods.	All	detected	
violations	of	academic	honesty	are	forwarded	to	the	Office	of	Student	Judicial	Affairs.	To	be	safe	
you	are	urged	to	err	on	the	side	of	caution.	Do	not	copy	work	from	another	student	or	off	the	
web.	Keep	in	mind	that	sanctions	for	dishonesty	are	reflected	in	your	permanent	record	and	can	
negatively	impact	your	future	success.	As	a	general	guide:	
	

Do	not	copy	 code	or	written	material	 from	another	student.	Even	single	 lines	of	code	
should	not	be	copied.		
Do	not	collaborate	on	this	assignment.	The	assignment	is	to	be	solved	individually.	
Do	not	copy	code	off	the	web.	This	is	easier	to	detect	than	you	may	think.		
Do	not	share	any	custom	test	cases	you	may	create	to	check	your	program’s	behavior	in	
more	complex	scenarios	than	the	simplistic	ones	considered	below.	
Do	not	copy	code	from	past	students.	We	keep	copies	of	past	work	to	check	for	this.		
	
Do	ask	the	professor	or	TA	 if	you	are	unsure	about	whether	certain	actions	constitute	
dishonesty.	It	is	better	to	be	safe	than	sorry.		

	
Project	description	
	
The	Los	Angeles	Lakers	are	playing	against	 their	 rivals	 the	Boston	Celtics	 tonight.	 	 Lakers	star	
Jordan	Clarkson	wants	to	arrive	earlier	today	to	prepare	himself	for	the	game,	and	he	is	leaving	
from	 his	 mansion	 at	 Newport	 Coast	 to	 Staples	 Center.	 	 As	 everyone	 knows,	 Los	 Angeles	 is	
notorious	for	its	traffic.		Driving	his	2016	Lamborghini	Aventador,	Jordan	definitely	does	not	want	
to	be	stuck	 in	 traffic.	 	Please	help	 Jordan	 find	a	 route	 to	get	him	to	Staples	Center	as	 fast	as	
possible.				
	
To	accomplish	this,	you	will	be	given	a	list	of	freeway	or	road	intersections	(i.e.,	locations)	and	
the	time	it	would	take	to	travel	from	there	to	other	freeway	or	road	intersections.		You	will	be	
required	to	create	a	program	that	finds	the	fastest	route	Jordan	must	travel	to	get	to	Staples	
Center.	 	Your	program	should	run	on	vocareum.com	using	one	of	the	languages	and	compiler	
supported	by	that	platform.	Your	program	will	be	graded	on	vocareum.		
	



Your	program	will	be	given	live	traffic	information	in	the	input.txt	file,	which	is	an	arbitrarily	large	
list	of	current	traveling	times	between	intersections/locations.		An	example	live	traffic	data	would	
be	a	list	of	intersections	to	intersections	with	traveling	time	(in	minutes),	in	the	following	format	
(see	below	for	the	full	specification	of	input.txt):	
	
JordanHome CA73/NewportCoastDr 5 
CA73/NewportCoastDr I405/CA73 10 
I405/CA73 I110/I405 25 
I110/I405 I10/I110 20 
I10/I110 I110/I405 30 
I10/I110 I10/I405 9 
I105/I110 I10/I110 7 
I10/I110 StaplesCenter 3 
	
Traveling	time	may	not	be	the	same	for	both	directions.	For	example,	in	the	above:	
	

I110/I405 I10/I110 20 
	
indicates	that	it	takes	20	minutes	to	travel	from	I110/I405 to	I10/I110 (northbound	as	
you	follow	the	110	freeway),	but	
	

I10/I110 I110/I405 30 
	
indicates	that	it	takes	30	minutes	in	the	other	direction	(southbound).	
	
