EE512 Stochastic Processes University of Southern California Fall 2016 Dept. of Electrical Engineering

Lecture 5: Sep 06, 2016

Lecturer: Prof: Nayyar <> *Scribe: Saket Choudhary*

NOTE: Durrett's book for Markov Chain.

Stopping time

T is a stopping time wrt $\{X_n\}_{n\geq 0}$ if $\{T = n\}$ can be determined from X_0, X_1, \ldots, X_n

Strong markov property

$$
P(X_{T+m} = z | X_Y = y, T = n) = P(X_m = z | X_0 = y) = p^m(z)
$$

Time of first return

State space of MC is finite.

For a state $y \in S$, $T_y = \min\{n \geq 1 : X_n = y\}$

since $n \geq 1$ so X_0 is not relevant here.

If $X_n \neq y$ for any finite $n \geq 1$, then we say that $T_y = \infty$

Is $T_{\boldsymbol{y}}$ a stopping time?

For $I_{T_y=1}$ all we need to know is $X_1 = y, \neq y$

If ${T_y = k}$ then $X_1, X_2, X_{k-1} \neq y$ and $X_k = y$

$$
P_y(T_y < \infty) = P(T_y < \infty | X_0 = y)
$$

Time to return to y is finite given start $X_0 = y$.

$$
P(T_y < \infty | X_0 = y) = \sum_{n \ge 1} P(T_y = n | X_0 = y) = \rho_{yy}
$$

 ρ_{yy} : Probability of 1st return to y happening in finite time given $X_0 = y$

Time of 2^{nd} return

$$
T_y^2 = \min\{n > T_1 : X_n = y | X_0 = y\}
$$
\n
$$
P(T_y^2 < \infty) = ?
$$
\n
$$
\{T_y^2 M \infty\} \subset \{T_y < \infty\}
$$
\nThus, $P_y(T_y^2 < \infty) \le \rho_{yy}$ \n
$$
P(T_y^2 < \infty) = P(T_y^2 < \infty, T_y^1 < \infty) + P(T_y^2 < \infty, T_y^1 = \infty) = P(T_y^2 < \infty, T_y^1 < \infty) = P(Y_y^2 < \infty | T_y^1 < \infty) = P(T_y^1 < \infty) = P(T_y^2 < \infty, T_y^1 = \infty) = P(T_y^2 < \infty, T_y^1 < \infty) = P(T_y^2 < \infty | T_y^1 < \infty) = P(T_y^2 < \infty, T_y^1 = \infty) = P(T_y^2 < \infty, T_y^1 < \infty) = P(T_y^2 < \infty | T_y^1 < \infty) = P(T_y^2 < \infty, T_y^1 = \infty) = P(T_y^2 < \infty, T_y^1 < \infty) = P(T_y^2 < \infty, T_y^1 = \infty) =
$$

Two cases:

- $\rho_{yy} = 1$ In this case we say that y is a RS[Recurrent State]. $P_y(T_y^1 < \infty) = 1$ so guaranteed to come back to y $P_y(T_y^k < \infty) = 1$. Number of times the MC visits given $X_0 = y$ is infinite
- •

Let $N(y)$ = Total number of visits to y from time 1 onwards $\{N(y) = \infty\} = \bigcup_{k \geq 0} \{N(y) \geq k\}$ $P_y(N(y) = \infty) = P(\cup_{k \geq 0} \{N(y) \geq k\}) = \lim_{k \to \infty} P_y(N(y) > k) = \lim_{k \to \infty} P(T_y^k < \infty) = \lim_{k \to \infty} \rho_{yy}^k =$ 1

IF $\rho_{yy} < 1$ then $P(T'_y < \infty) < 1$ and $P(T'_y = \infty) > 0$

States with ρ_{yy} < 1 are called transient state

$$
P(N(y) = \infty) = P_y(\bigcap \{ N(y) \ge k \}
$$

= $\lim_{k \to \infty} P(T_y^k < infty)$
= ρ_{yy}^k
= 0

For recurrent states: $N_y = \infty$ with probability 1. for transient states, $N_y < \infty$ with probability 1.

Example

 $\rho_{00} = 1$ so state 0 is recurrent [also absorbing]

In general any absorbing state is also recurrent.

Simimarly state 4 is also recurrant.

If we start at 1, we visit 1 only finitel maaaaaaaaa Recurring states do not have to be absorbing states.

Example 2 A-A : 0.5 A:B : 0.5 B-B : 1

Both 0, 1 are recurrent

$$
P(T_0^1 = k) = \frac{1}{2^k}
$$

 $P(T_0^1 < \infty) = 1$ Thus, 0 is a recurring state, but not an absorbing state.

Recurrent and Transient state

$$
\rho_{xy} = P(T_y < \infty | X_0 = x) = P_x(T_y < \infty)
$$
\nif $\rho_{xy} = 0 \implies P_x(T_y = \infty) = 1$

\nE.g A-A = 1 B-A = 0.6 B-C=0.4 C-C=1

\n $\rho_{10} = 0.6$

Suppose there exists a finite number m such that the m step transition probab from x to y is positivie

$$
p^m(x, y) > 0, \text{ then } \rho_{xy} > 0
$$

Converse: Suppose $\rho_{xy} > 0$ then there exists a finite number m such that $p^m(x, y) > 0$

 $\rho_{xy} = P_x(T_y < \infty) = \sum_{m=1} P_x(T_y = m) > 0 \implies$ there exists at least one $m = n$ such that $P_x(T_y = n) > 0$

If $\rho_{xy} > 0$ then we say that x, y communicate or $x \rightarrow y$

Theorem If $\rho_{xy} > 0$ and $\rho_{yx} < 1$ then x is a transient state.

Example:

 $\rho_{21} = 1$

 $\rho_{12} = 0$

So 2 is transient