
CSCI 561: Foundations of Artificial Intelligence
Instructor: Prof. Laurent Itti

Homework #2: Gang Wars Competition
Due on Oct 17 at 11:59pm, 2016

Introduction

This competition is optional and voluntary. It will not affect your grade in CSCI-561. We will
run participating students’ algorithms against each other either in a tournament (like in tennis) or
all possible pairings, depending on the number of submissions and available CPU time. The
winner will receive a prize (to be arranged) and an opportunity to describe their algorithm to the
class. The finalists, semi-finalists, and quarter-finalists will also be recognized (to be arranged).

If the <MODE> in input.txt is COMPETITION, your program will enter the competition mode.
In this mode, you are free to use any algorithm, evaluation function, heuristics, tables of pre-
computed data, and depth limit to compete with other agents. The only constraint of this game is
that every agent has a strict limitation on their total CPU time used during an entire game (sum
over all moves until game over). If your agent uses a total CPU time beyond the limit, it loses the
game.

Submission:

Please submit a zip file containing all your source files on D2L, where a submission dropbox
has been created for the HW2 competition. The competition does not use vocareum at all.

In competition mode, input.txt will contain the following (note the difference on line 3, no
more cutoff depth as in the regular homework 2, remaining CPU time instead):

Format	for	input.txt:	
	
<N>
<MODE = COMPETITION>
<YOUPLAY>
<your CPU time left in seconds: floating point number>
<… CELL VALUES …>
<… BOARD STATE …>

and a single file output.txt should contain the same as in the regular homework 2:

<MOVE> <MOVETYPE>
<… NEXT BOARD STATE …>

Makefile targets:

To be able to run one agent again another, we will use a Makefile-based approach as Vocareum
cannot support this competition. You should write a simple Makefile, and the competition script
will call “make xxx” where xxx will be different targets in the Makefile, as follows:

agent: (required) compiles the agent (and possibly compiles some calibration code; see below)
if needed. Any error during “make agent” eliminates your agent from the competition.

calibrate: (optional) This will be called once after “make agent” succeeds. You can use this
to run some speed calibration program. You can write some file in the local directory that
contains the resulting calibration data for future use by your agent program. Any filename is ok
except those already used (input.txt, Makefile, output.txt, etc). Errors during “make calibrate” are
ignored and do not withdraw your agent from the competition.

newgame: (optional) is run once before a new game. You can use this target to delete any files
you might have stored on disk during a game (persistent information across moves; see below for
explanations). Errors during “make newgame” are ignored and do not withdraw your agent from
the competition.

run: (required) is called once per move. Your program should read input.txt in the local
directory and write output.txt. Any error during “make run” is ignored, but, if an invalid
output.txt is generated (or no output.txt at all), your agent will lose that game.

Game playing workflow

The competition will either be a tournament (like in tennis), or, if we have anough CPU time, we
will run every student’s program against every other one. In tournament mode, we will make
random pairs of agents, and play the 2 agents in each pair against each other several times. The
winner of a majority of the several games (counting by how many stones each player wins each
time) in each pair advances to the next round (i.e., will play against another randomly selected
agent that also won in the current round), while the loser is eliminated. If possible, we will also
run all pairs of agents, and then report the agent that won over the largest number of other agents.

The workflow during the competition will be as follows:

Each student’s agent will be in a directory with the student name, within a temporary directory.
All files should be written in this directory. This will be set as the current directory during play.
So, when you read or write files, do not specify any directory name, only the file name (e.g.,
“input.txt”).

Before the competition:
- We will loop over all student directories; assume the current one is called “student”

- cd student
- make agent. If fails, withdraw student from competition.
- make calibrate. Ignore any errors. If does not complete after 5 minutes of elapsed (wall
clock) time, kill program at wall clock time = 5 minutes.

 - cd ..

Among all remaining students, select random pairs that will play against each other.

