MATH 542 Homework 9

Saket Choudhary skchoudh@usc.edu

March 10, 2016

Problem 1

Since X is full rank, the least sqare estimate of β for the linear model $\mathbf{Y} = \mathbf{y}\beta + \epsilon$ then $\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$ also this is an unbiased estimator of β that is $E[\hat{\beta}] = \beta$

$$
a'\beta = a'E[\hat{\beta}]
$$

= a'E[(**X'X**)⁻¹**X'y**]
= E[a'(**X'X**)⁻¹**X'y**]
= E[b'y]

Hence when **X** is full rank, we have can take $b' = a'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$ making every $a'\beta$ estimable

For each individual β_i to be estimable, we set $a' = \begin{pmatrix} 0 & 0 & \dots & 0 & 1 & 0 \dots & 0 \end{pmatrix}$ setting $a_i = 1$ remaining zero.

Problem 2

Since each $a_i' \beta$ is estimable: $a_i' \beta = E[b_i' Y]$ Consider $\lambda_i \in \mathcal{R}$

$$
\lambda_1 a'_1 \beta + \lambda_2 a'_2 \beta + \dots + \lambda_n a'_n \beta = \lambda_1 E[b'_1 Y] + \lambda_2 E[b'_2 Y] + \dots \lambda_n E[b'_n Y]
$$

=
$$
\sum_i E[\lambda_i b'_i Y]
$$

=
$$
\sum_i E[c'Y]
$$
 where $c' = \lambda \mathbf{I} \mathbf{b}'$

where $\lambda = (\lambda_1 \quad \lambda_2 \quad \dots \quad \lambda_n)$ and $b' = (b_1 \quad b_2 \quad \dots b_n)$ Hence linear combination of $a_i' \beta$ is also estimable.

Problem 3

$$
X = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 1 & -2 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}
$$

$$
\beta_1 = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix} \beta
$$

$$
\beta_1 - \beta_2 = \begin{pmatrix} 1 & -1 & 0 \end{pmatrix} \beta
$$

$$
5\beta_1 + 3\beta_2 + 9\beta_3 = \begin{pmatrix} 5 & 3 & 9 \end{pmatrix} \beta
$$

X has full column rank and hence we can make use of the theorem we proved in Problem 1 to say that all three cases (a, b, c) are indeed estimable, that is since X is full rank, every $a'\beta$ is estimable (One particular case of the corollary proved in Problem 1 here is the case a where $a' = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$

Problem 4

Problem 4.a

Define $\mathbf{y} = (Y_1 \ Y_2 \ Y_3)', \ \tau = (\tau_1 \ \tau_2 \ \tau_3), \ \epsilon = (\epsilon_1 \ \epsilon_2 \ \epsilon_3)$ Thus, $y =$ $\sqrt{ }$ $\overline{1}$ 1 1 1 1 0 1 0 1 0 \setminus \int $\tau + \epsilon$ Rank of design matrix is 2

Problem 4.b

 $E[b'Y] = a'\beta = b'X\beta$ iff $a' = b'X$ or $a = Xb' \tau_2$ is estimable:

$$
\tau_2 = a'\beta = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix} \tau
$$

$$
= EY_3
$$

$$
= E[(0 \ 0 \ 1)]
$$

 $\tau_1 = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \tau$ so we need to find b such that $\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}' = X'b$ It is clear to see no b does not exist.

 $\tau_2 = (0 \ 1 \ 0) \tau$ is estimable because $b = (0 \ 1 \ 0)$

 τ_3 is not estimable because of symmetry with τ_1

Problem 4.c

$$
\tau_1 - 2\tau_2 + \tau_3 = \begin{pmatrix} 1 & -2 & 1 \end{pmatrix} \tau = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}
$$
 and hence it is estimate

Problem 4.d

A possible unbiasd estimator of $\tau_1 - 2\tau_2 + \tau_3 = E[Y_2 - 2Y_3]$ i.e $Y_2 - 2Y_3$ whihe is not necessarily BLUE.

For BLUE, we simply take the OLS estimate of β as $\hat{\beta} = \mathbf{X}'\mathbf{X}^{-1}\mathbf{X}'\mathbf{y}$ and from Gauss-Markov model BLUE follows.

Generalized inverse (using
$$
R
$$
) $X'X^{-1} = \begin{pmatrix} \frac{1}{6} & -\frac{1}{6} & \frac{1}{6} \\ \frac{-1}{6} & \frac{2}{3} & -\frac{1}{6} \\ \frac{1}{6} & -\frac{1}{6} & \frac{1}{6} \end{pmatrix}$

\nso $\hat{\beta} = X'X^{-1}X'y = \begin{pmatrix} \frac{1}{6} & \frac{1}{3} & -\frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \\ \frac{1}{6} & \frac{1}{3} & -\frac{1}{6} \end{pmatrix} y$

\nand hence $\tau_1 - 2\tau_2 + \tau_3 = \begin{pmatrix} 1 & -2 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{6} & \frac{1}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{6} & \frac{1}{3} & -\frac{1}{6} \end{pmatrix} y = \frac{-Y_1 + 4Y_2 - 5Y_3}{3}$

\nThus $BLUE$ of $\tau_1 - 2\tau_2 + \tau_3$: $\frac{-Y_1 + 4Y_2 - 5Y_3}{3}$