EE512 Stochastic Processes Fall 2016 University of Southern California Dept. of Electrical Engineering

Lecture 3: Aug 25, 2016

Lecturer: Prof: Nayyar <>

Scribe: Saket Choudhary

3.1 Stochastic Processes

For each t, X(t) is a random variable

T = range of time

If T is countable we have discrete time stochastic process. If T is interval we have continuous time stochastic process.

Example: Suppose we are tossing a fair coin infinitely many times.

 $\Omega = \{ Any infinite string of H and T \}$

Like *HHHTHTHTHT*...

Look at range of time interval $T = [1, \infty)$

For $1 \leq tM2$

 $X(t)(\omega) = \begin{cases} 1 & \text{if the first toss is head} \\ -1 & \text{otherwise} \end{cases}$

For $n \leq tMnH$

$$X(t)(\omega) = \begin{cases} 1 & \text{if the } n^{th} \text{ toss is head} \\ -1 & \text{otherwise} \end{cases}$$

E.g.X(t)(HTHHTTT) = 11 X(t)(THHTTHHT) = -1

So we defined collection of random variables $\{X(t), 1 \le t < \infty\}$ In a stochastic proces, each X(t) is random variable Fix an ω and look at $X(t)(\omega)$ as a function of time.

Consider $X(t)(\omega)$ for HHTHHH...

$$X(t)(w) = \Big\{1$$

IF we change ω we get a different sample path. So sample path is a realization of the stochastic process. If we fix time we get a random variable

For n = 1, 2, 3...

$$Y_n = \begin{cases} 1 & \text{if } n^{th} \text{ toss is heads} \\ 0 & \text{otherwise} \end{cases}$$

Assume coin tosses are independent and P(heads) = p; P(tails) = q; p + q = 1

$$P(Y_n = 1) = P(n^{th} \text{ toss is heads}$$

= p
 $P(Y_n = 0) = q$

 $\{Y_n\}_{n=1,2,3}$ are independent and identically distributed random variables.

3.2 Bernoulli Process

$$P(Y_1 = 1, Y_2 = 0, Y_3 = 1) = P(Y_1 = 1)P(Y_2 = 0)P(Y_3 = 1) = pqp$$

$$P(Y_1 + Y_2 + Y_3 = 1) = 3pq^2$$
Generalization: $P(\sum Y_i = k) = n{k \choose p}^k q^{n-k}$

3.3 Convergence of Random Variables

Suppose $a_a, a_2, \ldots a_n$ is sequence of real numbers and $\lim_{n \longrightarrow \infty} a_n = b$ i.e. $\{a_n\}_{n \ge 1}$ converges to b a_n converges to b if for every $\epsilon > 0$ there exists a natural number N_{ϵ} such that $|a_n - b| < \epsilon i f n > N_{\epsilon}$

Almost sure convergence

Convergence with probability 1.

 $\{X_n\}_{n=1,2,3}$ are all defined on (Ω, \mathcal{F}, P)

for any $\omega \in \Omega$, $X_1(\omega), X_2(\omega), X_3(\omega) \dots$ Is the sequence of real numbers $\{X_n(\omega)\}$ convergging to number $Y(\omega)$ Look at collection $\{\omega \in \Omega : \{X_n(\omega)\}$ converges to $Y(\omega)\}$

If $P(\{\omega \in \Omega : \lim_{x \to \infty} X_n(\omega) = Y(\omega)\}) = 1$ then we say that r.v $\{X_n\}_{n \ge 1}$ converge to random variable Y almost surely.

