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The cover illustration captures an experiment first described by Isaac Newton in
Opticks in 1730, showing that white light can be split into its color components and
then synthesized back into white light. It is a physical implementation of a decom-
position of white light into its Fourier components – the colors of the rainbow –
followed by a synthesis to recover the original.
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natural numbers N 0, 1, . . .
integers Z . . . , −1, 0, 1, . . .
positive integers Z

+ 1, 2, . . .
rational numbers Q p/q, p, q ∈ Z, q 6= 0
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complex numbers C a+ jb or rejθ with a, b, r, θ ∈ R

a generic index set I
a generic vector space V
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closure of set S S

Real and complex analysis

sequence xn argument n is an integer, n ∈ Z

function x(t) argument t is continuous-valued, t ∈ R

ordered sequence (xn)n
set containing xn {xn}n
vector x with xn as elements [xn]

Kronecker delta sequence δn δn = 1 for n = 0; δn = 0 otherwise

Dirac delta function δ(t)

∫ ∞

−∞
x(t) δ(t) dt = x(0) for x continuous at 0

indicator function of interval I 1I 1I(t) = 1 for t ∈ I ; 1I(t) = 0 otherwise

integration by parts

∫
u dv = uv −

∫
v du

complex number z a+ jb, rejθ, a, b ∈ R, r ∈ [0, ∞), θ ∈ [0, 2π)

conjugation z∗ a− jb, re−jθ

real part of ℜ( · ) ℜ(a+ jb) = a, a, b ∈ R

imaginary part of ℑ( · ) ℑ(a+ jb) = b, a, b ∈ R

conjugation of coefficients X∗(z) X∗(z∗)

principal root of unity WN e−j2π/N

Asymptotic notation

big O x ∈ O(y) 0 ≤ xn ≤ γyn for all n ≥ n0;
some n0 and γ > 0

little o x ∈ o(y) 0 ≤ xn ≤ γyn for all n ≥ n0;
some n0, any γ > 0

Omega x ∈ Ω(y) xn ≥ γyn for all n ≥ n0;
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Theta x ∈ Θ(y) x ∈ O(y) and x ∈ Ω(y)
asymptotic equivalence x ≍ y limn→∞ xn/yn = 1
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Standard vector spaces

Hilbert space of square-summable
sequences

ℓ2(Z)

{
x : Z→ C

∣∣∣∣∣
∑

n

|xn|2 <∞
}

with

inner product 〈x, y〉 =∑n xny
∗
n

Hilbert space of square-integrable
functions

L2(R)

{
x : R→ C

∣∣∣∣
∫
|x(t)|2 dt <∞

}
with

inner product 〈x, y〉 =
∫
x(t) y(t)∗ dt

normed vector space of sequences
with finite ℓp norm, 1 ≤ p <∞ ℓp(Z)

{
x : Z→ C

∣∣∣∣∣
∑

n

|xn|p <∞
}

with

norm ‖x‖p =
(∑

n |xn|p
)1/p

normed vector space of functions
with finite Lp norm, 1 ≤ p <∞ Lp(R)

{
x : R→ C

∣∣∣∣
∫
|x(t)|p dt <∞

}
with

norm ‖x‖p =
(∫
|x(t)|p dt

)1/p

normed vector space of bounded
sequences with supremum norm

ℓ∞(Z)

{
x : Z→ C

∣∣∣∣ sup
n
|xn| <∞

}
with

norm ‖x‖∞ = supn |xn|

normed vector space of bounded
functions with supremum norm

L∞(R)

{
x : R→ C

∣∣∣∣ ess sup
t
|x(t)| <∞

}
with

norm ‖x‖∞ = ess supt |x(t)|

Bases and frames for sequences

standard basis {ek} ek,n = 1 for n = k; ek,n = 0 otherwise
vector, element of basis or frame ϕ when applicable, a column vector
basis or frame Φ set of vectors {ϕk}
operator Φ concatenation of {ϕk} in a linear

operator: [ϕ0 ϕ1 . . . ϕN−1]
vector, element of dual basis or frame ϕ̃ when applicable, a column vector

Φ̃ set of vectors {ϕ̃k}
operator Φ̃ concatenation of {ϕ̃k} in a linear

operator: [ϕ̃0 ϕ̃1 . . . ϕ̃N−1]

expansion with a basis or frame x = ΦΦ̃∗x
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Discrete-time signal processing

Sequence xn signal, vector

Convolution

linear h ∗ x
∑

k∈Z

xkhn−k

circular
(N-periodic sequences)

h⊛ x
N−1∑

k=0

xkh(n−k) mod N

(h ∗ x)n convolution result at n

Eigensequence vn eigenvector

infinite time vn = ejωn h ∗ v = H(ejω) v

finite time vn = ej2πkn/N h⊛ v = Hkv

Frequency response eigenvalue corresponding to vn

infinite time H(ejω)
∑

n∈Z

hne
−jωn

finite time Hk

N−1∑

n=0

hne
−j2πkn/N =

N−1∑

n=0

hnW
kn
N

Continuous-time signal processing

Function x(t) signal

Convolution

linear h ∗ x
∫ ∞

−∞
x(τ )h(t− τ ) dτ

circular
(T -periodic functions)

h⊛ x

∫ T/2

−T/2

x(τ )h(t− τ ) dτ

(h ∗ x)(t) convolution result at t

Eigenfunction v(t) eigenvector

infinite time v(t) = ejωt h ∗ v = H(ω) v

finite time v(t) = ej2πkt/T h⊛ v = Hkv

Frequency response eigenvalue corresponding to v(t)

infinite time H(ω)

∫ ∞

−∞
h(t) e−jωt dt

finite time Hk

∫ T/2

−T/2

h(τ ) e−j2πkτ/T dτ
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Spectral analysis

Fourier transform x(t)
FT←→ X(ω) X(ω) =

∫ ∞

−∞
x(t)e−jωt dt

inverse x(t) =
1

2π

∫ ∞

−∞
X(ω) ejωt dω

Fourier series coefficients x(t)
FS←→ Xk Xk =

1

T

∫ T/2

−T/2

x(t) e−j(2π/T )kt dt

reconstruction x(t) =
∑

k∈Z

Xke
j(2π/T )kt

discrete-time Fourier transform xn
DTFT←→ X(ejω) X(ejω) =

∑

n∈Z

xne
−jωn

inverse xn =
1

2π

∫ π

−π

X(ejω) ejωn dω

discrete Fourier transform xn
DFT←→ Xk Xk =

N−1∑

n=0

xnW
kn
N

inverse xn =
1

N

N−1∑

n=0

XkW
−kn
N

z-transform xn
ZT←→ X(z) X(z) =

∑

n∈Z

xnz
−n
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acknowledges support from EPFL, the Swiss NSF through awards 2000-063664,
200020-103729, and 200021-121935, and the European Research Council through
award SPARSAM 247006. In addition, the support from Qualcomm, in particular
from Dr. Chong Lee, is gratefully acknowledged.
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Preface

Our main goals in this book and its companion volume, Fourier and Wavelet Signal
Processing (FWSP) [57], are to enable an understanding of state-of-the-art signal
processing methods and techniques, as well as to provide a solid foundation for those
hoping to advance the theory and practice of signal processing. We believe that the
best way to grasp and internalize the fundamental concepts in signal processing is
through the geometry of Hilbert spaces, as this leverages the great innate human
capacity for spatial reasoning. While using geometry should ultimately simplify the
subject, the connection between signals and geometry is not innate. The reader will
have to invest effort to see signals as vectors in Hilbert spaces before reaping the
benefits of this view; we believe that effort to be well placed.

Many of the results and techniques presented in the two volumes, while rooted
in classic Fourier techniques for signal representation, first appeared during a flurry
of activity in the 1980s and 1990s. New constructions of local Fourier transforms and
orthonormal wavelet bases during that period were motivated both by theoretical
interest and by applications, multimedia communications in particular. New bases
with specified time–frequency behavior were found, with impact well beyond the
original fields of application. Areas as diverse as computer graphics and numerical
analysis embraced some of the new constructions – no surprise given the pervasive
role of Fourier analysis in science and engineering.

Many of these new tools for signal processing were developed in the applied
harmonic analysis community. The resulting high level of mathematical sophistica-
tion was a barrier to entry for many signal processing practitioners. Now that the
dust has settled, some of what was new and esoteric has become fundamental; we
want to bring these new fundamentals to a broader audience. The Hilbert space
formalism gives us a way to begin with the classical Fourier analysis of signals and
systems and reach structured representations with time–frequency locality and their
varied applications. Whenever possible, we use explanations rooted in elementary
analysis over those that would require more advanced background (such as measure
theory). We hope to have balanced the competing virtues of accessibility to the
student, rigor, and adequate analytical power to reach important conclusions.

The book can be used as a self-contained text on the foundations of signal
processing, where discrete and continuous time are treated on equal footing. All
the necessary mathematical background is included, with examples illustrating the
applicability of the results. In addition, the book serves as a precursor to FWSP,
which relies on the framework built here; the two books are thus integrally related.

xxiii
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xxiv Preface

Foundations of Signal Processing This book covers the foundations for an in-
depth understanding of modern signal processing. It contains material that many
readers may have seen before scattered across multiple sources, but without the
Hilbert space interpretations, which are essential in signal processing. Our aim is
to teach signal processing with geometry, that is, to extend Euclidean geometric in-
sights to abstract signals; we use Hilbert space geometry to accomplish that. With
this approach, fundamental concepts – such as properties of bases, Fourier rep-
resentations, sampling, interpolation, approximation, and compression – are often
unified across finite dimensions, discrete time, and continuous time, thus making
it easier to point out the few essential differences. Unifying results geometrically
helps generalize beyond Fourier-domain insights, pushing the understanding farther,
faster.

Chapter 2, From Euclid to Hilbert, is our main vehicle for drawing out unifying
commonalities; it develops the basic geometric intuition central to Hilbert spaces,
together with the necessary tools underlying the constructions of bases and frames.

The next two chapters cover signal processing on discrete-time and continuous-
time signals, specializing general concepts from Chapter 2. Chapter 3, Sequences
and discrete-time systems, is a crash course on processing signals in discrete time or
discrete space together with spectral analysis with the discrete-time Fourier trans-
form and discrete Fourier transform. Chapter 4, Functions and continuous-time
systems, is its continuous-time counterpart, including spectral analysis with the
Fourier transform and Fourier series.

Chapter 5, Sampling and interpolation, presents the critical link between dis-
crete and continuous domains given by sampling and interpolation theorems. Chap-
ter 6, Approximation and compression, veers from exact representations to approx-
imate ones. The final chapter in the book, Chapter 7, Localization and uncertainty,
considers time–frequency behavior of the abstract representation objects studied
thus far. It also discusses issues arising in applications as well as ways of adapting
the previously introduced tools for use in the real world.

Fourier and Wavelet Signal Processing The companion volume focuses on signal
representations using local Fourier and wavelet bases and frames. It covers the
two-channel filter bank in detail, and then uses it as the implementation vehicle
for all sequence representations that follow. The local Fourier and wavelet methods
are presented side-by-side, without favoring any one in particular; the truth is that
each representation is a tool in the toolbox of the practitioner, and the problem or
application at hand ultimately determines the appropriate one to use. We end with
examples of state-of-the-art signal processing and communication problems, with
sparsity as a guiding principle.

Teaching points Our aim is to present a synergistic view of signal representations
and processing, starting from basic mathematical principles and going all the way
to actual constructions of bases and frames, always with an eye on concrete applica-
tions. While the benefit is a self-contained presentation, the cost is a rather sizable
manuscript. Referencing in the main text is sparse; pointers to the bibliography are
given in Further reading at the end of each chapter.
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Preface xxv

The material grew out of teaching signal processing, wavelets, and applications
in various settings. Two of us (MV and JK) authored a graduate textbook, Wavelets
and Subband Coding (originally with Prentice Hall in 1995, now open access2),
which we and others used to teach graduate courses at various US and European
institutions. With the maturing of the field and the interest arising from and for
these topics, the time was right for the three of us to write entirely new texts geared
toward a broader audience. We and others have taught with these books, in their
entirety or in parts, a number of times and to a number of different audiences: from
senior undergraduate to graduate level, and from engineering to mixes that include
life-science students.

The books and their website3 provide a number of features for teaching and
learning:

• Exercises are an integral part of the material and come in two forms: solved
exercises with explicit solutions within the text, and regular exercises that
allow students to test their knowledge. Regular exercises are marked with (1),
(2), or (3) in increasing order of difficulty.

• Numerous examples illustrate concepts throughout the book.

• An electronic version of the text is provided with the printed copy. It includes
PDF hyperlinks and an additional color to enhance interpretation of figures.

• A free electronic version of the text without PDF hyperlinks, exercises or
solved exercises, and with figures in grayscale, is available at the book website.

• AMathematica R© companion, which contains the code to produce all numerical
figures in the book, is provided with the printed version.

• Several interactive Mathematica R© demonstrations using the free CDF player
are available at the book website.

• Additional material, such as lecture slides, is available at the book website.

• To instructors, we provide a Solutions Manual, with solutions to all regular
exercises in the book.

Notational points To traverse the book efficiently, it will help to know the various
numbering conventions that we have employed. In each chapter, a single counter is
used for definitions, theorems, and corollaries (which are all shaded) and another
for examples (which are slightly indented). Equations, figures, and tables are also
numbered within each chapter. A prefix En.m– in the number of an equation,
figure, or table indicates that it is part of Solved Exercise n.m in Chapter n. The
letter P is used similarly for statements of regular exercises.

Martin Vetterli, Jelena Kovačević, and Vivek K Goyal

2http://waveletsandsubbandcoding.org/
3http://www.fourierandwavelets.org/
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Chapter 1

On rainbows and spectra

“One can enjoy a rainbow without necessarily forgetting the
forces that made it.”

— Mark Twain

In the late thirteenth century, Theodoric of Freiberg,
a Dominican monk, theologian, and physicist, per-
formed a simple experiment: with his back to the sun,
he held a spherical bottle filled with water in the sun-
light. By following the trajectory of the refracted and
reflected light and having the bottle play the same
role as a single water drop, he gave a scientific ex-
planation of rainbows, including secondary rainbows
with weaker, reversed colors. His geometric analy-
sis, described in his famous treatise De iride (On the
Rainbow, c. 1310), was “perhaps the most dramatic development of fourteenth- and
fifteenth-century optics” [60].

Theodoric of Freiberg fell short of a complete understanding of the rainbow
phenomenon because, like many of his contemporaries, he believed that colors were
simply intensities between black and white. A full understanding emerged three
hundred years later when René Descartes and Isaac Newton explained that disper-
sion decomposes white light into spectral components of different wavelengths – the
colors of the rainbow. In 1730, Newton, in his landmark book on optics [70], de-
scribes what is often called the experimentum crucis (crucial experiment) to prove
that white light can be decomposed into constituent colors and then recombined
into white light. This experiment is a physical implementation of decomposing light
into its Fourier components – pure frequencies or colors of the rainbow, followed by
a synthesis to recover the original; the cover photograph of the book depicts this
experiment.4

This bit of history evokes two central themes of this book: geometric thinking

4This is a realization of Figure 7 in Part II of Newton’s First Book of Opticks.
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2 On rainbows and spectra

is a great tool in deducing explanations of phenomena; and decomposing an en-
tity into its constituent components can be a key step in understanding its essential
character, as well as an enabling tool in modifying these components prior to recom-
bination. The rainbow’s appearance is explained by the fact that sunlight contains
a combination of all wavelengths within the visible range; separation of white light
by wavelength, as with a prism, enables modifications prior to recombination. The
collection of wavelengths is, as we will see, the spectrum.

A French physicist and mathematician, Joseph Fourier, formalized the notion
of the spectrum in the early nineteenth century. He was interested in the heat
equation – the differential equation governing the diffusion of heat. Fourier’s key
insight was to decompose a periodic function x(t) = x(t+T ) into an infinite sum of
sines and cosines of periods T/k, k ∈ Z+. Since these sine and cosine components
are eigenfunctions of the heat equation, the solution of the problem is simplified: one
can analyze the differential equation for each component separately and combine the
intermediate results, thanks to the linearity of the system. Fourier’s decomposition
earned him a coveted prize from the French Academy of Sciences, but with a mention
that his work lacked rigor. Indeed, the question of which functions admit a Fourier
decomposition is a deep one, and it took many years to settle. Fourier’s work is
one of the foundational blocks of signal processing and at the heart of the present
book as well as its companion volume [57]. Fourier techniques have been joined in
the past two decades by new tools such as wavelets, the other pillar we cover.

Signal representations The idea of a decomposition and a possible modification in
the decomposed state leads to signal representations, where signals can be sequences
(discrete domain) or functions (continuous domain). Similarly to what Fourier did,
where he used sines and cosines for decomposition, we can imagine using other
functions with particular properties. Call these basis vectors and denote them by
ϕk, k ∈ Z. Then

x =
∑

k∈Z

Xkϕk (1.1)

is called an expansion of x with respect to {ϕk}k∈Z, with {Xk} the expansion
coefficients.

Orthonormal bases When the basis vectors form an orthonormal set, the coeffi-
cients Xk are obtained from the function x and the basis vectors ϕk through an
inner product

Xk = 〈x, ϕk〉. (1.2)

For example, Fourier’s construction of a series representation for periodic functions
with period T = 1 can be written as

x(t) =
∑

k∈Z

Xke
j2πkt, (1.3a)

where

Xk =

∫ 1

0

x(t)e−j2πkt dt. (1.3b)
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(a) ϕ0(t) = 1. (b) ϕ1(t) = ej2πt. (c) ϕ2(t) = ej4πt.

Figure 1.1 Example Fourier series basis functions for the interval [0, 1). Real parts are
shown with solid lines and imaginary parts are shown with dashed lines.

We can define basis vectors ϕk, k ∈ Z, on the interval [0, 1), as

ϕk(t) = ej2πkt, 0 ≤ t < 1, (1.4)

and the Fourier series coefficients as

Xk = 〈x, ϕk〉 =

∫ 1

0

x(t)ϕ∗
k(t) dt =

∫ 1

0

x(t)e−j2πkt dt,

exactly the same as (1.3b). The basis vectors form an orthonormal set (the first
few are shown in Figure 1.1):

〈ϕk, ϕi〉 =

∫ 1

0

ej2πkte−j2πit dt =

{
1, for i = k;
0, otherwise.

(1.5)

While the Fourier series is certainly a key orthonormal basis with many out-
standing properties, other bases exist, some of which have their own favorable prop-
erties. Early in the twentieth century, Alfred Haar proposed a basis which looks
quite different from Fourier’s. It is based on a function ψ(t) defined as

ψ(t) =





1, for 0 ≤ t < 1
2 ;

−1, for 1
2 ≤ t < 1;

0, otherwise.

(1.6)

For the interval [0, 1), we can build an orthonormal system by scaling ψ(t) by powers
of 2, and then shifting the scaled versions appropriately, yielding

ψm,n(t) = 2−m/2ψ

(
t− n2m

2m

)
, (1.7)

with m ∈ {0, −1, −2, . . .} and n ∈ {0, 1, . . . , 2−m − 1} (a few are shown in Fig-
ure 1.2). It is quite clear from the figure that the various basis functions are indeed
orthogonal to each other, as they either do not overlap, or when they do, one changes
sign over the constant span of the other. We will spend a considerable amount of
time studying this system in the companion volume to this book, [57].
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(a) ψ0,0(t). (b) ψ−1,1(t). (c) ψ−2,1(t).

Figure 1.2 Example Haar series basis functions for the interval [0, 1). The prototype
function is ψ(t) = ψ0,0(t).

While the system (1.7) is orthonormal, it cannot be a basis for all functions on
[0, 1); for example, there would be no way to reconstruct a constant 1. We remedy
that by adding the function

ϕ0(t) =

{
1, for 0 ≤ t < 1;
0, otherwise,

(1.8)

into the mix, yielding an orthonormal basis for the interval [0, 1). This is a very
different basis from the Fourier one; for example, instead of being infinitely differ-
entiable, no ψm,n is even continuous. We can now define an expansion as in (1.3),

x(t) = 〈x, ϕ0〉ϕ0(t) +
0∑

m=−∞

2−m−1∑

n=0

Xm,nψm,n(t), (1.9a)

where

Xm,n =

∫ 1

0

x(t)ψm,n(t) dt. (1.9b)

It is natural to ask which basis is better. Such a question does not have a
simple answer, and the answer will depend on the class of functions or sequences we
wish to represent, as well as our goals in the representation. Furthermore, we will
have to be careful in describing what we mean by equality in an expansion such as
(1.3a); otherwise we could be misled the same way Fourier was.

Approximation One way to assess the quality of a basis is to see how well it can
approximate a given function with a finite number of terms. History is again en-
lightening. Fourier series became such a useful tool during the nineteenth century
that researchers built elaborate mechanical devices to compute a function based
on Fourier series coefficients. They built analog computers, based on harmonically
related rotating wheels, where amplitudes of Fourier coefficients could be set and
the sum computed. One such machine, the Harmonic Integrator, was designed by
the physicists Albert Michelson and Samuel Stratton, and it could compute a series
with 80 terms. To the designers’ dismay, the synthesis of a square wave from its
Fourier series led to oscillations around the discontinuity that would not go away
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(a) Series with 9, 65, and 513 terms. (b) Detail of (a).

Figure 1.3 Approximations of a box function (dashed lines) with a Fourier series basis
using 9, 65, and 513 terms (solid lines, from lightest to darkest). The plots illustrate the
Gibbs phenomenon – oscillations that do not diminish in amplitude when approximating
a discontinuous function with truncated Fourier series.
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(a) Series with 8, 64, and 512 terms. (b) Detail of (a).

Figure 1.4 Approximation of a box function (dashed lines) with a Haar basis using the
first 8 (m = 0, −1, −2), 64 (m = 0, −1, . . . , −5), and 512 (m = 0, −1, . . . , −8), terms
(solid lines, from lightest to darkest), with n = 0, 1, . . . , 2−m − 1. The discontinuity is at
the irrational point 1/

√
2.

even as they increased the number of terms; they concluded that a mechanical prob-
lem was at fault. Not until 1899, when Josiah Gibbs proved that Fourier series of
discontinuous functions cannot converge uniformly, was this myth dispelled. The
phenomenon was termed the Gibbs phenomenon, referring to the oscillations ap-
pearing around the discontinuity when using any finite number of terms. Figure 1.3
shows approximations of a box function with a Fourier series basis (1.3a) using Xk,
k = −K, −K + 1, . . . , K − 1, K.

So what would the Haar basis provide in this case? Surely, it seems more
appropriate for a box function. Unfortunately, taking the first 2−m terms in the
natural ordering (the term corresponding to the function ϕ0(t) plus 2−m terms
corresponding to each scale m = 0, −1, −2, . . . ) leads to a similarly poor perfor-
mance, shown in Figure 1.4. This poor performance is dependent on the position of
the discontinuity; approximating a box function with a discontinuity at an integer
multiple of 2−k for some k ∈ Z would lead to a much better performance.

However, changing the approximation procedure slightly makes a big differ-
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(a) Series with 8 and 15 terms. (b) Detail of (a).

Figure 1.5 Approximation of a box function (dashed lines) with a Haar basis using the
8 (light) and 15 (dark) largest-magnitude terms. The 15-term approximation is visually
indistinguishable from the target function.

ence. Upon retaining the largest coefficients in absolute value instead of simply
keeping a fixed set of terms, the approximation quality changes drastically, as seen
in Figure 1.5. In this admittedly extreme example, for each m, there is only one n
such that Xm,n is nonzero (that for which the corresponding Haar wavelet straddles
the discontinuity). Thus, approximating using coefficients largest in absolute value
allows many more values of m to be included.

Through this comparison, we have illustrated how the quality of a basis for
approximation can depend on the method of approximation. Retaining a predefined
set of terms, as in the Fourier example case (Figure 1.3) or the first Haar example
(Figure 1.4) is called linear approximation. Retaining an adaptive set of terms in-
stead, as in the second Haar example (Figure 1.5), is called nonlinear approximation
and leads to a superior approximation quality.

Overview of the book The purpose of this book is to develop the framework for
the methods just described, namely expansions and approximations, as well as to
show practical examples where these methods are used in engineering and applied
sciences. In particular, we will see that expansions and approximations are closely
related to the essential signal processing tasks of sampling, filtering, estimation, and
compression.

Chapter 2, From Euclid to Hilbert, introduces the basic machinery of
Hilbert spaces. These are vector spaces endowed with operations that induce intu-
itive geometric properties. In this general setting, we develop the notion of signal
representations, which are essentially coordinate systems for the vector space. When
a representation is complete and not redundant, it provides a basis for the space;
when it is complete and redundant, it provides a frame for the space. A key virtue
for a basis is orthonormality; its counterpart for a frame is tightness.

Chapters 3 and 4 focus our attention on sequence and function spaces for
which the domain can be associated with time, leading to an inherent ordering not
necessarily present in a general Hilbert space. In Chapter 3, Sequences and

discrete-time systems, a vector is a sequence that depends on discrete time, and
an important class of linear operators on these vectors is those that are invariant
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to time shifts; these are convolution operators. These operators lead naturally to
signal representations using the discrete-time Fourier transform and, for circularly
extended finite-length sequences, the discrete Fourier transform.

Chapter 4, Functions and continuous-time systems, parallels Chap-
ter 3; a vector is now a function that depends on continuous time, and an important
class of linear operators on these vectors are again those that are invariant to time
shifts; these are convolution operators. These operators lead naturally to signal rep-
resentations using the Fourier transform and, for circularly extended finite-length
functions, or periodic functions, the Fourier series. The four Fourier representations
from these two chapters exemplify the diagonalization of linear, shift-invariant op-
erators, or convolutions, in the various domains.

Chapter 5, Sampling and interpolation, makes fundamental connec-
tions between Chapters 3 and 4. Associating a discrete-time sequence with a
given continuous-time function is sampling, and the converse is interpolation; these
are central concepts in signal processing since digital computations on continuous-
domain phenomena must be performed in a discrete domain.

Chapter 6, Approximation and compression, introduces many types of
approximations that are central to making computationally practical tools. Ap-
proximation by polynomials and by truncations of series expansions are studied,
along with the basic principles of compression.

Chapter 7, Localization and uncertainty, introduces time, frequency,
scale, and resolution properties of individual vectors; these properties build our
intuition for what might or might not be captured by a single representation coeffi-
cient. We then study these properties for sets of vectors used to represent signals. In
particular, time and frequency localization lead to the concept of a time–frequency
plane, where essential differences between Fourier techniques and wavelet techniques
become evident: Fourier techniques use vectors with equal spacing in frequency
while wavelet techniques use vectors with power-law spacing in frequency; further-
more, Fourier techniques use vectors at equal scale while wavelet techniques use
geometrically spaced scales. We end with examples with real signals to develop
intuition about various signal representations.
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Chapter 2

From Euclid to Hilbert

“Mathematics is the art of giving the same name to different
things.”

— Henri Poincaré

Contents

2.1 Introduction 10

2.2 Vector spaces 18

2.3 Hilbert spaces 35

2.4 Approximations, projections, and decompositions 50

2.5 Bases and frames 69

2.6 Computational aspects 119

2.A Elements of analysis and topology 135

2.B Elements of linear algebra 141

2.C Elements of probability 151

2.D Basis concepts 159

Chapter at a glance 161

Historical remarks 162

Further reading 162

Exercises with solutions 163

Exercises 169

We start our journey into signal processing with different backgrounds and perspec-
tives. This chapter aims to establish a common language, develop the foundations
for our study, and begin to draw out key themes.

There will be more formal definitions in this chapter than in any other, to
approach the ideal of a self-contained treatment. However, we must assume some
background in common: On the one hand, we expect the reader to be familiar with
linear algebra at the level of [93, Ch. 1–5] (see also Appendix 2.B) and probability

9
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10 From Euclid to Hilbert

at the level of [6, Ch. 1–4] (see also Appendix 2.C). (The textbooks we have
cited are just examples; nothing unique to those books is necessary.) On the other
hand, we are not assuming prior knowledge of general vector space abstractions
or mathematical analysis beyond basic calculus; we develop these topics here to
extend geometric intuition from ordinary Euclidean space to spaces of sequences
and functions. For more details on abstract vector spaces, we recommend books by
Kreyszig [59], Luenberger [64], and Young [111].

2.1 Introduction

This section introduces many topics of the chapter through the familiar setting of
the real plane. In the more general treatment of subsequent sections, the intuition
we have developed through years of dealing with the Euclidean spaces around us
(R2 and R3) will generalize to some not-so-familiar spaces. Readers comfortable
with vector spaces, inner products, norms, projections, and bases may skip this
section; otherwise, this will be a gentle introduction to Euclid’s world.

Real plane as a vector space

Let us start with a look at the familiar setting of R2, that is, real vectors with two
coordinates. We adopt the convention of vectors being columns and often write

them compactly as transposes of rows, such as x =
[
x0 x1

]⊤
. The first entry is

the horizontal component and the second entry is the vertical component.
Adding two vectors in the plane produces a third one also in the plane; mul-

tiplying a vector by a real scalar produces a second vector also in the plane. These
two ingrained facts make the real plane be a vector space.

Inner product and norm

The inner product of vectors x =
[
x0 x1

]⊤
and y =

[
y0 y1

]⊤
in the real plane is

〈x, y〉 = x0y0 + x1y1. (2.1)

Other names for inner product are scalar product and dot product. The inner prod-
uct of a vector with itself is simply

〈x, x〉 = x20 + x21,

a nonnegative quantity that is zero when x0 = x1 = 0. The norm of a vector x is

‖x‖ =
√
〈x, x〉 =

√
x20 + x21. (2.2)

While the norm is sometimes called the length, we avoid this usage because length
can also refer to the number of components in a vector. A vector of norm 1 is called
a unit vector.

In (2.1), the inner product computation depends on the choice of coordinate
axes. Let us now derive an expression in which the coordinates disappear. Consider

Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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Figure 2.1 A pair of vectors in R2.

x and y as shown in Figure 2.1. Define the angle between x and the positive
horizontal axis as θx (measured counterclockwise), and define θy similarly. Using a
little algebra and trigonometry, we get

〈x, y〉 = x0y0 + x1y1

= (‖x‖ cos θx)(‖y‖ cos θy) + (‖x‖ sin θx)(‖y‖ sin θy)
= ‖x‖ ‖y‖(cosθx cos θy + sin θx sin θy)

= ‖x‖ ‖y‖ cos(θx − θy). (2.3)

Thus, the inner product of the two vectors is the product of their norms and the
cosine of the angle θ = θx − θy between them.

The inner product measures both the norms of the vectors and the similarity
of their orientations. For fixed vector norms, the greater the inner product, the
closer the vectors are in orientation. The orientations are closest when the vectors
are collinear and pointing in the same direction, that is, when θ = 0; they are the
farthest when the vectors are antiparallel, that is, when θ = π. When 〈x, y〉 = 0,
the vectors are called orthogonal or perpendicular. From (2.3), we see that 〈x, y〉
is zero only when the norm of one vector is zero (meaning that one of the vectors

is the vector
[
0 0

]⊤
) or the cosine of the angle between them is zero (θ = ± 1

2π).
So, at least in the latter case, this is consistent with the conventional concept of
perpendicularity.

The distance between two vectors is defined as the norm of their difference:

d(x, y) = ‖x− y‖ =
√
〈x− y, x− y〉 =

√
(x0 − y0)2 + (x1 − y1)2. (2.4)

Subspaces and projections

A line through the origin is the simplest case of a subspace, and projection to a
subspace is intimately related to inner products.
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12 From Euclid to Hilbert
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(a) Orthogonal projections onto S. (b) Oblique projections onto S.

Figure 2.2 Examples of projections onto a subspace S specified by a unit vector ϕ.

Starting with a vector x and applying an orthogonal projection operator onto
some subspace results in the vector x̂ closest (among all vectors in the subspace)
to x. The connection to orthogonality is that the difference between the vector
and its orthogonal projection x − x̂ is orthogonal to every vector in the subspace.
Orthogonal projection is illustrated in Figure 2.2(a); the subspace S is formed by
the scalar multiples of the vector ϕ, and three orthogonal projections onto S are
shown. As depicted, the action of the operator is like looking at the shadow that
the input vector casts on S when light rays are orthogonal to S. This operation
is linear, meaning that the orthogonal projection of x + y equals the sum of the
orthogonal projections of x and y. Also, the orthogonal projection operator leaves
vectors in S unchanged.