Competition:

- We will loop over all remaining student pairs. Assume the two selected students for a given
pair are called “student1” and “student2”

- loop N times (games) (N to be determined later; it will be an odd number; likely N=5):
- randomly assign roles, eg, student1 is player X

 - create some initial state
 - initialize 2 time counters (one for each agent) to M seconds (see below).
 - cd student1; make newgame; cd ..
 - cd student2; make newgame; cd ..
 - on even values of N, student1 plays first, on odd values, student2 plays first,

e.g., let’s assume student1 plays now:
 - loop until game over:
 - cd student1
 - copy current state to input.txt; patch line 3 of input.txt to indicate correct

player (here X); patch line 4 to indicate remaining time for
student1 in seconds.
- check if game over and, if so, determine winner and go to next game.

- check if no move exists for student1, and, if so, pass to the other agent or
end the game.

- if remaining time for student1 < 0.0, student1 loses.
- else run “time make run” and capture the CPU time value. If program did
not complete after H seconds wall clock time (hard limit per move), kill
agent and student1 loses.
- subtract CPU time used on this move from time counter for student1
- read output.txt and update state using student1’s move. If move is illegal,
student1 loses this game.

- cd ../student2

 - copy current state to input.txt; patch line 3 of input.txt to indicate correct
player (here, O); patch line 4 to indicate remaining time for
student2 in seconds.
- check if game over and, if so, determine winner and go to next game.
- check if no move exists for student2, and, if so, pass to the other agent or

end the game.
- if remaining time for student2 < 0.0, student2 loses.
- else run “time make run” and capture the CPU time value. If program did
not complete after H seconds wall clock time (hard limit per move), kill
agent and student2 loses.
- subtract CPU time used on this move from time counter for student2
- read output.txt and update state using student2’s move. If move is illegal,
student2 loses the game.

 - After all N games are complete between student1 and student2, declare winner
(student1 or student2) as the one who won the most games. We will also likely
take into account by how many points a game was won.

- winner advances to the next round of the competition, loser is eliminated.

Values:

These will be tuned as we receive feedback from students. Initial guess is:

- N = 5 (number of games at each round between two opponents)
- M = 200 seconds of total play for each player during one full game
- H = M (remaining) + 10 seconds grace period to account for I/O

Notes:

1) State in input.txt is guaranteed valid. In particular, because we check for game over and
any possible “pass” or end game situations externally, you are guaranteed that at least one
legal move exists for your agent when “make run” is called. You do not need to worry
about cases where no move is possible for your agent.

2) Sorry we cannot give you the game server (given a state and a move, it computes the
resulting state). You may want to implement your own if you want to test different
versions of your agent playing against each other. It should not be difficult, since most of
the code you need to write the game server should already be in the code for your agent
(that is why we will not give it to you).

3) The time counters are for total playing time over one entire game. You should think of
strategies to best use this time throughout the game. For example, do you want to spend
more time early in the game if that means less time remaining to play later in the game?
Or the opposite?

4) Calibration: “make calibrate” is provided for you to estimate how fast the computer is
that will run your agent. You can save a file in the local directory with any calibration
data that your agent can then load later. It is called only once, just after compiling your
code. It is optional. One might, for example, run a fixed game stored in the program and
that is known to expand some number of nodes, and measure the time spent.

5) Persistence between agent calls: you are allowed to write files in your current directory,
to possibly maintain some persistent information across successive calls to “make run”.
Usually, you would delete these files in “make newgame” unless you want to keep some
of them from one game to another. For marshalling / serialization of your persistent data
to disk, we encourage you to use libraries, such as boost serialization, or the cereal
library written by prof Itti’s students:
http://www.boost.org/doc/libs/1_54_0/libs/serialization/doc/index.html
http://uscilab.github.io/cereal/

6) Time used is the “user” time as returned by the Unix “time” command. This only counts
time spent by your algorithm and discards time spent in file I/O or other system calls.
Note, however, that the hard time limit is based on the “real” (or wall clock) time elapsed
since we do not have access to your CPU time usage while your program is still running.

7) Multi-threading is allowed but note that CPU time measured is the sum of all CPU time
over all threads (e.g., if you run in 5 seconds with constant 478% CPU load, then your
time used is 5 x 4.78 = 23.9 seconds). Hence, multi-threading is not encouraged, it will
not buy you any extra time, and most likely will waste some time (to start threads, wait
on mutexes, etc).

