

CSCI-561	-	Fall	2016	-	Foundations	of	Artificial	Intelligence	
Homework	2	

	
Due	October	17,	2016	23:59:59	

	
	
Guidelines	
	
This	 is	 a	 programming	 assignment.	 You	 will	 be	 provided	 sample	 inputs	 and	 outputs	 (see	 below).	 Please	
understand	that	the	goal	of	the	samples	is	to	check	that	you	can	correctly	parse	the	problem	definitions,	and	
generate	a	correctly	formatted	output.	The	samples	are	very	simple	and	it	should	not	be	assumed	that	if	your	
program	works	on	the	samples	 it	will	work	on	all	test	cases.	There	will	be	more	complex	test	cases	and	it	 is	
your	task	to	make	sure	that	your	program	will	work	correctly	on	any	valid	 input.	You	are	encouraged	to	try	
your	own	test	cases	to	check	how	your	program	would	behave	in	some	complex	special	case	that	you	might	
think	 of.	 Since	 each	 homework	 is	 checked	 via	 an	 automated	 A.I.	 script,	 your	 output	 should	 match	 the	
example	format	exactly.	Failure	to	do	so	will	most	certainly	cost	some	points.	The	output	format	is	simple	and	
examples	are	provided.	You	should	upload	and	test	your	code	on	vocareum.com,	and	you	will	submit	it	there.	
You	may	use	any	of	the	programming	languages	provided	by	vocareum.com.	
	
Grading	
	
Your	code	will	be	tested	as	follows:	Your	program	should	take	no	command-line	arguments.	It	should	read	a	
text	 file	 called	 “input.txt”	 in	 the	 current	 directory	 that	 contains	 a	 problem	definition.	 It	 should	write	 a	 file	
“output.txt”	 with	 your	 solution.	 Format	 for	 files	 input.txt	 and	 output.txt	 is	 specified	 below.	 End-of-line	
convention	is	Unix	(since	vocareum	is	a	Unix	system).	
	
The	grading	A.I.	script	will,	50	times:	
	
- Create	an	input.txt	file,	delete	any	old	output.txt	file.	
- Run	your	code.	
- Compare	output.txt	created	by	your	program	with	the	correct	one.	
- If	your	outputs	for	all	50	test	cases	are	correct,	you	get	100	points.	
- If	one	or	more	test	case	fails,	you	get	50	–	N	points	where	N	is	the	number	of	failed	test	cases.	

	

Note	that	if	your	code	does	not	compile,	or	somehow	fails	to	load	and	parse	input.txt,	or	writes	an	incorrectly	
formatted	output.txt,	or	no	output.txt	at	all,	or	OuTpUt.TxT,	you	will	get	zero	points.	Please	test	your	program	
with	the	provided	sample	files	to	avoid	this.	You	can	submit	code	as	many	times	as	you	wish	on	vocareum,	and	
the	last	submitted	version	will	be	used	for	grading.	
	
Academic	Honesty	and	Integrity	
	
All	homework	material	is	checked	vigorously	for	dishonesty	using	several	methods.	All	detected	violations	of	
academic	honesty	are	forwarded	to	the	Office	of	Student	Judicial	Affairs.	To	be	safe	you	are	urged	to	err	on	
the	side	of	caution.	Do	not	copy	work	from	another	student	or	off	the	web.	Keep	in	mind	that	sanctions	for	
dishonesty	are	reflected	in	your	permanent	record	and	can	negatively	impact	your	future	success.	As	a	general	
guide:	

Do	not	copy	code	or	written	material	 from	another	student.	Even	single	 lines	of	code	should	not	be	
copied.		
Do	not	collaborate	on	this	assignment.	The	assignment	is	to	be	solved	individually.	
Do	not	copy	code	off	the	web.	This	is	easier	to	detect	than	you	may	think.		
Do	not	share	any	custom	test	cases	you	may	create	to	check	your	program’s	behavior	in	more	complex	
scenarios	than	the	simplistic	ones	considered	below.	
Do	not	copy	code	from	past	students.	We	keep	copies	of	past	work	to	check	for	this.		
Do	ask	the	professor	or	TA	if	you	are	unsure	about	whether	certain	actions	constitute	dishonesty.	It	is	
better	to	be	safe	than	sorry.		