Beside	live	traffic	information,	Jordan	also	has	an	idea	of	how	long	it	takes	on	a	traffic-free	Sunday	
from	 each	 intersection/location	 to	 StaplesCenter.	 	 Hence,	 the	 input.txt	 file	 will	 also	 contain	
Jordan's	 Sunday	 traffic	 estimate	 of	 traveling	 time	 from	 each	 location	 listed	 in	 the	 file	 to	 his	
destination,	 which	 is	 also	 an	 arbitrarily	 large	 list	 of	 intersections/locations	 with	 estimated	
traveling	time	(in	minutes)	from	there	to	StaplesCenter	on	a	traffic-free	Sunday:	
	
JordanHome 55 
CA73/NewportCoastDr 50 
I405/CA73 40 
I110/I405 28 
I10/I110 8 
I10/I405 39 
I105/I110 23 
StaplesCenter 0 
	
	
	
Your	program	should	write	in	output.txt	the	list	of	intersections/locations	traveled	over	in	your	
solution	path,	including	the	starting	and	finishing	locations	and	the	accumulated	time	from	start	
to	that	intersection/location,	in	order	of	travel,	for	example:	



	
JordanHome 0 
CA73/NewportCoastDr 5 
I405/CA73 15 
I110/I405 40 
I10/I110 60 
StaplesCenter 63 
	
You	 must	 solve	 this	 problem	 using	 Breadth-First	 search,	 Depth-First	 Search,	 Uniform-cost	
Search,	and	A*	Search	separately.		
	
Full	specification	for	input.txt:	
	
<ALGO> 
<START STATE> 
<GOAL STATE> 
<NUMBER OF LIVE TRAFFIC LINES> 
<… LIVE TRAFFIC LINES …> 
<NUMBER OF SUNDAY TRAFFIC LINES> 
<… SUNDAY TRAFFIC LINES …> 
	
where:	
	
<ALGO>	is	the	algorithm	to	use	and	will	be	one	of:	“BFS”,	“DFS”,	“UCS”,	“A*”.	
	
<START	STATE>	is	a	string	with	the	name	of	the	start	location	(e.g.,	JordanHome).	
	
<GOAL	STATE>	is	a	string	with	the	name	of	the	goal	location	(e.g.,	StaplesCenter).	
	
<NUMBER	OF	LIVE	TRAFFIC	LINES>	is	the	number	of	lines	of	live	traffic	information	that	follow.	
	
<…	LIVE	TRAFFIC	LINES	…>	are	lines	of	live	traffic	information	in	the	format	described	above,	
i.e.,	<STATE1>	<STATE2>	<TRAVEL	TIME	FROM	STATE1	TO	STATE2>	
	
<NUMBER	OF	SUNDAY	TRAFFIC	LINES>	is	the	number	of	lines	of	Sunday	traffic	estimates	that	
follow.	
	
<…	SUNDAY	TRAFFIC	LINES	…>	are	lines	of	sunday	traffic	information	in	the	format	described	
above,	i.e.,	<STATE>	<ESTIMATED	TIME	FROM	STATE	TO	GOAL>	
	
Full	specification	for	output.txt:	
	
Any	number	of	lines	with	the	following	format	for	each:	
	
<STATE> <ACCUMULATED TRAVEL TIME FROM START TO HERE> 



Additional	notes:	
	
- Please	 name	 your	 program	 “homework.xxx”	 where	 ‘xxx’	 is	 the	 extension	 for	 the	

programming	language	you	choose.	(“py”	for	python,	“cpp”	for	C++,	and	“java”	for	Java).	
If	you	are	using	C++11,	then	the	name	of	your	file	should	be	“homework11.cpp”	and	if	
you	are	using	python3.4	then	the	name	of	your	file	should	be	“homework3.py”.	