Given a unit vector ϕ, the orthogonal projection onto the subspace specified
by ϕ is x̂ = 〈x, ϕ〉ϕ. This can also be written as

x̂ = 〈x, ϕ〉ϕ = (‖x‖ ‖ϕ‖ cos θ)ϕ (a)
= (‖x‖ cos θ)ϕ, (2.5)

where (a) uses ‖ϕ‖ = 1, and θ is the angle measured counterclockwise from ϕ to x,
as marked in Figure 2.2(a). When ϕ is not of unit norm, the orthogonal projection
onto the subspace specified by ϕ is

x̂
(a)
= (‖x‖ cos θ) ϕ

‖ϕ‖ = (‖x‖ ‖ϕ‖ cos θ) ϕ

‖ϕ‖2
(b)
=

1

‖ϕ‖2 〈x, ϕ〉ϕ, (2.6)

where (a) expresses the orthogonal projection using the unit vector ϕ/‖ϕ‖; and (b)
uses (2.3).

Projection is more general than orthogonal projection; for example, Fig-
ure 2.2(b) illustrates oblique projection. The operator is still linear and vectors
in the subspace are still left unchanged; however, the difference (x− x̂) is no longer
orthogonal to S.
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(a) Expansion with an (b) Expansion with a (c) Basis {ϕ0, ϕ1} and
orthonormal basis. nonorthogonal basis. its dual {ϕ̃0, ϕ̃1}.

Figure 2.3 Expansions in R2.

Bases and coordinates

We defined the real plane as a vector space using coordinates: the first coordinate is
the signed distance as measured from left to right, and the second coordinate is the
signed distance as measured from bottom to top. In doing so, we implicitly used

the standard basis e0 =
[
1 0

]⊤
, e1 =

[
0 1

]⊤
, which is a particular orthonormal

basis for R2. Expressing vectors in a variety of bases is central to our study, and
vectors’ coordinates will differ depending on the choice of basis.

Orthonormal bases Vectors e0 =
[
1 0

]⊤
and e1 =

[
0 1

]⊤
constitute the stan-

dard basis and are depicted in Figure 2.3(a). They are orthogonal and of unit norm,
and are thus called orthonormal. We have been using this basis implicitly in that

x =

[
x0
x1

]
= x0

[
1
0

]
+ x1

[
0
1

]
= x0e0 + x1e1 (2.7)

is an expansion of x with respect to the basis {e0, e1}. For this basis, it is obvious
that an expansion exists for any x because the coefficients of the expansion x0 and
x1 are simply the entries of x.

The general condition for {ϕ0, ϕ1} to be an orthonormal basis for R2 is

〈ϕi, ϕk〉 = δi−k for i, k ∈ {0, 1}, (2.8)

where δi−k is a convenient shorthand defined as5

δi−k =

{
1, for i = k;
0, otherwise.

(2.9)

5δn is called the Kronecker delta sequence and is formally defined in Chapter 3, (3.8).
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14 From Euclid to Hilbert

From the i 6= k case, the basis vectors are orthogonal to each other; from the i = k
case, they are of unit norm. With any orthonormal basis {ϕ0, ϕ1}, one can uniquely
find the coefficients of the expansion

x = α0ϕ0 + α1ϕ1 (2.10)

simply through the inner products

α0 = 〈x, ϕ0〉 and α1 = 〈x, ϕ1〉.

The resulting coefficients satisfy

|α0|2 + |α1|2 = ‖x‖2 (2.11)

by the Pythagorean theorem, because α0 and α1 form the sides of a right triangle
with hypotenuse of length ‖x‖ (see Figure 2.3(a)). The equality (2.11) is an example
of a Parseval equality6 and is related to Bessel’s inequality; these will be formally
introduced in Section 2.5.2.

An expansion like (2.10) is often termed a change of basis, since it expresses
x with respect to {ϕ0, ϕ1}, rather than in the standard basis {e0, e1}. In other
words, the coefficients (α0, α1) are the coordinates of x in this new basis {ϕ0, ϕ1}.

Biorthogonal pairs of bases Expansions like (2.10) do not need {ϕ0, ϕ1} to be
orthonormal. As an example, consider the problem of representing an arbitrary

vector x =
[
x0 x1

]⊤
as an expansion α0ϕ0 + α1ϕ1 with respect to ϕ0 =

[
1 0

]⊤

and ϕ1 =
[
1
2 1

]⊤
(see Figure 2.3(b)). This is not a trivial exercise such as the one

of expanding with the standard basis, but in this particular case we can still come
up with an intuitive procedure.

Since ϕ0 has no vertical component, we should use ϕ1 to match the vertical
component of x, yielding α1 = x1. (This is illustrated with the diagonal dashed
line in Figure 2.3(b).) Then, we need α0 = x0 − 1

2x1 for the horizontal component
to be correct. We can express what we have just done with inner products as

α0 = 〈x, ϕ̃0〉 and α1 = 〈x, ϕ̃1〉,

where the vectors

ϕ̃0 =
[
1 − 1

2

]⊤
and ϕ̃1 =

[
0 1

]⊤

are shown in Figure 2.3(c). We have thus just derived an instance of the expansion
formula

x = α0ϕ0 + α1ϕ1 = 〈x, ϕ̃0〉ϕ0 + 〈x, ϕ̃1〉ϕ1, (2.12)

where {ϕ̃0, ϕ̃1} is the basis dual to the basis {ϕ0, ϕ1}, and the two bases form a
biorthogonal pair of bases. For any basis, the dual basis is unique. The defining
characteristic for a biorthogonal pair is

〈ϕ̃i, ϕk〉 = δi−k for i, k ∈ {0, 1}. (2.13)

6What we call the Parseval equality in this book is sometimes called Plancherel’s equality.
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2.1 Introduction 15

We can check that this is satisfied in our example and that any orthonormal basis
is its own dual. Clearly, designing a biorthogonal basis pair has more degrees of
freedom than designing an orthonormal basis. The disadvantage is that (2.11) does
not hold, and, furthermore, computations can become numerically unstable if ϕ0

and ϕ1 are too close to collinear.

Frames The signal expansion (2.12) has the minimum possible number of terms
to work for every x ∈ R2, namely two terms because the dimension of the space is
two. It can also be useful to have an expansion of the form

x = 〈x, ϕ̃0〉ϕ0 + 〈x, ϕ̃1〉ϕ1 + 〈x, ϕ̃2〉ϕ2. (2.14)

Here, an expansion will exist as long as {ϕ0, ϕ1, ϕ2} are not collinear. Then,
even after the set {ϕ0, ϕ1, ϕ2} has been fixed, there are infinitely many dual sets
{ϕ̃0, ϕ̃1, ϕ̃2} such that (2.14) holds for all x ∈ R2. Such redundant sets are called
frames and their (nonunique) dual sets are called dual frames. This flexibility can
be used in various ways. For example, setting a component of ϕ̃i to zero could save
a multiplication and an addition in computing an expansion, or, the dual, which is
not unique, could be chosen to make the coefficients as small as possible.

As an example, let us start with the standard basis {ϕ0 = e0, ϕ1 = e1}, add
a vector ϕ2 = −e0 − e1 to it,

ϕ0 =

[
1
0

]
, ϕ1 =

[
0
1

]
, ϕ2 =

[
−1
−1

]
, (2.15)

and see what happens (see Figure 2.4(a)). As there are now three vectors in R2, they
are linearly dependent; indeed, as defined, ϕ2 = −ϕ0 − ϕ1. Moreover, these three
vectors must be able to represent every vector in R2 since each two-element subset
is able to do so. To show that, we use the expansion x = 〈x, ϕ0〉ϕ0 + 〈x, ϕ1〉ϕ1 and
add a zero to it to give

x = 〈x, ϕ0〉ϕ0 + 〈x, ϕ1〉ϕ1 + (〈x, ϕ1〉 − 〈x, ϕ1〉)ϕ0 + (〈x, ϕ1〉 − 〈x, ϕ1〉)ϕ1︸ ︷︷ ︸
=0

.

We now rearrange it slightly:

x = 〈x, ϕ0 + ϕ1〉ϕ0 + 〈x, 2ϕ1〉ϕ1 + 〈x, ϕ1〉(−ϕ0 − ϕ1) =

2∑

k=0

〈x, ϕ̃k〉ϕk,

with ϕ̃0 = ϕ0 + ϕ1, ϕ̃1 = 2ϕ1, ϕ̃2 = ϕ1. This expansion is exactly of the form
(2.14) and is reminiscent of the one for biorthogonal pairs of bases which we have
seen earlier, except that the vectors involved in the expansion are now linearly
dependent. This shows that we can indeed expand any x ∈ R2 in terms of the
frame {ϕ0, ϕ1, ϕ2} and one of its possible dual frames {ϕ̃0, ϕ̃1, ϕ̃2}.

Can we now get a frame to somehow mimic an orthonormal basis? Consider

ϕ0 =

[√
2
3

0

]
, ϕ1 =

[
− 1√

6
1√
2

]
, ϕ2 =

[
− 1√

6

− 1√
2

]
, (2.16)

Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal

Cambridge University Press (ISBN 110703860X) v1.1 [May 2014] [free version] Comments to book-errata@FourierAndWavelets.org



16 From Euclid to Hilbert
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(a) Standard basis plus a vector. (b) Tight frame.

Figure 2.4 Illustrations of overcomplete sets of vectors (frames).

shown in Figure 2.4(b). By expanding an arbitrary x =
[
x0 x1

]⊤
, we can verify

that x =
∑2

k=0〈x, ϕk〉ϕk holds for any x. The expansion looks like the orthonormal
basis one, where the same set of vectors plays both roles (inside the inner product
and outside). The norm is preserved similarly to what happens with orthonormal

bases (
∑2

k=0|〈x, ϕk〉|2 = ‖x‖2), except that the norms of the frame vectors are not

1, but rather
√
2/3. A frame with this property is called a tight frame. We could

have renormalized the frame vectors by
√
3/2 to make them unit-norm vectors, in

which case
∑2

k=0|〈x, ϕk〉|2 = 3
2‖x‖2, where 3

2 indicates the redundancy of the frame
(we have 3

2 times more vectors than needed for an expansion in R2).

Matrix view of bases and frames An expansion with a basis or frame involves
operations that can be expressed conveniently with matrices.

Take the biorthogonal basis expansion formula (2.12). The coefficients in the
expansion are the inner products

α0 = 〈x, ϕ̃0〉 = ϕ̃00x0 + ϕ̃01x1,

α1 = 〈x, ϕ̃1〉 = ϕ̃10x0 + ϕ̃11x1,

where ϕ̃0 =
[
ϕ̃00 ϕ̃01

]⊤
and ϕ̃1 =

[
ϕ̃10 ϕ̃11

]⊤
. Rewrite the above as a matrix–

vector product,

α =

[
α0

α1

]
=

[
〈x, ϕ̃0〉
〈x, ϕ̃1〉

]
=

[
ϕ̃00 ϕ̃01

ϕ̃10 ϕ̃11

]

︸ ︷︷ ︸
Φ̃⊤

[
x0
x1

]
= Φ̃⊤x.

The matrix Φ̃⊤ with ϕ̃⊤
0 and ϕ̃⊤

1 as rows is called the analysis operator, and left mul-
tiplying a vector x by it computes the expansion coefficients (α0, α1) with respect
to the basis {ϕ0, ϕ1}. The reconstruction of x from (α0, α1) is through

x = α0ϕ0 + α1ϕ1.
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2.1 Introduction 17

This can be written with a matrix–vector product as

x =

[
x0
x1

]
= α0

[
ϕ00

ϕ01

]
+ α1

[
ϕ10

ϕ11

]
=

[
ϕ00 ϕ10

ϕ01 ϕ11

]

︸ ︷︷ ︸
Φ

[
α0

α1

]
=
[
ϕ0 ϕ1

] [α0

α1

]

= Φα = ΦΦ̃⊤x,

where ϕ0 =
[
ϕ00 ϕ01

]⊤
and ϕ1 =

[
ϕ10 ϕ11

]⊤
. The matrix Φ with ϕ0 and ϕ1 as

columns is called the synthesis operator, and left multiplying an expansion coefficient
vector α by it performs the reconstruction of x from (α0, α1).

The matrix view makes it obvious that the expansion formula (2.12) holds

for any x ∈ R2 when ΦΦ̃⊤ is the identity matrix. In other words, we must have
Φ−1 = Φ̃⊤, which is equivalent to (2.13). The inverse exists whenever {ϕ0, ϕ1} is a
basis, and inverting Φ determines the dual basis {ϕ̃0, ϕ̃1}.

In the case of an orthonormal basis, Φ−1 = Φ⊤, that is, the matrix–vector
equations above hold with Φ̃ = Φ.

The case of a three-element frame is similar, with matrices Φ and Φ̃ each
having two rows and three columns. The validity of the expansion (2.14) hinges on

Φ being a left inverse of Φ̃⊤. In the example we saw earlier,

Φ =

[
1 0 −1
0 1 −1

]
, (2.17a)

and its dual frame was

Φ̃ =

[
1 0 0
1 2 1

]
. (2.17b)

Such a left inverse, Φ̃⊤, is never unique; thus dual frames are not unique. For
example, the dual frame

Φ̃ =

[
0 −1 −1
−1 0 −1

]
(2.17c)

would work as well.

Chapter outline

The next several sections follow the progression of topics in this brief introduc-
tion. In Section 2.2, we formally introduce vector spaces and equip them with inner
products and norms. We also give several examples of common vector spaces. In
Section 2.3, we discuss the concept of completeness that turns an inner product
space into a Hilbert space. More importantly, we define the central concept of or-
thogonality and then introduce linear operators. We follow with approximations,
projections, and decompositions in Section 2.4. In Section 2.5, we define bases and
frames. This step gives us the tools to analyze signals and to create approximate
representations. Section 2.5.5 develops the matrix view of basis and frame expan-
sions. Section 2.6 discusses a few algorithms pertaining to the material covered.
The first three appendices review some elements of analysis and topology, linear
algebra, and probability. The final appendix discusses some finer mathematical
points on the concept of a basis.

Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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18 From Euclid to Hilbert

2.2 Vector spaces

Sets of mathematical objects can be highly abstract, and imposing the axioms
of a normed vector space is amongst the simplest ways to induce useful structure.
Furthermore, we will see that images, audio signals, and many other types of signals
can be modeled and manipulated well using vector space models. This section
introduces vector spaces formally, including inner products, norms, and metrics.
We give pointers to reference texts in the Further reading.

2.2.1 Definition and properties

A vector space is any set with objects, called vectors, that can be added and scaled
while staying within the set. For a formal definition, the field of scalars must be
specified, and properties required of the vector addition and scalar multiplication
operations must be stated.

Definition 2.1 (Vector space) A vector space over a field of scalars C (or
R) is a set of vectors, V , together with operations of vector addition and scalar
multiplication. For any x, y, z in V and α, β in C (or R), these operations must
satisfy the following properties:

(i) Commutativity: x+ y = y + x.

(ii) Associativity: (x + y) + z = x+ (y + z) and (αβ)x = α(βx).

(iii) Distributivity: α(x + y) = αx+ αy and (α+ β)x = αx+ βx.

Furthermore, the following hold:

(iv) Additive identity: There exists an element 0 in V such that x+0 = 0+x = x
for every x in V .

(v) Additive inverse: For each x in V , there exists a unique element −x in V
such that x+ (−x) = (−x) + x = 0.

(vi) Multiplicative identity: For every x in V , 1 · x = x.

We have used the bold 0 to emphasize that the zero vector is different than the
zero scalar. In later chapters we will drop this distinction. The definition of a
vector space requires the field of scalars to be specified; we opted to carry real and
complex numbers in parallel. This will be true for a number of other definitions in
this chapter as well. We now discuss some common vector spaces.

CN : Vector space of complex-valued finite-dimensional vectors

CN =
{
x =

[
x0 x1 . . . xN−1

]⊤ ∣∣∣ xn ∈ C, n ∈ {0, 1, . . . , N − 1}
}
, (2.18a)
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2.2 Vector spaces 19

where the vector addition and scalar multiplication are defined componentwise,

x+ y =
[
x0 x1 . . . xN−1

]⊤
+
[
y0 y1 . . . yN−1

]⊤

=
[
x0 + y0 x1 + y1 . . . xN−1 + yN−1

]⊤
,

αx = α
[
x0 x1 . . . xN−1

]⊤
=
[
αx0 αx1 . . . αxN−1

]⊤
.

It is easy to verify that the six properties in Definition 2.1 hold; CN is thus a vector
space (see also Solved exercise 2.1). The definition of the standard Euclidean space,
RN , follows similarly, except that it applies over R.

CZ: Vector space of complex-valued sequences over Z

CZ =
{
x =

[
. . . x−1 x0 x1 . . .

]⊤ ∣∣∣ xn ∈ C, n ∈ Z

}
, (2.18b)

where the vector addition and scalar multiplication are defined componentwise.7

CR: Vector space of complex-valued functions over R

CR = {x | x(t) ∈ C, t ∈ R} , (2.18c)

with the natural addition and scalar multiplication operations:

(x+ y)(t) = x(t) + y(t), (2.19a)

(αx)(t) = αx(t). (2.19b)

Other vector spaces of sequences and functions can be denoted similarly, for
example, CN for complex-valued sequences indexed from 0, CR

+

for complex-valued
functions on the positive real line, C[a,b] for complex-valued functions on the interval
[a, b], etc.

The operations of vector addition and scalar multiplication seen above can be
used to define many other vector spaces. For example, componentwise addition and
multiplication can be used to define the vector space of matrices, while the natural
operations of addition and scalar multiplication of functions can be used to define
the vector space of polynomials:

Example 2.1 (Vector space of polynomials) Fix a positive integer N and

consider the real-valued polynomials of degree at most (N−1), x(t) =∑N−1
k=0 αkt

k.
These form a vector space over R under the natural addition and multiplication
operations. Since each polynomial is specified by its coefficients, polynomials
combine exactly like vectors in RN .

7When writing an infinite sequence as a column vector, the entry with index zero is boxed to
serve as a reference point. Similarly, the row zero, column zero entry of an infinite matrix is boxed.
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20 From Euclid to Hilbert

Definition 2.2 (Subspace) A nonempty subset S of a vector space V is a sub-
space when it is closed under the operations of vector addition and scalar multi-
plication:

(i) For all x and y in S, x+ y is in S.

(ii) For all x in S and α in C (or R), αx is in S.

A subspace S is itself a vector space over the same field of scalars as V and with
the same vector addition and scalar multiplication operations as V .

Example 2.2 (Subspaces)

(i) Let x be a vector in a vector space V . The set of vectors of the form αx
with α ∈ C is a subspace.

(ii) In the vector space of complex-valued sequences over Z, the sequences that
are zero outside of {2, 3, 4, 5} form a subspace. The same can be said with
{2, 3, 4, 5} replaced by any finite or infinite subset of the domain Z.

(iii) In the vector space of real-valued functions on R, the functions that are
constant on intervals [k− 1

2 , k+
1
2 ), k ∈ Z, form a subspace. This is because

the sum of two functions each of which is constant on [k− 1
2 , k+

1
2 ) is also a

function constant on [k− 1
2 , k+

1
2 ), while a function constant on [k− 1

2 , k+
1
2 )

multiplied by a scalar is also a function constant on [k − 1
2 , k +

1
2 ).

(iv) In the vector space of real-valued functions on the interval [− 1
2 ,

1
2 ] under

the natural operations of addition and scalar multiplication (2.19), the set
of odd functions,

Sodd =
{
x
∣∣ x(t) = −x(−t) for all t ∈ [− 1

2 ,
1
2 ]
}
, (2.20a)

is a subspace. Similarly, the set of even functions,

Seven =
{
x
∣∣ x(t) = x(−t) for all t ∈ [− 1

2 ,
1
2 ]
}
, (2.20b)

is also a subspace. Either is easily checked because the sum of two odd
(even) functions yields an odd (even) function; scalar multiplication of an
odd (even) function yields again an odd (even) function.

Definition 2.3 (Affine subspace) A subset T of a vector space V is an affine
subspace when there exist a vector x ∈ V and a subspace S ⊂ V such that any
t ∈ T can be written as x+ s for some s ∈ S.

Beware that an affine subspace is not necessarily a subspace; it is a subspace if and
only if it includes 0. Affine subspaces generalize the concept of a plane in Euclidean
geometry; subspaces correspond only to those planes that include the origin. Affine
subspaces are convex sets, meaning that if vectors x and y are in the set, so is any
vector λx + (1− λ)y for λ ∈ [0, 1].
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2.2 Vector spaces 21

Example 2.3 (Affine subspaces)

(i) Let x and y be vectors in a vector space V . The set of vectors of the form
x+ αy with α ∈ C is an affine subspace.

(ii) In the vector space of complex-valued sequences over Z, the sequences that
equal 1 outside of {2, 3, 4, 5} form an affine subspace.

The definition of a subspace is suggestive of one way in which subspaces arise –
by combining a finite number of vectors in V .

Definition 2.4 (Span) The span of a set of vectors S is the set of all finite linear
combinations of vectors in S:

span(S) =

{
N−1∑

k=0

αkϕk

∣∣∣ αk ∈ C (or R), ϕk ∈ S, and N ∈ N

}
.

Note that a span is always a subspace and that the sum has a finite number of
terms even if the set S is infinite.

Example 2.4 (Proper subspace) Proper subspaces (those that do no equal
the entire space) arise in linear algebra when one looks at matrix–vector products
with tall matrices or rank-deficient square matrices. Let A be an M × N real-
valued matrix with rank K < M , and let S = {y = Ax | x ∈ RN}. Applying
the conditions in the definition of a subspace (Definition 2.2) to S and using the
properties of matrix multiplication, we verify that S is indeed a K-dimensional
subspace of the vector space RM . As per (2.222a) in Appendix 2.B, this subspace
is the span of the columns of A.

Many different sets can have the same span, and it can be of fundamental
interest to find the smallest set with a particular span. This leads to the dimension
of a vector space, which depends on the concept of linear independence.

Definition 2.5 (Linearly independent set) The set of vectors {ϕ0, ϕ1, . . . ,

ϕN−1} is called linearly independent when
∑N−1

k=0 αkϕk = 0 is true only if αk = 0
for all k. Otherwise, the set is linearly dependent. An infinite set of vectors is
called linearly independent when every finite subset is linearly independent.

Example 2.5 (Linearly independent set) Consider the following set of vec-
tors in CN :8

ek = [ 0 0 . . . 0
︸ ︷︷ ︸

k 0s

1 0 0 . . . 0
︸ ︷︷ ︸

(N−k−1) 0s

]⊤, k = 0, 1, . . . , N − 1.

8We will see in Example 2.29 that this set is called a standard basis.
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22 From Euclid to Hilbert

We now show that this set is linearly independent. For any complex numbers
{αk}N−1

k=0 ,

N−1∑

k=0

αkek = α0




1
0
...
0


+ α1




0
1
...
0


+ · · ·+ αN−1




0
0
...
1


 =




α0

α1

...
αN−1


 .

The above vector is the 0 vector only if αk = 0 for all k.

Definition 2.6 (Dimension) A vector space V is said to have dimension N
when it contains a linearly independent set with N elements and every set with
N+1 or more elements is linearly dependent. If no such finite N exists, the vector
space is infinite-dimensional.

Example 2.6 (RN is of dimension N) To show that RN is of dimension N ,
we must first show that it contains a linearly independent set with N elements;
indeed, we can choose the set {ek}N−1

k=0 from Example 2.5, which we showed to be
linearly independent. The next step is to demonstrate that every set with N +1
or more elements is linearly dependent. With M > N , choose any set {ϕk}M−1

k=0 .
If this set does not contain a subset of N linearly independent vectors, we are
done. If it does, without loss of generality, assume that these are the first N
vectors. Then, suppose that

0 =

M−1∑

k=0

αkϕk =

N−1∑

k=0

αkϕk +

M−1∑

k=N

αkϕk. (2.21)

By subtracting
∑M−1

k=N αkϕk from both sides we obtain




ϕ0,0 · · · ϕN−1,0

ϕ0,1 · · · ϕN−1,1

...
. . .

...
ϕ0,N−1 · · · ϕN−1,N−1




︸ ︷︷ ︸
Φ




α0

...
αN−1




︸ ︷︷ ︸
α

=




ϕN,0 · · · ϕM−1,0

ϕN,1 · · · ϕM−1,1

...
. . .

...
ϕN,N−1 · · · ϕM−1,N−1




︸ ︷︷ ︸
Φ̄



−αN

...
−αM−1




︸ ︷︷ ︸
−ᾱ

,

where we expressed the sums using matrix–vector products. The matrix Φ is
invertible because the first N vectors are linearly independent. Thus,

α = −Φ−1Φ̄ᾱ.

Since we can choose ᾱ to be a nonzero vector and solve for α, we see that (2.21)
has solutions with some nonzero αk; the set is thus linearly dependent.
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2.2 Vector spaces 23

Example 2.7 (Dimension of space of polynomials) The dimension of the
space of polynomials of degree at mostN−1 is N . To show this, we could proceed
as we did in Examples 2.5 and 2.6 and show that this space contains a linearly
independent set with N elements and every set with N + 1 or more elements is
linearly dependent. An easier way is to make the correspondence between the
space of polynomials of degree at most N − 1 and RN . We do that by forming

a vector of polynomial coefficients a =
[
a0 a1 . . . aN−1

]⊤
and observing

that a ∈ RN . Since addition and scalar multiplication in the polynomial space
correspond exactly to addition and scalar multiplication of vectors of coefficients
and RN has dimension N , so does the space of polynomials.

2.2.2 Inner product

Our intuition from Euclidean spaces goes farther than just adding and multiplying.
It has geometric notions of orientation and orthogonality as well as metric notions
of norm and distance. In this and the next subsection, we extend these to our
abstract spaces.

As visualized in Figure 2.2, an inner product is like a signed norm of an
orthogonal projection of one vector onto a subspace spanned by another. It thus
measures norm along with relative orientation.

Definition 2.7 (Inner product) An inner product on a vector space V over
C (or R) is a complex-valued (or real-valued) function 〈·, ·〉 defined on V × V ,
with the following properties for any x, y, z ∈ V and α ∈ C (or R):

(i) Distributivity: 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉.
(ii) Linearity in the first argument: 〈αx, y〉 = α〈x, y〉.
(iii) Hermitian symmetry: 〈x, y〉∗ = 〈y, x〉.
(iv) Positive definiteness: 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 if and only if x = 0.

Note that (ii) and (iii) imply that 〈x, αy〉 = α∗〈x, y〉. Thus, along with being linear
in the first argument, the inner product is conjugate-linear in the second argument.9

Also note that the inner product having C (or R) as a codomain excludes the
possibility of it being a nonconvergent expression or infinite quantity. Thus, an
inner product on V must return a unique, finite number for every pair of vectors
in V . This constrains both the functional form of an inner product and the set of
vectors to which it can be applied.

Example 2.8 (Inner product) Consider the vector space C2.

(i) 〈x, y〉 = x0y
∗
0 +5x1y

∗
1 is a valid inner product; it satisfies all the conditions

of Definition 2.7.

9We have used the convention that is dominant in mathematics; in physics, the inner product
is defined to be linear in the second argument and conjugate-linear in the first.
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24 From Euclid to Hilbert

(ii) 〈x, y〉 = x∗0y0+x
∗
1y1 is not a valid inner product; it violates Definition 2.7(ii).

For example, if x = y =
[
0 1

]⊤
and α = j, then 〈αx, y〉 = −j and

α〈x, y〉 = j, and thus 〈αx, y〉 6= α〈x, y〉.
(iii) 〈x, y〉 = x0y

∗
0 is not a valid inner product; it violates Definition 2.7(iv)

because x =
[
0 1

]⊤
is nonzero yet yields 〈x, x〉 = 0.

Standard inner product on CN The standard inner product on CN is

〈x, y〉 =

N−1∑

n=0

xny
∗
n = y∗x, (2.22a)

where the second equality uses matrix–vector multiplication to express the sum,
with vectors implicitly column vectors and ∗ denoting the Hermitian transpose
operation. While we will use this inner product frequently and without special
mention, this is not the only valid inner product for CN (or RN ) (see Exercise 2.7).

Standard inner product on CZ The standard inner product on the vector space
of complex-valued sequences over Z is

〈x, y〉 =
∑

n∈Z

xny
∗
n = y∗x, (2.22b)

where we are taking the unusual step of using matrix product notation with an
infinite row vector y∗ and an infinite column vector x. As stated above, the sum
must converge to a finite number for the inner product to be valid, restricting the set
of sequences on which we can operate. For the sum over all n ∈ Z to be uniquely
defined without specifying an order of summation, the series must be absolutely
convergent (see Appendix 2.A.2 for a discussion of convergence of series); we will
see in Section 2.2.4 that this required absolute convergence follows from x and y
each having a finite norm.

Standard inner product on CR The standard inner product on the vector space
of complex-valued functions over R is

〈x, y〉 =

∫ ∞

−∞
x(t)y∗(t) dt. (2.22c)

We must be careful that the integral exists and is finite for the inner product to
be valid, restricting the set of functions on which we can operate. We restrict this
set even further to those functions with a countable number of discontinuities, thus
eliminating a number of subtle technical issues.10

10For the inner product to be positive definite, as per Definition 2.7(iv), we must identify any
function satisfying

∫∞
−∞|x(t)|2 dt = 0 with 0. From this point on, we restrict our attention to
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Cambridge University Press (ISBN 110703860X) v1.1 [May 2014] [free version] Comments to book-errata@FourierAndWavelets.org



2.2 Vector spaces 25

Orthogonality

An inner product endows a space with geometric properties that arise from angles,
such as perpendicularity and relative orientation. In particular, an inner product
being zero has special significance.

Definition 2.8 (Orthogonality)

(i) Vectors x and y are said to be orthogonal when 〈x, y〉 = 0, written as x ⊥ y.
(ii) A set of vectors S is called orthogonal when x ⊥ y for every x and y in S

such that x 6= y.

(iii) A set of vectors S is called orthonormal when it is orthogonal and 〈x, x〉 = 1
for every x in S.

(iv) A vector x is said to be orthogonal to a set of vectors S when x ⊥ s for all
s ∈ S, written as x ⊥ S.

(v) Two sets S0 and S1 are said to be orthogonal when every vector s0 in S0 is
orthogonal to the set S1, written as S0 ⊥ S1.

(vi) Given a subspace S of a vector space V , the orthogonal complement of S,
denoted S⊥, is the set {x ∈ V | x ⊥ S}.

Note that the set S⊥ is a subspace as well. Also, vectors in an orthonormal set
{ϕk}k∈K are linearly independent since 0 =

∑
k∈K αkϕk implies that

0 = 〈0, ϕi〉 =

〈∑

k∈K
αkϕk, ϕi

〉
(a)
=
∑

k∈K
αk〈ϕk, ϕi〉

(b)
=
∑

k∈K
αkδi−k

(c)
= αi (2.23)

for any i ∈ K, where (a) follows from the linearity in the first argument of the inner
product; (b) from orthonormality of the set; and (c) from δi−k = 0 for k 6= i.11

Example 2.9 (Orthogonality) Consider the set of vectors Φ = {ϕk}k∈N ⊂
C[−1/2,1/2], where

ϕ0(t) = 1, (2.24a)

ϕk(t) =
√
2 cos(2πkt), k = 1, 2, . . . . (2.24b)

Lebesgue measurable functions, and all integrals should be seen as Lebesgue integrals. In other
words, we exclude from consideration those functions that are not well behaved in the above sense.
This restriction is not unduly stringent for any practical purpose. We follow the creed of R. W.
Hamming [41]: “. . . if whether an airplane would fly or not depended on whether some function
. . . was Lebesgue but not Riemann integrable, then I would not fly in it.”

11We will often use K for an arbitrary countable index set. Technically, we can write a sum
over K without indicating the order of the terms only when reordering of terms does not affect the
result. Here that is the case for the first sum in (2.23) because the terms are orthogonal and for
the second and third sums because of absolute convergence. We will usually not comment on this
technicality because of the sufficiency of the Riesz basis condition for unconditional convergence
of series; see Section 2.5.1 and Appendix 2.D.
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(a) ϕ0(t) = 1. (b) ϕ1(t) =
√
2 cos(2πt). (c) ϕ2(t) =

√
2 cos(4πt).

Figure 2.5 Example functions from (2.24).