	
Project	description	
	
Once	upon	a	time,	Los	Angeles	was	a	Never	Never	Land.		People	were	blissfully	happy,	Conan	O'Brien	was	still	
on	 late-night,	 and	 no	 one	 knew	who	 “the	 Real	 Housewives	 of	 New	 Jersey”	 were.	 	 Until	 the	 day	 that	 two	
violent,	money-thirsty	gangs	decided	to	put	their	dirty	hands	onto	Los	Angeles.			
	
One	gang	was	from	the	north,	and	the	other	gang	was	from	the	south.		Both	wanted	to	take	over	the	entire	
city.		Therefore,	war	was	unavoidable.		To	win	the	war,	the	leader	of	the	south	gang	knew	that	he	needed	not	
mere	 foot	 troops,	but	admirals.	 	Therefore,	he	built	an	 institute	 to	 train	his	 future	admirals.	 	He	named	his	
training	institute	CSCI-561,	and	asked	his	recruits	to	create	artificial	agents	to	engage	in	a	combat	simulation,	
which	he	called	a	'game',	meant	to	imitate	the	upcoming	gang	war.			
(Once	 the	 members	 are	 finished,	 the	 leader	 will	 classify	 their	 research	 and	 pull	 them	 from	 the	 institute,	
leaving	 them	 fractured	 and	 bitter	 human	 beings.	 	 However,	 as	 they	 do	 not	 know	 this	 yet,	 they	 are	 full	 of	
excitement	and	zeal	for	the	project.)		
	
The	game	is	a	simulation	of	ground	warfare	and	has	the	following	rules:	
	

1. The	game	board	is	an	NxN	grid	representing	the	territory	your	forces	will	trample	(N=5	in	the	figures	
below).	Columns	are	named	A,	B,	C,	…	starting	from	the	left,	and	rows	are	named	1,	2,	3,	…	from	top.	

2. Each	player	takes	turns	as	 in	chess	or	tic-tac-toe.	That	 is,	player	X	takes	a	move,	then	player	O,	then	
back	to	player	X,	and	so	forth.	

3. Each	square	has	a	fixed	point	value	between	1	and	99,	based	upon	its	computed	strategic	and	resource	
value.		

4. The	object	of	the	game	for	each	player	is	to	score	the	most	points,	where	score	is	the	sum	of	all	point	
values	of	all	his	or	her	occupied	squares	minus	 the	sum	of	all	points	 in	 the	squares	occupied	by	 the	
other	player.	Thus,	one	wants	to	capture	the	squares	worth	the	most	points	while	preventing	the	other	
player	to	do	so.		

5. The	game	ends	when	all	the	squares	are	occupied	by	the	players	since	no	more	moves	are	left.	

6. Players	cannot	pass	their	move,	i.e.,	they	must	make	a	valid	move	if	one	exists	(game	is	not	over).	

7. Movement	and	adjacency	relations	are	always	vertical	and	horizontal	but	never	diagonal.		

8. The	values	of	the	squares	can	be	changed	for	each	game,	but	remain	constant	within	a	game.	

9. Game	score	is	computed	as	the	difference	between	(a)	the	sum	of	the	values	of	all	squares	occupied	by	
your	player	and	(b)	the	sum	of	the	values	of	all	squares	occupied	by	the	other	player.	This	applies	both	
to	terminal	(game	over,	terminal	utility	function)	and	non-terminal	states	(evaluation	function).	This	is	
required	to	ensure	that	your	program	produces	the	same	results	as	the	grading	script.	

10. On	each	turn,	a	player	can	make	one	of	two	moves:	

	
Stake	–	You	can	take	any	open	space	on	the	board.		This	will	create	a	new	piece	on	the	board.	This	move	can	
be	made	as	many	times	as	one	wants	to	during	the	game,	but	only	once	per	turn.	However,	a	Stake	cannot	
conquer	any	pieces.		It	simply	allows	one	to	arbitrarily	place	a	piece	anywhere	unoccupied	on	the	board.	Once	
you	have	done	a	Stake,	your	turn	is	complete.		

