

CSCI-561	-	Fall	2016	-	Foundations	of	Artificial	Intelligence	
Homework	3	

	
Due	November	21,	2016	23:59:59	

	

	
	
Guidelines	
	
This	 is	 a	 programming	 assignment.	 You	 will	 be	 provided	 sample	 inputs	 and	 outputs	 (see	 below).	 Please	
understand	that	the	goal	of	the	samples	is	to	check	that	you	can	correctly	parse	the	problem	definitions,	and	
generate	a	correctly	formatted	output.	The	samples	are	very	simple	and	it	should	not	be	assumed	that	if	your	
program	works	on	the	samples	 it	will	work	on	all	test	cases.	There	will	be	more	complex	test	cases	and	it	 is	
your	task	to	make	sure	that	your	program	will	work	correctly	on	any	valid	 input.	You	are	encouraged	to	try	
your	own	test	cases	to	check	how	your	program	would	behave	in	some	complex	special	case	that	you	might	
think	 of.	 Since	 each	 homework	 is	 checked	 via	 an	 automated	 A.I.	 script,	 your	 output	 should	 match	 the	
example	format	exactly.	Failure	to	do	so	will	most	certainly	cost	some	points.	The	output	format	is	simple	and	
examples	are	provided.	You	should	upload	and	test	your	code	on	vocareum.com,	and	you	will	submit	it	there.	
You	may	use	any	of	the	programming	languages	provided	by	vocareum.com.	
	
Grading	
	
Your	code	will	be	tested	as	follows:	Your	program	should	take	no	command-line	arguments.	It	should	read	a	
text	 file	 called	 “input.txt”	 in	 the	 current	 directory	 that	 contains	 a	 problem	definition.	 It	 should	write	 a	 file	
“output.txt”	 with	 your	 solution.	 Format	 for	 files	 input.txt	 and	 output.txt	 is	 specified	 below.	 End-of-line	
convention	is	Unix	(since	vocareum	is	a	Unix	system).	
	
The	grading	A.I.	script	will,	50	times:	
	

- Create	an	input.txt	file,	delete	any	old	output.txt	file.	
- Run	your	code.	
- Compare	output.txt	created	by	your	program	with	the	correct	one.	
- If	your	outputs	for	all	50	test	cases	are	correct,	you	get	100	points.	
- If	one	or	more	test	case	fails,	you	get	50	–	N	points	where	N	is	the	number	of	failed	test	cases.	

	

Note	that	if	your	code	does	not	compile,	or	somehow	fails	to	load	and	parse	input.txt,	or	writes	an	incorrectly	
formatted	output.txt,	or	no	output.txt	at	all,	or	OuTpUt.TxT,	you	will	get	zero	points.	Please	test	your	program	
with	the	provided	sample	files	to	avoid	this.	You	can	submit	code	as	many	times	as	you	wish	on	vocareum,	and	
the	last	submitted	version	will	be	used	for	grading.	
	
Academic	Honesty	and	Integrity	
	
All	homework	material	is	checked	vigorously	for	dishonesty	using	several	methods.	All	detected	violations	of	
academic	honesty	are	forwarded	to	the	Office	of	Student	Judicial	Affairs.	To	be	safe	you	are	urged	to	err	on	
the	 side	 of	 caution.	 Do	 not	 copy	work	 from	 another	 student	 or	 off	 the	web.	 Sanctions	 for	 dishonesty	 are	
reflected	in	your	permanent	record	and	can	negatively	impact	your	future	success.	As	a	general	guide:	

Do	not	copy	code	or	written	material	 from	another	student.	Even	single	 lines	of	code	should	not	be	
copied.		
Do	not	collaborate	on	this	assignment.	The	assignment	is	to	be	solved	individually.	
Do	not	copy	code	off	the	web.	This	is	easier	to	detect	than	you	may	think.		
Do	not	share	any	custom	test	cases	you	may	create	to	check	your	program’s	behavior	in	more	complex	
scenarios	than	the	simplistic	ones	considered	below.	
Do	not	copy	code	from	past	students.	We	keep	copies	of	past	work	to	check	for	this.		
Do	ask	the	professor	or	TA	if	you	are	unsure	about	whether	certain	actions	constitute	dishonesty.	It	is	
better	to	be	safe	than	sorry.		