The functions ϕ0, ϕ1, and ϕ2 are shown in Figure 2.5. Using the inner product

〈x, y〉 =

∫ 1/2

−1/2

x(t)y∗(t) dt,

we have the following properties:

(i) For any k,m ∈ Z+ with k 6= m, vectors ϕk and ϕm are orthogonal because

〈ϕk, ϕm〉 = 2

∫ 1/2

−1/2

cos(2πkt) cos(2πmt) dt

(a)
=

∫ 1/2

−1/2

[cos(2π(k +m)t) + cos(2π(k −m)t)] dt

=
1

2π

[
1

k +m
sin(2π(k +m)t)

∣∣∣
1/2

−1/2
+

1

k −m sin(2π(k −m)t)
∣∣∣
1/2

−1/2

]

= 0,

where (a) follows from the trigonometric identity for the product of cosines.
It is easy to check that for any k ∈ Z+, the vectors ϕ0 and ϕk are orthogonal.

(ii) The set of vectors Φ is orthogonal because, using (i), ϕk ⊥ ϕm for every ϕk

and ϕm in Φ such that ϕk 6= ϕm.

(iii) The set of vectors Φ is orthonormal because it is orthogonal, as we have
just shown in (ii), and for any k = 1, 2, . . .,

〈ϕk, ϕk〉 = 2

∫ 1/2

−1/2

cos2(2πkt) dt
(a)
= 2

∫ 1/2

−1/2

1 + cos(4πkt)

2
dt

=

[
t
∣∣∣
1/2

−1/2
+

1

4πk
sin(4πkt)

∣∣∣
1/2

−1/2

]
= 1,

where (a) follows from the double-angle formula for cosine. The inner prod-
uct of ϕ0 with itself is trivially 1.

(iv) For any k ∈ Z+, the vector ϕk is orthogonal to the set of odd functions

Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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2.2 Vector spaces 27

Sodd defined in (2.20a) because ϕk is orthogonal to every s ∈ Sodd:

〈ϕk, s〉 =

∫ 1/2

−1/2

√
2 cos(2πkt)s(t) dt

=
√
2

(∫ 0

−1/2

cos(2πkt)s(t) dt+

∫ 1/2

0

cos(2πkt)s(t) dt

)

(a)
=
√
2

(
−
∫ 0

−1/2

cos(2πkt)s(−t) dt+
∫ 1/2

0

cos(2πkt)s(t) dt

)

(b)
=
√
2

(
−
∫ 1/2

0

cos(2πkτ)s(τ) dτ +

∫ 1/2

0

cos(2πkt)s(t) dt

)
= 0,

where (a) follows from the definition of an odd function; and (b) from the
change of variable τ = −t and the fact that cosine is an even function, that
is, cos(−2πkτ) = cos(2πkτ). It is also easy to check that ϕ0 is orthogonal
to Sodd.

(v) The set Φ is orthogonal to the set of odd functions Sodd because each vector
in Φ is orthogonal to Sodd, using (iv).

Inner product spaces

A vector space equipped with an inner product from Definition 2.7 becomes an inner
product space (sometimes also called a pre-Hilbert space). As we have mentioned,
on CZ and CR we must exercise caution and choose the subspace for which the inner
product is finite.

2.2.3 Norm

A norm is a function that assigns a length, or size, to a vector (analogously to the
magnitude of a scalar).

Definition 2.9 (Norm) A norm on a vector space V over C (or R) is a real-
valued function ‖·‖ defined on V , with the following properties for any x, y ∈ V
and α ∈ C (or R):

(i) Positive definiteness: ‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0.

(ii) Positive scalability: ‖αx‖ = |α| ‖x‖.
(iii) Triangle inequality: ‖x+y‖ ≤ ‖x‖+‖y‖, with equality if and only if y = αx.

Note that the comments we made about the finiteness and validity of an inner
product apply to the norm as well.

In the above, the triangle inequality got its name because it has the following
geometric interpretation: the length of any side of a triangle is smaller than or
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28 From Euclid to Hilbert

equal to the sum of the lengths of the other two sides; equality occurs only when
two sides are collinear, that is, when the triangle degenerates into a line segment.
For example, if V = C and the standard norm is used, the triangle inequality
becomes

|x+ y| ≤ |x|+ |y| for any x, y ∈ C. (2.25)

An inner product can be used to define a norm, in which case we say that the
norm is induced by the inner product. The three inner products we have seen in
(2.22) induce corresponding standard norms on CN , CZ, and CR, respectively. Not
all norms are induced by inner products. We will see examples of this both here
and in Section 2.2.4.

Example 2.10 (Norm) Consider the vector space C2.

(i) ‖x‖ = |x0|2 +5|x1|2 is a valid norm; it satisfies all the conditions of Defini-
tion 2.9. It is induced by the inner product from Example 2.8(i).

(ii) ‖x‖ = |x0|+ |x1| is a valid norm. However, it is not induced by any inner
product.

(iii) ‖x‖ = |x0| is not a valid norm; it violates Definition 2.9(i) because x =[
0 1

]⊤
is nonzero yet yields ‖x‖ = 0.

Standard norm on CN The standard norm on CN , induced by the inner product
(2.22a), is

‖x‖ =
√
〈x, x〉 =

(
N−1∑

n=0

|xn|2
)1/2

. (2.26a)

This is also called the Euclidean norm and yields the conventional notion of length.

Standard norm on CZ The standard norm on CZ, induced by the inner product
(2.22b), is

‖x‖ =
√
〈x, x〉 =

(
∑

n∈Z

|xn|2
)1/2

. (2.26b)

Standard norm on CR The standard norm on CR, induced by the inner product
(2.22c), is

‖x‖ =
√
〈x, x〉 =

(∫ ∞

−∞
|x(t)|2 dt

)1/2
. (2.26c)

Properties of norms induced by an inner product

The following facts hold in any inner product space.
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x
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y y
x+ y

x− y

Figure 2.6 Illustration of the parallelogram law.

Pythagorean theorem This theorem generalizes a well-known fact from Euclidean
geometry to any inner product space. The statement learned in elementary school
involves the sides of a right triangle. In its more general form the theorem states
that12

x ⊥ y implies ‖x+ y‖2 = ‖x‖2 + ‖y‖2. (2.27a)

Among many possible proofs of the theorem, one follows from expanding
〈x + y, x + y〉 into four terms and noting that 〈x, y〉 = 〈y, x〉 = 0 because of
orthogonality. By induction, the Pythagorean theorem holds in a more general
form for any countable set of orthogonal vectors:

{xk}k∈K orthogonal implies
∥∥∑

k∈K xk
∥∥2 =

∑
k∈K‖xk‖2. (2.27b)

Parallelogram law The parallelogram law of Euclidean geometry generalizes the
Pythagorean theorem, and it too can be generalized to any inner product space. It
states that

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2). (2.28)

From the illustration in Figure 2.6, it is clear that (2.28) holds due to the Pythag-
orean theorem when the parallelogram is a rectangle. Note that, even though no
inner product or requirement of orthogonality appears in the parallelogram law, it
necessarily holds only in an inner product space. In fact, (2.28) is a necessary and
sufficient condition for a norm to be induced by an inner product (see Exercise 2.11).

Cauchy–Schwarz inequality This widely used inequality states that13

|〈x, y〉| ≤ ‖x‖ ‖y‖, (2.29)

with equality if and only if x = αy for some scalar α. One way to prove the Cauchy–
Schwarz inequality begins with expanding ‖βx + y‖2, where β is any scalar, and

12The theorem was found on a Babylonian tablet dating from c. 1900–1600 B.C., and it is not
clear whether Pythagoras himself or one of his disciples stated and later proved the theorem. The
first written proof and reference to the theorem are in Euclid’s Elements [42].

13The result for sums is due to Cauchy, while the result for integrals is due to Schwarz. Bunya-
kovsky published the result for integrals six years earlier than Schwarz; thus, the integral version
is sometimes referred to as the Bunyakovsky inequality.
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30 From Euclid to Hilbert

using the nonnegativity of the norm of any vector (see Exercise 2.11). Because of
the Cauchy–Schwarz inequality, the angle θ between real nonzero vectors x and y
can be defined through

cos θ =
〈x, y〉
‖x‖ ‖y‖ . (2.30)

Normed vector spaces

A vector space equipped with a norm becomes a normed vector space. As with
the inner product, we must exercise caution and choose the subspace for which the
norm is finite.

Metric

Intuitively, the length of a vector can be thought of as the vector’s distance from
the origin. This extends naturally to a metric induced by a norm, or a distance.

Definition 2.10 (Metric, or distance) In a normed vector space, the met-
ric, or distance, between vectors x and y is the norm of their difference:

d(x, y) = ‖x− y‖.

Much as norms induced by inner products are a small fraction of all possible norms,
metrics induced by norms are a small fraction of all possible metrics. In this book,
we will have no need for more general concepts of metric; for the interested reader,
Exercise 2.13 gives the axioms that a metric must satisfy and explores metrics that
are not induced by norms.

2.2.4 Standard spaces

We now discuss some standard vector spaces: first inner product spaces (which
are also normed vector spaces, since their inner products induce the corresponding
norms), followed by other normed vector spaces (which have norms not induced by
inner products).

Standard inner product spaces

The first three spaces, CN , ℓ2(Z), and L2(R), are the spaces most often used in this
book.14 For each, the inner product and norm have been defined already in (2.22)
and (2.26); we repeat them for each space for easy reference.

14The reasoning behind naming ℓ2(Z) and L2(R) will become clear shortly in the section on
standard normed vector spaces.
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2.2 Vector spaces 31

CN : Space of complex-valued finite-dimensional vectors This is the normed
vector space of complex-valued finite-dimensional vectors, and it uses the inner
product (2.22a) and the norm (2.26a),

〈x, y〉 =
N−1∑

n=0

xny
∗
n, ‖x‖ =

(
N−1∑

n=0

|xn|2
)1/2

. (2.31)

The above norm is not the only norm possible on CN ; in the next subsection, we
will introduce p norms as possible alternatives.

ℓ2(Z): Space of square-summable sequences This is the normed vector space of
square-summable complex-valued sequences, and it uses the inner product (2.22b)
and the norm (2.26b),

〈x, y〉 =
∑

n∈Z

xny
∗
n, ‖x‖ =

(
∑

n∈Z

|xn|2
)1/2

. (2.32)

This space is often referred to as the space of finite-energy sequences.
By the Cauchy–Schwarz inequality (2.29), the finiteness of ‖x‖ and ‖y‖ for

any x and y in ℓ2(Z) implies that the inner product 〈x, y〉 is finite, provided that
the sum in the inner product is well defined. A somewhat technical point is that
the square-summability condition that determines which sequences are in ℓ2(Z) also
ensures that the sum in the inner product is indeed well defined; see Exercise 2.14.

L2(R): Space of square-integrable functions This is the normed vector space of
square-integrable complex-valued functions, and it uses the inner product (2.22c)
and the norm (2.26c),

〈x, y〉 =

∫ ∞

−∞
x(t)y∗(t) dt, ‖x‖ =

(∫ ∞

−∞
|x(t)|2 dt

)1/2
. (2.33)

This space is often referred to as the space of finite-energy functions. According to
Definition 2.6, this space is infinite-dimensional; for example, {e−t2 , te−t2 , t2e−t2 ,
. . .} is a linearly independent set. As in the case of ℓ2(Z), the inner product is
always well defined.

We can restrict the domain R to just an interval [a, b], in which case the space
becomes L2([a, b]), that is, the space of complex-valued square-integrable functions
on the interval [a, b]. The inner product and norm follow naturally from (2.33):

〈x, y〉 =

∫ b

a

x(t)y∗(t) dt, ‖x‖ =

(∫ b

a

|x(t)|2 dt
)1/2

. (2.34)

In L2([a, b]), the Cauchy–Schwarz inequality (2.29) becomes

∣∣∣∣
∫ b

a

x(t)y∗(t) dt

∣∣∣∣ ≤
(∫ b

a

|x(t)|2 dt
)1/2(∫ b

a

|y(t)|2 dt
)1/2

, (2.35)
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32 From Euclid to Hilbert

with equality if and only if x and y are linearly dependent. By setting y(t) = 1 and
squaring both sides, we get another useful fact:

∣∣∣∣
∫ b

a

x(t) dt

∣∣∣∣
2

≤ (b − a)
∫ b

a

|x(t)|2 dt, (2.36)

with equality if and only if x is constant on [a, b].

Cq([a, b]): Spaces of continuous functions with q continuous derivatives For
any finite a and b, the space C([a, b]) is defined as the space of complex-valued
continuous functions over [a, b] with inner product and norm given in (2.34). The
space of complex-valued continuous functions over [a, b] that are further restricted
to have q continuous derivatives is denoted Cq([a, b]), so C([a, b]) = C0([a, b]).
Moreover, Cq([a, b]) ⊂ Cp([a, b]) when q > p.

Each Cq([a, b]) space is a subspace of C[a, b]. This is true because having q
continuous derivatives is preserved by the vector space operations. Similarly, the
set of polynomial functions forms a subspace of Cq([a, b]) for any a, b ∈ R and
q ∈ N because the set of polynomials is closed under the vector space operations
and polynomials are infinitely differentiable.

A Cq([a, b]) space is a subspace of L2([a, b]). As we discuss in Section 2.3.2,
the requirement of q continuous derivatives makes a Cq([a, b]) space not complete
and hence not a Hilbert space.

Spaces of random variables The set of complex random variables defined in some
probabilistic model forms a vector space over the complex numbers with the stan-
dard addition and scalar multiplication operations; all the properties required in
Definition 2.1 are inherited from the complex numbers, with the constant 0 as the
additive identity.

A useful inner product to define on this vector space is

〈x, y〉 = E[ xy∗ ] . (2.37)

It clearly satisfies the properties of Definition 2.7(i)–(iii), and also

〈x, x〉 = E[ xx∗ ] = E
[
|x|2

]
≥ 0

for the first part of Definition 2.7(iv). Only the second part of Definition 2.7(iv)
is subtle. It is indeed true that E[ xx∗ ] = 0 implies that x = 0. This is because
of the sense of equality for random variables reviewed in Appendix 2.C. The norm
induced by this inner product is

‖x‖ =
√
〈x, x〉 =

√
E[ |x|2 ]. (2.38)

This shows that if we restrict our attention to random variables with finite second
moment, E[ |x|2 ] <∞, we have a normed vector space.

When E[ x ] = 0, the norm ‖x‖ is the standard deviation of x. When E[ y ] = 0
also, 〈x, y〉 is the covariance of x and y; the normalized inner product 〈x, y〉/(‖x‖ ‖y‖)
equals the correlation coefficient.
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2.2 Vector spaces 33

Standard normed vector spaces

CN spaces As we said earlier, we can define other norms on CN . For example,
the p norm is defined as

‖x‖p =

(
N−1∑

n=0

|xn|p
)1/p

, (2.39a)

for p ∈ [1, ∞). Since the sum above has a finite number of terms, there is no doubt
that it converges. Thus, we take as a vector space of interest the entire CN ; note
that this contrasts with some of the examples we will see shortly (such as ℓp(Z)
spaces), where we must restrict the set of vectors to those with finite norm.

For p = 1, this norm is called the taxicab norm or Manhattan norm because
‖x‖1 represents the driving distance from the origin to x following a rectilinear
street grid. For p = 2, we get our usual Euclidean square norm from (2.39a), and
only in that case is a p norm induced by an inner product. The natural extension
of (2.39a) to p =∞ (see Exercise 2.15) defines the ∞ norm as

‖x‖∞ = max(|x0|, |x1|, . . . , |xN−1|). (2.39b)

Using (2.39a) for p ∈ (0, 1) does not give a norm but can still be a useful quantity.
The failure to satisfy the requirements of a norm and an interpretation of (2.39a)
with p→ 0 are explored in Exercise 2.16.

All norms on finite-dimensional spaces are equivalent in the sense that any
two norms bound each other within constant factors (see Exercise 2.17). This is a
crude equivalence that leaves significant differences in which vectors are considered
larger than others, and it does not extend to infinite-dimensional spaces. Figure 2.7
shows this pictorially by showing the sets of unit-norm vectors for different p norms.
All vectors ending on the curves have unit norm in the corresponding p norm. For
example, with the usual Euclidean norm, unit-norm vectors fall on a circle; on the
other hand, in 1 norm they fall on the diamond-shaped polygon. Note that only for
p = 2 is the set of unit-norm vectors invariant to rotation of the coordinate system.

ℓp(Z) spaces We can define other norms on CZ as well (like we did for CN ).
However, because the space is infinite-dimensional, the choice of the norm and
the requirement that it be finite restricts CZ to a smaller set. For example, for
p ∈ [1, ∞), the ℓp norm is

‖x‖p =

(
∑

n∈Z

|xn|p
)1/p

. (2.40a)

Analogously to (2.39b), we extend this to the ℓ∞ norm as

‖x‖∞ = sup
n∈Z

|xn|. (2.40b)

We have already introduced the ℓp norm for p = 2 in (2.32); only in that case is
an ℓp norm induced by an inner product. We can now define the spaces associated
with the ℓp norms.
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Figure 2.7 Sets of unit-norm vectors for different p norms: p = ∞, p = 4, p = 2, and
p = 1 (solid lines, from darkest to lightest), as well as for p = 1

2
(dashed line), which is

not a norm. Vectors ending on the curves are of unit norm in the corresponding p norm.

Definition 2.11 (ℓp(Z)) For any p ∈ [1, ∞], the normed vector space ℓp(Z) is
the subspace of CZ consisting of vectors with finite ℓp norm.

Solved exercise 2.2 shows that the subset of CZ consisting of vectors with finite
ℓp(Z) norm forms a subspace. Since ℓp(Z) is defined as a subspace of CZ, it inherits
the operations of vector addition and scalar multiplication from CZ. The norm is
the ℓp norm (2.40).

Example 2.11 (Nesting of ℓp(Z) spaces) Consider the sequence x given by

xn =

{
0, for n ≤ 0;

1/na, for n > 0,

for some real number a ≥ 0. Let us determine which of the ℓp(Z) spaces contain
x. To check whether x is in ℓp(Z) for p ∈ [1, ∞), we need to determine whether

‖x‖pp =

∞∑

n=1

∣∣∣∣
1

na

∣∣∣∣
p

=

∞∑

n=1

1

npa

converges. The necessary and sufficient condition for convergence is pa > 1, so
we conclude that x ∈ ℓp(Z) for p > 1/a and a > 0. For a = 0, the above does
not converge. For x ∈ ℓ∞(Z), x must be bounded, which occurs for all a ≥ 0.

This example illustrates a simple inclusion property proven as Exercise 2.18:

p < q implies ℓp(Z) ⊂ ℓq(Z). (2.41)

This can loosely be visualized with Figure 2.7: the larger the value of p, the larger
the set of vectors with norm less than or equal to a given number. In particular,
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2.3 Hilbert spaces 35

ℓ1(Z) ⊂ ℓ2(Z). In other words, if a sequence has a finite ℓ1 norm, then it has a finite
ℓ2 norm. Beware that the opposite is not true; if a sequence has a finite ℓ2 norm,
it does not follow that it has a finite ℓ1 norm.

Example 2.12 (Sequence in ℓ2(Z) but not in ℓ1(Z)) Consider the sequence
xn = 1/n, for n ∈ Z+. Since

‖x‖22 =

∞∑

n=1

∣∣∣∣
1

n

∣∣∣∣
2

=
1

6
π2 converges, while ‖x‖1 =

∞∑

n=1

∣∣∣∣
1

n

∣∣∣∣ diverges,

we conclude that x ∈ ℓ2(Z) and x 6∈ ℓ1(Z).

Lp(R) spaces Like for sequences, we can define other norms on CR as well. Again,
because the space is infinite-dimensional, the choice of the norm and the requirement
that it be finite restricts CR to a smaller set. For example, for p ∈ [1, ∞), the Lp
norm is

‖x‖p =

(∫ ∞

−∞
|x(t)|p dt

)1/p
. (2.42a)

The extension to p =∞ leads to the L∞ norm as

‖x‖∞ = ess sup
t∈R

|x(t)|. (2.42b)

We have already introduced the Lp norm for p = 2 in (2.33); only in that case is
an Lp norm induced by an inner product. We can now define the spaces associated
with the Lp norms.

Definition 2.12 (Lp(R)) For any p ∈ [1, ∞], the normed vector space Lp(R) is
the subspace of CR consisting of vectors with finite Lp norm.

Since Lp(R) is defined as a subspace of CR, it inherits the operations of vector
addition and scalar multiplication from CR. The norm is the Lp norm (2.42).

One can also use the same norms on different domains; for example, we can
define the domain to be [a, b] and use a finite Lp norm on it to yield the space
Lp([a, b]) (like we did for L2(R) and L2([a, b])). We will use this in Chapters 3
and 4, where we will often be operating on Lp([−π, π]).

2.3 Hilbert spaces

We will do most of our work in Hilbert spaces. These are inner product spaces seen in
the previous section, with the additional requirement of completeness. Completeness
is somewhat technical, and for a basic understanding it will suffice to trust that we
work in vector spaces of sequences and functions in which convergence makes sense.
We will furthermore be mostly concerned with separable Hilbert spaces because
these spaces have countable bases.
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36 From Euclid to Hilbert

2.3.1 Convergence

Convergence of a sequence of numbers should be a familiar concept; it is reviewed
in Appendix 2.A.2. Convergence of a sequence of vectors requires a metric, and we
limit our attention to metrics induced by norms.

Definition 2.13 (Convergent sequence of vectors) A sequence of vec-
tors x0, x1, . . . in a normed vector space V is said to converge to v ∈ V when
limk→∞‖v − xk‖ = 0. In other words, given any ε > 0, there exists a Kε such
that

‖v − xk‖ < ε for all k > Kε.

The elements of a convergent sequence eventually stay arbitrarily close to v. Not
only does the definition of convergence of sequences of vectors use a norm, but
whether a sequence converges can depend on the choice of norm. This is illustrated
in the following example.

Example 2.13 (Convergence in different norms)

(i) For each k ∈ Z+, let

xk(t) =

{
1, for t ∈ [0, 1/k];
0, otherwise.

Also, let v(t) = 0 for all t. For any p ∈ [1, ∞), using the expression for the
Lp norm, (2.42a),

‖v − xk‖p =

(∫ ∞

−∞
|v(t) − xk(t)|p dt

)1/p
=

(
1

k

)1/p
k→∞−→ 0,

so x1, x2, . . . converges to v. For p = ∞, using the expression for the L∞
norm, (2.42b), ‖v − xk‖∞ = 1 for all k, so the sequence does not converge
to v under the L∞ norm.

(ii) Let α ∈ (0, 1), and for each k ∈ Z+, let

xk,n =

{
1/kα, for n ∈ {1, 2, . . . , k};

0, otherwise.

Also, let vn = 0 for all n. Using the expression for the ℓp norm, (2.40a),

‖v − xk‖p =

(
k∑

n=1

(1/kα)p

)1/p

=

(
1

k

)(αp−1)/p

,

so x1, x2, . . . converges to v when p ∈ (1/α, ∞). For p = ∞, using the
expression for the ℓ∞ norm, (2.40b), ‖v − xk‖∞ = 1/kα for all k, so the
sequence converges to x under the ℓ∞ norm as well.
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2.3 Hilbert spaces 37

As reviewed in Appendix 2.A.1, a set of real numbers is closed if and only if it
contains the limits of all its convergent sequences; for example, (0, 1] is not closed
in R since the sequence of numbers xk = 1/k, k ∈ Z+, lies in (0, 1] and converges,
but its limit point 0 is not in (0, 1]. Carrying this over to the Hilbert space setting
yields the following definition.

Definition 2.14 (Closed subspace) A subspace S of a normed vector space
V is called closed when it contains all limits of sequences of vectors in S.

Subspaces of finite-dimensional normed vector spaces are always closed. Exer-
cise 2.20 gives an example of a subspace of an infinite-dimensional normed vector
space that is not closed.

Subspaces often arise as the span of a set of vectors. As the following example
shows, the span of an infinite set of vectors is not necessarily closed. For this reason,
we frequently work with the closure of a span.

Example 2.14 (Span need not be closed) Consider the following infinite
set of vectors from ℓ2(N): For each k ∈ N, let the sequence sk be 0 except for a
1 in the kth position. Recall from Definition 2.4 that the span is all finite linear
combinations, even when the set of vectors is infinite. Thus, span({s0, s1, . . .}) is
the subspace of all vectors in ℓ2(N) that have a finite number of nonzero entries.
To prove that the span is not closed, we must find a sequence of vectors in the
span (each having finitely many nonzero entries) that converges to a vector not
in the span (having infinitely many nonzero entries). For example, let v be any
sequence in ℓ2(N) with infinite support, for example vn = 1/(n + 1) for n ∈ N.
Then, for each k ∈ N, define the vector xk ∈ ℓ2(N) by

xk,n =

{
vn, for n = 0, 1, . . . , k;
0, otherwise.

For each k ∈ N, the vector xk is a linear combination of {s0, s1, . . . , sk}. While
the sequence x0, x1, . . . converges to v (under the ℓ2(N) norm), its limit v is not
in the span.

Since the closure of a set is the set of all limit points of convergent sequences in
the set, the closure of the span of an infinite set of vectors is the set of all convergent
infinite linear combinations:

span({ϕk}k∈K) =

{
∑

k∈K
αkϕk

∣∣∣ αk ∈ C and the sum converges

}
.

The closure of the span of a set of vectors is always a closed subspace.

2.3.2 Completeness

It is awkward to do analysis in the set of rational numbers Q instead of in R

because Q has infinitesimal gaps that can be limit points of sequences in Q. A
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Figure 2.8 The first few partial sums of
∑∞

n=0 1/n!, each rational, converging to the
irrational number e.

familiar example is that xk =
∑k

n=0 1/n! is rational for every nonnegative integer
k, but the limit of the sequence is the irrational number e (see Figure 2.8). If we
want the limit of any sequence to make sense, we need to work in R, which is the
completion of Q. Working only in Q, it would be hard to distinguish between those
sequences that converge to an irrational number and those that do not converge at
all – neither would have a limit point in the space.

Completeness of a space is the property that ensures that any sequence that
intuitively ought to converge indeed does converge to a limit in the same space.
The intuition of what ought to converge is formalized by the concept of a Cauchy
sequence.

Definition 2.15 (Cauchy sequence of vectors) A sequence of vectors x0,
x1, . . . in a normed vector space is called a Cauchy sequence when, given any
ε > 0, there exists a Kε such that

‖xk − xm‖ < ε for all k, m > Kε.

The elements of a Cauchy sequence eventually stay arbitrarily close to each other.
Thus it might be intuitive that a Cauchy sequence must converge; this is in fact
true for real-valued sequences. This is not true in all vector spaces, however, and it
gives us important terminology.

Definition 2.16 (Completeness and Hilbert space) A normed vector
space V is said to be complete when every Cauchy sequence in V converges to a
vector in V . A complete inner product space is called a Hilbert space.

A complete normed vector space is called a Banach space.

Example 2.15 (Q is not complete) Ignoring for the moment that Defini-
tion 2.1 restricts the set of scalars to R or C, consider Q as a normed vector
space over the scalars Q, with ordinary addition and multiplication and norm
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Vector spaces

Normed vector spaces

Inner product spaces

• QN

• C([a, b])

Banach spaces

• ℓ1(Z)
• ℓ∞(Z)

• L1(R)

• L∞(R)

Hilbert
spaces

• CN

• ℓ2(Z)
• L2(R)

• (V, d)
• ℓ0(Z)

• (C1([a, b]), ‖·‖∞)

Figure 2.9 Relationships between types of vector spaces. Several examples of vector
spaces are marked. For QN , CN , and C([a, b]), we assume the standard inner product.
(V, d) represents any vector space with the discrete metric as described in Exercise 2.13.
(C1([a, b]), ‖·‖∞) represents C1([a, b]) with the L2 norm replaced by the L∞ norm. ℓ0(Z)
is described in Exercise 2.20.

‖x‖ = |x|. This vector space is not complete because there exist rational se-
quences with irrational limits, such as the example of the number e we have just
seen (see Figure 2.8).

Standard spaces

From Definition 2.16, completeness makes sense only in a normed vector space.
We now comment on the completeness of the standard spaces we discussed in Sec-
tion 2.2.4 (see Figure 2.9).

(i) All finite-dimensional spaces are complete.15 For example, C as a normed
vector space over C with ordinary addition and multiplication and with norm
‖x‖ = |x| is complete. This can be used to show that CN is complete under
ordinary addition and multiplication and with any p norm; see Exercise 2.23.
CN under the 2 norm is a Hilbert space.

(ii) All ℓp(Z) spaces are complete; in particular, ℓ2(Z) is a Hilbert space.

15Recall the restriction of the set of scalars to R or C. Without this restriction, there are
finite-dimensional vector spaces that are not complete, as in Example 2.15.
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40 From Euclid to Hilbert

(iii) All Lp(R) spaces are complete; in particular, L2(R) is a Hilbert space. An Lp
space can either be understood to be complete because of Lebesgue measura-
bility and the use of Lebesgue integration, or it can be taken as the completion
of the space of continuous functions with finite Lp norm.

(iv) Cq([a, b]) spaces are not complete under the Lp norm for p ∈ [1, ∞). For
example, C([0, 1]) is not complete under the L2 norm as there exist Cauchy
sequences of continuous functions whose limits are discontinuous (and hence
not in C([0, 1])); see Solved exercise 2.3. Under the L∞ norm, C([a, b]) is
complete, but Cq([a, b]) is not complete for any q > 0.

(v) We consider spaces of random variables only under the inner product (2.37)
and norm (2.38). These inner product spaces are complete and hence Hilbert
spaces.

Separability Separability is more technical than completeness. A space is called
separable when it contains a countable dense subset. For example, R is separable
since Q is dense in R and is countable. However, these topological properties are
not of much interest here.

Instead, we are interested in separable Hilbert spaces because a Hilbert space
contains a countable basis if and only if it is separable (we formally define a basis in
Section 2.5). The Hilbert spaces that we will use frequently (as marked in Figure 2.9)
are all separable. Also, a closed subspace of a separable Hilbert space is separable,
so it contains a countable basis as well.

2.3.3 Linear operators

Having dispensed with technicalities, we are now ready to develop operational
Hilbert-space machinery. We start with linear operators, which generalize finite-
dimensional matrices (see Appendix 2.B for more details).

Definition 2.17 (Linear operator) A function A : H0 → H1 is called a linear
operator from H0 to H1 when, for all x, y in H0 and α in C (or R), the following
hold:

(i) Additivity: A(x + y) = Ax+Ay.

(ii) Scalability: A(αx) = α(Ax).

When the domain H0 and the codomain H1 are the same, A is also called a linear
operator on H0.

Note the convention of writing Ax instead of A(x), just as is done for matrix mul-
tiplication. In fact, linear operators from CN to CM and matrices in CM×N are
exactly the same thing.

Many concepts from finite-dimensional linear algebra extend to linear opera-
tors on Hilbert spaces in rather obvious ways. For example, the null space or kernel
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2.3 Hilbert spaces 41

of a linear operator A : H0 → H1 is the subspace of H0 that A maps to 0:

N (A) = {x ∈ H0 | Ax = 0}. (2.43)

The range of a linear operator A : H0 → H1 is a subspace of H1:

R(A) = {Ax ∈ H1 | x ∈ H0}. (2.44)

Some generalizations to Hilbert spaces are simplified by limiting attention to bound-
ed linear operators.

Definition 2.18 (Operator norm and bounded linear operator) The
operator norm of A, denoted by ‖A‖, is defined as

‖A‖ = sup
‖x‖=1

‖Ax‖. (2.45)

A linear operator is called bounded when its operator norm is finite.

It is implicit in the definition that ‖x‖ uses the norm of the domain of A and ‖Ax‖
uses the norm of the codomain of A. This concept applies equally well when the
domain and codomain are Hilbert spaces or, more generally, any normed vector
spaces.

Example 2.16 (Unbounded operator) Consider A : CZ → CZ defined by

(Ax)n = |n|xn for all n ∈ Z.

While this operator is linear, it is not bounded. We provide a proof by contra-
diction. Suppose that the operator norm ‖A‖ is finite. Then there is an integer
M larger than ‖A‖. For the input sequence x that is 0 except for a 1 in the
Mth position, Ax =Mx, which implies ‖A‖ ≥M – a contradiction. Hence, the
operator norm ‖A‖ is not finite.

Linear operators with finite-dimensional domains are always bounded. Conversely,
by limiting attention to bounded linear operators we are able to extend concepts
to Hilbert spaces while maintaining most intuitions from finite-dimensional linear
algebra. For example, bounded linear operators are continuous:

if xk
k→∞−→ v then Axk

k→∞−→ Av.