	

Figure	1.	This	 is	a	Stake.	 In	this	example,	green	drops	a	new	piece	on	square	[B,3].	This	square	 is	worth	48,	
which	 is	a	higher	number,	meaning	 that	 it	 contains	some	 juicy	oil	wells	or	other	 important	 resources.	After	
that,	the	score	is	green	48	:	blue	2,	i.e.,	GameScore	=	46	for	green.	A	Stake	could	have	been	carried	out	on	any	
squares	except	for	[C,2]	since	blue	already	occupies	it.	

Raid	–	From	any	space	you	occupy	on	the	board,	you	can	take	the	one	next	to	it	(up,	down,	left,	right,	but	not	
diagonally)	 if	 it	 is	unoccupied.	 	The	space	you	originally	held	 is	still	occupied.	Thus,	you	get	to	create	a	new	
piece	 in	the	raided	square.	Any	enemy	touching	the	square	you	have	taken	 is	conquered	and	that	square	 is	
turned	to	your	side	(you	turn	 its	piece	to	your	side).	A	Raid	can	be	done	even	 if	 it	will	not	conquer	another	
piece.	Once	you	have	made	this	move,	your	turn	is	over.		

	

Figure	2.	This	is	a	Raid.	Green	raids	the	piece	in	[D,4]	to	[D,3].	This	conquers	the	blue	piece	in	[D,2]	since	it	is	
touching	the	new	green	piece	 in	[D,3].	A	raid	always	creates	a	new	piece	adjacent	to	an	existing	one,	but	 it	
does	not	conquer	another	piece	unless	it	is	touching	it.	Thus,	another	valid	move	might	have	been	for	[D,4]	to	
have	raided	[E,4].	Then	the	green	player	would	own	[D,4]	and	[E,4]	but	would	have	conquered	none	of	blue’s	
pieces.	Note,	the	score	before	the	raid	was	green	16	:	blue	54,	i.e.,	GameScore	=	-38	for	green,	and	afterwards	
is	green	28	:	blue	43,	i.e.,	GameScore	=	-15	for	green.			

	

	

	

Figure	3.	Here	blue	raids	[C,3]	from	[C,2].	In	the	process	green’s	pieces	at	[D,3]	and	[C,4]	are	conquered	since	
they	touch	[C,3].		Notice	that	in	its	next	move,	green	will	not	be	able	to	conquer	any	of	blue’s	pieces	and	only	
the	piece	at	[D,4]	would	be	able	to	execute	a	Raid	since	[D,2]	has	no	neighboring	unoccupied	squares.		

Your	assignment	is:	
	
Base	homework	(required):	Create	a	program	to	play	the	game,	using,	depending	on	specification	in	the	input	
file,	either	the	plain	Minimax	algorithm	with	depth	limit,	or	Alpha-Beta	Pruning.		
	
Competition	mode	(optional):	Your	algorithm	will	play	against	the	other	students’	algorithms	in	a	tournament,	
and	the	evaluation	function	is	now	up	to	you.	You	can	use	any	algorithm,	heuristic,	and	trick	you	wish.	Your	
CPU	 time	 will	 be	 limited,	 however.	 Please	 see	 the	 additional	 instructions	 for	 the	 competition	 mode	 in	 a	
separate	file.	
	
Format	for	input.txt:	
	
<N>
<MODE>
<YOUPLAY>
<DEPTH>
<… CELL VALUES …>
<… BOARD STATE …>
	
where	
	
<N>	 is	 the	board	width	and	height,	e.g.,	N=5	 for	 the	5x5	board	shown	 in	 the	 figures	above.	N	 is	an	 integer	
strictly	greater	than	0	and	smaller	than	or	equal	to	26.	
	
<MODE>	is	“MINIMAX”	or	“ALPHABETA”	or	“COMPETITION”.	
	
<YOUPLAY>	is	either	“X”	or	“O”	and	is	the	player	which	you	will	play	on	this	turn.	
	