Example: $\Omega = (0, 1)$

$$X_1(\omega) = 1 \forall \omega in \Omega \ X_2(\omega) = \begin{cases} 2 & if 0 < w \le 0.5 \\ 0 & if 0.5 < w < 1 \end{cases}$$

$$\begin{split} X_n(\omega) &= \begin{cases} n & 0 < \omega \leq 1/n \\ 0 & \text{otherwise} \end{cases} \\ \\ \text{Pick an arbitrary } \omega &= 1/3 \\ X_1(\omega)X_2(\omega)\dots X_n(\omega) &= 123000\dots \\ \\ Y(1/3) &= 0 \\ \\ \\ \lim_{n \longrightarrow } X(1/3) &= Y(1/3) \\ \\ \text{For all } \omega \in (0,1), \lim_{n \longrightarrow \infty} X_n(\omega) &= Y(\omega) \\ \\ \text{So } P(\{\omega : \lim_n X_n(\omega) = Y(\omega)\}) &= 1 \text{ so } X(w) \text{ converges almost surekt} \end{cases} \end{split}$$

3.3.1 Strong Large of large numbers

 $\{X_n\}_n \text{ are iid. } E[X_n] = \mu < \infty \text{ and } E[|X_n|] < \infty$ $S_n = X_1 + X_2 + \dots X_n$ Then $\frac{S_n}{n}$ converges almost surely to μ $P(\{\omega : \lim_n \frac{S_n(\omega)}{n} = \mu\}) = 1$

3.3.2 Convergence in probability

We say that $X_n(\omega)$ converges to Y then $P(|X_n - Y_n|) > \epsilon$ converges to 0

Weak law of large numbers

 $\begin{array}{l} \{X_n\} \text{ are iid with } E[X_n] = mu, E[|X_n|] \\ S_n = \sum X_i \text{ then } \frac{S_n}{n} \text{ converges tp } \mu \text{ in probability.} \\ \\ \text{Check if } \lim_{n \longrightarrow \infty} P(|\{\frac{S_n}{n}\} - \mu| > \epsilon) = 0 \ E[\frac{S_n}{n}] = \mu \text{ and } Var(\frac{S_n}{n}) = \frac{\sigma^2}{n} \\ 0 \leq P(|S_n/n - \epsilon| > \epsilon) \leq E[(S_n/n - \mu)^2]/\epsilon^2 = \frac{\sigma^2}{n\epsilon^2} \\ \\ \text{Thus, } \lim_{n \longrightarrow \infty} P(|S_n/n - \epsilon| > \epsilon) = 0 \\ \\ \text{So } S_n/n \text{ converges to } \mu \text{ in probability.} \end{array}$

Thus, almost sure convergence \implies convergence in probability but converse is not true.

Convergence in distribution

 $\{X_n\}_{n\geq 1}$ We look at cdfs $F_{X_n}(x)$ and we want to check of $\lim_{n \longrightarrow} F_{X_n}(x) = F_Y(x)$

for all x where F_Y is continuous

Example: $Y \sim \mathcal{N}(0,1)$ and $X_n = (-1)^n Y$ Does X_n converge to Y in distrbution

$$F_{X_1}(x) = F_{-Y}(x) = P(-Y \le x) = P(Y \ge -x) = P(Y \le x) = F_Y(x)$$

$$F_X(2)(x) = P(Y \le x) = F_Y(x)$$

Example: Central limit theorem

 $\{X_n\}_{n\geq 1}$ are iid random variable with $E[X_n] = \mu$ and $Var[X_n] = \sigma^2$

$$Z_n = \frac{\sum_n X_n - n\mu}{\sigma\sqrt{n}}$$
$$Z_1 = \frac{X_1 - \mu}{\sigma}$$
$$Z_2 = \frac{X_1 + X_2 - 2\mu}{\sigma\sqrt{2}}$$

CLT: $\{Z_n\}_{n\geq 1}$ converges to Y where $Y\sim \aleph(0,1)$

$$\lim_{n \to \infty} P(Z_n \le x) = F_Y(x)$$

Almost sure convergence \implies Convergence in probability \implies Convergence in distribution

Convergence in mean square

 $\{X_n\}$ converge to Y in mean square of $\lim_{n \to \infty} E[(X_n - Y)^2] = 0$ Example: IID X_n and $S_n = \sum X_i$ then $\lim_{n \to \infty} E[(\frac{S_n}{n} - \mu)^2] = 0$ i.e. $\lim_{n \to \infty} \frac{\sigma^2}{n} = 0$

3.4 How to remember