Definition 2.19 (Inverse) A bounded linear operator A : H0 → H1 is called
invertible if there exists a bounded linear operator B : H1 → H0 such that

BAx = x, for every x in H0, and (2.46a)

ABy = y, for every y in H1. (2.46b)
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Cambridge University Press (ISBN 110703860X) v1.1 [May 2014] [free version] Comments to book-errata@FourierAndWavelets.org



42 From Euclid to Hilbert

When such a B exists, it is unique, is denoted by A−1, and is called the inverse
of A; B is called a left inverse of A when (2.46a) holds, and B is called a right
inverse of A when (2.46b) holds.

For A : CN → CM , basic linear algebra gives tests for the invertibility of A and
methods to find left and right inverses when they exist; see Section 2.6.4 and Ap-
pendix 2.B. There are no general procedures for operators with other Hilbert spaces
as the domain and codomain.

Example 2.17 (Linear operators)

(i) Ordinary matrix multiplication by the matrix

A =

[
3 1
1 3

]

defines a linear operator on R2, A : R2 → R2. It is bounded, and its opera-
tor norm (assuming the 2 norm for both the domain and the codomain) is
4. We show here how to obtain the norm of A by direct computation (we
could also use the relationship among eigenvalues, singular values, and the
operator norm, which is explored in Exercises 2.25 and 2.56):

‖A‖ = sup
‖x‖=1

‖Ax‖ = sup
θ

∥∥∥∥
[
3 1
1 3

] [
cos θ
sin θ

]∥∥∥∥ = sup
θ

∥∥∥∥
[
3 cos θ + sin θ
cos θ + 3 sin θ

]∥∥∥∥

= sup
θ

√
(3 cos θ + sin θ)2 + (cos θ + 3 sin θ)2

= sup
θ

√
10 cos2 θ + 10 sin2 θ + 12 sin θ cos θ

= sup
θ

√
10 + 6 sin 2θ = 4.

The null space of A is only the vector 0, the range of A is all of R2, and

A−1 =

[
3
8 − 1

8

− 1
8

3
8

]
.

(ii) Ordinary matrix multiplication by the matrix

A =

[
1 j 0
1 0 j

]

defines a linear operator A : C3 → C2. It is bounded, and its operator
norm (assuming the 2 norm for both the domain and the codomain) is

√
3.

Its null space is
{ [
x0 jx0 jx0

]⊤ | x0 ∈ C
}
, its range is all of C2, and it

is not invertible. (There exists B satisfying (2.46b), but no B can satisfy
(2.46a).)
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2.3 Hilbert spaces 43

(iii) For some fixed complex-valued sequence (αk)k∈Z, consider the component-
wise multiplication

(Ax)k = αkxk, k ∈ Z, (2.47a)

as a linear operator on ℓ2(Z). We can write this with infinite vectors and
matrices as

Ax =




. . . 0
0 α−1 0

0 α0 0

0 α1 0

0
. . .







...
x−1

x0
x1
...



. (2.47b)

It is easy to check that Definition 2.17(i) and (ii) are satisfied, but we must
constrain α to ensure that the result is in ℓ2(Z). For example,

‖α‖∞ = M < ∞

ensures that Ax is in ℓ2(Z) for any x in ℓ2(Z). Furthermore, the operator
is bounded and ‖A‖ = M . The operator is invertible when infk|αk| > 0.
In this case, the inverse is given by

A−1y =




. . . 0
0 1/α−1 0

0 1/α0 0

0 1/α1 0

0
. . .







...
y−1

y0
y1
...



.

Adjoint operator Finite-dimensional linear algebra has many uses for transposes
and conjugate transposes. The conjugate transpose (or Hermitian transpose) is
generalized by the adjoint of an operator.

Definition 2.20 (Adjoint and self-adjoint operator) The linear opera-
tor A∗ : H1 → H0 is called the adjoint of the linear operator A : H0 → H1

when

〈Ax, y〉H1 = 〈x, A∗y〉H0 , for every x in H0 and y in H1. (2.48)

When A = A∗, the operator A is called self-adjoint or Hermitian.

Note that the adjoint gives a third meaning to ∗, the first two being the complex
conjugate of a scalar and the Hermitian transpose of a matrix. These meanings are
consistent, as we verify in the first two parts of the following example.
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44 From Euclid to Hilbert

Example 2.18 (Adjoint operators)

(i) For any Hilbert space H , consider A : H → H given by Ax = αx for some
scalar α. For any x and y in H ,

〈Ax, y〉 = 〈αx, y〉 (a)
= α〈x, y〉 (b)

= 〈x, α∗y〉,

where (a) follows from the linearity in the first argument of the inner prod-
uct; and (b) from the conjugate linearity in the second argument of the inner
product. Upon comparison with (2.48), the adjoint of A is A∗y = α∗y. Put
simply, the adjoint of multiplication by a scalar is multiplication by the
conjugate of the scalar, which is consistent with using ∗ for conjugation of
a scalar.

(ii) Consider a linear operator A : CN → CM . The CN and CM inner products
can both be written as 〈x, y〉 = y∗x, where ∗ represents the Hermitian
transpose. Thus, for any x ∈ CN and y ∈ CM ,

〈Ax, y〉CM = y∗(Ax) = (y∗A)x
(a)
= (A∗y)∗x = 〈x, A∗y〉CN ,

where in (a) we use A∗ to represent the Hermitian transpose of the matrix
A. Upon comparison with (2.48), it seems we have reached a tautology, but
this is because the uses of A∗ as the adjoint of linear operator A and as the
Hermitian transpose of matrix A are consistent. Put simply, the adjoint of
multiplication by a matrix is multiplication by the Hermitian transpose of
the matrix, which is consistent with using ∗ for the Hermitian transpose of
a matrix.

(iii) Consider the linear operator defined in (2.47). For any x and y in ℓ2(Z),

〈Ax, y〉ℓ2
(a)
=
∑

n∈Z

(αnxn)y
∗
n

(b)
=
∑

n∈Z

xn(α
∗
nyn)

∗,

where (a) follows from (2.47) and the definition of the ℓ2(Z) inner product,
(2.22b); and (b) from the commutativity and the associativity of scalar
multiplication along with (α∗

n)
∗ = αn. Our goal in expanding 〈Ax, y〉 above

is to see the result as the inner product between x and some linear operator
applied to y. Upon comparing the final expression with the definition of
the ℓ2(Z) inner product, we conclude that the componentwise multiplication
(A∗y)n = α∗

nyn defines the adjoint.

The above examples are amongst the simplest, and they do not necessarily clearly
reveal the role of an adjoint. In Hilbert spaces, the relationships between vectors
are measured by inner products. The defining relation of the adjoint (2.48) shows
that the action of A on H0 is mimicked by the action of the adjoint A∗ on H1; this
mimicry is visible only through the applicable inner products, so the adjoint itself
depends on these inner products. Loosely, if A has some effect, A∗ preserves the
geometry of that effect while acting with a reversed domain and codomain.

In general, finding an adjoint requires some ingenuity, as we now show.
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Figure 2.10 Illustration of the adjoint of an operator. (a) We start with a function x
in L2(R). (b) The local averaging operator A in (2.49) gives a sequence in ℓ2(Z). (c) y
is an arbitrary sequence in ℓ2(Z). (d) The adjoint A∗ is a linear operator from ℓ2(Z) to
L2(R) that uniquely preserves geometry in that 〈Ax, y〉ℓ2 = 〈x, A∗y〉L2 . The adjoint of
local averaging is to form a piecewise-constant function as in (2.52).

Example 2.19 (Local averaging and its adjoint) The operator A given
by

(Ax)n =

∫ n+1/2

n−1/2

x(t) dt, n ∈ Z, (2.49)

takes local averages of the function x(t) to yield a sequence (Ax)n. (This opera-
tion is depicted in Figure 2.10 and is a form of sampling, which will be covered in
detail in Chapter 5.) We will first verify that A is a linear operator from L2(R)
to ℓ2(Z) and then find its adjoint.

The operator A clearly satisfies Definition 2.17(i) and (ii); we just need to
be sure that the result is in ℓ2(Z). Given x ∈ L2(R), let us compute the ℓ2 norm
of Ax:

‖Ax‖2ℓ2
(a)
=
∑

n∈Z

|(Ax)n|2
(b)
=
∑

n∈Z

∣∣∣∣
∫ n+1/2

n−1/2

x(t) dt

∣∣∣∣
2

(c)

≤
∑

n∈Z

∫ n+1/2

n−1/2

|x(t)|2 dt =

∫ ∞

−∞
|x(t)|2 dt (d)

= ‖x‖2L2 ,

where (a) follows from the definition of the ℓ2 norm, (2.32); (b) from (2.49); (c)
from (2.36); and (d) from the definition of the L2 norm, (2.33). Thus, Ax is
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46 From Euclid to Hilbert

indeed in ℓ2(Z) since its norm is bounded by ‖x‖L2 , which we know is finite since
x ∈ L2(R).

We now derive the adjoint of the operator (2.49). To do this, we must
find an operator A∗ : ℓ2(Z) → L2(R) such that 〈Ax, y〉ℓ2 = 〈x, A∗y〉L2 for any
x ∈ L2(R) and y ∈ ℓ2(Z). After expanding both expressions using the definitions
of the two inner products, the unique choice for A∗y will be clear:

〈Ax, y〉ℓ2
(a)
=
∑

n∈Z

(Ax)ny
∗
n

(b)
=
∑

n∈Z

(∫ n+1/2

n−1/2

x(t) dt

)
y∗n

(c)
=
∑

n∈Z

∫ n+1/2

n−1/2

x(t)y∗n dt, (2.50)

where (a) follows from the definition of an inner product in ℓ2(Z), (2.32); (b)
from (2.49); and (c) from pulling yn into the integral since it does not depend on
t. For this final expression to match

〈x, A∗y〉L2 =

∫ ∞

−∞
x(t)((A∗y)(t))∗ dt (2.51)

for arbitrary x and y, we must define A∗y as the piecewise-constant function

(A∗y)(t) = yn for t ∈ [n− 1
2 , n+ 1

2 ). (2.52)

Then, the integral in (2.51) breaks into the sum of integrals in (2.50).

The following theorem summarizes several key properties of the adjoint.

Theorem 2.21 (Adjoint properties) Let A : H0 → H1 be a bounded linear
operator.

(i) The adjoint A∗, defined through (2.48), exists.

(ii) The adjoint A∗ is unique.

(iii) The adjoint of A∗ equals the original operator, (A∗)∗ = A.

(iv) The operators AA∗ and A∗A are self-adjoint.

(v) The operator norms of A and A∗ are equal, ‖A∗‖ = ‖A‖.
(vi) If A is invertible, the adjoint of the inverse and the inverse of the adjoint are

equal, (A−1)∗ = (A∗)−1.

(vii) Let B : H0 → H1 be a bounded linear operator. Then, (A+B)∗ = A∗+B∗.

(viii) Let B : H1 → H2 be a bounded linear operator. Then, (BA)∗ = A∗B∗.

Proof. Parts (i) and (v) are the most technically challenging and go beyond our scope;
proofs of these based on the Riesz representation theorem can be found in texts such
as [59]. Parts (ii) and (iii) are proven below, with the remaining parts left for Exer-
cise 2.27.
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(ii) Suppose that B and C are adjoints of A. Then, for any x in H0 and y in H1,

0 = 〈Ax, y〉 − 〈Ax, y〉 (a)
= 〈x, By〉 − 〈x, Cy〉

(b)
= 〈x, By − Cy〉 (c)

= 〈x, (B − C)y〉,

where (a) follows from (2.48) and B and C being adjoints of A; (b) from the
distributivity of the inner product; and (c) from the additivity of the operators.
Since this holds for every x in H0, it holds in particular for x = (B−C)y. By the
positive definiteness of the inner product, we must have (B − C)y = 0 for every
y in H1. This implies that By = Cy for every y in H1, so the adjoint is unique.

(iii) For any x in H1 and y in H0,

〈A∗x, y〉 (a)
= 〈y, A∗x〉∗ (b)

= 〈Ay, x〉∗ (c)
= 〈x, Ay〉,

where (a) follows from the Hermitian symmetry of the inner product; (b) from
(2.48); and (c) from the Hermitian symmetry of the inner product.

The adjoint of a bounded linear operator provides key relationships between sub-
spaces (Figure 2.36 in Appendix 2.B illustrates the case when the operator is a
finite-dimensional matrix):

R(A)⊥ = N (A∗), (2.53a)

R(A) = N (A∗)⊥. (2.53b)

To see that N (A∗) ⊆ R(A)⊥, first let y ∈ N (A∗) and y′ ∈ R(A). Then, since
y′ = Ax for some x in the domain of A, we can compute

〈y′, y〉 = 〈Ax, y〉 (a)
= 〈x, A∗y〉 (b)

= 〈x, 0〉 = 0,

where (a) follows from the definition of the adjoint; and (b) from y ∈ N (A∗). This
shows that y ⊥ R(A), so y ∈ R(A)⊥. Conversely, to see that R(A)⊥ ⊆ N (A∗), first
let y ∈ R(A)⊥ and let x be any vector in the domain of A. Then,

0
(a)
= 〈Ax, y〉 (b)

= 〈x, A∗y〉, (2.54)

where (a) follows from y ∈ R(A)⊥; and (b) from the definition of the adjoint. Since
(2.54) holds for all x, we can choose x = A∗y so that (2.54) implies A∗y = 0 by
the positive definiteness of the inner product. This shows that y ∈ N (A∗). These
arguments prove (2.53a). The subtleties of infinite dimensions, for example that
the range of a bounded linear operator need not be closed, make proving (2.53b) a
bit more difficult. Note that linear operators that arise in later chapters have closed
ranges.

Unitary operators Unitary operators are important because they preserve geom-
etry (lengths and angles) when mapping one Hilbert space to another.
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48 From Euclid to Hilbert

Definition 2.22 (Unitary operator) A bounded linear operator A : H0 →
H1 is called unitary when

(i) it is invertible; and

(ii) it preserves inner products,

〈Ax, Ay〉H1 = 〈x, y〉H0 for every x, y in H0. (2.55)

Preservation of inner products leads to preservation of norms:

‖Ax‖2 = 〈Ax, Ax〉 = 〈x, x〉 = ‖x‖2. (2.56)

In Fourier theory, this is called the Parseval equality; it is used extensively in this
book and its companion volume [57].

The following theorem provides conditions equivalent to the definition of a
unitary operator above. These conditions are reminiscent of the standard definition
of a unitary matrix.

Theorem 2.23 (Unitary linear operator) A bounded linear operator
A : H0 → H1 is unitary if and only if A−1 = A∗.

Proof. We first derive two intermediate results and then prove the theorem. Condition
(2.55) is equivalent to A∗ being a left inverse of A:

A∗A = I on H0. (2.57a)

To see that (2.55) implies (2.57a), note that for every x, y in H0,

〈A∗Ax, y〉 (a)
= 〈Ax, Ay〉 (b)

= 〈x, y〉,
where (a) follows from the definition of the adjoint; and (b) from (2.55). Conversely,
to see that (2.57a) implies (2.55), note that

〈Ax, Ay〉 (a)
= 〈x, A∗Ay〉 (b)

= 〈x, y〉,
where (a) follows from the definition of the adjoint; and (b) from (2.57a).

Combining the invertibility of A with condition (2.55) implies that A∗ is a right
inverse of A:

AA∗ = I on H1. (2.57b)

To see this, note that for every x, y in H1,

〈AA∗x, y〉 = 〈AA∗x, AA−1y〉 (a)
= 〈A∗x, A−1y〉 (b)

= 〈x, AA−1y〉 = 〈x, y〉,
where (a) follows from (2.55); and (b) from the definition of the adjoint.

The equivalence in the theorem now follows: If A is unitary, then by definition A is
invertible and (2.55) holds, so both conditions (2.57) hold; thus, A−1 = A∗. Conversely,
if A−1 = A∗, then A is invertible and (2.57a) holds, the latter implying (2.55) holds;
thus, A is unitary.
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2.3 Hilbert spaces 49

Eigenvalues and eigenvectors The concept of an eigenvector generalizes from
finite-dimensional linear algebra to our Hilbert space setting. Like other concepts
that apply to matrices only when they are square, the generalization applies when
the domain and codomain of a linear operator are the same Hilbert space. We call
an eigenvector an eigensequence when the signal domain is Z or a subset of Z (for
example, in Chapter 3); we call it an eigenfunction when the signal domain is R or
an interval [a, b] (for example, in Chapter 4).

Definition 2.24 (Eigenvector of a linear operator) An eigenvector of a
linear operator A : H → H is a nonzero vector v ∈ H such that

Av = λv, (2.58)

for some λ ∈ C. The constant λ is called the corresponding eigenvalue and (λ, v)
is called an eigenpair.

The eigenvalues and eigenvectors of a self-adjoint operator A have several
useful properties:

(i) All eigenvalues are real: If (λ, v) is an eigenpair of A,

λ〈v, v〉 (a)
= 〈λv, v〉 (b)

= 〈Av, v〉 (c)
= 〈v, A∗v〉

(d)
= 〈v, Av〉 (e)

= 〈v, λv〉 (f)
= λ∗〈v, v〉,

where (a) follows from the linearity in the first argument of the inner product;
(b) from (2.58); (c) from the definition of adjoint; (d) from the definition of
self-adjoint; (e) from (2.58); and (f) from the conjugate linearity in the second
argument of the inner product. Since λ = λ∗, λ is real.

(ii) Eigenvectors corresponding to distinct eigenvalues are orthogonal: If (λ0, v0)
and (λ1, v1) are eigenpairs of A,

λ0〈v0, v1〉
(a)
= 〈λ0v0, v1〉

(b)
= 〈Av0, v1〉

(c)
= 〈v0, A∗v1〉

(d)
= 〈v0, Av1〉

(e)
= 〈v0, λ1v1〉

(f)
= λ∗1〈v0, v1〉,

where (a) follows from the linearity in the first argument of the inner product;
(b) from (2.58); (c) from the definition of adjoint; (d) from the definition of
self-adjoint; (e) from (2.58); and (f) from the conjugate linearity in the second
argument of the inner product. Thus, λ0 6= λ1 implies 〈v0, v1〉 = 0.

Positive definite operators Positive definiteness can also be generalized from
square Hermitian matrices to self-adjoint operators on a general Hilbert space.
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50 From Euclid to Hilbert

Definition 2.25 (Definite linear operator) A self-adjoint operator
A : H → H is called

(i) positive semidefinite or nonnegative definite, written A ≥ 0, when

〈Ax, x〉 ≥ 0 for all x ∈ H ; (2.59a)

(ii) positive definite, written A > 0, when

〈Ax, x〉 > 0 for all nonzero x ∈ H ; (2.59b)

(iii) negative semidefinite or nonpositive definite, written A ≤ 0, when −A is
positive semidefinite; and

(iv) negative definite, written A < 0, when −A is positive definite.

As suggested by the notation, positive definiteness defines a partial order on self-
adjoint operators. When A and B are self-adjoint operators defined on the same
Hilbert space, A ≥ B means that A−B ≥ 0; that is, A−B is a positive semidefinite
operator.

As noted above, all eigenvalues of a self-adjoint operator are real. Positive
definiteness is equivalent to all eigenvalues being positive; positive semidefiniteness
is equivalent to all eigenvalues being nonnegative. Exercise 2.28 develops a proof of
these facts.

2.4 Approximations, projections, and decompositions

Many of the linear operators that we encounter in later chapters are projection
operators, in particular orthogonal projection operators. As we will see in this
section, orthogonal projection operators find best approximations from within a
subspace, that is, approximations that minimize a Hilbert space norm of the error.
An orthogonal projection generates a decomposition of a vector into components in
two orthogonal subspaces. We will also see how the more general oblique projection
operators generate decompositions of vectors into components in two subspaces that
are not necessarily orthogonal.

Best approximation, orthogonal projection, and orthogonal
decomposition

Let S be a closed subspace of a Hilbert space H and let x be a vector in H . The
best approximation problem is to find the vector in S that is closest to x:

x̂ = argmin
s∈S

‖x− s‖. (2.60)

Most commonly, the Hilbert space norm is the 2 norm, ℓ2 norm, or L2 norm and
thus involves squaring, in which case x̂ is called a least-squares approximation. Of
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0

S

x

•̂
x•

x′

Figure 2.11 Illustration of best approximation. In Euclidean geometry, the best approx-
imation of x on the line S is obtained with error x− x̂ orthogonal to S; any candidate x′

such that x − x′ is not orthogonal to S is farther from x. This holds more generally in
Hilbert spaces.

course, when x is in S then x̂ = x uniquely solves the problem – it makes the
approximation error ‖x− x̂‖ zero.16 The interesting case is when x is not in S.

Figure 2.11 illustrates the problem and its solution in Euclidean geometry. The
point on the line S that is closest to a point x not on the line is uniquely determined
by finding the circle centered at x that is tangent to the line. Any other candidate
x′ on the line lies outside the circle and is thus farther from x. Since a line tangent
to a circle is always perpendicular to a line segment from the tangent point to
the center of the circle, the solution x̂ satisfies the following orthogonality property:
x−x̂ ⊥ S. The projection theorem extends this geometric result to arbitrary Hilbert
spaces. The subspace S uniquely determines the orthogonal decomposition of x into
the approximation x̂ and the residual x − x̂, and the orthogonality of x− x̂ and S
uniquely determines x̂.

2.4.1 Projection theorem

The solution to the best approximation problem in a general Hilbert space is de-
scribed by the following theorem.

Theorem 2.26 (Projection theorem) Let S be a closed subspace of a Hilbert
space H , and let x be a vector in H .

(i) Existence: There exists x̂ ∈ S such that ‖x− x̂‖ ≤ ‖x− s‖ for all s ∈ S.
(ii) Orthogonality: x− x̂ ⊥ S is necessary and sufficient for determining x̂.

(iii) Uniqueness: The vector x̂ is unique.

(iv) Linearity: x̂ = Px, where P is a linear operator that depends on S and not
on x.

16Recall from Definition 2.9(i) that ‖x− x̂‖ is nonnegative and zero if and only if x− x̂ = 0.

Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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0

S

S⊥

x

x̂

x− x̂

Figure 2.12 The best approximation of x ∈ H within a closed subspace S is uniquely
determined by x− x̂ ⊥ S. The solution generates an orthogonal decomposition of x into
x̂ ∈ S and x− x̂ ∈ S⊥.

(v) Idempotency: P (Px) = Px for all x ∈ H .

(vi) Self-adjointness: P = P ∗.

Proof. We prove existence last since it is the most technical and is the only part that
requires completeness of the space. (Orthogonality and uniqueness hold withH replaced
by any inner product space and S replaced by any subspace.)

(ii) Orthogonality: Suppose that x̂ minimizes ‖x − x̂‖ but that x − x̂ 6⊥ S. Then,
there exists a unit vector ϕ ∈ S such that 〈x− x̂, ϕ〉 = ε 6= 0. Let s = x̂+ εϕ and
note that s is in S since x and ϕ are in S and S is a subspace. The calculation

‖x− s‖2 = ‖x− x̂− εϕ‖2

= ‖x− x̂‖2 − 〈x− x̂, εϕ〉︸ ︷︷ ︸
= |ε|2

−〈εϕ, x− x̂〉︸ ︷︷ ︸
= |ε|2

+ ‖εϕ‖2︸ ︷︷ ︸
= |ε|2

= ‖x− x̂‖2 − |ε|2 < ‖x− x̂‖2

then shows that x̂ is not the minimizing vector. This contradiction implies that
x− x̂ ⊥ S. This can also be written as x− x̂ ∈ S⊥; see Figure 2.12.

To prove sufficiency, we assume that x− x̂ ⊥ S, or 〈x− x̂, s〉 = 0 for all s ∈ S.
Because x̂ ∈ S and S is a subspace, x̂− s ∈ S as well, and thus 〈x− x̂, x̂− s〉 = 0;
that is, x− x̂ is orthogonal to x̂− s. Then,

‖x− s‖2 = ‖(x− x̂) + (x̂− s)‖2 (a)
= ‖x− x̂‖2 + ‖x̂− s‖2

(b)

≥ ‖x− x̂‖2,
for all s ∈ S, where (a) follows from the Pythagorean theorem; and (b) from the
positive definiteness of the norm.

(iii) Uniqueness: Suppose that x− x̂ ⊥ S. For any s ∈ S,

‖x− s‖2 = ‖(x− x̂) + (x̂− s)‖2 (a)
= ‖x− x̂‖2 + ‖x̂− s‖2,

where x̂ − s ∈ S implies that x − x̂ ⊥ x̂ − s, which allows an application of the
Pythagorean theorem in (a). Since ‖x̂ − s‖ > 0 for any s 6= x̂ by the positive
definiteness of the norm, this shows that ‖x− s‖ > ‖x− x̂‖ for any s 6= x̂.

Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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2.4 Approximations, projections, and decompositions 53

(iv) Linearity: Let α be any scalar, and denote the best approximations in S of
x1 and x2 by x̂1 and x̂2, respectively. The orthogonality property implies that
x1− x̂1 ∈ S⊥ and x2− x̂2 ∈ S⊥. Since S is a subspace, x̂1+ x̂2 ∈ S; and since S⊥

is a subspace, (x1 − x̂1) + (x2 − x̂2) ∈ S⊥. With (x1 + x2)− (x̂1 + x̂2) ∈ S⊥ and
x̂1+x̂2 ∈ S, the uniqueness property shows that x̂1+x̂2 is the best approximation
of x1 + x2. This shows additivity. Similarly, since S is a subspace, αx̂1 ∈ S; and
since S⊥ is a subspace, α(x1 − x̂1) ∈ S⊥. With αx1 − αx̂1 ∈ S⊥ and αx̂1 ∈ S,
the uniqueness property shows that αx̂1 is the best approximation of αx1. This
shows scalability.

(v) Idempotency: The property to check is that the operator P leaves Px unchanged.
This follows from two facts: Px ∈ S and Pu = u for all u ∈ S. That Px is in S
is part of the definition of x̂. For the second fact, let u ∈ S and suppose that û
satisfies

‖u− û‖ ≤ ‖u− s‖ for all s ∈ S.
By the uniqueness property, there can be only one such û, and since û = u gives
‖u− û‖ = 0 and the norm is nonnegative, we must have û = u.

(vi) Self-adjointness: We would like to show that 〈Px, y〉 = 〈x, Py〉 for all x, y ∈ H :

〈Px, y〉 = 〈Px, Py + (y − Py)〉 (a)
= 〈Px, Py〉+ 〈Px, y − Py〉 (b)

= 〈Px, Py〉,

where (a) follows from the distributivity of the inner product; and (b) from
Px ∈ S and y − Py ∈ S⊥. Similarly,

〈x, Py〉 = 〈Px+ (x− Px), P y〉 = 〈Px, Py〉+ 〈x− Px, Py〉 = 〈Px, Py〉.

(i) Existence: We finally show the existence of a minimizing x̂. If x is in S, then
x̂ = x achieves the minimum, so there is no question of existence. We thus restrict
our attention to x 6∈ S. Let ε = infs∈S‖x − s‖. Then, there exists a sequence
of vectors s0, s1, . . . in S such that ‖x − sk‖ → ε; the challenge is to show that
the infimum is achieved by some x̂ ∈ S. We do this by showing that {sk}k≥0

is a Cauchy sequence and thus converges, within the closed subspace S, to the
desired x̂.

By applying the parallelogram law (2.28) to x− sj and si − x,

‖(x− sj) + (si − x)‖2 + ‖(x− sj)− (si − x)‖2 = 2‖x− sj‖2 + 2‖si − x‖2.

Canceling x in the first term and moving the second term to the right yields

‖si − sj‖2 = 2‖x− sj‖2 + 2‖si − x‖2 − 4
∥∥∥x− 1

2
(si + sj)

∥∥∥
2

. (2.61)

Now, since S is a subspace, 1
2
(si+ sj) is in S. Thus by the definition of ε we have

‖x− 1
2
(si + sj)‖ ≥ ε. Substituting into (2.61) and using the nonnegativity of the

norm gives

0 ≤ ‖si − sj‖2 ≤ 2‖x− sj‖2 + 2‖si − x‖2 − 4ε2.

With the convergence of ‖x− sj‖2 and ‖si−x‖2 to ε2, we conclude that {sk}k≥0

is a Cauchy sequence. Now, since S is a closed subspace of a complete space,
{sk}k≥0 converges to x̂ ∈ S. Since a norm is continuous, convergence of {sk}k≥0

to x̂ implies that ‖x− x̂‖ = ε.
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54 From Euclid to Hilbert

The projection theorem leads to a simple and unified methodology for computing
best approximations through the normal equations. We develop this in detail after
the introduction of bases in Section 2.5. The following example provides a preview.

Example 2.20 (Projection theorem) Consider the function x(t) = cos(32πt)
in the Hilbert space L2([0, 1]). To find the degree-1 polynomial closest to x di-
rectly (without using the projection theorem) would require solving

min
a0, a1

∫ 1

0

∣∣∣∣cos
(
3

2
πt

)
− (a0 + a1t)

∣∣∣∣
2

dt.

Noting that the degree-1 polynomials form a closed subspace in this Hilbert space,
the projection theorem shows that (a0, a1) is determined uniquely by requiring

x(t)− x̂(t) = cos

(
3

2
πt

)
− (a0 + a1t)

to be orthogonal to the entire subspace of degree-1 polynomials. Imposing or-
thogonality to 1 and to t gives two linearly independent equations to solve:

0 = 〈x(t)− x̂(t), 1〉 =
∫ 1

0

(
cos

(
3

2
πt

)
− (a0+a1t)

)
· 1 dt = − 2

3π
− a0 −

1

2
a1,

0 = 〈x(t)− x̂(t), t〉 =
∫ 1

0

(
cos

(
3

2
πt

)
− (a0+a1t)

)
· t dt = 4 + 6π

9π2
− 1

2
a0 −

1

3
a1.

Their solution is

a0 =
8 + 4π

3π2
, a1 = −16 + 12π

3π2
.

Figure 2.13(a) shows the function and its degree-1 polynomial approximation.
Best approximations among degree-K polynomials for K = 1, 2, 3, 4 are

shown in Figure 2.13(b). Increasing the degree increases the size of the subspace
of polynomials, so the quality of approximation is naturally improved. We will
see in Chapter 6 (Theorem 6.6) that, since x(t) is continuous, the error is driven
to zero by letting K grow without bound.

The effect of the operator P that arises in the projection theorem is to move
the input vector x in a direction orthogonal to the subspace S until S is reached at
x̂. In the following two sections, we show that P has the defining characteristics of
what we will call an orthogonal projection operator, and we describe the mapping
of x to an approximation x̂ and a residual x − x̂ as what we will call an orthog-
onal decomposition. As we will see shortly, projections and decompositions have
nonorthogonal (oblique) versions as well.

2.4.2 Projection operators

The operator P that arises from solving the best approximation problem is an
orthogonal projection operator, as per the following definition.17

17We use the term projection only with respect to Hilbert space geometry; many other mathe-
matical and scientific meanings are inconsistent with this. Some authors use projection to mean
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(a) K = 1. (b) K = 1, 2, 3, 4.

Figure 2.13 Best approximation x̂K(t) (solid lines, from lightest to darkest) of x(t)
(dashed lines) among degree-K polynomials; approximation quality is measured by the L2

norm on ([0, 1]) as in Example 2.20. Allowing higher-degree polynomials increases the size
of the subspace to which x(t) is orthogonally projected and decreases the approximation
error.

Definition 2.27 (Projection operator)

(i) An idempotent operator P is an operator such that P 2 = P .

(ii) A projection operator is a bounded linear operator that is idempotent.

(iii) An orthogonal projection operator is a projection operator that is self-
adjoint.

(iv) An oblique projection operator is a projection operator that is not self-
adjoint.

An operator is idempotent when applying it twice is no different than applying
it once. For example, setting certain components of a vector to a constant value is an
idempotent operation, and when that constant is zero this operation is linear. The
following example introduces a notation for the basic class of orthogonal projection
operators that set a portion of a vector to zero.

Example 2.21 (Projection via domain restriction) Let I be a subset of
Z, and define the linear operator 1I : ℓ2(Z)→ ℓ2(Z) by

y = 1I x, where yk =

{
xk, for k ∈ I;
0, otherwise.

(2.62)

This is a special case of the linear operator in Example 2.17(iii), with

αk =

{
1, for k ∈ I;
0, otherwise.

orthogonal projection. We will not adopt this potentially confusing shorthand because many im-
portant properties and uses of projection operators hold for all projections – both orthogonal and
oblique.
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56 From Euclid to Hilbert

This operator is obviously idempotent, and it is self-adjoint because of the adjoint
computation in Example 2.18(iii). Thus 1I is an orthogonal projection operator.