	
Project	description	
	
Dr.	Ernest	Beakerman	has	been	experimenting	with	gene	knockout	mice	for	the	last	10	years.	Recently	he	has	
had	a	major	breakthrough	with	his	KM-52a	strain.	It	turns	out	that	the	mice	are	hyper	intelligent	and	possess	a	
keen	grasp	of	logic	far	superior	to	any	human.	Since	mice	by	their	nature	are	quite	friendly	the	KM-52a	mice	
have	employed	themselves	to	bettering	humanity.	For	instance,	Algernon	II	is	now	advising	the	president	on	
foreign	matters	and	has	brought	the	ISIS	crisis	to	a	graceful	ending	and	stopped	the	spread	of	AIDS	in	Africa.		
	
The	problem	with	KM-52a	is	that,	 like	all	other	mice,	they	live	at	most	4	years.	As	a	result,	new	generations	
must	be	constantly	trained	to	replace	the	current	mice,	which	die	off	very	quickly.	Additionally,	they	must	be	
trained	with	great	speed	so	that	they	can	spend	as	much	time	as	possible	aiding	humanity	into	a	new	era	of	
prosperity.		
	
Dr.	Beakerman	has	employed	you	 in	his	 lab	to	 facilitate	 the	training	of	KM-52a	mice.	Each	mouse	will	 sit	 in	
front	of	a	computer	practicing	logic	exercises.	It	will	be	presented	with	several	first-order	logic	statements.	It	
will	read	them	and	then	type	in	a	logical	query,	which	the	statements	should	be	able	to	prove.	Your	job	is	to	
write	a	program	that	will	check	each	conclusion	a	mouse	makes	and	give	it	immediate	feedback	as	to	whether	
the	query	can	be	proven.	Thus,	the	mice	will	learn	very	quickly	via	feedback	a	strong	understanding	of	logic.		
	
To	help	you	develop	your	system,	Dr	Beakerman	has	provided	you	with	several	sample	knowledge	bases	the	
mice	have	produced.	The	knowledge	bases	contain	sentences	with	the	following	defined	operators:	

NOT X ~X
X OR Y X | Y
X AND Y X & Y
X IMPLIES Y X => Y

Your	assignment	is:	

You	will	use	the	resolution	inference	algorithm,	full	 first-order	version	(see	slide	76	of	Monday-Wednesday	
slides	for	session14-15)	to	solve	this	problem.		
	
Once	you	have	completed	this	project	Dr.	Beakerman	will	use	it	to	expedite	the	training	of	KM-52a	mice	and	
thus	usher	 in	a	new	era	of	peace	and	prosperity.	After	that	he	will	collect	his	Nobel	prize	and	from	then	on	
forget	to	ever	mention	your	name	when	talking	about	how	to	train	KM-52a	mice.			
	
Format	for	input.txt:	
	
<NQ = NUMBER OF QUERIES>
<QUERY 1>
…
<QUERY NQ>
<NS = NUMBER OF GIVEN SENTENCES IN THE KNOWLEDGE BASE>
<SENTENCE 1>
…
<SENTENCE NS>
	
where	
	

• Each	query	will	be	a	single	literal	of	the	form	Predicate(Constant)	or	~Predicate(Constant).	
• Variables	are	all	single	lowercase	letters.	
• All	predicates	(such	as	Sibling)	and	constants	(such	as	John)	are	case-sensitive	alphabetical	strings	that	

begin	with	an	uppercase	letter.		
• Each	predicate	takes	at	least	one	argument.	Predicates	will	take	at	most	100	arguments.	A	given	

predicate	name	will	not	appear	with	different	number	of	arguments.	

• There	will	be	at	most	100	queries	and	1000	sentences	in	the	knowledge	base.		

• See	the	sample	input	below	for	spacing	patterns.		

• You	can	assume	that	the	input	format	is	exactly	as	it	is	described.	There	will	be	no	syntax	errors	in	the	
given	input.		

