EE512 Stochastic Processes Fall 2016

University of Southern California Dept. of Electrical Engineering

Lecture 5: Sep 06, 2016

Lecturer: Prof: Nayyar <>

Scribe: Saket Choudhary

NOTE: Durrett's book for Markov Chain.

Stopping time

T is a stopping time wrt $\{X_n\}_{n\geq 0}$ if $\{T=n\}$ can be determined from X_0, X_1, \ldots, X_n

Strong markov property

$$P(X_{T+m} = z | X_Y = y, T = n) = P(X_m = z | X_0 = y) = p^m(z)$$

Time of first return

State space of MC is finite.

For a state $y \in S$, $T_y = \min\{n \ge 1 : X_n = y\}$

since $n \ge 1$ so X_0 is not relevant here.

If $X_n \neq y$ for any finite $n \geq 1$, then we say that $T_y = \infty$

Is T_y a stopping time?

For $I_{T_y=1}$ all we need to know is $X_1 [= y, \neq y]$

If $\{T_y = k\}$ then $X_1, X_2, X_{k-1} \neq y$ and $X_k = y$

$$P_y(T_y < \infty) = P(T_y < \infty | X_0 = y)$$

Time to return to y is finite given start $X_0 = y$.

$$P(T_y < \infty | X_0 = y) = \sum_{n \ge 1} P(T_y = n | X_0 = y) = \rho_{yy}$$

 ρ_{yy} : Probability of 1st return to y happening in finite time given $X_0 = y$

Time of 2^{nd} return

$$\begin{split} T_y^2 &= \min\{n > T_1 : X_n = y | X_0 = y\} \\ P(T_y^2 < \infty) = ? \\ \{T_y^2 M \infty\} \subset \{T_y < \infty\} \\ \text{Thus, } P_y(T_y^2 < \infty) \leq \rho_{yy} \\ P(T_y^2 < \infty) = P(T_y^2 < \infty, T_y^1 < \infty) + P(T_y^2 < \infty, T_y^1 = \infty) = P(T_y^2 < \infty, T_y^1 < \infty) = P(Y_y^2 < \infty | T_y^1 < \infty) \\ \infty) P(T_y^1 < \infty) = \rho_{yy}^2 \\ \text{Inductively, } P(T_y^k < \infty) = \rho_{yy}^k \\ \text{Two cases:} \end{split}$$

- $\rho_{yy} = 1$ In this case we say that y is a RS[Recurrent State]. $P_y(T_y^1 < \infty) = 1$ so guaranteed to come back to $y P_y(T_y^k < \infty) = 1$. Number of times the MC visits given $X_0 = y$ is infinite
- •

Let N(y) = Total number of visits to y from time 1 onwards $\{N(y) = \infty\} = \bigcup_{k \ge 0} \{N(y) \ge k\}$ $P_y(N(y) = \infty) = P(\bigcup_{k \ge 0} \{N(y) \ge k\}) = \lim_{k \longrightarrow \infty} P_y(N(y) > k) = \lim_{k \longrightarrow \infty} P(T_y^k < \infty) = \lim_{k \longrightarrow \infty} \rho_{yy}^k = 1$

IF $\rho_{yy} < 1$ then $P(T'_y < \infty) < 1$ and $P(T'_y = \infty) > 0$

States with $\rho_{yy} < 1$ are called transient state

$$\begin{split} P(N(y) = \infty) &= P_y(\cap \{N(y) \ge k\} \\ &= \lim_{k \longrightarrow \infty} P(T_y^k < infty) \\ &= \rho_{yy}^k \\ &= 0 \end{split}$$

For recurrent states: $N_y = \infty$ with probability 1. for transient states, $N_y < \infty$ with probability 1.

Example

 $\rho_{00} = 1$ so state 0 is recurrent[also absorbing]

In general any absorbing state is also recurrent.

Simimarly state 4 is also recurrant.

If we start at 1, we visit 1 only finitel maaaaaaaaa Recurring states do not have to be absorbing states.

Example 2 A-A : 0.5 A:B : 0.5 B-B : 1

Both 0, 1 are recurrent

$$P(T_0^1 = k) = \frac{1}{2^k}$$

 $P(T_0^1 < \infty) = 1$ Thus, 0 is a recurring state, but not an absorbing state.

Recurrent and Transient state

$$\begin{split} \rho_{xy} &= P(T_y < \infty | X_0 = x) = P_x(T_y < \infty) \\ \text{if } \rho_{xy} &= 0 \implies P_x(T_y = \infty) = 1 \\ \text{E.g A-A} &= 1 \text{ B-A} = 0.6 \text{ B-C=0.4 C-C=1} \end{split}$$

$$\rho_{10} = 0.6$$

Suppose there exists a finite number m such that the m step transition probab from x to y is positivie

$$p^{m}(x,y) > 0$$
, then $\rho_{xy} > 0$

Converse: Suppose $\rho_{xy} > 0$ then there exists a finite number m such that $p^m(x, y) > 0$

 $\rho_{xy} = P_x(T_y < \infty) = \sum_{m=1} P_x(T_y = m) > 0 \implies$ there exists at least one m = n such that $P_x(T_y = n) > 0$

If $\rho_{xy} > 0$ then we say that x, y communicate or $x \longrightarrow y$

Theorem If $\rho_{xy} > 0$ and $\rho_{yx} < 1$ then x is a transient state.

Example:

 $\rho_{21}=1$

 $\rho_{12} = 0$

So 2 is transient