By using the connection with Example 2.17(iii), we see that the operation
in (2.62) is equivalent to pointwise multiplication by an indicator sequence

(1I)k =

{
1, for k ∈ I;
0, otherwise.

(2.63)

The equivalence allows us to use the same symbol 1I for the operator and the
sequence with little chance for ambiguity.

The same notation is used for vector spaces with domains other than Z. For
example, with I a subset of R, we define the linear operator 1I : L2(R)→ L2(R)
by

y = 1I x, where y(t) =

{
x(t), for t ∈ I;

0, otherwise.
(2.64)

The operator results in pointwise multiplication of its input by the indicator
function

1I(t) =

{
1, for t ∈ I;
0, otherwise.

(2.65)

Exercise 2.30 establishes properties of this operator.

The following example gives an explicit expression for projection operators
onto one-dimensional subspaces. This was discussed informally in Section 2.1.

Example 2.22 (Orthogonal projection onto 1-dimensional subspace)
Given a vector ϕ ∈ H of unit norm, let

Px = 〈x, ϕ〉ϕ. (2.66)

This is a linear operator because of the distributivity and the linearity in the
first argument of the inner product. To use Theorem 2.28 to show that P is the
orthogonal projection operator onto the subspace of scalar multiples of ϕ, we
verify the idempotency and self-adjointness of P . Idempotency is proven by the
following computation:

P 2x = 〈〈x, ϕ〉ϕ, ϕ〉ϕ (a)
= 〈x, ϕ〉〈ϕ, ϕ〉ϕ (b)

= 〈x, ϕ〉ϕ = Px,

where (a) follows from the linearity in the first argument of the inner product;
and (b) from 〈ϕ, ϕ〉 = 1. Self-adjointness is proven by the following computation:

〈Px, y〉 = 〈〈x, ϕ〉ϕ, y〉 (a)
= 〈x, ϕ〉〈ϕ, y〉 = 〈ϕ, y〉〈x, ϕ〉

(b)
= 〈y, ϕ〉∗〈x, ϕ〉 (c)

= 〈x, 〈y, ϕ〉ϕ〉 = 〈x, Py〉,

where (a) follows from the linearity in the first argument of the inner product; (b)
from the conjugate symmetry of the inner product; and (c) from the conjugate
linearity in the second argument of the inner product.
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2.4 Approximations, projections, and decompositions 57

Collections of one-dimensional projections are central to representations using bases,
which are introduced in Section 2.5 and developed in several subsequent chapters.
Solved exercise 2.4 extends the one-dimensional example to orthogonal projection
onto subspaces of higher dimensions.

The following theorem uses the orthogonality of certain vectors to prove that
an operator is an orthogonal projection operator. This complements the projection
theorem, since here an operator is specified rather than a subspace. After the proof,
we discuss the subspace that is implicit in the theorem.

Theorem 2.28 (Orthogonal projection operator) A bounded linear op-
erator P on a Hilbert space H satisfies

〈x− Px, Py〉 = 0 for all x, y ∈ H (2.67)

if and only if P is an orthogonal projection operator.

Proof. Condition (2.67) is equivalent to having

0 = 〈x− Px, Py〉 (a)
= 〈P ∗(x− Px), y〉 = 〈P ∗(I − P )x, y〉 for all x, y ∈ H,

where (a) follows from the definition of the adjoint. This then implies that P ∗(I−P ) =
0, so

P ∗ = P ∗P. (2.68)

We will show that (2.68) is equivalent to P being an orthogonal projection operator.
First assume that (2.68) holds. Then,

P = (P ∗)∗
(a)
= (P ∗P )∗ = P ∗P

(b)
= P ∗,

where (a) and (b) follow from (2.68). Thus, P is self-adjoint. Furthermore,

P 2 (a)
= P ∗P

(b)
= P ∗ (c)

= P,

where (a) and (c) follow from P being self-adjoint; and (b) from (2.68). Thus, P is
idempotent. Therefore, (2.68) implies P is an orthogonal projection operator.

For the converse, assume P is an orthogonal projection operator. Then,

P ∗P
(a)
= P 2 (b)

= P
(c)
= P ∗,

where (a) and (c) follow from P being self-adjoint; and (b) from P being idempotent.
Therefore, P being an orthogonal projection operator implies (2.68).

The range of any linear operator is a subspace. In the setting of the preceding
theorem, we may associate with P the closed subspace S = R(P ). Then, we have
that P is the orthogonal projection operator onto S. The orthogonality equation
(2.67) is a restatement of the projection residual x− Px being orthogonal to S.

The final theorem of the section establishes important connections among
inverses, adjoints and projections; the proof is simple and left for Exercise 2.31.
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5
10

10 20

5

10

x

Px

x0

x1

x2
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Figure 2.14 The two-dimensional range of the oblique projection operator P from

Example 2.23 is the plane x0 + x2 = x1. For example, the vector x =
[
6 6 8

]⊤
is

projected via P onto Px =
[
2 6 4

]⊤
, which is not an orthogonal projection.

Theorem 2.29 (Projection operators, adjoints, and inverses) Let
A : H0 → H1 and B : H1 → H0 be bounded linear operators. If A is a left inverse
of B, then BA is a projection operator. If additionally B = A∗, then BA = A∗A
is an orthogonal projection operator.

Example 2.23 (Projection onto a subspace) Let

A =
1

2

[
1 1 −1
−1 1 1

]
and B =



1 0
1 1
0 1


 .

Since A is a left inverse of B, we know from Theorem 2.29 that P = BA is a
projection operator. Explicitly,

P = BA =
1

2




1 1 −1
0 2 0
−1 1 1


 ,

from which one can verify P 2 = P . A description of the two-dimensional range of
this projection operator is most transparent from B: it is the set of three-tuples
with middle component equal to the sum of the first and last (see Figure 2.14).
Note that P 6= P ∗, so the projection is oblique. Exercise 2.32 finds all matrices
A such that BA is a projection operator onto the range of B.

The next example draws together some earlier results to give an orthogonal projec-
tion operator on L2(R). It also illustrates the basics of sampling and interpolation,
to which we will return in Chapter 5.

Example 2.24 (Orthogonal projection operator on L2(R)) Let A :
L2(R)→ ℓ2(Z) be the local averaging operator (2.49) and let A∗ : ℓ2(Z)→ L2(R)
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Cambridge University Press (ISBN 110703860X) v1.1 [May 2014] [free version] Comments to book-errata@FourierAndWavelets.org



2.4 Approximations, projections, and decompositions 59

æ

æ æ

æ

æ

æ
æ

æ

æ

æ

æ æ

æ

æ æ

æ

5 10 15

-10

-5

5

10

t

x(t), x̂(t)

Figure 2.15 Illustration of an orthogonal projection operator on L2(R). The linear
operator A and its adjoint A∗ illustrated in Figure 2.10 satisfy AA∗ = I , so A∗A is an
orthogonal projection operator. The range of A∗ is the subspace of L2(R) consisting of
functions that are constant on all intervals [n− 1

2
, n+ 1

2
), n ∈ Z. Thus, x̂ = A∗Ax (solid

line) is the best approximation of x (dashed line) in this subspace.

be its adjoint, as derived in Example 2.19. If we verify that A is a left inverse of
A∗, we will have, as a consequence of Theorem 2.29, that A∗A is an orthogonal
projection operator.

To check that A is a left inverse of A∗, consider the application of AA∗ to
an arbitrary sequence in ℓ2(Z). (Recall that the separate effects of A and A∗

are as illustrated in Figure 2.10.) Remembering to compose from right to left,
AA∗ starts with a sequence y, creates a function equal to yn on each interval
[n − 1

2 , n + 1
2 ), and then recovers the original sequence by finding the average

value of the function on each interval [n − 1
2 , n + 1

2 ). So AA∗ is indeed an
identity operator. One conclusion to draw by combining the projection theorem
with A∗A being an orthogonal projection operator is the following: Given a
function x ∈ L2(R), the function in the subspace of piecewise-constant functions
A∗ℓ2(Z) that is closest to x in L2 norm is the one obtained by replacing x(t),

t ∈ [n− 1
2 , n+

1
2 ), by its local average

∫ n+1/2

n−1/2
x(t) dt. The result of applying A∗A

is depicted in Figure 2.15.

Pseudoinverse operators By Definition 2.27, a projection operator will be an
orthogonal projection operator if, in addition to being idempotent, it is orthogonal.
We thus have the following as an extension of Theorem 2.29.

Theorem 2.30 (Orthogonal projection via pseudoinverse) Let
A : H0 → H1 be a bounded linear operator.

(i) If AA∗ is invertible, then

B = A∗(AA∗)−1 (2.69a)

is the pseudoinverse of A, and BA = A∗(AA∗)−1A is the orthogonal projec-
tion operator onto the range of A∗.
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(ii) If A∗A is invertible, then

B = (A∗A)−1A∗ (2.69b)

is the pseudoinverse of A, and AB = A(A∗A)−1A∗ is the orthogonal projec-
tion operator onto the range of A.

Because of this connection to orthogonal projection, the pseudoinverse is useful
for best approximation problems; we discuss this in more detail in Chapter 5. In
addition, the pseudoinverse is useful for understanding dual bases and canonical dual
frames; we will see that in Sections 2.5.3 and 2.5.4 and Chapters 5 and 6. When A
has an infinite-dimensional domain and codomain, finding the pseudoinverse of A
by inversion of AA∗ or A∗A can be difficult. As we will see in Chapters 5 and 6, we
can avoid explicit inversion by finding a system of equations satisfied by the desired
dual.

2.4.3 Direct sums and subspace decompositions

In the projection theorem, the best approximation x̂ is uniquely determined by the
orthogonality of x̂ and x − x̂. Thus, the projection theorem proves that x can be
written uniquely as

x = xS + xS⊥ , where xS ∈ S and xS⊥ ∈ S⊥, (2.70)

because we must have xS = x̂ and xS⊥ = x− x̂.
Being able to uniquely write any x as a sum defines a decomposition. Having

an orthogonal pair of subspaces as in (2.70) is an important special case that yields
an orthogonal decomposition.

Definition 2.31 (Direct sum and decomposition) A vector space V is a di-
rect sum of subspaces S and T , denoted V = S ⊕ T , when any nonzero vector
x ∈ V can be written uniquely as

x = xS + xT , where xS ∈ S and xT ∈ T. (2.71)

The subspaces S and T form a decomposition of V , and the vectors xS and xT
form a decomposition of x. When S and T are orthogonal, each decomposition is
called an orthogonal decomposition.

A general direct-sum decomposition V = S ⊕ T is illustrated in Figure 2.16(a).
When S is a closed subspace of a Hilbert space H , the projection theorem

generates the unique decomposition (2.70); thus, H = S ⊕ S⊥. It is tempting to
write V = S ⊕ S⊥ for any (not necessarily closed) subspace of any (not necessarily
complete) vector space. However, this is not always possible. The following example
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(a) Decomposition. (b) Orthogonal projection. (c) Oblique projection.

Figure 2.16 Decompositions and projections. (a) A vector space V is decomposed as
a direct sum S ⊕ T when any x ∈ V can be written uniquely as a sum of components
in S and T . (b) An orthogonal projection operator generates an orthogonal direct-sum
decomposition of a Hilbert space. It decomposes the vector x into xS ∈ S and xS⊥ ∈ S⊥.
(c) An oblique projection operator generates a nonorthogonal direct-sum decomposition

of a Hilbert space. It decomposes the vector x into xS ∈ S and xS̃⊥ ∈ S̃⊥.

highlights the necessity of working with closed subspaces of a complete space. As
noted before Example 2.14, we frequently work with the closure of a span to avoid
the pitfalls of subspaces that are not closed.

Example 2.25 (Failure of direct sum S ⊕ S⊥) As in Example 2.14, con-
sider Hilbert space ℓ2(N) and, for each k ∈ N, let the sequence sk be 0 except
for a 1 in the kth position. Then, S = span({s0, s1, . . .}) consists of all vectors
in ℓ2(N) that have a finite number of nonzero entries, and S is a subspace. Let
x ∈ ℓ2(N) be a nonzero vector. Then, xn 6= 0 for some n ∈ N, so x 6⊥ sn, which
implies that x 6∈ S⊥. Since no nonzero vector is in S⊥, we have that S⊥ = {0}.
Since S itself is not all of ℓ2(N), one cannot write every x ∈ ℓ2(N) as in (2.70).

The main goal of this section is to extend the connection between decom-
positions and projections to the general (oblique) case. The following theorem
establishes that a projection operator P generates a direct-sum decomposition as
illustrated in Figure 2.16(c). The dashed line shows the effect of the operator,

xS = Px, and the residual xS̃⊥ = x−xS is in a subspace we denote S̃⊥ rather than
T for reasons that will become clear shortly.

Theorem 2.32 (Direct-sum decomposition from projection operator)
Let H be a Hilbert space.

(i) Let P be a projection operator on H . It generates a direct-sum decompo-
sition of H into its range R(P ) and null space N (P ): H = S ⊕ T , where
S = R(P ) and T = N (P ).

(ii) Conversely, let closed subspaces S and T satisfy H = S ⊕ T . Then, there
exists a projection operator on H such that S = R(P ) and T = N (P ).
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62 From Euclid to Hilbert

Proof. (i) Let x ∈ H . We would like to prove that a decomposition of the form (2.71)
exists and is unique. Existence is verified by letting xS = Px, which obviously is
in S = R(P ); and xT = x− Px, which is in T = N (P ) because

PxT = P (x− Px) = Px− P 2x
(a)
= Px− Px = 0,

where (a) uses the fact that P is idempotent. For uniqueness, suppose that

x = x′
S + x′

T , where x′
S ∈ S and x′

T ∈ T.

Upon equating the two expansions of x and applying P , we have

0 = P
(
(xS − x′

S) + (xT − x′
T )
)

= P (xS − x′
S) + P (xT − x′

T )

(a)
= P (xS − x′

S)
(b)
= xS − x′

S,

where (a) follows from xT − x′
T lying in T , the null space of P ; and (b) from

xS − x′
S lying in S and P equaling the identity on S. From this, x′

S = xS and
x′
T = xT follow.

(ii) Define the desired projection operator P from the unique decomposition of any
x ∈ H of the form (2.71) through Px = xS. The linearity of P follows easily
from the assumed uniqueness of decompositions of vectors. By construction, the
range of P is contained in S. It is actually all of S because any x ∈ S can be
uniquely decomposed as x + 0 with x ∈ S and 0 ∈ T . Similarly, the null space
of P contains T because any x ∈ T can be uniquely decomposed as 0 + x with
0 ∈ S and x ∈ T , showing that Px = 0. The null space of P is not larger than T
because any vector x ∈ H \ T can be written uniquely as in (2.71) with xS 6= 0,
so Px 6= 0. It remains only to verify that P is idempotent. This follows from
Px ∈ S and the fact that P equals the identity on S.

The following example makes explicit the form of a (possibly oblique) projec-
tion when S is a one-dimensional subspace. For consistency with later developments,
the illustration of Theorem 2.32 in Figure 2.16(c) uses S̃⊥ in place of T . Since S

and T = S̃⊥ have complementary dimension (adding to the whole Hilbert space),

we have that S and S̃ are of the same dimension. When S = S̃, the projection and
decomposition are orthogonal, and Figure 2.16(c) reduces to Figure 2.12. In the
example, this corresponds to ϕ = ϕ̃.

Example 2.26 (Oblique projection onto one-dimensional subspace)

Let S be the scalar multiples of unit vector ϕ ∈ H , and let S̃ be the scalar
multiples of an arbitrary vector ϕ̃ ∈ H . The operator

Px = 〈x, ϕ̃〉ϕ (2.72)

is linear and has range contained in S. We will find conditions under which it
generates a decomposition H = S ⊕ S̃⊥.

Since

P 2x = 〈〈x, ϕ̃〉ϕ, ϕ̃〉ϕ (a)
= 〈x, ϕ̃〉 〈ϕ, ϕ̃〉ϕ,

where (a) uses the linearity in the first argument of the inner product, P is
idempotent if and only if 〈ϕ, ϕ̃〉 = 1. Under this condition, we have H =
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2.4 Approximations, projections, and decompositions 63

R(P ) ⊕ N (P ) by Theorem 2.32. This can also be written as H = S ⊕ S̃⊥

because N (P ) and S̃⊥ are both precisely the set {x ∈ H | 〈x, ϕ̃〉 = 0}.
If 〈ϕ, ϕ̃〉 6= 1 but also 〈ϕ, ϕ̃〉 6= 0, a simple adjustment of the length of ϕ̃

will make P a projection operator. However, if 〈ϕ, ϕ̃〉 = 0, it is not possible to

decompose H as desired. In fact, S and S̃ are orthogonal, so S and S̃⊥ are the
same subspace.

2.4.4 Minimum mean-squared error estimation

The set of complex random variables can be viewed as a vector space over the com-
plex numbers (see Section 2.2.4). With the restriction of finite second moments –
which is implicit throughout the remainder of this section – this set forms a Hilbert
space under the inner product (2.37),

〈x, y〉 = E[ xy∗ ] .

The square of the norm of the difference between vectors in this vector space is the
mean-squared error (MSE) between the random variables,

‖x− x̂‖2 = E
[
|x− x̂|2

]
. (2.73)

Since minimizing the MSE is equivalent to minimizing a Hilbert space norm, many
minimum MSE (MMSE) estimation problems are solved easily with the projection
theorem. Throughout this section, MMSE estimators are called optimal, irrespective
of whether or not the estimator is constrained to a particular form.

Linear estimation Let x and y1, y2, . . . , yK be jointly distributed complex random
variables. A linear estimator18 of x from {yk}Kk=1 is a random variable of the form

x̂ = α0 + α1y1 + α2y2 + · · ·+ αKyK . (2.74)

When the coefficients are chosen to minimize the MSE, the estimator is called the
linear minimum mean-squared error (LMMSE) estimator. Since (2.74) places x̂ in
a closed subspace S of a Hilbert space of random variables, the projection theorem
dictates that the optimal estimator x̂ must be such that the error x− x̂ is orthogonal
to the subspace: x− x̂ ⊥ S.

Instead of trying to express that x − x̂ is orthogonal to every vector in S,
it suffices to write enough linearly independent equations to be able to solve for
{αk}Kk=0 in (2.74). Since constant random variables are in S (by setting α1 = α2 =
· · · = αK = 0), we must have

0
(a)
= 〈x− x̂, 1〉 (b)

= E[ x− x̂ ]
(c)
= E[ x ]− E[ x̂ ]

(d)
= E[ x ]− (α0 + α1E[ y1 ] + α2E[ y2 ] + · · ·+ αKE[ yK ]), (2.75a)

18A function of the form f(x1, x2, . . . , xK) = α0 + α1x1 + α2x2 + · · ·+ αKxK , where each αk

is a constant, is called affine. The estimator in (2.74) is called linear even though x̂ is an affine
function of y1, y2, . . . , yK because x̂ is a linear function of 1, y1, y2, . . . , yK , and 1 can be viewed
as a random variable.
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64 From Euclid to Hilbert

where (a) follows from the desired orthogonality; (b) from (2.37); and (c) and (d)
from the linearity of the expectation. We also have that each yk is in S, so by
analogous steps

0 = 〈x− x̂, yk〉 = E[ (x− x̂)y∗k ] = E[ xy∗k ]− E[ x̂y∗k ]

= E[ xy∗k ]− (α0E[ y
∗
k ] + α1E[ y1y

∗
k ] + · · ·+ αKE[ yKy∗k ]), (2.75b)

for k = 1, 2, . . . , K. Equations (2.75) can be rearranged using a matrix–vector
product as




1 E[ y1 ] E[ y2 ] · · · E[ yK ]
E[ y∗1 ] E[ |y1|2 ] E[ y2y

∗
1 ] · · · E[ yKy∗1 ]

E[ y∗2 ] E[ y∗1y
∗
2 ] E[ |y2|2 ] · · · E[ yKy∗2 ]

...
...

...
. . .

...
E[ y∗K ] E[ y1y

∗
K ] E[ y2y

∗
K ] · · · E[ |yK |2 ]







α0

α1

α2

...
αK



=




E[ x ]
E[ xy∗1 ]
E[ xy∗2 ]

...
E[ xy∗K ]



. (2.76)

This system of equations will usually have a unique solution. The solution fails to
be unique if and only if {1, y1, . . . , yK} is a linearly dependent set. In this case,
(2.76) will have multiple solutions {αk}Kk=0, but all the solutions yield the same
estimator.

It is critical in this result that the set of estimators form a subspace, but this
does not mean that the estimator must be an affine function of the observed data.
For example, the estimator of x from a single scalar y,

x̂ = β0 + β1y + β2y
2 + · · ·+ βKyK , (2.77)

fits the form of (2.74) with yk set to yk. Thus, assuming that x has a finite second
moment and y has finite moments up to order 2K, (2.76) can be used to optimize
the estimator. Assuming that y is real, (2.76) simplifies to




1 E[ y ] E[ y2 ] · · · E[ yK ]
E[ y ] E[ y2 ] E[ y3 ] · · · E[ yK+1 ]
E[ y2 ] E[ y3 ] E[ y4 ] · · · E[ yK+2 ]
...

...
...

. . .
...

E[ yK ] E[ yK+1 ] E[ yK+2 ] · · · E[ y2K ]







β0
β1
β2
...
βK



=




E[ x ]
E[ xy1 ]
E[ xy2 ]

...
E[ xyK ]



. (2.78)

Example 2.27 (Linear MMSE estimators) Suppose that the joint distribu-
tion of x and y is uniform over the region shaded in Figure 2.17. Since the area
of the shaded region is 1

3 , the joint probability density function of x and y is

fx,y(s, t) =

{
3, for s ∈ [0, 1] and t ∈ [0, s2];
0, otherwise.

We wish to find estimators of x from y, namely

x̂1 = α0 + α1y
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1

1
1

1

fx,y(s, t) = 3

in shaded region

s

t

Figure 2.17 Minimum mean-squared error estimators of x from y from Examples 2.27
and 2.28. The joint distribution of x and y is uniform over the shaded region, the upper
boundary of which is t = s2. The optimal estimates of the form x̂1 = α0 + α1y (solid
gray line) and x̂2 = β0 + β1y+ β2y

2 (solid line) are derived in Example 2.27. The optimal
estimator is 1

2
(1 +

√
y) (dashed line) and is derived in Example 2.28.

and

x̂2 = β0 + β1y + β2y
2

that are optimal over the choices of coefficients {α0, α1} and {β0, β1, β2}.
To form the system of equations (2.76), we perform the following compu-

tations:

E[ x ] =

∫ 1

0

∫ s2

0

3s dt ds =
3

4
,

E[ y ] =

∫ 1

0

∫ s2

0

3t dt ds =
3

10
,

E[ xy ] =

∫ 1

0

∫ s2

0

3st dt ds =
1

4
,

E
[
y2
]

=

∫ 1

0

∫ s2

0

3t2 dt ds =
1

7
.

Then, {α0, α1} is determined by solving

[
1 3

10
3
10

1
7

][
α0

α1

]
=

[
3
4
1
4

]

to obtain α0 = 45/74 and α1 = 35/74. The estimate x̂1 is shown as a function
of the observation y = t in Figure 2.17 (solid gray line).
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66 From Euclid to Hilbert

To find {β0, β1, β2}, we require three additional moments:

E
[
xy2

]
=

∫ 1

0

∫ s2

0

3st2 dt ds =
1

8
,

E
[
y3
]

=

∫ 1

0

∫ s2

0

3t3 dt ds =
1

12
,

E
[
y4
]

=

∫ 1

0

∫ s2

0

3t4 dt ds =
3

55
.

The system of equations (2.76) becomes



1 3

10
1
7

3
10

1
7

1
12

1
7

1
12

3
55






β0

β1

β2


 =




3
4
1
4
1
8


 ,

which yields β0 = 12 915/22 558, β1 = 17 745/22 558, and β2 = −4 620/11 279.
The estimate x̂2 is shown as a function of the observation y = t in Figure 2.17
(solid line).

General optimal estimation The fact that estimators of the form (2.77) form a
subspace hints at a more general fact: the set of all functions of a random variable
forms a subspace in a vector space of random variables. While this might seem sur-
prising or counterintuitive, verification of the properties required by Definition 2.2
is trivial. The subspace of functions of a random variable is furthermore closed, so
several properties of general (not necessarily linear) MMSE estimation follow from
the projection theorem.

As the simplest example, the constant c that minimizes E[ (x− c)2 ] can be
interpreted as the best estimator of x that does not depend on anything random.
We must have

0
(a)
= 〈x− c, 1〉 (b)

= E[ x− c ] (c)
= E[ x ]− c,

where (a) follows from the orthogonality of the error x−c to the deterministic func-
tion 1; (b) from (2.37); and (c) from the linearity of the expectation. This derives
the well-known fact that c = E[ x ] is the constant that minimizes E[ (x− c)2 ]; see
Appendix 2.C.3.

Now consider estimating x from observation y = t. Conditioning on y = t
yields a valid probability law, so

〈x, z〉 = E[ xz∗ | y = t ] (2.79)

is an inner product on the set of random variables with finite conditional second
moment given y = t. Orthogonality of the error x − x̂MMSE(t) and any function of
t under the inner product (2.79) yields

0
(a)
= E[ x− x̂MMSE(t) | y = t ]

(b)
= E[ x | y = t ]− x̂MMSE(t),
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2.4 Approximations, projections, and decompositions 67

where (a) follows from considering specifically the function 1; and (b) from x̂MMSE(t)
being a (deterministic) function of t. Thus, the optimal estimate is the conditional
mean:

x̂MMSE(t) = E[ x | y = t ] , (2.80a)

which is also written as

x̂MMSE = E[ x | y ] . (2.80b)

Example 2.28 (MMSE estimator, Example 2.27 continued) Consider x
and y jointly distributed as in Example 2.27 (see Figure 2.17). Given an obser-
vation y = t, the conditional distribution of x is uniform on [

√
t, 1]. The mean

of this conditional distribution gives the optimal estimator

x̂MMSE(t) =
1

2

(
1 +
√
t
)
.

This optimal estimate is shown in Figure 2.17 (dashed line).

Orthogonality and optimal estimation of random vectors

Use of the inner product (2.37) has given us a geometric interpretation for scalar
random variables with valuable ramifications for optimal estimation. One can define
various inner products for random vectors as well. However, we will see that more
useful estimation results come from generalizing the concept of orthogonality rather
than from using a single inner product.

One valid inner product for complex random vectors of length N is obtained
from the sum of inner products between components of the vectors, 〈xn, yn〉, using
the inner product (2.37) between scalar random variables:

〈x, y〉 =
N−1∑

n=0

E[ xny
∗
n ] .

This is identical to the expectation of the standard inner product on CN , (2.22a),
or 〈x, y〉 = E[ y∗x ].

With the projection theorem, one could optimize estimators of x from y(1), y(2),
. . . , y(K) of the form

x̂ = α01+ α1y
(1) + α2y

(2) + · · ·+ αKy(K), (2.81)

where every component of 1 ∈ CN is 1. This is exactly as in (2.74), but now
each element of {x, y(1), y(2), . . . , y(K)} is a vector rather than a scalar.19 Optimal
coefficients are determined by solving a system of equations analogous to (2.76).

A weakness of the estimator x̂ in (2.81) is that any single component of x̂
depends only on the corresponding components of {y(1), y(2), . . . , y(K)}; other de-
pendences are not exploited. To take a simple example, suppose that x has the

19Superscripts are introduced so we do not confuse indexing of the set with indexing of the
components of a single vector.
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uniform distribution over the unit square [0, 1]2 and
[
y1 y2

]
=
[
x2 x1

]
. The vec-

tor x can be estimated perfectly from the vector y, but y1 is useless in estimating
x1 and y2 is useless in estimating x2. Thus estimators more general than (2.81) are
commonly used.

Linear estimation Let x be a CN -valued random vector, and let y be a CM -valued
random vector. Suppose that all components of both vectors have finite second
moments. Consider the estimator of x from y given by20

x̂ = Ay, (2.82)

where A ∈ CN×M is a constant matrix to be designed to minimize the MSE
E[ ‖x− x̂‖2 ]. Note that, unlike in (2.81), every component of x̂ depends on ev-
ery component of y.

Since each row of A determines a different component of x̂ and the MSE
decouples across components as

E
[
‖x− x̂‖2

]
=

N−1∑

n=0

E
[
|xn − x̂n|2

]
,

we can consider the design of each row of A separately. Then, for any fixed n ∈
{0, 1, . . . , N − 1}, the minimization of E[ |xn − x̂n|2 ] through the choice of the
nth row of A is a problem we have already solved: it is the scalar linear MMSE
estimation problem. The solution is characterized by orthogonality of the error and
the data as in (2.75).

The orthogonality of the nth error component xn − x̂n and the mth data
component ym can be expressed as

0
(a)
= E[ (xn − x̂n)y

∗
m ]

(b)
= E

[
(xn − a⊤n y)y∗m

]
,

where (a) follows from the inner product (2.37); and (b) introduces a⊤n as the nth
row of A. Gathering these equations for m = 0, 1, . . . , M − 1 into one row gives

01×M = E
[
(xn − a⊤n y)y∗

]
, n = 0, 1, . . . , N − 1.

Now stacking these equations into a matrix gives

0N×M = E[ (x−Ay)y∗ ] . (2.83)

Using linearity of expectation, a necessary and sufficient condition for optimality is
thus

E[ xy∗ ] = AE[ yy∗ ] . (2.84)

In most cases, E[ yy∗ ] is invertible; the optimal estimator is then

x̂MMSE = E[ xy∗ ] (E[ yy∗ ])−1y. (2.85)

When E[ yy∗ ] is not invertible, solutions to (2.84) are not unique but yield the same
estimator.

20In contrast to estimators (2.74) and (2.81), we have omitted a constant term from the estima-
tor. There is no loss of generality because one can augment y with a constant random variable.
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2.5 Bases and frames 69

Orthogonality of random vectors Inspired by the usefulness of (2.83) in optimal
estimation, we define a new orthogonality concept for random vectors.

Definition 2.33 (Orthogonal random vectors) Random vectors x and y
are said to be orthogonal when E[ xy∗ ] = 0.

Note that E[ xy∗ ] is not an inner product because it is not a scalar (except in the
degenerate case where the random vectors have dimension 1 and are thus scalar
random variables). Instead, random vectors x and y are orthogonal when every
combination of components is orthogonal under the inner product (2.37):

E[ xny
∗
m ] = 0 for every m and n. (2.86)

In (2.83) we have an instance of a more general fact: Whenever an estimator x̂
of random vector x is optimized over a closed subspace of possible estimators S, the
optimal estimator will be determined by x− x̂ ⊥ S under the sense of orthogonality
in Definition 2.33. We will apply this to optimal LMMSE estimation of discrete-time
random processes in Section 3.8.5.

2.5 Bases and frames

The variety of bases and frames for sequences in ℓ2(Z) and functions in L2(R) is at
the heart of this book and, to an even greater extent, its companion volume [57]. In
this section, we develop general properties of bases and frames, with an emphasis on
representing vectors in Hilbert spaces using bases. Bases will come in two flavors,
orthonormal and biorthogonal; analogously, frames will come in two flavors, tight
and general. In later chapters and in the companion volume [57], we will see that the
choice of a basis or frame can have dramatic effects on the computational complexity,
stability, and approximation accuracy of signal expansions.

Prominent in the developments of Section 2.4 were closed subspaces: We saw
best approximation in a closed subspace, projection onto a closed subspace, and
direct-sum decomposition into a pair of closed subspaces. In this section, we will see
that a basis induces a direct-sum decomposition into possibly infinitely many one-
dimensional subspaces; and that bases, especially orthonormal ones, facilitate the
computations of projections and approximations. These developments reduce our
level of abstraction and bring us closer to computational tools for signal processing.
Specifically, Section 2.5.5 shows how representations with bases replace general
vector space computations with matrix computations, albeit possibly infinite ones.

2.5.1 Bases and Riesz bases

In a finite-dimensional vector space, a basis is a linearly independent set of vectors
that is used to uniquely represent any vector in that vector space as a linear combi-
nation of basis elements. For a definition to apply in infinite-dimensional spaces as
well, the essential properties are existence and uniqueness of representations; linear
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70 From Euclid to Hilbert

independence is technically subtle, and we do not require it. In what follows, we
consider any normed vector space, including any Hilbert space (where the norm is
induced by an inner product).

Definition 2.34 (Basis) The set of vectors Φ = {ϕk}k∈K ⊂ V , where K is finite
or countably infinite, is called a basis for a normed vector space V when

(i) it is complete in V , meaning that, for any x ∈ V , there is a sequence α ∈ CK

such that
x =

∑

k∈K
αkϕk; (2.87)

and

(ii) for any x ∈ V , the sequence α that satisfies (2.87) is unique.