- Times	are	positive	or	zero	integers	(32-bit	ok,	larger	ok	too).	
- Capitalization	of	state	names	will	be	maintained.	
- State	 names	will	 not	 have	 any	white	 spaces	 in	 them	 and	will	 consist	 of	 ASCII	 letters,	

numbers	and/or	other	non-special	ASCII	characters.	
- There	will	not	be	any	duplicate	entries	in	the	live	traffic	data.	
- There	will	be	exactly	one	entry	in	the	Sunday	traffic	data	for	each	state	mentioned	in	the	

live	traffic	data.	
- Intersections	 of	 2	 freeways	 are	 always	 given	 in	 the	 same	 order.	 	 For	 example,	 when	

referring	 to	 I110/I405,	 it	 is	 always	 I110/I405,	 rather	 than	 sometimes	 I405/I110	 and	
sometimes	I110/I405.	

- In	some	test	cases,	you	must	be	able	to	help	Jordan	find	his	way	from/to	other	places	as	
well	(not	only	from	JordanHome	to	StaplesCenter).		After	the	game,	you	never	know,	he	
might	want	to	go	somewhere	else	to	celebrate.	Hence,	make	sure	you	read	START	STATE	
and	GOAL	STATE	from	input.txt	and	do	not	assume	they	will	be	the	same	as	in	the	example	
above.	

- In	output.txt,	the	first	line	should	always	be	“<START	STATE>	0”	and	the	last	line’s	state	
should	always	be	<GOAL	STATE>	(and	the	total	accumulated	travel	time	should	follow).	

- Hence,	 if	 the	start	 state	 is	 the	same	as	 the	goal	 state,	you	should	output	a	 single	 line	
“<START	STATE>	0”.	

- The	goal	state	will	always	be	reachable	from	the	start	state,	you	do	not	need	to	worry	
about	cases	where	no	path	can	be	found	from	start	to	goal.	

- As	studied	in	class,	BFS	and	DFS	by	definition	ignore	step	costs	and	always	assume	a	unit	
step	cost.	The	accumulated	time	reported	 in	your	output.txt	should	also	use	unit	step	
costs	(i.e.,	report	the	number	of	steps).	

- If	all	else	 is	equal	while	searching	routes	(ties),	you	should	explore	(enqueue)	multiple	
paths	from	the	same	intersection	in	the	order	in	which	they	are	listed	in	the	live	traffic	
inputs.	

- There	are	multiple	definitions	around	the	web	and	in	various	textbooks	for	the	algorithms	
that	you	will	implement.	Different	implementations	may	sometimes	give	different	results	
(e.g.,	a	recursive	implementation	of	DFS	sometimes	gives	slightly	different	results	than	
the	one	studied	in	class,	when	ties	are	encountered	and	you	follow	the	instructions	to	
then	follow	paths	in	the	order	listed	in	the	live	traffic	input).	In	this	homework	we	ask	you	
to	use	the	algorithm	definitions	which	we	have	used	in	the	lecture	slides.	The	reference	
implementation	used	to	create	the	problem	solutions	will	use	these	algorithms.	Hence,	
beware	 that	 using	 different	 algorithms	may	 result	 in	 solutions	 that	 disagree	with	 the	
grading	script.	

- The	Sunday	traffic	information	may	or	may	not	be	admissible.	We	understand	that	when	
it	is	not	admissible	your	solution	may	not	be	optimal.	You	should	not	worry	about	that.	



Example	1:	Consider	this	input.txt:	
	
BFS 
A 
D 
4 
A B 5 
A C 3 
B D 1 
C D 2 
4 
A 4 
B 1 
C 1 
D 0 
	
Would	yield	the	following	output.txt:	
	
A 0 
B 1 
D 2 
	
(remember	that	BFS	assumes	by	definition	a	unit	step	cost,	and	see	notes	above).	This	path	is	
optimal	for	BFS	with	a	total	cost	of	2	(the	other	path	through	C	is	optimal	as	well	with	cost	2).	
	
Example	2:	Consider	this	input.txt:	
	
A* 
A 
D 
4 
A B 3 
A C 3 
B D 2 
C D 1 
4 
A 4 
B 2 
C 1 
D 0 
	
Would	yield	the	following	output.txt:	
	
A 0 
C 3 
D 4 