8) If you need to know time elapsed so far during a run of your agent, we encourage you to
use the C++11 chrono facility, see, e.g., http://en.cppreference.com/w/cpp/chrono .
Typically, you would get an initial time point from the high_resolution_clock when you

start work, and you can then get time points and compute durations from that initial time
point later during execution of your algorithm. Note that this will get you access to
elapsed (wall clock) rather than CPU time, which should be ok for single-threaded
programs (recommended). You may also want to check out the getrusage() system call
(see “man getrusage”) if you need more precise access to your CPU time, but keep in
mind that the hard limit after which your agent is killed (H) is based on wall clock time
anyway.

9) Note that there is a bit of slack between H and M (10 seconds grace period). We
recommend that you do not try to exploit this (i.e., please aim to use M seconds of CPU
at most, not M+10). We may impose penalties for any time used beyond M, possibly to
break ties among agents.

10) Do not use any directory name when you read or write files, just specify their file name
with no directory path. The true playing workflow is actually a bit more complex than
shown above, to allow playing several games in parallel without any conflicts (to achieve
this, we copy the whole directories of two players to a temporary location before playing
a game between these two players).

Run environment:

We will run the competition on the cluster in prof Itti’s lab. Specs are as follows:

- Each node (computer) is a quad 12-core Opteron (48 cores total) 2.5GHz, 128GB or
256GB of RAM. Note that we will run 48 games in parallel on each machine. Again,
multi-threading is not encouraged (it will not buy you any CPU time). Here are the full
specs if you care about them:

itti@n12:~$ cat /proc/cpuinfo
processor : 0
vendor_id : AuthenticAMD
cpu family : 16
model : 9
model name : AMD Opteron(tm) Processor 6180 SE
stepping : 1
microcode : 0x10000d9
cpu MHz : 2500.000
cache size : 512 KB
physical id : 0
siblings : 12
core id : 0
cpu cores : 12
apicid : 16
initial apicid : 0
fpu : yes
fpu_exception : yes
cpuid level : 5
wp : yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca
cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt
pdpe1gb rdtscp lm 3dnowext 3dnow constant_tsc rep_good nopl nonstop_tsc
extd_apicid amd_dcm pni monitor cx16 popcnt lahf_lm cmp_legacy svm
extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit
wdt nodeid_msr hw_pstate npt lbrv svm_lock nrip_save pausefilter
bogomips : 5000.07
TLB size : 1024 4K pages
clflush size : 64
cache_alignment : 64
address sizes : 48 bits physical, 48 bits virtual
power management: ts ttp tm stc 100mhzsteps hwpstate

[repeated 48 times]

- Linux Ubuntu 13.10 x86_64
- Your agent will run as a “regular” user (no root privileges).
- We will run your agent chroot’ed into a limited environment (i.e., you will not be able to

read/write any files outside your agent’s directory; trying to open a file outside your
directory will be blocked by the system and could crash and eliminate your agent).

- Stock Ubuntu 13.10 packages are installed (e.g., g++4.8.1, gcj-4.8.1, python-2.7.5+,
boost-1.54). In addition, the Oracle official Java is installed on n12, under
/usr/local/jdk1.8.0_25/ (code compiled with this jdk seems to run much
faster than when compiling with gcj).

- Custom packages will be considered only if there exists an Ubuntu 13.10 x86_64 package
for it, so that we can install them by typing “apt-get install something” (i.e., we will not
compile packages from source, etc)

Example makefiles:

Example for a C++ agent:

agent: myagent.cpp calibration_program.cpp

g++ myagent.cpp -o myagent
 g++ calibration_program.cpp -o calibration_program (optional)

run: agent

./myagent

calibrate: agent (optional)
 ./calibration_program

newgame: (optional)
 /bin/rm -f mydata.txt

Example for a Java agent:

agent: myagent.class

myagent.class: myagent.java

javac myagent.java

run: myagent.class

java myagent

calibrate:
 (could do something here)
newgame:
 (could do something here)

For python or other non-compiled languages:

agent:

run:

./myagent.py

calibrate:
 (could do something here)
newgame:
 (could do something here)