When K is infinite, the sum (2.87) lacks a specific meaning unless an order of
summation is specified; for example, for K = N taken in increasing order, (2.87)
means that

lim
n→∞

∥∥∥∥x−
n∑

k=0

αkϕk

∥∥∥∥ = 0.

Thus, K must have a fixed, singly infinite order, such as 0, −1, 1, −2, 2, . . . for
K = Z. The basis is called unconditional when the sum in (2.87) converges to
x in one order of summation if and only if it converges to x in every order of
summation. We dispense with the technicality of fixing an ordering of K because
we almost exclusively limit our attention to Riesz bases (to be defined shortly),
which are unconditional. Appendix 2.D explores other definitions of bases and
their relationships to Definition 2.34.

When the index set K is finite, (2.87) shows that x is in the span of the basis.
When K is infinite, the closure of the span is needed to allow infinitely many terms
in the linear combination,21

V = span(Φ), (2.88)

which is equivalent to part (i) of Definition 2.34. The coefficients (αk)k∈K are
called the expansion coefficients22 of x with respect to the basis Φ. We use a set
notation (unordered) for bases and a sequence notation (ordered) for expansion
coefficients, keeping in mind that the indexing of basis elements in (2.87) must
maintain the correct correspondence between basis vectors and coefficients. The
notation emphasizes that once an ordering of basis elements has been fixed, the
ordering of the coefficients does matter.

21Recall that the span of a set of vectors is the set of all finite linear combinations of vectors
from the set (Definition 2.4).

22Expansion coefficients are sometimes called Fourier coefficients or generalized Fourier coeffi-
cients, but we will avoid these terms except when the expansions are with respect to the specific
bases that yield the various Fourier transforms. They are also called transform coefficients or
subband coefficients in the source-coding literature.
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2.5 Bases and frames 71

Suppose that Φ = {ϕk}N−1
k=0 is a basis for V for some finite N . To show

that Φ is linearly independent, we argue by contradiction. Suppose that Φ is not
linearly independent. Then there exist (βk)

N−1
k=0 not all equal to zero such that∑N−1

k=0 βkϕk = 0. Since Φ is a basis, any x ∈ V has an expansion (2.87), but this
expansion is not unique because

N−1∑

k=0

(αk + βk)ϕk =
N−1∑

k=0

αkϕk +
N−1∑

k=0

βkϕk = x+ 0 = x.

The lack of uniqueness contradicts Φ being a basis, so Φ must be linearly indepen-
dent. Furthermore, the existence of an expansion (2.87) for any x ∈ V implies that
we cannot add another vector to Φ and have a linearly independent set. Therefore,
V has dimension N . Putting these facts together, a finite set of linearly independent
vectors is always a basis for its span.

Example 2.29 (Standard basis for CN) The standard basis for R2 was in-
troduced in Section 2.1. It is easily extended to CN (or RN ) with ek as in
Example 2.5. The set {ek}N−1

k=0 is both linearly independent (see Example 2.5)
and complete in CN , and it is thus a basis for CN . For completeness, note

that any vector v =
[
v0 v1 . . . vN−1

]⊤ ∈ CN is precisely the finite linear

combination v =
∑N−1

k=0 vkek.

The infinite-dimensional Hilbert spaces that we consider have countably infi-
nite bases because they are separable (see Section 2.3.2). For normed vector spaces
that are not Hilbert spaces, the norm affects whether a particular set Φ is a basis.

Example 2.30 (Standard basis for CZ) The standard basis concept extends
to some normed vector spaces of complex-valued sequences over Z. Consider
E = {ek}k∈Z, where ek ∈ CZ is the sequence that is 0 except for a 1 in the
k-indexed position. If an expansion with respect to E exists, it is clearly unique,
but whether such an expansion necessarily exists depends on the norm.

First consider a vector space ℓp(Z) with p ∈ [1, ∞). The set E is complete
for this vector space, meaning that ℓp(Z) = span(E) when the closure of the
span is defined with the ℓp norm. To show this, we establish span(E) ⊆ ℓp(Z)
and ℓp(Z) ⊆ span(E). The first inclusion, span(E) ⊆ ℓp(Z), holds because
ℓp(Z) is a complete vector space; see Section 2.3.2. It remains to show that
ℓp(Z) ⊆ span(E) holds. We do this by showing that for an arbitrary x ∈ ℓp(Z),
there exists a sequence of vectors in span(E) that converges (under the ℓp norm)

to x. For each M ∈ N, let yM =
∑M

n=−M xnen. Then

lim
M→∞

‖x− yM‖pp = lim
M→∞

(−M−1∑

n=−∞
|xn|p +

∞∑

n=M+1

|xn|p
)

(a)
= 0,

where (a) holds because the meaning of x ∈ ℓp(Z) is that
∑

n∈Z
|xn|p is conver-

gent. Since each yM is in span(E), the limit of the sequence x is in span(E).
Thus ℓp(Z) ⊆ span(E).
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72 From Euclid to Hilbert

Changing the norm changes the meaning of the closure of the span and
thus can make E not be a basis. The set E is not complete under the ℓ∞ norm
since ℓ∞(Z) 6⊆ span(E). To show this, let x be the all-1s sequence, which is in
ℓ∞(Z). Every sequence in span(E) has a finite number of nonzero entries and is
therefore at least distance 1 from x under the ℓ∞ norm. Therefore x is not in
span(E).

Riesz bases While the previous example provides an important note of caution on
the meaning of a basis, dependence on the choice of norm is not our focus. In fact,
we will primarily focus on the ℓ2 and L2 Hilbert space norms. The more important
complication with infinite-dimensional spaces is that a basis can be prohibitively ill
suited to numerical computations. Specifically, it is not practical to allow coefficients
in a linear combination to be unbounded or to require very small coefficients to be
distinguished from zero; the concept of a Riesz basis restricts bases to avoid these
pitfalls.

Definition 2.35 (Riesz basis) The set of vectors Φ = {ϕk}k∈K ⊂ H , where K
is finite or countably infinite, is called a Riesz basis for a Hilbert space H when

(i) it is a basis for H ; and

(ii) there exist stability constants λmin and λmax satisfying 0 < λmin ≤ λmax <∞
such that, for any x in H , the expansion of x with respect to the basis Φ,
x =

∑
k∈K αkϕk, satisfies

λmin‖x‖2 ≤
∑

k∈K
|αk|2 ≤ λmax‖x‖2. (2.89)

The largest such λmin and smallest such λmax are called optimal stability
constants for Φ.

In CN or ℓ2(Z), the standard basis is a Riesz basis with λmin = λmax = 1 (see Exer-
cise 2.33). Conversely, Riesz bases with λmin = λmax = 1 are orthonormal bases, as
developed in Section 2.5.2. As we introduce a variety of bases for different purposes,
it will be a virtue to have λmin ≈ λmax, though we may relax this requirement to
achieve other objectives.

Example 2.31 (Riesz bases in R2) Any two vectors ϕ0 and ϕ1 are a basis for
R2 as long as there is no scalar α such that ϕ1 = αϕ0. We fix ϕ0 = e0 and vary
ϕ1 in two ways to illustrate deviations from the standard basis.

(i) Let ϕ1 = ae1 with a ∈ (0, ∞), as illustrated in Figure 2.18(a). The unique

expansion of
[
x0 x1

]⊤
is then

x = x0ϕ0 + (x1/a)ϕ1 = α0ϕ0 + α1ϕ1.

The largest λmin such that (2.89) holds is

λmin = inf
x∈R2

x20 + (x1/a)
2

x20 + x21
=

{
1, for a ∈ (0, 1];

1/a2, for a ∈ (1, ∞).
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ϕ0 =
[
1 0

]⊤

ϕ1 =
[
0 a

]⊤

ϕ0 =
[
1 0

]⊤

ϕ1 =
[
cos θ sin θ

]⊤

θ

(a) (b)

1 2 3

5

10

λmin, λmax

a
Π�4 Π�2

5

10

λmin, λmax

θ

(c) (d)

Figure 2.18 Two families of bases in R2 that deviate from the standard basis {e0, e1}
and their optimal stability constants λmin (solid lines) and λmax (dashed lines). (a) ϕ1

is orthogonal to ϕ0 but not necessarily of unit length. (b) ϕ1 is of unit length but not
necessarily orthogonal to ϕ0. (c) λmin and λmax for the basis in (a) as a function of a.
(d) λmin and λmax for the basis in (b) as a function of θ.

This means that, when a is very large, the basis becomes numerically ill
conditioned in the sense that there are nonzero vectors x with very small
expansion coefficients.

Similarly, the smallest λmax such that (2.89) holds is

λmax = sup
x∈R2

x20 + (x1/a)
2

x20 + x21
=

{
1/a2, for a ∈ (0, 1];

1, for a ∈ (1, ∞).

This means that, when a is close to zero, the basis becomes numerically ill
conditioned in the sense that there are vectors x with very large expansion
coefficients. Figure 2.18(c) shows λmin and λmax as functions of a.

(ii) Let ϕ1 =
[
cos θ sin θ

]⊤
with θ ∈ (0, 1

2π], as illustrated in Figure 2.18(b).

The unique expansion of
[
x0 x1

]⊤
is then

x = (x0 − cot θ x1)ϕ0 + (csc θ x1)ϕ1 = α0ϕ0 + α1ϕ1.

Using trigonometric identities, one can show that the largest λmin and
smallest λmax such that (2.89) holds are

λmin =
1

2
sec2

(
θ

2

)
and λmax =

1

2
csc2

(
θ

2

)
,
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74 From Euclid to Hilbert

which are shown in Figure 2.18(d) as functions of θ. The numerical condi-
tioning is ideal when θ = 1

2π, in which case {ϕ0, ϕ1} is the standard basis,
while it is extremely poor for small θ, resulting in very large expansion
coefficients.

The previous example illustrates two ways of deviating from the standard basis:
lacking unit norm and lacking orthogonality. While the effects of these deviations
can make numerical conditioning arbitrarily bad, any basis for a finite-dimensional
Hilbert space is a Riesz basis. (In the first part of the example, a must be nonzero
for {ϕ0, ϕ1} to be a basis, and this keeps λmin strictly positive and λmax finite.
Similarly, in the second part θ must be nonzero, and this keeps λmax finite.) The
following infinite-dimensional examples show that some bases are not Riesz bases.

Example 2.32 (Bases that are not Riesz bases)

(i) Consider the following scaled version of the standard basis in ℓ2(Z):

ϕk =
1

|k|+ 1
ek, k ∈ Z.

As |k| → ∞, the ratio of lengths of elements, ‖ϕ0‖/‖ϕk‖, is unbounded,
similar to ‖ϕ0‖/‖ϕ1‖ with a→ 0 in Example 2.31(i). The set Φ = {ϕk}k∈Z

is a basis for ℓ2(Z), but it is not a Riesz basis.
To prove that Φ is not a Riesz basis, we show that no finite λmax satisfies

(2.89). Suppose that there is a finite λmax such that (2.89) holds for all
x ∈ ℓ2(Z). Then, we can choose an integer M >

√
λmax and let x ∈ ℓ2(Z)

be the sequence that is 0 except for a 1 in the M -indexed position. The
unique representation of this x using the basis Φ is x = (|M |+ 1)ϕM ; that
is, the coefficients in the expansion are

αk =

{
|M |+ 1, for k =M ;

0, otherwise.

The second inequality of (2.89) is contradicted, so the desired finite λmax

does not exist.

(ii) Consider the following vectors defined using the standard basis in ℓ2(N):

ϕk =

k∑

i=0

1√
i+ 1

ei, k ∈ N.

The angle between consecutive elements approaches zero as k →∞ because
〈ϕk, ϕk+1〉/(‖ϕk‖ ‖ϕk+1‖)→ 1, so this is intuitively similar to letting θ → 0
in Example 2.31(ii). Proving that the set Φ = {ϕk}k∈N is a basis for ℓ2(N)
but is not a Riesz basis is left for Exercise 2.34.

In the subsequent developments, it will be desirable for all bases to be Riesz bases.
In particular, if {ϕk}k∈K is a Riesz basis for a Hilbert space and the coefficient
sequence α is in ℓ2(K), then∑k∈K αkϕk converges unconditionally, meaning that it
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converges for any ordering of the terms of the sum. We implicitly use this somewhat
technical fact when we write sums over K without specifying the order of the terms.
Where a sum is written without specifying the order of the terms and convergence
would not otherwise be apparent, we assume a basis to be a Riesz basis.

Operators associated with bases Given a Riesz basis {ϕk}k∈K satisfying (2.89),
the expansion formula (2.87) can be viewed as mapping a coefficient sequence α
to a vector x. This mapping is clearly linear. Let us suppose that the coefficient
sequence has finite ℓ2(K) norm. The first inequality of (2.89) implies that the vector
x given by (2.87) has finite norm, at most ‖α‖/

√
λmin, and is thus legitimately in

the Hilbert space H .

Definition 2.36 (Basis synthesis operator) Given a Riesz basis {ϕk}k∈K
for a Hilbert space H , the synthesis operator associated with it is

Φ : ℓ2(K)→ H, with Φα =
∑

k∈K
αkϕk. (2.90)

The norm of the synthesis operator is the supremum of the ratio ‖Φα‖/‖α‖ for
nonzero α ∈ ℓ2(K). The first inequality of (2.89) implies that λmin‖Φα‖2 ≤ ‖α‖2,
so, by rearranging the inequality and taking the square root, the norm of this linear
operator is at most 1/

√
λmin; the operator Φ is thus not only linear but bounded

as well.
The adjoint of Φ maps from H to a sequence in ℓ2(K). To derive the adjoint,

consider the following computation for arbitrary α ∈ ℓ2(K) and y ∈ H :

〈Φα, y〉 (a)
=

〈∑

k∈K
αkϕk, y

〉
(b)
=
∑

k∈K
αk〈ϕk, y〉

(c)
=
∑

k∈K
αk〈y, ϕk〉∗,

where (a) follows from (2.90); (b) from the linearity in the first argument of the
inner product; and (c) from the Hermitian symmetry of the inner product. The final
expression is the ℓ2(K) inner product between α and a sequence of inner products
(〈y, ϕk〉)k∈K. The adjoint is called the analysis operator.

Definition 2.37 (Basis analysis operator) Given a Riesz basis {ϕk}k∈K for
a Hilbert space H , the analysis operator associated with it is

Φ∗ : H → ℓ2(K), with (Φ∗x)k = 〈x, ϕk〉, k ∈ K. (2.91)

Equation (2.91) holds since 〈Φα, y〉H = 〈α, Φ∗y〉ℓ2 . The norm of the analysis oper-
ator is also at most 1/

√
λmin because ‖A‖ = ‖A∗‖ for all bounded linear operators

A.
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76 From Euclid to Hilbert

In Definitions 2.36 and 2.37, the order in which the elements of the index set
K are used implicitly affects the operators. Usually, K will be the set of integers Z
or a finite subset of Z, implying a natural ordering of K.

2.5.2 Orthonormal bases

An orthonormal basis is a basis of orthogonal, unit-norm vectors.

Definition 2.38 (Orthonormal basis) The set of vectors Φ = {ϕk}k∈K ⊂ H ,
where K is finite or countably infinite, is called an orthonormal basis for a Hilbert
space H when

(i) it is a basis for H ; and

(ii) it is orthonormal,

〈ϕi, ϕk〉 = δi−k for every i, k ∈ K. (2.92)

Since orthonormality implies uniqueness of expansions, we could alternatively say
that a set Φ = {ϕk}k∈K ⊂ H satisfying (2.92) is an orthonormal basis whenever it
is complete, that is, span(Φ) = H .

Standard bases are orthonormal bases. Two more examples follow, and we
will see many more examples throughout the book.

Example 2.33 (Finite-dimensional orthonormal basis) The vectors

ϕ0 =
1√
2



1
1
0


 , ϕ1 =

1√
6



−1
1
2


 , and ϕ2 =

1√
3




1
−1
1




are orthonormal, as can be verified by direct computation. Since three linearly
independent vectors in C3 always form a basis for C3, {ϕ0, ϕ1, ϕ2} is an or-
thonormal basis for C3.

Example 2.34 (Orthonormal basis of cosine functions) Consider
Φ = {ϕk}k∈N ⊂ L2([− 1

2 ,
1
2 ]) defined in (2.24). The first three functions in

this set were shown in Figure 2.5. Example 2.9(iii) showed that Φ satisfies the
orthonormality condition (2.92). Since orthonormality also implies uniqueness
of expansions, Φ is an orthonormal basis for S = span(Φ). (Remember that S
is itself a Hilbert space.) The set Φ is not, however, an orthonormal basis for
L2([− 1

2 ,
1
2 ]) because S is a proper subspace of L2([− 1

2 ,
1
2 ]); for example, no odd

functions are in S.

Expansion and inner product computation Expansion coefficients with respect
to an orthonormal basis are obtained by using the same basis for signal analysis.
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Theorem 2.39 (Orthonormal basis expansions) Let Φ = {ϕk}k∈K be an
orthonormal basis for a Hilbert space H . The unique expansion with respect to
Φ of any x in H has expansion coefficients

αk = 〈x, ϕk〉 for k ∈ K, or, (2.93a)

α = Φ∗x. (2.93b)

Synthesis with these coefficients yields

x =
∑

k∈K
〈x, ϕk〉ϕk (2.94a)

= Φα = ΦΦ∗x. (2.94b)

Proof. The existence of a unique linear combination of the form (2.87) is guaranteed
by Φ being a basis. The validity of (2.94a) with coefficients (2.93a) follows from the
computation

〈x, ϕk〉 (a)
=

〈∑

i∈K
αiϕi, ϕk

〉
(b)
=
∑

i∈K
αi〈ϕi, ϕk〉 (c)

=
∑

i∈K
αiδi−k

(d)
= αk,

where (a) follows from (2.87); (b) from the linearity in the first argument of the inner
product; (c) from the orthonormality of the set Φ, (2.92); and (d) from the definition
of the Kronecker delta sequence, (2.9).

The expressions (2.93b) and (2.94b) are equivalent to (2.93a) and (2.94a) using
the operators defined in (2.90) and (2.91).

Since (2.94b) holds for all x in H ,

ΦΦ∗ = I on H. (2.95)

This leads to the frequently used properties in the following theorem.

Theorem 2.40 (Parseval equalities) Let Φ = {ϕk}k∈K be an orthonormal
basis for a Hilbert space H . Expansion with coefficients (2.93) satisfies the Par-
seval equality,

‖x‖2 =
∑

k∈K
|〈x, ϕk〉|2 (2.96a)

= ‖Φ∗x‖2 = ‖α‖2, (2.96b)

and the generalized Parseval equality,

〈x, y〉 =
∑

k∈K
〈x, ϕk〉〈y, ϕk〉∗ (2.97a)

= 〈Φ∗x, Φ∗y〉 = 〈α, β〉. (2.97b)
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78 From Euclid to Hilbert

Proof. Recall the equivalence of (2.55) and (2.57a). Thus (2.95) is equivalent to (2.97b).
Setting x = y in (2.97b) yields (2.96b). Equalities (2.96a) and (2.97a) are the same
facts expanded with the definition of Φ∗.

Proving this using operator notation and properties in (2.95) is much less tedious
than the direct proof. To see this for the example of (2.97), write

〈x, y〉 (a)
=

〈∑

k∈K
〈x, ϕk〉ϕk, y

〉
(b)
=
∑

k∈K
〈x, ϕk〉〈ϕk, y〉 (c)

=
∑

k∈K
〈x, ϕk〉〈y, ϕk〉∗,

where (a) follows from expanding x with (2.94a); (b) from the linearity in the first
argument of the inner product; and (c) from the Hermitian symmetry of the inner
product.

The simple equality (2.97) captures an important role played by any orthonormal
basis: it turns an abstract inner product computation into a computation with
sequences. When x =

∑
k∈K αkϕk and y =

∑
k∈K βkϕk as in the theorem,

〈x, y〉H = 〈α, β〉ℓ2(K) =
∑

k∈K
αkβ

∗
k, (2.98)

where the final computation is an ℓ2(K) inner product even though the first inner
product is in an arbitrary Hilbert space. We might view this more concretely with
matrix multiplication as

〈x, y〉 = β∗α, (2.99)

where α and β are column vectors.

Example 2.35 (Inner product computation by expansion sequences)
Let α and β be sequences in ℓ2(N). Then, the functions

x(t) = α0 +

∞∑

k=1

αk

√
2 cos(2πkt), (2.100a)

y(t) = β0 +
∞∑

k=1

βk
√
2 cos(2πkt), (2.100b)

are in L2([− 1
2 ,

1
2 ]), and their inner product can be simplified as follows:

〈x, y〉 =

∫ 1/2

−1/2

(
α0 +

∞∑

k=1

αk

√
2 cos(2πkt)

)(
β∗
0 +

∞∑

ℓ=1

β∗
ℓ

√
2 cos(2πℓt)

)
dt
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= α0β
∗
0 + α0

∞∑

ℓ=1

β∗
ℓ

∫ 1/2

−1/2

√
2 cos(2πℓt) dt

︸ ︷︷ ︸
=0

+ β∗
0

∞∑

k=1

αk

∫ 1/2

−1/2

√
2 cos(2πkt) dt

︸ ︷︷ ︸
=0

+
∞∑

k=1

∞∑

ℓ=1

αkβ
∗
ℓ

∫ 1/2

−1/2

2 cos(2πkt) cos(2πℓt) dt

︸ ︷︷ ︸
= δk−ℓ

= α0β
∗
0 +

∞∑

k=1

∞∑

ℓ=1

αkβ
∗
ℓ δk−ℓ

(a)
= α0β

∗
0 +

∞∑

k=1

αkβ
∗
k =

∞∑

k=0

αkβ
∗
k

(b)
= 〈α, β〉,

where (a) follows from the definition of the Kronecker delta sequence, (2.9); and
(b) from the definition of the ℓ2 inner product between sequences.

Recalling the orthonormal basis from Example 2.34, the computation above
is an explicit verification of (2.97b). We have shown that a more complicated
(integral) inner product in L2(R) can be computed via a simpler (series) inner
product between expansion coefficients in ℓ2(Z).

Unitary synthesis and analysis We will show that

Φ∗Φ = I on ℓ2(K). (2.101)

Combined with (2.95), this establishes that the analysis and synthesis operators
associated with an orthonormal basis are unitary.

To verify (2.101), do the following computation for any sequence α in ℓ2(K):

Φ∗Φα
(a)
= Φ∗∑

i∈K
αiϕi

(b)
=
(〈∑

i∈K αiϕi, ϕk

〉)
k∈K

(c)
=
(∑

i∈K αi〈ϕi, ϕk〉
)
k∈K

(d)
=
(∑

i∈K αiδi−k

)
k∈K

(e)
= (αk)k∈K = α, (2.102)

where (a) follows from (2.90); (b) from (2.91); (c) from the linearity in the first
argument of the inner product; (d) from the orthonormality of the set {ϕk}k∈K,
(2.92); and (e) from the definition of the Kronecker delta sequence, (2.9).

Isometry of separable Hilbert spaces and ℓ2(K) The fact that the synthesis
and analysis operators Φ and Φ∗ associated with an orthonormal basis are uni-
tary leads to key intuitions about separable Hilbert spaces. A unitary operator
between Hilbert spaces puts Hilbert spaces in one-to-one correspondence while pre-
serving the geometries (that is, inner products) in the spaces. Since Hilbert spaces
that we consider are separable, they contain orthonormal bases. Therefore, these
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H

y

x

θ

Φ∗

Φ

ℓ2(K)
α

β

θ

Figure 2.19 Conceptual illustration of the isometry between a separable Hilbert space
H and sequence space ℓ2(K) induced by an orthonormal basis Φ. It preserves geometry as
〈x, y〉 = 〈α, β〉.

Hilbert spaces can all be put in one-to-one correspondence with CN if they are
finite-dimensional or with ℓ2(Z) if they are infinite-dimensional, as illustrated in
Figure 2.19. (The notation ℓ2(K), with K finite or countably infinite, unifies the
two cases.)

Orthogonal projection Truncating the orthonormal expansion (2.94a) to k ∈ I,
where I is an index set that is a subset of the full index set K, I ⊂ K, gives
an orthogonal projection. As in the alternate proof of Theorem 2.40, this can be
verified through somewhat tedious manipulations of sums and inner products; it is
simpler to extend the definitions of the synthesis and analysis operators to apply
for I ⊂ K and then use these new operators.

Define the synthesis operator associated with {ϕk}k∈I as

ΦI : ℓ2(I)→ H, with ΦI α =
∑

k∈I
αkϕk. (2.103)

This follows the form of (2.90) exactly, but the subscript I emphasizes that {ϕk}k∈I
need not be a basis. The adjoint of ΦI , called the analysis operator associated with
{ϕk}k∈I , is

Φ∗
I : H → ℓ2(I), with (Φ∗

I x)k = 〈x, ϕk〉, k ∈ I. (2.104)

Following the same steps as in (2.102), the orthonormality of the set {ϕk}k∈I is
equivalent to

Φ∗
I ΦI = I on ℓ2(I). (2.105)

However, we cannot conclude that ΦI and Φ∗
I are unitary because the product

ΦI Φ∗
I is not, in general, the identity operator on H ; ΦI not being a basis, it cannot

reconstruct every x ∈ H . Instead, ΦI Φ∗
I is an orthogonal projection operator that

is an identity only when I = K, that is, when {ϕk}k∈I is a basis. This is formalized
in the following theorem.
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Theorem 2.41 (Orthogonal projection onto a subspace) Let {ϕk}k∈I
be an orthonormal set in a Hilbert space H . Then for any x ∈ H ,

PI x =
∑

k∈I
〈x, ϕk〉ϕk (2.106a)

= ΦI Φ
∗
I x (2.106b)

is the orthogonal projection of x onto SI = span({ϕk}k∈I).

Proof. From its definition (2.106a), PI is clearly a linear operator on H with range
contained in SI . To prove that PI is an orthogonal projection operator, we show that
it is idempotent and self-adjoint (see Definition 2.27).

The operator PI is idempotent because, for any x ∈ H ,

PI(PI x)
(a)
= ΦI Φ∗

I (ΦI Φ∗
I x)

(b)
= ΦI (Φ∗

I ΦI)Φ
∗
I x

(c)
= ΦI Φ∗

I x
(d)
= PI x,

where (a) follows from (2.106b); (b) from the associativity of linear operators; (c) from
(2.105); and (d) from (2.106b). This shows that PI is a projection operator. The
operator PI is self-adjoint because

P ∗
I = (ΦI Φ∗

I)
∗ (a)

= (Φ∗
I)

∗Φ∗
I

(b)
= ΦI Φ∗

I = PI ,

where (a) follows from Theorem 2.21(viii); and (b) from Theorem 2.21(iii). Combined
with the previous computation, this shows that PI is an orthogonal projection operator.

The previous theorem can be used to simplify the computation of an orthogonal
projection, provided that {ϕk}k∈I is an orthonormal basis for the subspace of in-
terest.

Example 2.36 (Orthogonal projection with orthonormal basis)
Consider the orthonormal basis for C3 from Example 2.33. The two-dimensional
subspace

S =
{[
x0 x1 x2

]⊤ ∈ C3
∣∣∣x1 = x0 + x2

}

is span({ϕ0, ϕ1}). Therefore, using (2.106a), the orthogonal projection onto S
is given by

PS x =
1∑

k=0

〈x, ϕk〉ϕk.

To see explicitly that this is an orthogonal projection operator:

PS x = 〈x, ϕ0〉ϕ0 + 〈x, ϕ1〉ϕ1
(a)
= ϕ0〈x, ϕ0〉+ ϕ1〈x, ϕ1〉

(b)
= ϕ0ϕ

∗
0x+ ϕ1ϕ

∗
1x

(c)
= (ϕ0ϕ

∗
0 + ϕ1ϕ

∗
1)x

=
1

3




2 1 −1
1 2 1
−1 1 2


x,
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where (a) follows from the inner product being a scalar; (b) from writing the
inner product as a product of a row vector and a column vector; and (c) from
the distributivity of matrix–vector multiplication. The matrix representation of
PS is idempotent (as can be verified with a straightforward computation) and
obviously Hermitian.

Orthogonal decomposition Given the orthogonal projection interpretation from
Theorem 2.41, term k in the orthonormal expansion formula (2.94a) is the orthogo-
nal projection of x to the subspace S{k} = span(ϕk) (recall also Example 2.22). So
(2.94a) writes any x uniquely as a sum of its orthogonal projections onto orthog-
onal one-dimensional subspaces {S{k}}k∈K. In other words, an orthonormal basis
induces an orthogonal decomposition

H =
⊕

k∈K
S{k} (2.107)

while providing a simple way to compute the components of the decomposition
of any x ∈ H . The expansion formula (2.94a) will be applied countless times in
subsequent chapters, and orthogonal decompositions of Hilbert spaces ℓ2(Z) and
L2(R) will be a recurring theme.

Best approximation The simple form of (2.106a) makes certain sequences of or-
thogonal projections extremely easy to compute. Let x̂(k) denote the best approx-
imation of x in the subspace spanned by the orthonormal set {ϕ0, ϕ1, . . . , ϕk−1}.
Then, x̂(0) = 0 and

x̂(k+1) = x̂(k) + 〈x, ϕk〉ϕk for k = 0, 1, . . . , (2.108)

that is, the new best approximation is the sum of the previous best approximation
plus the orthogonal projection onto the span of the added vector ϕk. This follows
from the projection theorem (Theorem 2.26) and comparing (2.106a) with index
sets {0, 1, . . . , k − 1} and {0, 1, . . . , k}.

The recursive computation (2.108) is called successive approximation; it arises
from the interest in nested subspaces and having orthonormal bases for those sub-
spaces. Nested subspaces arise in practice quite frequently. For example, suppose
that we wish to find an approximation of a function x by a polynomial of mini-
mal degree that meets an approximation error criterion. Then, if {ϕk}k∈N is an
orthonormal set such that, for each M , {ϕ0, ϕ1, . . . , ϕM} is a basis for degree-M
polynomials, we can apply the recursion (2.108) until the error criterion is met.
Gram–Schmidt orthogonalization, discussed below, is a way to find the desired set
{ϕk}k∈N, and approximation by polynomials is covered in detail in Section 6.2.

Bessel’s inequality While Bessel’s inequality is related to the Parseval equality
(2.96), it holds for any orthonormal set – even if that set is not a basis. When it
holds with equality (for all vectors in a Hilbert space, giving the Parseval equality),
the orthonormal set must be a basis.
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Theorem 2.42 (Bessel’s inequality) Let Φ = {ϕk}k∈I be an orthonormal
set in a Hilbert space H . Then for any x ∈ H , Bessel’s inequality holds:

‖x‖2 ≥
∑

k∈I
|〈x, ϕk〉|2 (2.109a)

= ‖Φ∗
I x‖2. (2.109b)

Equality for every x in H implies that the set Φ is complete in H , so the or-
thonormal set is an orthonormal basis for H ; (2.109) is then the Parseval equality
(2.96).

Proof. Let S = span(Φ) and xS = ΦI Φ∗
I x. By (2.106b), xS is the orthogonal projec-

tion of x onto S. Thus, by the projection theorem (Theorem 2.26), x− xS ⊥ xS. From
this we conclude

‖x‖2 (a)
= ‖xS‖2 + ‖x− xS‖2

(b)

≥ ‖xS‖2 = ‖ΦI Φ∗
I x‖2

(c)
= ‖Φ∗

I x‖2
(d)
=
∑

k∈I
|〈x, ϕk〉|2,

where (a) follows from the Pythagorean theorem (2.27a); (b) from the nonnegativity
of the norm of a vector; (c) from (2.105); and (d) from the definition of the analysis
operator, (2.104).

Step (b) holds with equality for every x in H if and only if x = xS for every x in
H . This occurs if and only if S = H , in which case we have that the set Φ is complete
and thus an orthonormal basis for H .

For the case when the orthonormal set {ϕk}k∈I is not complete, Bessel’s inequality is
especially easy to understand by extending the set to an orthonormal basis {ϕk}k∈K
with K ⊃ I. Then, Bessel’s inequality follows from the Parseval equality because∑

k∈I |〈x, ϕk〉|2 simply omits some nonnegative terms from
∑

k∈K|〈x, ϕk〉|2. The
following example illustrates this in R3.