<DEPTH>	 is	 the	depth	of	 your	 search.	 By	 convention,	 the	 root	 of	 the	 search	 tree	 is	 at	 depth	 0.	DEPTH	will	
always	be	larger	than	or	equal	to	1.	
	
<…	CELL	VALUES	…>	contains	N	lines	with,	in	each	line,	N	positive	integer	numbers	each	separated	by	a	single	
space.	These	numbers	represent	the	value	of	each	location.	
	
<…	BOARD	STATE	…>	contains	N	lines,	each	with	N	characters	“X”	or	”O”	or	“.”	to	represent	the	state	of	each	
cell	as	occupied	by	X,	occupied	by	O,	or	free.	
	
Format	for	output.txt:	
	
<MOVE> <MOVETYPE>
<… NEXT BOARD STATE …>
	
where	
	
<MOVE>	 is	your	move.	As	 in	the	figures	above,	we	use	capital	 letters	for	column	and	numbers	for	rows.	An	
example	move	is	“F22”	(remember	that	N	is	from	1	to	26,	see	above).	
	

<MOVETYPE>	is	“Stake”	or	“Raid”	and	is	the	type	of	move	that	your	<MOVE>	is.	
<…	 NEXT	 BOARD	 STATE	…>	 a	 description	 of	 the	 new	 board	 state	 after	 you	 have	 played	 your	move.	 Same	
format	as	<…	BOARD	STATE	…>	in	input.txt	above.	
	
Notes	and	hints:	
	
- Please	 name	 your	 program	 “homework.xxx”	 where	 ‘xxx’	 is	 the	 extension	 for	 the	 programming	

language	you	choose.	(“py”	for	python,	“cpp”	for	C++,	and	“java”	for	Java).	If	you	are	using	C++11,	then	
the	name	of	your	file	should	be	“homework11.cpp”	and	if	you	are	using	python3.4	then	the	name	of	
your	file	should	be	“homework3.py”.	

- We	will	guarantee	that	at	least	one	valid	move	exists	for	your	player	for	any	given	input.txt	file.	

- Remember	to	use	Game	Score	as	defined	above,	both	for	the	terminal	utility	computation,	and	for	the	
evaluation	function	of	non-terminal	nodes.	

	
Pseudo	code:	
To	ensure	that	your	outputs	will	match	those	of	the	grading	program,	please	use	the	following	pseudo	code	to	
program	your	algorithm:	
	
Minimax:	AIMA	Figure	5.3	(Minimax	without	cut-off)	and	section	5.4.2	(Explanation	of	Cutting	off	search)	
	
Alpha-Beta:	AIMA	Figure	5.3	(Alpha-Beta	without	cut-off)	and	section	5.4.2	(Explanation	of	Cutting	off	search)	
	
Example	1:	
	
For	this	input.txt:	
	
3
MINIMAX
O
2
1 8 23
5 42 12
26 30 9
X..
...
...

your	output.txt	should	be:	
	
B3 Stake
X..
...
.O.
	
	
	

	
Example	2:	using	the	board	state	from	Figure	3	(left)	as	the	starting	configuration	for	input.txt	with	minimax	
search	depth	=	1,		
	
5
MINIMAX
X
1
20 16 1 32 30
20 12 2 11 8
28 48 9 1 1
20 12 10 6 2
25 30 23 21 10
..XX.
..XOX
...O.
..OO.
.....
	
The	output	produced	is:	
	
B3 Stake
..XX.
..XOX
.X.O.
..OO.
.....
	
Which	is	the	correct	move	given	the	specified	algorithm	and	search	depth,	but	is	not	the	same	move	as	shown	
in	Figure	3	(right).	With	search	depth	of	1,	the	algorithm	just	went	for	the	high-value	cell	in	B3.	
	
Example	 3:	 changing	 the	 search	 parameters	 so	 as	 to	 use	 alpha	 beta	 pruning	 with	 search	 depth=4	 on	 the	
otherwise	same	input.txt	as	in	example	2	results	in	the	following	output.txt:	
	
C3 Raid
..XX.
..XOX
..XX.
..XO.
.....
		
which	matches	the	solution	depicted	in	Figure	3	(right).	
	
	

