EE512 Stochastic Processes University of Southern California Fall 2016 Dept. of Electrical Engineering

Lecture 4: Sep 1, 2016

Lecturer: Prof: Nayyar <> *Scribe: Saket Choudhary*

Example: **Branching Processes** Day 0: . . . (organisms)

Day 1: Y_1, Y_2 , (Number of offsprings of i^{th} bacteria) ${Y_i}$ are iid. $Y_i \in \{0, 2, 4\}$ $p_0 + p_2 + p_4 = 1$ Day n $\implies M$ bacteria $(X_n = m)$ $X_n = \#$ of bacteria on day n $P(X_{n+1} = j | X_n = M) = P(Y_1 + Y_2 + \cdots + Y_M = j | X_n = M) = P(X_{n+1} = j | X_n = M, X_{n-1} = a, \ldots X_0 = 2)$

so a branching process is markov chain

Multistep Transition Probability

 $P(X_{n+m} = j | X_n = 1, X_{n-1}) = P(X_m = j | X_0 = i)$ m – step transition probabilities does on depend on past given the currrent state.

Gambler's ruin: time homegenous $P(X_1 = 1 | X_0 = 0) = P(X_{101} = 1 | X_1 00 = 0)$

Example:
$$
S = \{1, 2, 3\}
$$

\n $p = \begin{pmatrix} 0.8 & 0.1 & 0.1 \\ 0.1 & 0.8 & 0.1 \\ 0.1 & 0.1 & 0.8 \end{pmatrix}$
\n $P(X_2 = 1, X_1 = 3 | X_0 = 2) = P(X_2 + 1 | X_1 = 3) P(X_1 = 3 | X_0 = 2)$
\n $P(A \cap B) = P(A|B)P(B) \implies P(A \cap B|C) = P(A|B \cap C)P(B|C)$
\n $P(X_2 = 1, X_1 = 3 | X_0 = 2) = P(X_2 = 1 | X_1 = 3) P(X_1 = 3 | X_0 = 2) = 0.1 * 0.1 = 0.01$
\n $P(X_2 = 1 | X_0 = 2) = \sum_i P(X_2 = 1, X_1 = i | X_0 = 2) P(X_i = i | X_0 = 2)$
\n $P(X_2 = j | X_0 = i)$ denoted by $p^2(i, j)$
\n $p^2(i, j) = \sum_{k \in S} P(X_2 = j, X_1 = k | X_0 = i) = \sum_{k \in S} P(X_2 = j | X_1 = k) P(X_1 = k | X_0 = i) = \sum_{k \in S} p(k, j) p(i, k)$
\n $p^2 = p \cdot p$ Two step transition probabilities are denoted by $p^m(i, j) = P(X_m = j | X_0 = i)$
\nSo *m* step transition probabilities are denoted by $p^m(i, j) = P(X_m = j | X_0 = i)$

 $m - step$ transition probability matrix is the $m[th]$ power of one step transition probability matrix.

4.0.1 Champan Kplmogorov equations

$$
p^{m+n}(i,j) = \sum_{k \in S} p^m(i,k) p^n(k,j)
$$

$$
P(X_{m+n} = j | X_0 = i)
$$
Proof:

 $P(X_{n+m} = k | X_0 = i) = \sum$ $k \in S$ $P(X_{n+m} = j, X_m = k | X_0 = i)$ $=$ \sum $k \in S$ $P(X_{n+m} = j | X_m = k, X_0 = i) P(X_m = k | X_0 = i)$ $=$ \sum $k \in S$ $P(X_{n+m} = j | X_m = k) P(X_m = k | X_0 = i)$ $=$ \sum k∈S $p^{n}(k, j)p^{m}(i, k)$

Notation

For some event A, $P(A|X_0 = x) = P_x(A)$ For some RV Y, $E[Y|X_0=x] = E_x[Y]$

Stopping Time

Definition Consider a RV T, takes avalues in the set $\{0, 1, 2, 3\}$. We say that T is a stopping time with respect to the stochastic process. $\{X_n, n \geq 0\}$ if the value of I_N [INCOMPLETE]

 $\{X_n, n \geq 0\}$ – Gambler's ruin problem $T = \min\{k \ge 0 : X_k \ge 5\}$ Example: $X_0 = 10$ then $T = 0$ Calculate $I_{\{T_n\}}$ from X_0, X_1, \ldots, X_n If $\{T = 0\} \implies \{X_0 \geq 5\}$ ${T = 1} \implies {X_0 < 5, X_1 > 5}$ ${T = n} \implies {X_0 < 5, X_1 < 5, \ldots X_{n-1} < 5, X_n \ge 5}$

 T is a stopping time

Strong markov property:

Suppose T is a stopping time with respect to the Markov Chain, $\{X_n, n \geq 0\}$ Given that stopping time $T = n$ and $X_T = y$

Any other information about $X_0, X_1, \ldots X_{T-1}$ is irrelevant for predicting future.

$$
P(X_{T+1} = j | T = n, X_T = y) = P(X_1 = j | X_0 = y) = p(y, j)
$$

\n
$$
P(X_{T+1} = j | T_n, X_T = y, X_{T-1} = x, \dots, X_0 = z) = P(X_{T+1} = j | T = n, X_T = y) P(y, j)
$$

\n
$$
P(X_{T+m} = j | T = n, X_T = y, X_{T-1} = x) = P(X_{T+m} = j | T = n, X_T = y) = P(X_m = j | X_0 = y) = p^m(y, j)
$$