Example 2.37 (Bessel’s inequality) Let ϕ0 =
[
1 0 0

]⊤
and

ϕ1 =
[
0 1 0

]⊤
. These vectors are the first two elements of the standard basis in

R3, and they are orthonormal. As illustrated in Figure 2.20, the norm of a vector
x ∈ R3 is at least as large as the norm of its projection onto the (ϕ0, ϕ1)-plane,
x01:

‖x‖2 ≥ ‖x01‖2 = |〈x, ϕ0〉|2 + |〈x, ϕ1〉|2.

Adding ϕ2 =
[
0 0 1

]⊤
to the set gives an orthonormal basis (the standard

basis), and adding the square of the length of the orthogonal projection of x
onto the span of ϕ2 yields the Parseval equality,

‖x‖2 =

2∑

k=0

|〈x, ϕk〉|2.

Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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ϕ0

ϕ1

ϕ2

x

x01

〈x, ϕ0〉
〈x, ϕ1〉

Figure 2.20 Illustration of Bessel’s inequality in R3.

Gram–Schmidt orthogonalization We have thus far discussed properties of or-
thonormal bases and checked whether a set is an orthonormal basis. We now show
how to construct an orthonormal basis for a space specified by a sequence of linearly
independent vectors (xk)k∈K. For notational convenience, assume that K is a set of
consecutive integers starting at 0, so K = {0, 1, . . . , N − 1} or K = N.

The goal is to find an orthonormal set {ϕk}k∈K with

span({ϕk}k∈K) = span({xk}k∈K). (2.110a)

Thus, when {xk}k∈K is a basis for H , the constructed set {ϕk}k∈K is an orthonor-
mal basis for H ; otherwise, {ϕk}k∈K is an orthonormal basis for the smaller space
span({xk}k∈K), which is itself a Hilbert space.

There are many orthonormal bases for span({xk}k∈K). Upon requiring a
stronger condition

span({ϕk}ik=0) = span({xk}ik=0) for every i ∈ N, (2.110b)

the solution becomes essentially unique. Furthermore, enforcing (2.110b) for in-
creasing values of i leads to a simple recursive procedure. Figure 2.21 illustrates
the orthogonalization procedure for two vectors in a plane (initial, nonorthonormal
basis). For example, for i = 0, (2.110b) holds when ϕ0 is a scalar multiple of x0.
For ϕ0 to have unit norm, it is natural to choose

ϕ0 = x0/‖x0‖,

as illustrated in Figure 2.21(b), and the set of all possible solutions is obtained by
including a unit-modulus scalar factor. Then, for (2.110b) to hold for i = 1, the
vector ϕ1 must be aligned with the component of x1 orthogonal to ϕ0, as illustrated
in Figure 2.21(c). This is achieved when ϕ1 is a scalar multiple of the residual from
orthogonally projecting x1 to the subspace spanned by ϕ0,

ϕ1 =
x1 − 〈x1, ϕ0〉ϕ0

‖x1 − 〈x1, ϕ0〉ϕ0‖
,

as illustrated in Figure 2.21(d). In general, ϕk is determined by normalizing the
residual of xk orthogonally projected to span({ϕ0, ϕ1, . . . , ϕk−1}). The residual is
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x0

x1

x0ϕ0

x1

ϕ0
v1

x1 − v1

ϕ0

x1 − v1

ϕ1

(a) (b) (c) (d)

Figure 2.21 Illustration of Gram–Schmidt orthogonalization. (a) Input vectors (x0, x1).
(b) The first output vector ϕ0 is a normalized version of x0. (c) The projection of x1 onto
the subspace spanned by ϕ0 is subtracted from x1 to obtain a residual x1 − v1. (d) The
second output vector ϕ1 is a normalized version of the residual.

Gram–Schmidt orthogonalization

Input: An ordered sequence of linearly independent vectors (xk)k∈K
Output: Orthonormal vectors {ϕk}k∈K, with span({ϕk}) = span({xk})

{ϕk} = GramSchmidt({xk})
ϕ0 = x0/‖x0‖
k = 1

while k < |K| do
project vk =

∑k−1
i=0 〈xk, ϕi〉ϕi

normalize ϕk = (xk − vk)/‖xk − vk‖
increment k

end while

return {ϕk}

Table 2.1 Gram–Schmidt orthogonalization algorithm.

nonzero because otherwise the linear independence of {x0, x1, . . . , xk} is contra-
dicted. The full recursive computation is summarized in Table 2.1.

Example 2.38 (Gram–Schmidt orthogonalization)

(i) Let x0 =
[
1 1 0

]⊤
, x1 =

[
0 1 1

]⊤
, and x2 =

[
1 1 1

]⊤
. These

are linearly independent, and following the steps in Table 2.1 first yields

ϕ0 = (1/
√
2)
[
1 1 0

]⊤
, then v1 = 1

2

[
1 1 0

]⊤
, then x1 − v1

= 1
2

[
−1 1 2

]⊤
, and ϕ1 = (1/

√
6)
[
−1 1 2

]⊤
. For the final basis

vector, v2 = 1
3

[
2 4 2

]⊤
, x2 − v2 = 1

3

[
1 −1 1

]⊤
, and

ϕ2 = (1/
√
3)
[
1 −1 1

]⊤
.

The set {ϕ0, ϕ1, ϕ1} is the orthonormal basis from Examples 2.33
and 2.36. Since span({ϕ0, ϕ1}) = span({x0, x1}) and the latter span is
plainly the range of matrix B in Example 2.23, we can retrospectively see
that the projection operators in Examples 2.23 and 2.36 project to the same
subspace. (One projection operator is orthogonal and the other is oblique.)
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(ii) Starting with x0 =
[
1 1 0

]⊤
and x1 =

[
0 1 1

]⊤
would again yield

ϕ0 = (1/
√
2)
[
1 1 0

]⊤
and ϕ1 = (1/

√
6)
[
−1 1 2

]⊤
. Now {ϕ0, ϕ1}

is obviously too small to be a basis for C3. Instead, it is an orthonormal
basis for the two-dimensional space span({x0, x1}). As discussed in Exam-
ples 2.23 and 2.36, this space is the set of 3-tuples with middle component
equal to the sum of the first and last.

(iii) Starting with x0 =
[
1 1 1

]⊤
, x1 =

[
1 1 0

]⊤
, and x2 =

[
0 1 1

]⊤
,

the same set of vectors as in (i), but in a different order, yields

ϕ0 =
1√
3



1
1
1


 , ϕ1 =

1√
6




1
1
−2


 , and ϕ2 =

1√
2



−1
1
0


 .

There is no obvious relationship between this orthonormal basis and the
one found in part (i).

Solved exercise 2.5 applies Gram–Schmidt orthogonalization to derive normalized
Legendre polynomials, which are polynomials orthogonal in L2([−1, 1]).

2.5.3 Biorthogonal pairs of bases

Orthonormal bases have several advantages over nonorthonormal bases, including
the simple expressions for expansion in (2.94) and orthogonal projection in (2.106).
While there are no general disadvantages caused directly by orthonormality, in some
settings nonorthonormal bases have their advantages, too. For example, of the bases







1
1
0


 ,



0
1
1


 ,



1
1
1





 and





1√
2



1
1
0


 , 1√

6



−1
1
2


 , 1√

3




1
−1
1







from Example 2.38(i), the nonorthogonal basis is easier to store and compute with.
Solved Exercise 2.5 provides a more dramatic example, since the set of functions
{1, t, t2, . . . , tN} is certainly simpler for many purposes than the Legendre poly-
nomials up to degree N .

A basis does not have to be orthonormal to provide unique expansions. The
sacrifice we must make is that we cannot ask for a single set of vectors to serve the
analysis role in x 7→ α = (〈x, ϕk〉)k∈K and the synthesis role in α 7→ ∑

k∈K αkϕk.
This leads us to the concept of a biorthogonal pair of bases, or dual bases.

Definition 2.43 (Biorthogonal pair of bases) The sets of vectors

Φ = {ϕk}k∈K ⊂ H and Φ̃ = {ϕ̃k}k∈K ⊂ H , where K is finite or countably infinite,
are called a biorthogonal pair of bases for a Hilbert space H when

(i) each is a basis for H ; and

(ii) they are biorthogonal, meaning that

〈ϕi, ϕ̃k〉 = δi−k for every i, k ∈ K. (2.111)
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Since the inner product has Hermitian symmetry and δi−k is real, the roles of the

sets Φ and Φ̃ can be reversed with no change in whether (2.111) holds. We will

generally maintain a convention of using the basis Φ in synthesis and the basis Φ̃ in
analysis, with the understanding that the bases can be swapped in any of the results
that follow. With each basis we associate synthesis and analysis operators defined
through (2.90) and (2.91); a biorthogonal pair of bases thus yields four operators:

Φ, Φ∗, Φ̃, and Φ̃∗.

Example 2.39 (Biorthogonal pair of bases in finite dimensions) The
sets

ϕ0 =



1
1
0


 , ϕ1 =



0
1
1


 , ϕ2 =



1
1
1


 and ϕ̃0 =




0
1
−1


 , ϕ̃1 =



−1
1
0


 , ϕ̃2 =




1
−1
1




are a biorthogonal pair of bases for C3, as can be verified by direct computation.

Example 2.40 (Biorthogonal pair of bases of cosine functions)

Define Ψ = {ψk}k∈N ⊂ L2([− 1
2 ,

1
2 ]) and Ψ̃ = {ψ̃k}k∈N ⊂ L2([− 1

2 ,
1
2 ]) by

ψ0(t) = 1

= ϕ0(t), (2.112a)

ψk(t) =
√
2 cos(2πkt) +

1

2

√
2 cos(2π(k + 1)t)

= ϕk(t) +
1

2
ϕk+1(t), k = 1, 2, . . . , (2.112b)

ψ̃0(t) = 1

= ϕ0(t), (2.112c)

ψ̃k(t) =

k∑

m=1

(
−1

2

)k−m√
2 cos(2πmt)

=

k∑

m=1

(
−1

2

)k−m

ϕm(t), k = 1, 2, . . . , (2.112d)

where {ϕk}k∈N are the orthonormal basis functions from (2.24). The first few
functions in each of these sets are shown in Figure 2.22. Verifying that (2.111)

holds is only part of proving that the sets Ψ (solid lines) and Ψ̃ (dashed lines)
form a biorthogonal pair of bases; this is left for Exercise 2.38. We must also
verify that each set is a basis for the same subspace of L2([− 1

2 ,
1
2 ]).

By construction, {ϕk}k∈N forms an orthonormal basis for the closure of its

span S. We can use this to show that the sets Ψ and Ψ̃ are also bases for S. The
closure of the span of Ψ and S are equal: span(Ψ) ⊂ S because each ψk is a linear
combination of one or two elements of Φ; and S ⊂ span(Ψ) because ϕ0 = ψ0 and,
for each k ∈ Z+, ϕk can be written as an infinite linear combination of elements
of Ψ. Furthermore, these expansions with respect to Ψ are unique; a detailed
argument is left for Exercise 2.38. An analogous argument shows that the set Ψ̃
is a basis for S.
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-
1
2

1
2

-1

1

t
-

1
2

1
2

-1

1

t
-

1
2

1
2

-1

1

t

(a) ψ0(t) and ψ̃0(t). (b) ψ1(t) and ψ̃1(t). (c) ψ2(t) and ψ̃2(t).

-
1
2

1
2

-1

1

t
-

1
2

1
2

-1

1

t
-

1
2

1
2

-1

1

t

(d) ψ3(t) and ψ̃3(t). (e) ψ4(t) and ψ̃4(t). (f) ψ5(t) and ψ̃5(t).

Figure 2.22 Elements of the biorthogonal pair of bases Ψ (solid lines) and Ψ̃ (dashed
lines) in Example 2.40.

Expansion and inner product computation With a biorthogonal pair of bases,
expansion coefficients with respect to one basis are computed using the other basis.

Theorem 2.44 (Biorthogonal basis expansions) Let Φ = {ϕk}k∈K and

Φ̃ = {ϕ̃k}k∈K be a biorthogonal pair of bases for a Hilbert space H . The unique
expansion with respect to the basis Φ of any x in H has expansion coefficients

αk = 〈x, ϕ̃k〉 for k ∈ K, or, (2.113a)

α = Φ̃∗x. (2.113b)

Synthesis with these coefficients yields

x =
∑

k∈K
〈x, ϕ̃k〉ϕk (2.114a)

= Φα = ΦΦ̃∗x. (2.114b)

Proof. The proof parallels the proof of Theorem 2.39 with minor modifications based
on replacing the orthonormality condition (2.92) with the biorthogonality condition
(2.111).

The existence of a unique linear combination of the form (2.87) is guaranteed by
the set Φ being a basis. The validity of (2.114a) with coefficients (2.113a) follows from
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Cambridge University Press (ISBN 110703860X) v1.1 [May 2014] [free version] Comments to book-errata@FourierAndWavelets.org
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the following computation:

〈x, ϕ̃k〉 (a)
=

〈∑

i∈K
αiϕi, ϕ̃k

〉
(b)
=
∑

i∈K
αi〈ϕi, ϕ̃k〉 (c)

=
∑

i∈K
αiδi−k

(d)
= αk,

where (a) follows from (2.87); (b) from the linearity in the first argument of the inner

product; (c) from the biorthogonality of the sets Φ and Φ̃, (2.111); and (d) from the
definition of the Kronecker delta sequence, (2.9).

The expressions (2.113b) and (2.114b) are equivalent to (2.113a) and (2.114a)
using the operators defined in (2.90) and (2.91).

Reversing the roles of the bases Φ and Φ̃ gives expansion coefficients with respect
to the basis Φ̃:

α̃k = 〈x, ϕk〉 for k ∈ K, or α̃ = Φ∗x, (2.115)

with the corresponding expansion

x =
∑

k∈K
〈x, ϕk〉ϕ̃k = Φ̃Φ∗x. (2.116)

The theorem shows that a biorthogonal pair of bases can together do the job of
an orthonormal basis in terms of signal expansion. The most interesting properties
of the synthesis and analysis operators involve both bases of the pair. Since (2.114b)
and (2.116) hold for all x in H ,

ΦΦ̃∗ = I as well as Φ̃Φ∗ = I on H. (2.117)

This leads to an analogue of Theorem 2.40.

Theorem 2.45 (Parseval equalities for biorthogonal pairs of bases)

Let Φ = {ϕk}k∈K and Φ̃ = {ϕ̃k}k∈K be a biorthogonal pair of bases for a Hilbert

space H . Expansion with respect to the bases Φ and Φ̃ with coefficients (2.113)
and (2.115) satisfies

‖x‖2 =
∑

k∈K
〈x, ϕk〉〈x, ϕ̃k〉∗ (2.118a)

= 〈Φ∗x, Φ̃∗x〉 = 〈α̃, α〉. (2.118b)

More generally,

〈x, y〉 =
∑

k∈K
〈x, ϕk〉〈y, ϕ̃k〉∗ (2.119a)

= 〈Φ∗x, Φ̃∗y〉 = 〈α̃, β〉. (2.119b)
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Proof. We will prove (2.119b); (2.119a) is the same fact expanded with the definitions

of Φ∗ and Φ̃∗, and equalities (2.118) follow upon setting x = y. For any x and y in H ,

〈Φ∗x, Φ̃∗y〉 (a)
= 〈x, ΦΦ̃∗y〉 (b)

= 〈x, y〉,

where (a) follows from the definition of the adjoint; and (b) from (2.117).

Gram matrix Theorem 2.45 is not nearly as useful as Theorem 2.40 because it in-
volves expansions with respect to both bases of the pair. In (2.119), x =

∑
k∈K α̃kϕ̃k

and y =
∑

k∈K βkϕk (note the use of different bases) so that

〈x, y〉 = 〈α̃, β〉 =
∑

k∈K
α̃kβ

∗
k .

More often, one wants all expansions to be with respect to one basis of the pair; the
other basis of the pair serves as a helper in computing the expansion coefficients. If
x = Φα and y = Φβ (both expansions with respect to the basis Φ), then

〈x, y〉 = 〈Φα, Φβ〉 (a)
= 〈Φ∗Φα, β〉 (b)

= 〈Gα, β〉, (2.120)

where (a) follows from the meaning of the adjoint; and (b) from introducing the
Gram matrix or Gramian G,

G = Φ∗Φ, (2.121a)

Gik = 〈ϕk, ϕi〉 for every i, k ∈ K, (2.121b)

G =




...
...

...
· · · 〈ϕ−1, ϕ−1〉 〈ϕ0, ϕ−1〉 〈ϕ1, ϕ−1〉 · · ·
· · · 〈ϕ−1, ϕ0〉 〈ϕ0, ϕ0〉 〈ϕ1, ϕ0〉 · · ·
· · · 〈ϕ−1, ϕ1〉 〈ϕ0, ϕ1〉 〈ϕ1, ϕ1〉 · · ·

...
...

...




. (2.121c)

The order of factors in (2.120) evokes a product of three terms:

〈x, y〉 = β∗Gα, (2.122)

where as before α and β are column vectors. When the set Φ is an orthonormal
basis, G simplifies to the identity operator on ℓ2(K) and (2.122) simplifies to (2.99).

Example 2.41 (C3 inner product computation with bases) Consider
the basis {ϕ0, ϕ1, ϕ2} ⊂ C3 from Example 2.39. The Gram matrix of this basis
is

G = Φ∗Φ =



1 1 0
0 1 1
1 1 1





1 0 1
1 1 1
0 1 1


 =



2 1 2
1 2 2
2 2 3


 .
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For any x and y in C3, the expansions with respect to the basis Φ are α = Φ̃∗x
and β = Φ̃∗y, where

Φ̃∗ =




0 1 −1
−1 1 0
1 −1 1




is the analysis operator associated with the basis {ϕ̃0, ϕ̃1, ϕ̃2} ⊂ C3 from Exam-
ple 2.39. Then, 〈x, y〉 = β∗Gα by using (2.122).

In CN , it is often natural and easy to use the standard basis for inner product
computations. Thus, the previous example might seem to be a complicated way to
achieve a simple result. In fact, we have

β∗Gα = (Φ̃∗y)∗ (Φ∗Φ) (Φ̃∗x) = y∗Φ̃ Φ∗Φ Φ̃∗x = y∗(ΦΦ̃∗)∗(ΦΦ̃∗)x,

so, in light of (2.117), the inner product y∗x has been altered only by the insertion of
identity operators. The use of (2.122) is more valuable when expansion with respect
to a biorthogonal basis is natural and precomputation of G avoids a laborious inner
product computation, as we illustrate next.

Example 2.42 (Polynomial inner product computation with bases)
Consider the polynomials of degree at most 3 under the L2([−1, 1]) inner prod-
uct. The basis {1, t, t2, t3} is easy to use because the expansion coefficients
of a polynomial x(t) = α0 + α1t + α2t

2 + α3t
3 are read off directly as α =[

α0 α1 α2 α3

]⊤
. However, since the basis is not orthonormal, we cannot

compute inner products with (2.99). Instead, since

〈tk, ti〉 =

∫ 1

−1

tkti dt =
1

i+ k + 1

(
1− (−1)i+k+1

)
,

the Gram matrix of the basis is

G =




2 0 2
3 0

0 2
3 0 2

5
2
3 0 2

5 0

0 2
5 0 2

7


 ,

and inner products can be computed without any integration using (2.122).

Inverse synthesis and analysis Equation (2.117) shows that Φ̃∗ is a right inverse
of Φ. It is also true that

Φ̃∗Φ = I on ℓ2(K), (2.123)

making Φ̃∗ a left inverse of Φ and furthermore showing that Φ̃∗ is the unique inverse
of Φ. To verify (2.123), make the following computation for any sequence α in ℓ2(K):

Φ̃∗Φα
(a)
= Φ̃∗∑

i∈K
αiϕi

(b)
=
(〈∑

i∈K αiϕi, ϕ̃k

〉)
k∈K

(c)
=
(∑

i∈K αi〈ϕi, ϕ̃k〉
)
k∈K

(d)
=
(∑

i∈K αiδi−k

)
k∈K

(e)
= (αk)k∈K = α, (2.124)
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where (a) follows from (2.90); (b) from (2.91); (c) from the linearity in the first
argument of the inner product; (d) from the biorthogonality of the sets {ϕk}k∈K
and {ϕ̃k}k∈K, (2.111); and (e) from the definition of the Kronecker delta sequence,
(2.9).

Knowing that operators associated with a biorthogonal pair of bases satisfy

Φ̃∗ = Φ−1 (2.125)

can be used to determine Φ̃ from Φ such that the sets Φ and Φ̃ form a biorthogonal
pair of bases. A simple special case is when the Hilbert space H is CN (or RN ).
Then, the synthesis operator Φ is anN×N matrix with the basis vectors as columns,
and linear independence of the basis implies that Φ is invertible. Setting Φ̃ = (Φ−1)∗

means that the vectors of the dual basis are the conjugate transposes of the rows
of Φ−1. It is a valuable exercise to check that Φ̃ in Example 2.39 can be seen as
derived from Φ in this manner.

Example 2.43 (Biorthogonal pair of bases, Example 2.31 continued)
Take the basis Φ from Example 2.31(ii). Assuming that θ 6= 0, and using (2.125),

the synthesis operators associated with the basis Φ and its dual basis Φ̃ are

Φ =

[
1 cos θ
0 sin θ

]
, Φ̃ =

[
1 0

−cot θ csc θ

]
; (2.126)

these bases are shown in Figures 2.23(a) and (b). We can easily check that
the biorthogonality condition (2.111) holds. Figure 2.23 also illustrates how a
unit-norm basis does not necessarily lead to a unit-norm dual basis.

We have already computed the optimal stability constants λmin and λmax

of the basis in Figure 2.23(a) in Example 2.31(ii); we can similarly find the

corresponding optimal stability constants λ̃min and λ̃max of the dual basis in
Figure 2.23(b). It turns out that these are reciprocals of λmin and λmax:

λ̃min =
1

λmax
, λ̃max =

1

λmin
. (2.127)

Clearly, the pair is best behaved for θ = 1
2π, when it reduces to an orthonor-

mal basis. As θ approaches 0, the basis vectors in Φ become close to collinear,
destroying the basis property.

When the Hilbert space is not CN (or RN ), the simplicity of the equation

Φ̃∗ = Φ−1 is deceptive. The operators Φ̃∗ and Φ−1 are mappings from H to ℓ2(K).
The analysis operator Φ̃∗ maps from H to ℓ2(K) through the inner products with
{ϕ̃k}k∈K. To determine {ϕ̃k}k∈K from Φ−1 is to interpret the operation of Φ−1 as
computing inner products with some set of vectors. We derive that set of vectors
next.

Dual basis So far we have derived properties of a biorthogonal pair of bases. Now
we show how to find the unique basis Φ̃ that completes a biorthogonal pair for
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ϕ0 =
[
1 0

]⊤

ϕ1 =
[
cos θ sin θ

]⊤

θ

ϕ̃0 =
[
1 −cot θ

]⊤

ϕ̃1 =
[
0 csc θ

]⊤

(a) (b)

Π�4 Π�2

5

10

λmin, λmax

θ
Π�4 Π�2

5

10

λ̃min, λ̃max

θ

(c) (d)

Figure 2.23 A biorthogonal pair of bases in R2 and their optimal stability constants.
(a) The basis Φ from Figure 2.18(b). (b) Its corresponding dual basis Φ̃. (c) λmin and

λmax for the basis in (a) as a function of θ (same as Figure 2.18(d)). (d) λ̃min and λ̃max for
the dual basis in (b) as a function of θ. The Riesz basis constants here are the reciprocals
of the ones in (c).

a given Riesz basis Φ. As noted above, when Φ is a basis23 for CN , finding the
appropriate Φ̃ is as simple as inverting the matrix Φ∗. In general, we find Φ̃ by
imposing two key properties: Φ and Φ̃ span the same space H , and the sets are
biorthogonal.

Let Φ = {ϕk}k∈K ⊂ H be a Riesz basis for a Hilbert space H . To ensure that

span(Φ̃) ⊆ span(Φ), let

ϕ̃k =
∑

ℓ∈K
aℓ,kϕℓ, for each k ∈ K. (2.128a)

This set of equations can be combined into a single matrix product equation to
express the synthesis operator Φ̃ as

Φ̃ = ΦA, (2.128b)

where the (ℓ, k) entry of A : ℓ2(K) → ℓ2(K) is aℓ,k. Determining the coefficients

aℓ,k for k, ℓ ∈ K specifies the dual basis Φ̃ through either of the forms of (2.128).

23Recall that, in any finite-dimensional space, any basis is a Riesz basis.
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The biorthogonality condition (2.111) dictates that for every i, k ∈ K,

δi−k = 〈ϕi, ϕ̃k〉
(a)
=

〈
ϕi,

∑

ℓ∈K
aℓ,kϕℓ

〉
(b)
=
∑

ℓ∈K
a∗ℓ,k〈ϕi, ϕℓ〉

(c)
=
∑

ℓ∈K
a∗ℓ,kGℓ,i,

(2.129)
where (a) uses (2.128a) to substitute for ϕ̃k; (b) follows from the conjugate linearity
in the second argument of the inner product; and (c) uses the Gram matrix defined
in (2.121b). By taking the conjugate of both sides of (2.129) and using the Hermitian
symmetry of the Gram matrix, we obtain

δi−k =
∑

ℓ∈K
Gi,ℓaℓ,k, for every i, k ∈ K. (2.130a)

This set of equations can be combined into a single matrix product equation

I = GA. (2.130b)

Thus the inverse of the Gram matrix gives the desired coefficients.24 This derivation
is summarized by the following theorem.

Theorem 2.46 (Dual basis) Let Φ = {ϕk}k∈K be a Riesz basis for a Hilbert
space H , and let A : ℓ2(K)→ ℓ2(K) be the inverse of the Gram matrix of Φ, that

is, A = (Φ∗Φ)−1. Then, the set Φ̃ = {ϕ̃k}k∈K defined via

ϕ̃k =
∑

ℓ∈K
aℓ,kϕℓ, for each k ∈ K, (2.131a)

together with Φ forms a biorthogonal pair of bases for H . The synthesis operator
for this basis is given by

Φ̃ = ΦA = Φ(Φ∗Φ)−1, (2.131b)

the pseudoinverse of Φ∗.

Recall from (2.125) that the synthesis operator associated with the dual basis

can be written as Φ̃ = (Φ−1)∗. However, the inverse and adjoint in this expression
are difficult to interpret. In contrast, the key virtue of (2.131) is that the inversion
is of the Gram matrix, which is easier to interpret because it is an operator from
ℓ2(K) to ℓ2(K). This is illustrated in the following finite-dimensional example.
When K is infinite, we still prefer to avoid explicit inversion; examples of dual basis
computations for infinite K arise in Chapter 5.

Example 2.44 (Dual to basis of periodic triangle functions) Let

ϕ0(t) =





t, for t ∈ [0, 1];
2− t, for t ∈ (1, 2];

0, for t ∈ (2, 3]
(2.132)

24The Riesz basis condition on Φ ensures that the inverse exists.
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0 1 2 3
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1

t

ϕ0(t)

0 1 2 3

0.5

1

t

ϕ1(t)

0 1 2 3

0.5

1

t

ϕ2(t)

(a) Basis Φ.

1 2 3
-

1
3

5
6

5
3

t

ϕ̃0(t)

1 2 3
-

1
3

5
6

5
3

t

ϕ̃1(t)

1 2 3
-

1
3

5
6

5
3

t

ϕ̃2(t)

(b) Dual basis Φ̃.

Figure 2.24 (a) The basis Φ = {ϕ0, ϕ1, ϕ2} obtained by circularly shifting the triangle

function ϕ0 by 1 and 2. (b) The dual set Φ̃ = {ϕ̃0, ϕ̃1, ϕ̃2} is derived in Example 2.44.

in L2([0, 3]). The function and its circular shifts by 1 and 2 are shown in Fig-
ure 2.24(a). The set Φ = {ϕ0, ϕ1, ϕ2} is a basis for the subspace S = span(Φ) ⊂
L2([0, 3]). This subspace is the set of functions x that satisfy x(0) = x(3) and
are piecewise-linear and continuous on [0, 3] with breakpoints at 1 and 2.

We wish to find the basis Φ̃ = {ϕ̃0, ϕ̃1, ϕ̃2} that forms a biorthogonal pair
with Φ. The Gram matrix of Φ is

G =




2
3

1
6

1
6

1
6

2
3

1
6

1
6

1
6

2
3


 . (2.133)

Using its inverse in (2.131a) yields

ϕ̃0 =
5

3
ϕ0 −

1

3
ϕ1 −

1

3
ϕ2,

ϕ̃1 = −1

3
ϕ0 +

5

3
ϕ1 −

1

3
ϕ2,

ϕ̃2 = −1

3
ϕ0 −

1

3
ϕ1 +

5

3
ϕ2.

These functions are depicted in Figure 2.24(b). Since each ϕ̃k is a linear combi-

nation of {ϕ0, ϕ1, ϕ2}, it is clear that span(Φ̃) ⊆ span(Φ). One can also show

that span(Φ) ⊆ span(Φ̃). For an intuitive understanding, note that, similarly
to ϕk, each ϕ̃k satisfies ϕ̃k(0) = ϕ̃k(3) and is piecewise-linear on [0, 3] with
breakpoints at 1 and 2; thus, the sets span the same subspace. While many
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96 From Euclid to Hilbert

sets of functions satisfy the biorthogonality condition (2.111) without satisfying

span(Φ̃) = span(Φ), this solution satisfying both conditions is unique.

The dual of the dual of a basis is the original basis, and a basis is its own dual
if and only if it is an orthonormal basis. Also, if Φ is a Riesz basis with optimal
stability constants λmin and λmax, then Φ̃ is a Riesz basis with optimal stability
constants 1/λmax and 1/λmin (an instance of which we have seen in Example 2.43).
Establishing these facts formally is left for Exercise 2.39. As we mentioned earlier,
it can be advantageous for numerical computations to have λmin ≈ λmax. The same
property is then maintained by the dual.

Dual coefficients As we noted earlier in reference to computation of inner prod-
ucts, it is often convenient to use only one basis explicitly. Then, we face the
problem of finding expansions with respect to the basis Φ from analysis with Φ∗.
Unless Φ∗ = Φ̃∗, in which case Φ is an orthonormal basis, the coefficients obtained
with analysis by Φ∗ must be adjusted to be the right ones to use in synthesis by Φ.
The adjustment of coefficients is analogous to computation of the dual basis.

To have an expansion with respect to the basis Φ from analysis with Φ∗, we
seek an operator A : ℓ2(K)→ ℓ2(K) such that

x = ΦAΦ∗x for every x ∈ H.

It is easy to verify that A = (Φ∗Φ)−1, the inverse of the Gram matrix, is the desired
operator. In terms of the coefficient sequences defined in (2.113b) and (2.115), A
maps α̃ to α, while the Gram matrix maps α to α̃.

Oblique projection Similarly to the truncation of an orthonormal expansion giving
an orthogonal projection (Theorem 2.41), truncation of (2.114a) or (2.115) gives an
oblique projection. Proof of the following result is left for Exercise 2.40.

Theorem 2.47 (Oblique projection) Let ΦI = {ϕk}k∈I and Φ̃I = {ϕ̃k}k∈I
be sets in Hilbert space H that satisfy

〈ϕi, ϕ̃k〉 = δi−k for every i, k ∈ I.

Then for any x ∈ H ,

PI x =
∑

k∈I
〈x, ϕ̃k〉ϕk (2.134a)

= ΦI Φ̃
∗
I x (2.134b)

is a projection of x onto SI = span({ϕk}k∈I). The residual satisfies x−PI x ⊥ S̃I ,
where S̃I = span({ϕ̃k}k∈I).
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θ

SI ϕ0

ϕ1

S̃I

ϕ̃0

ϕ̃1x

PIx

x− PIx
·

Figure 2.25 Example of an oblique projection. The projection is onto SI , the subspace
spanned by ϕ0. The projection is orthogonal to S̃I , the subspace spanned by the biorthog-
onal vector ϕ̃0.

Example 2.45 (Oblique projection, Example 2.43 continued) We con-
tinue our discussion of Example 2.43 and illustrate oblique projection. Define PI
via (2.134) as

PI x = 〈x, ϕ̃0〉ϕ0 = ΦI Φ̃∗
I x,

with

ΦI =
[
1 0

]⊤
, Φ̃I =

[
1 −cot θ

]⊤
.

Figure 2.25 illustrates the projection (not orthogonal anymore), the subspace SI ,
the residual x− PI x, and the subspace S̃I .

While the above theorem gives an important property, it is not as useful as Theo-
rem 2.41 because oblique projections do not solve best approximation problems.