	
Format	for	output.txt:	
	
For	each	query,	determine	if	that	query	can	be	inferred	from	the	knowledge	base	or	not,	one	query	per	line:	
	
<ANSWER 1>
…
<ANSWER NQ>
	
where	
	
each	answer	should	be	either	TRUE	if	you	can	prove	that	the	corresponding	query	sentence	is	true	given	the	
knowledge	base,	or	FALSE	if	you	cannot.	

	
Notes	and	hints:	
	

- Please	 name	 your	 program	 “homework.xxx”	 where	 ‘xxx’	 is	 the	 extension	 for	 the	 programming	
language	you	choose.	(“py”	for	python,	“cpp”	for	C++,	and	“java”	for	Java).	If	you	are	using	C++11,	then	
the	name	of	your	file	should	be	“homework11.cpp”	and	if	you	are	using	python3.4	then	the	name	of	
your	file	should	be	“homework3.py”.	

- If	you	decide	that	the	given	statement	can	be	inferred	from	the	knowledge	base,	every	variable	in	each	
sentence	used	in	the	proving	process	should	be	unified	with	a	Constant.	So,	if	you	have	something	like	
A(x)	=>	B(John),	and	you	cannot	find	any	x	to	fulfill	the	A(x)	premise,	you	cannot	say	that	B(John)	is	
true.		

- All	variables	are	assumed	to	be	universally	quantified.	There	is	no	existential	quantifier	in	this	
homework.	There	is	no	need	for	Skolem	functions	or	Skolem	constants.	

- Operator	priorities	apply.	Parentheses	may	be	used	in	the	sentences	given	to	you	for	the	KB,	to	group	
terms,	e.g.,	(A(x)	|	B(x))	=>	C(x).	There	will	not	be	any	empty	parentheses:	().	

- It	is	recommended	that	you	convert	the	KB	to	CNF	as	a	pre-processing	step.	This	means	using	the	
definition	of	implication	to	eliminate	it,	working	negations	into	parentheses,	possibly	using	
distributivity	rules	to	simplify	some	parentheses,	and	possibly	splitting	sentences	that	contain	AND	
operators	into	several	sentences.	

- The	knowledge	base	that	you	will	be	given	is	consistent.	So	there	are	no	contracting	rules	or	facts	in	
the	knowledge	base.		

- If	you	run	into	a	loop	and	there	is	no	alternative	path	you	can	try,	report	FALSE.	An	example	for	this	
would	be	having	two	rules	1)	A(x)	=>	B(x)		2)	B(x)	=>	A(x)		and	wanting	to	prove	A(John).	In	this	case	
your	program	should	report	FALSE.		

- Considering	that	the	size	of	knowledge	base	is	not	small,	we	recommend	using	an	indexing	method	for	
storing	your	knowledge	base.	Such	as	table-based	indexing	or	tree-based	index	that	you	have	learned	
in	class.		

- You	are	free	to	use	any	parsing	tool	such	as	LEX	and	YACC	if	you	want	(As	long	as	it	runs	on	Vocareum).	

Example	1:	
	
For	this	input.txt:	

6
F(Bob)
H(John)
~H(Alice)
~H(John)
G(Bob)
G(Alice)
14

A(x) => H(x)
D(x,y) => ~H(y)
B(x,y) & C(x,y) => A(x) [beware of operator priority]
B(John,Alice)
B(John,Bob)
(D(x,y) & F(y)) => C(x,y) [note parentheses on premises: not
D(John,Alice) strictly required but legal]
F(Bob)
D(John,Bob)
F(x) => G(x)
G(x) => H(x)
H(x) => F(x)
R(x) => H(x)
R(Alice)

your	output.txt	should	be:	

TRUE
TRUE
TRUE
FALSE
FALSE
TRUE
	
Example	2:	
	
For	this	input.txt:	
	
2
Ancestor(Liz,Billy)
Ancestor(Liz,Bob)
6
Mother(Liz,Charley)
Father(Charley,Billy)
~Mother(x,y) | Parent(x,y)
~Father(x,y) | Parent(x,y)
~Parent(x,y) | Ancestor(x,y)
~(Parent(x,y) & Ancestor(y,z)) | Ancestor(x,z)
	
your	output.txt	should	be:	
	
TRUE
FALSE
	
Example	3:	
	
Try	for	yourself	the	example	from	slide	92	of	session14-15	of	Monday-Wednesday	lectures.	
	
	