Decomposition By applying Theorem 2.47 with any single-element set I, we see
that any one term of (2.114a) or (2.115) is an oblique projection onto a one-
dimensional subspace. Thus, a biorthogonal pair of bases induces a pair of de-
compositions

H =
⊕

k∈K
S{k} and H =

⊕

k∈K
S̃{k}, (2.135)

where S{k} = span(ϕk) and S̃{k} = span(ϕ̃k). Actually, because of linear indepen-
dence and completeness, any basis gives a decomposition of the form above. A key
merit of a decomposition that comes from a biorthogonal pair of bases is that the
expansion coefficients are determined simply as in (2.113).
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Best approximation and the normal equations According to the projection the-
orem (Theorem 2.26), given a closed subspace S of a Hilbert space H , the best
approximation of a vector x in H is given by the orthogonal projection of x onto S.
In Theorem 2.41 we saw how to compute this orthogonal projection in one special
case. We now derive a general methodology using bases.

Denote the orthogonal projection of x onto S by x̂. According to the projection
theorem, x̂ is uniquely determined by x̂ ∈ S and x− x̂ ⊥ S. Given a basis {ϕk}k∈I
for S, the projection being in S is guaranteed by

x̂ =
∑

k∈I
βkϕk (2.136a)

for some coefficient sequence β, and the residual being orthogonal to S is expressed
as

〈x− x̂, ϕi〉 = 0 for every i ∈ I. (2.136b)

Rearranging (2.136b) and substituting into (2.136a) gives

〈x, ϕi〉 = 〈x̂, ϕi〉 =
〈∑

k∈I βkϕk, ϕi

〉
=
∑

k∈I
βk〈ϕk, ϕi〉 for every i ∈ I.

Solving these equations gives the following result.

Theorem 2.48 (Normal equations) Given a vector x and a Riesz basis
{ϕk}k∈I for a closed subspace S in a separable Hilbert space H , the vector closest
to x in S is

x̂ =
∑

k∈I
βkϕk (2.137a)

= Φβ, (2.137b)

where β is the unique solution to the system of equations

∑

k∈I
βk〈ϕk, ϕi〉 = 〈x, ϕi〉 for every i ∈ I, or, (2.138a)

Φ∗Φβ = Φ∗x. (2.138b)

Equations (2.138) are called normal equations because they express the normality
(orthogonality) of the residual and the subspace (from (2.136b)). Invertibility of
the Gram matrix Φ∗Φ follows from {ϕk}k∈I being a Riesz basis for S. In operator
notation, using this invertibility in combining (2.137b) and (2.138b) leads to

x̂ = Φ(Φ∗Φ)−1Φ∗x = Px. (2.139)

It is then easy to check that P is an orthogonal projection operator (see Theo-
rem 2.29). If the set {ϕk}k∈I is not a basis, the projection theorem still ensures
that x̂ is unique, but naturally its expansion with respect to {ϕk}k∈I is not unique.
We illustrate these concepts with an example.
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Example 2.46 (Normal equations in R3) Let ϕ0 =
[
1 1 0

]⊤
and

ϕ1 =
[
0 1 1

]⊤
. Given a vector x =

[
1 1 1

]⊤
, according to Theorem 2.48,

the vector in span({ϕ0, ϕ1}) closest to x is

x̂ = β0ϕ0 + β1ϕ1,

with β the unique solution to (2.138b), which simplifies to
[
2 1
1 2

] [
β0
β1

]
=

[
2
2

]
.

Solving the system yields β0 = β1 = 2
3 , leading to

x̂ =
2

3
(ϕ0 + ϕ1) =




2
3
4
3
2
3


 .

We can easily check that the residual x− x̂ is orthogonal to span({ϕ0, ϕ1}):

x− x̂ =




2
3

− 2
3
2
3


 ⊥ α0ϕ0 + α1ϕ1 =




α0

α0 + α1

α1


 .

Now let ϕ2 =
[
1 0 −1

]⊤
. The vector in span({ϕ0, ϕ1, ϕ2}) closest to x

is
x̂ = β0ϕ0 + β1ϕ1 + β2ϕ2,

where β satisfies 

2 1 1
1 2 −1
1 −1 2





β0
β1
β2


 =



2
2
0


 .

The solutions for β are not unique, but all solutions yield x̂ =
[
2
3

4
3

2
3

]⊤
as

before. This is as expected, since span({ϕ0, ϕ1, ϕ2}) = span({ϕ0, ϕ1}).

In the special case when {ϕk}k∈I is an orthonormal set, the normal equations
(2.138) simplify greatly:

〈x, ϕi〉
(a)
=
∑

k∈I
βk〈ϕk, ϕi〉

(b)
=
∑

k∈I
βkδk−i

(c)
= βi, for every i ∈ I,

where (a) is (2.138); (b) follows from orthonormality; and (c) from the definition
of the Kronecker delta sequence, (2.9). Thus the coefficients of the expansion of x̂
with respect to {ϕk}k∈I come from analysis with the same set of vectors, exactly
as in Theorem 2.41.

Solving the normal equations is also simplified by having {ϕ̃k}k∈I that to-
gether with {ϕk}k∈I forms a biorthogonal pair of bases for the subspace of interest.

Then by combination of (2.131b) and (2.139), the best approximation is x̂ = Φ̃Φ∗x.
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100 From Euclid to Hilbert

In general, {ϕk}k∈I is not an orthonormal set, and we might want to express
both x and x̂ through expansions with some different basis {ψk}k∈K that is not
necessarily orthonormal itself,

x =
∑

k∈K
αkψk and x̂ =

∑

k∈K
α̂kψk.

Properties of the mapping from α to α̂ that make x̂ the orthogonal projection of
x onto span({ϕk}k∈I) are established in Exercise 2.41. In particular, orthogonal
projection in H corresponds to orthogonal projection in the coefficient space if and
only if expansions are with respect to an orthonormal basis.

Successive approximation Continuing our discussion of best approximation, now
consider the computation of a sequence of best approximations in subspaces of
increasing dimension. Let {ϕi}i∈N be a linearly independent set, and for each k ∈ N,
let Sk = span({ϕ0, ϕ1, . . . , ϕk−1}). Let x̂(k) denote the best approximation of x in
Sk.

25 In Section 2.5.2, we found a simple recursive computation for the expansion
of x̂(k) with respect to {ϕi}i∈N for the case that {ϕi}i∈N is an orthonormal set;
see (2.108). Here, recursive computation is made more complicated by the lack of
orthonormality of the basis.

The spaces Sk and Sk+1 are nested with Sk ⊂ Sk+1, so approximating x with
a vector from Sk+1 instead of one from Sk cannot make the approximation quality
worse; improvement is obtained by capturing the component of x that could not be
captured before. The nesting of subspaces can be expressed as

Sk+1 = Sk ⊕ Tk, (2.140)

where the one-dimensional subspace Tk is not uniquely specified. If we choose Tk to
make this direct sum an orthogonal decomposition, then the increment x̂(k+1)− x̂(k)
will simply be the orthogonal projection of x onto Tk. The decomposition (2.140)
is orthogonal when Tk = span(ψk) with ψk ⊥ Sk, so we get the desired direct sum
by choosing ψk parallel to the residual in orthogonally projecting ϕk to Sk. This
approach simplifies the computation of the increment at the cost of requiring ψk. It
can yield computation savings when the entire sequence of approximations is desired
and the {ψk} are computed recursively through Gram–Schmidt orthogonalization.

Let x̂(0) = 0, and, for k = 0, 1, . . . , perform the following computations.
First, compute ψk orthogonal to Sk and, for convenience in other computations, of
unit norm,

vk =

k−1∑

i=0

〈ϕk, ψi〉ψi, (2.141a)

ψk =
ϕk − vk
‖ϕk − vk‖

. (2.141b)

In this computation, vk is the orthogonal projection of ϕk onto Sk since {ψi}k−1
i=0 is

an orthonormal basis for Sk; see (2.106a). With this intermediate orthogonalization,

25By these definitions, S0 = {0} and x̂(0) = 0.
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2.5 Bases and frames 101

we have
x̂(k+1) = x̂(k) + 〈x, ψk〉ψk. (2.141c)

Exercise 2.42 explores the connection between this algorithm and the normal equa-
tions.

2.5.4 Frames

Bases are sets of vectors that are complete and yield unique expansions (see Defini-
tion 2.34). In a finite-dimensional space, the existence of expansions lower bounds
the number of vectors by the dimension of the space, while uniqueness upper bounds
the number of vectors by the dimension of the space; thus, there are exactly as many
vectors as the dimension of the space. Frames are more general than bases because
they are complete, but the expansions they yield are not necessarily unique. In
a finite-dimensional space, a frame must have at least as many vectors as the di-
mension of the space. In infinite-dimensional spaces, a frame must have infinitely
many vectors, and imposing something analogous to the Riesz basis condition (2.89)
prevents certain pathologies.

Why would we want more than the minimum number of vectors for complete-
ness? There are several possible disadvantages: uniqueness of expansions is lost,
and it would seem at first glance that having a larger set of vectors implies more
computations both in analysis and in synthesis. The primary advantages come from
flexibility in design: fixing analysis leaves flexibility in synthesis and vice versa.

Definition 2.49 (Frame) The set of vectors Φ = {ϕk}k∈J ⊂ H , where J is
finite or countably infinite, is called a frame for a Hilbert space H when there
exist positive real numbers λmin and λmax such that

λmin‖x‖2 ≤
∑

k∈J
|〈x, ϕk〉|2 ≤ λmax‖x‖2, for every x in H. (2.142)

The constants λmin and λmax are called frame bounds. The largest such λmin and
smallest such λmax are called optimal frame bounds for Φ.

A frame is sometimes called a Riesz sequence. This highlights the similarity of
(2.142) to condition (2.89) in Definition 2.35 for Riesz bases as well as the fact that
a frame is not necessarily a basis.

Let us immediately compare and contrast Definitions 2.35 and 2.49.

(i) The notation for the index set has been changed from K to J to reflect the
fact that these are not generally the same size when H has finite dimension.

(ii) The definition of a frame in Definition 2.49 uses the set Φ in the analysis of
x; by contrast, the definition of a basis in Definition 2.35 uses the set Φ in
the synthesis of x. Nevertheless, both bases and frames can be used for both
analysis and synthesis. A frame generally lacks uniqueness of expansions of
the form x =

∑
k∈J αkϕk; this prevents a closer parallel in the definitions.
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(a) ϕ0(t) and ϕ
+
0 (t). (b) ϕ1(t) and ϕ

+
1 (t). (c) ϕ2(t) and ϕ

+
2 (t).

Figure 2.26 Example frame functions from Φ∪Φ+ (solid lines for functions from Φ and
dashed lines for functions from Φ+).

(iii) If Φ and Φ̃ form a biorthogonal pair of bases, then the unique expansion with

respect to Φ̃ is obtained through analysis with Φ; see (2.116). In this case,

comparison of Definitions 2.35 and 2.49 shows that Φ̃ being a Riesz basis with
stability constants λmin and λmax implies that Φ is a frame with frame bounds
λmin and λmax. Since the dual of a Riesz basis is a Riesz basis, we reach the
simple conclusion that any Riesz basis is a frame.

Uses of frames in analysis and synthesis will be established shortly. Exercise 2.43
explores the differences between Definitions 2.35 and 2.49 further.

Example 2.47 (Frame of cosine functions) Starting with Φ = {ϕk}k∈N ⊂
L2([− 1

2 ,
1
2 ]) from (2.24), define the set of functions Φ+ = {ϕ+

k }k∈N by multiplying

each ϕk by
√
2 cos(2πt),

ϕ+
k (t) =

√
2 cos(2πt)ϕk(t), k ∈ N. (2.143)

A few functions from Φ ∪ Φ+ are shown in Figure 2.26.
We know already from Example 2.34 that Φ is an orthonormal basis for the

closure of its span, S = span(Φ). The union Φ∪Φ+ is a frame for S. To see that
the closure of the span of Φ∪Φ+ is not larger than S, note that each ϕ+

k can be
written as a linear combination of elements of Φ. The first element of Φ+ is

ϕ+
0 (t) =

√
2 cos(2πt)ϕ0(t) = ϕ1(t). (2.144a)

For k ∈ Z+,

ϕ+
k (t) =

√
2 cos(2πt)ϕk(t) = 2 cos(2πt) cos(2πkt)

= cos(2π(k − 1)t) + cos(2π(k + 1)t)

=

{
ϕ0(t) + (1/

√
2)ϕ2(t), for k = 1;

(1/
√
2)ϕk−1(t) + (1/

√
2)ϕk+1(t), for k = 2, 3, . . . .

(2.144b)

Computing the frame bounds of this frame is left for Exercise 2.44.
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2.5 Bases and frames 103

Operators associated with frames Analogously to bases, we can define the syn-
thesis operator associated with {ϕk}k∈J to be

Φ : ℓ2(J )→ H, with Φα =
∑

k∈J
αkϕk. (2.145)

The second inequality of (2.142) implies that the norm of this linear operator is
finite and the operator thus bounded.

Similarly, we define the analysis operator associated with {ϕk}k∈J to be

Φ∗ : H → ℓ2(J ), with (Φ∗x)k = 〈x, ϕk〉, k ∈ J . (2.146)

The norm of the analysis operator is the same as that of the synthesis operator.
The power of the operator notation can be seen in rephrasing (2.142) as

λminI ≤ ΦΦ∗ ≤ λmaxI. (2.147)

The first inequality can be derived as follows:

〈(ΦΦ∗ − λminI)x, x〉
(a)
= 〈ΦΦ∗x, x〉 − 〈λminIx, x〉

(b)
= 〈ΦΦ∗x, x〉 − λmin〈x, x〉

(c)
= 〈Φ∗x, Φ∗x〉 − λmin〈x, x〉 = ‖Φ∗x‖2 − λmin‖x‖2

(d)

≥ 0,

where (a) follows from the distributivity of the inner product; (b) from the linearity
in the first argument of the inner product and the meaning of the identity operator;
(c) from the definition of the adjoint; and (d) from the first inequality of (2.142).
The second inequality of (2.147) can be derived similarly.

Because ΦΦ∗ is a Hermitian operator, the operator analogue of (2.243) from
Appendix 2.B.2 holds; thus, the optimal frame bounds are the smallest and largest
eigenvalues of ΦΦ∗. This gives an easy way to find the optimal frame bounds, as
we illustrate in the following example.

Example 2.48 (Frames in R2) In (2.15), we defined a frame, ϕ0 =
[
1 0

]⊤
,

ϕ1 =
[
0 1

]⊤
, and ϕ2 =

[
−1 −1

]⊤
. These vectors are clearly not linearly

independent; however, they do satisfy (2.142). To compute the optimal frame
bounds, we could follow the path from Example 2.31: Determine an expression
for
∑

k∈J |〈x, ϕk〉|2 and find the optimal frame bounds as the infimum and supre-
mum of

∑
k∈J |〈x, ϕk〉|2/(x20+x21). An easier way is to use the operator notation,

where Φ is given in (2.17a). This Φ is a short rectangular matrix, so Φ∗ is a tall
rectangular matrix, illustrating the fact that a frame expansion is overcomplete.
Then, ΦΦ∗ is

ΦΦ∗ =

[
2 1
1 2

]
=

1√
2

[
1 −1
1 1

]

︸ ︷︷ ︸
V

[
3 0
0 1

]

︸ ︷︷ ︸
Λ

1√
2

[
1 1
−1 1

]

︸ ︷︷ ︸
V −1

,

where we have performed an eigendecomposition of the Hermitian matrix ΦΦ∗

via (2.227a). We can immediately read the smallest and largest eigenvalues,
λmin = 1 and λmax = 3, as the optimal frame bounds.
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104 From Euclid to Hilbert

In many ways, including expansion and inner product computation, frames play the
same roles as bases. When a frame lacks uniqueness of expansions, it cannot induce
a subspace decomposition because of the uniqueness requirement in Definition 2.31.
The connection between frames and projections is more subtle. We now develop
these ideas further, covering the special case of tight frames first.

Tight frames

Definition 2.50 (Tight frame) The frame Φ = {ϕk}k∈J ⊂ H , where J is
finite or countably infinite, is called a tight frame, or a λ-tight frame, for a Hilbert
space H when its optimal frame bounds are equal, λmin = λmax = λ.

For a λ-tight frame, (2.147) simplifies to

ΦΦ∗ = λI. (2.148)

A tight frame is a counterpart of an orthonormal basis, as we will see shortly.

Example 2.49 (Finite-dimensional tight frame) Take the following three
vectors as a frame for R2:

ϕ0 =

[
1

0

]
, ϕ1 =

[
− 1

2√
3
2

]
, ϕ2 =

[
− 1

2

−
√
3
2

]
, (2.149a)

Φ =

[
1 − 1

2 − 1
2

0
√
3
2 −

√
3
2

]
. (2.149b)

Computing its optimal frame bounds as we did in Example 2.48, we find that

ΦΦ∗ =
3

2
I,

and thus the eigenvalues are λmin = λmax = 3
2 , and the frame is tight. Note that

this frame is just a normalized version of the one in (2.16), which is a 1-tight
frame.

We can normalize any λ-tight frame by pulling 1/
√
λ into the sum in (2.142) to

yield a 1-tight frame,

∑

k

∣∣〈x, λ−1/2ϕ̃k

〉∣∣2 =
∑

k

|〈x, ϕ̃′
k〉|

2
= ‖x‖2. (2.150)

Because of this normalization, we can associate a 1-tight frame with any tight
frame. Note that orthonormal bases are 1-tight frames with all unit-norm vectors.
In general, the vectors in a 1-tight frame do not have unit norms or even equal
norms.
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2.5 Bases and frames 105

Expansion and inner product computation Expansion coefficients with respect to
a 1-tight frame can be obtained by using the same 1-tight frame for signal analysis.

Theorem 2.51 (1-tight frame expansions) Let Φ = {ϕk}k∈J be a 1-tight
frame for a Hilbert space H . Analysis of any x in H gives expansion coefficients
in ℓ2(J )

αk = 〈x, ϕk〉 for k ∈ J , or, (2.151a)

α = Φ∗x. (2.151b)

Synthesis with these coefficients yields

x =
∑

k∈J
〈x, ϕk〉ϕk (2.152a)

= Φα = ΦΦ∗x. (2.152b)

Note the apparent similarity of this theorem to Theorem 2.39. The equations in
these theorems are identical, and each theorem shows that analysis and synthesis
with the same set of vectors yields an identity on H . In the orthonormal basis case,
the expansion is unique; in the 1-tight frame case it is generally not. The α given
by (2.151b) can be replaced by any α′ = α + α⊥, where α⊥ is in the null space of
Φ, while maintaining x = Φα′.

The theorem follows from two simple facts: α ∈ ℓ2(J ) because Φ∗ is a bounded
operator; and

ΦΦ∗ = I on H (2.153)

by setting λ = 1 in (2.148). This leads to Parseval equalities for 1-tight frames.

Theorem 2.52 (Parseval equalities for 1-tight frames) Let Φ =
{ϕk}k∈J be a 1-tight frame for a Hilbert space H . Expansion with coefficients
(2.151) satisfies

‖x‖2 =
∑

k∈J
|〈x, ϕk〉|2 (2.154a)

= ‖Φ∗x‖2 = ‖α‖2. (2.154b)

More generally,

〈x, y〉 =
∑

k∈J
〈x, ϕk〉〈y, ϕk〉∗ (2.155a)

= 〈Φ∗x, Φ∗y〉 = 〈α, β〉. (2.155b)

This theorem looks formally the same as Theorem 2.40, but it applies to a different
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106 From Euclid to Hilbert

type of a set of vectors. Because of this theorem, frames that are 1-tight are called
Parseval tight frames.

The norm-preservation property of Theorem 2.52 could be misleading. We
often work with tight frames of unit-norm vectors rather than with unit frame
bound; thus, norm preservation is replaced by a constant scaling, as illustrated in
the following example.

Example 2.50 (Parseval equalities for tight frames) Let us continue
with the frame from (2.16). Its vectors are all of norm 2

3 . Normalizing it so that
all of its vectors are of unit norm yields the frame in (2.149). Computing the
norm squared of the expansion coefficient vector ‖α‖2 for this frame yields

‖α‖2 = ‖Φ∗x‖2 =

∥∥∥∥∥∥∥




1 0

− 1
2

√
3
2

− 1
2 −

√
3
2



[
x0
x1

]
∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥




x0

−x0−
√
3x1

2

−x0+
√
3x1

2




∥∥∥∥∥∥∥

2

=
3

2
‖x‖2.

This tells us that, for this tight frame with all unit-norm vectors, the norm of
the expansion coefficients is 3

2 times larger than that of the vector itself. This is
intuitive as we have 3

2 times more vectors than needed for an expansion in R2.

This example generalizes to all finite-dimensional tight frames with unit-norm vec-
tors. For such frames, the factor appearing in the analogue to the Parseval equality
denotes the redundancy of the frame.

Inverse synthesis and analysis For a 1-tight frame, (2.153) shows that the synthe-
sis operator is a left inverse of the analysis operator. Unlike with an orthonormal
basis, the synthesis operator associated with a 1-tight frame is generally not a right
inverse (hence, not an inverse) of the analysis operator because Φ∗Φ 6= I. In finite
dimensions, this can be seen easily from the rank of Φ∗Φ; the rank of Φ∗Φ is the
dimension of H , but Φ∗Φ is an operator on C|J |, where |J | might be larger than
the dimension of H .

Example 2.51 (Inverse relationship for frame operators) Let Φ be
the 1-tight frame from (2.16). We have already seen that ΦΦ∗ = I2×2. We also
have

Φ∗Φ =




2
3 − 1

3 − 1
3

− 1
3

2
3 − 1

3

− 1
3 − 1

3
2
3


 6= I3×3.

The rank of Φ∗Φ is 2.

Orthogonal projection Since a frame for H generally has more than the minimum
number of vectors needed to span H , omitting some terms from the synthesis sum
(2.152) does not necessarily restrict the result to a proper subspace of H . Thus, a
frame (even a 1-tight frame) does not yield a result analogous to Theorem 2.41 for
computing orthogonal projections on H .
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2.5 Bases and frames 107

A different orthogonal projection property is easy to verify for any 1-tight
frame: Φ∗Φ : ℓ2(J ) → ℓ2(J ) is the orthogonal projection onto R(Φ∗). This has
important consequences for robustness to noise, such as in oversampled analog-to-
digital conversion.

General frames

Tight frames are a small class of frames as defined in Definition 2.49. A frame might
generally have optimal frame bounds that differ, the distance between which gives
us information about the quality of the frame.

Dual frame pairs and expansion When a frame Φ is not 1-tight, to find expansion
coefficients with respect to Φ with a linear operator requires a second frame, in
analogy to biorthogonal pairs of bases.

Definition 2.53 (Dual pair of frames) The sets of vectors Φ = {ϕk}k∈J ⊂
H and Φ̃ = {ϕ̃k}k∈J ⊂ H , where J is finite or countably infinite, are called a
dual pair of frames for a Hilbert space H when

(i) each is a frame for H ; and

(ii) for any x in H ,

x =
∑

k∈K
〈x, ϕ̃k〉ϕk (2.156a)

= ΦΦ̃∗x. (2.156b)

Note that this definition combines the roles of Definition 2.43 and Theorem 2.44
for general frames. This is necessary because no simple pairwise condition between
vectors like (2.111) will imply (2.156).

Example 2.52 (Dual pairs of frames in R2) Let Φ be the frame for R2 de-
fined in (2.15). Since synthesis operator Φ is a 2 × 3 matrix with rank 2, it has
infinitely many right inverses; any right inverse specifies a frame that forms a
dual pair with Φ. Examples include the following:

{[
1

1

]
,

[
0

2

]
,

[
0

1

]}
,

{[
0

1

]
,

[
−1
2

]
,

[
−1
1

]}
,

{[
2
3

− 1
3

]
,

[
− 1

3
2
3

]
,

[
− 1

3

− 1
3

]}
.

The first of these examples demonstrates that a frame can have collinear elements;
a frame can furthermore include the same vector multiple times.26 The third of
these examples is the canonical dual, which will be defined shortly.

26Allowing multiplicities generalizes the concept of a set to multisets, but we will continue to
use the simpler term.
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108 From Euclid to Hilbert

Inner product computation Suppose that Φ is a frame for H , and x = Φα and
y = Φβ. Then, just as in (2.122), we can write

〈x, y〉 = 〈Φα, Φβ〉 = 〈Gα, β〉 = β∗Gα, (2.157)

where G = Φ∗Φ is the Gram matrix defined in (2.121). This shows how to use
frame expansion coefficients to convert an inner product in H into an inner product
in ℓ2(J ).

The key difference between the Gram matrix of a frame and the Gram matrix
of a basis is that G is now not necessarily invertible. In fact, it is an invertible
bounded operator if and only if the frame is a Riesz basis.

Inverse analysis and synthesis Condition (2.156b) shows that if sets Φ and Φ̃ are

a dual pair of frames, synthesis operator Φ is a left inverse of analysis operator Φ̃∗.
As we saw before with 1-tight frames, Φ is generally not a right inverse (hence, not

an inverse) of Φ̃∗ because Φ̃∗Φ 6= I.
The roles of the two frames in a dual pair of frames can be reversed, so (2.156)

becomes

x =
∑

k∈K
〈x, ϕk〉ϕ̃k (2.158a)

= Φ̃Φ∗x. (2.158b)

Thus, the synthesis operator Φ̃ is the left inverse of the analysis operator Φ∗. This
and several other elementary properties of dual pairs of frames are established in
Exercise 2.46.

Oblique projection If sets Φ and Φ̃ are a dual pair of frames, the operator P = Φ̃∗Φ
is a projection operator. Checking the idempotency of P is straightforward:

P 2 =
(
Φ̃∗Φ

)(
Φ̃∗Φ

)
= Φ̃∗(ΦΦ̃∗)Φ (a)

= Φ̃∗IΦ = Φ̃∗Φ = P, (2.159)

where (a) follows from synthesis operator Φ being a left inverse of analysis operator

Φ̃∗.

Canonical dual frame So far we have derived properties of a dual pair of frames
without regard for how to find such a pair. Given one frame Φ, there are infinitely
many frames Φ̃ that complete a dual pair with Φ. There is a unique choice called
the canonical dual frame27 that is important because it leads to an orthogonal
projection operator on ℓ2(J ).

For sets Φ and Φ̃ to form a dual pair of frames requires the associated operators
to satisfy ΦΦ̃∗ = I on H ; see (2.156b). As established in (2.159), this makes

27Some authors use dual to mean canonical dual. We will not adopt this potentially confusing
shorthand because it obscures the possible advantages that come from flexibility in the choice of
a dual.
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2.5 Bases and frames 109

P = Φ̃∗Φ a projection operator. When, in addition, P is self-adjoint, it is an
orthogonal projection operator. Setting

Φ̃ = (ΦΦ∗)−1 Φ (2.160a)

satisfies (2.156b) and yields

P = Φ̃∗Φ =
(
(ΦΦ∗)−1

Φ
)∗
Φ = Φ∗ (ΦΦ∗)−1

Φ,

which is self-adjoint. From (2.160a), the elements of the canonical dual are

ϕ̃k = (ΦΦ∗)−1
ϕk, k ∈ J . (2.160b)

When H = CN (or RN ), the computations in (2.160) are straightforward; for
example, the third dual frame in Example 2.52 is a canonical dual. In general, it
is difficult to make these computations without first expressing the linear operator
ΦΦ∗ using a basis.

2.5.5 Matrix representations of vectors and linear operators

A basis for H creates a one-to-one correspondence between vectors in H and se-
quences in ℓ2(K). As discussed in Section 2.5.2, an orthonormal basis preserves
geometry (inner products) in this correspondence; see Figure 2.19. Even with-
out orthonormality, using a basis is a key step toward computational feasibility
because a basis allows us to do all computations with sequences. Here our intu-
ition from finite dimensions might get in the way of appreciating what we have
gained because we take the basis in finite dimensions for granted. Computations
in the Hilbert spaces CN are relatively straightforward in part because we use the
standard basis automatically. Computations in other Hilbert spaces can be con-
siderably more complicated; for example, integrating to compute an L2(R) inner
product can be difficult. With sequences, the greatest difficulty is that if the space
is infinite-dimensional, the computation might require some truncation. Limiting
our attention to sequences in ℓ2(K) ensures that the truncation can be done with
small relative error; details are deferred to Chapter 6.

We get the most benefit from our experience with finite-dimensional linear
algebra by thinking of sequences in ℓ2(K) as (possibly infinite) column vectors. A
linear operator can then be represented with ordinary matrix–vector multiplication
by a (possibly infinite) matrix. One goal in the choice of bases for the domain and
codomain of the operator is to make this matrix simple. Like a basis, a frame also
enables representations using sequences; however, lack of uniqueness of the represen-
tation creates some additional intricacies that are explored in Exercises 2.43–2.48.

Change of basis: Orthonormal bases Let Φ = {ϕk}k∈K and Ψ = {ψk}k∈K be
orthonormal bases for a Hilbert space H . Since bases provide unique representa-
tions, for any x in H we can use synthesis operators to write x = Φα and x = Ψβ
for unique α and β in ℓ2(K). The operator CΦ,Ψ : ℓ2(K)→ ℓ2(K) that maps α to β
is a change of basis from Φ to Ψ.
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Cambridge University Press (ISBN 110703860X) v1.1 [May 2014] [free version] Comments to book-errata@FourierAndWavelets.org



110 From Euclid to Hilbert

ϕ0

θ

ϕ1

θ

Figure 2.27 An orthonormal basis in R2 (dashed lines) generated by rotation of the
standard basis (solid lines).

Since Ψ has inverse Ψ∗, we could simply write CΦ,Ψ = Ψ∗Φ. This solves our
problem because

CΦ,Ψα = (Ψ∗Φ)α = Ψ∗(Φα) = Ψ∗x = β.

In a finite-dimensional setting, this is a perfectly adequate solution because we know
how to interpret Ψ∗Φ as a product of matrices. We illustrate this in the following
example.

Example 2.53 (Change of basis by rotation) Let {ϕ0, ϕ1} be the basis
for R2 shown in Figure 2.27,

ϕ0 =

[
cos θ
sin θ

]
, ϕ1 =

[
−sin θ
cos θ

]
.

Let {ψ0, ψ1} be the standard basis for R2. The change of basis matrix from Φ
to Ψ is

CΦ,Ψ = Ψ∗Φ =

[
1 0
0 1

] [
cos θ −sin θ
sin θ cos θ

]
=

[
cos θ −sin θ
sin θ cos θ

]
.

Consider the vector in R2 that has representation α =
[
1 0

]⊤
with respect

to Φ (not with respect to the standard basis). This means that the vector is

x = 1 · ϕ0 + 0 · ϕ1 = ϕ0 =

[
cos θ
sin θ

]
,

where the final expression is with respect to the standard basis Ψ. This agrees
with the result of the multiplication CΦ,Ψα.

Multiplying by CΦ,Ψ is a counterclockwise rotation by angle θ. This agrees
with the fact that the basis Φ is the standard basis Ψ rotated counterclockwise
by θ.

In the previous example, since multiplication by a 2× 2 matrix is simple, it makes
little difference whether we interpret Ψ∗Φ as a composition of two operators or as
a single operator. In general, CΦ,Ψ should not be implemented as a composition of
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Φ followed by Ψ∗ because we do not want to return to computations in H , which
might be more complicated than computations on coefficient sequences. Instead,
we would like to think of CΦ,Ψ as a |K| × |K| matrix, even if |K| is not finite.

Because of linearity, we can form the matrix CΦ,Ψ by finding CΦ,Ψα for par-
ticular values of α. Let α = ek, where ek is the element of the standard basis for
ℓ2(K) with a 1 in position k. Then, x = Φα = ϕk. Since Ψ is an orthonormal basis,
the unique expansion of x with respect to Ψ is

x =
∑

i∈K
〈x, ψi〉ψi =

∑

i∈K
〈ϕk, ψi〉ψi,

from which we read off the ith coefficient of β in x = Ψβ as βi = 〈ϕk, ψi〉. This
implies that column k of matrix CΦ,Ψ is (〈ϕk, ψi〉)i∈K. The full matrix, written for
the case of K = Z, is

CΦ,Ψ =




...
...

...
· · · 〈ϕ−1, ψ−1〉 〈ϕ0, ψ−1〉 〈ϕ1, ψ−1〉 · · ·
· · · 〈ϕ−1, ψ0〉 〈ϕ0, ψ0〉 〈ϕ1, ψ0〉 · · ·
· · · 〈ϕ−1, ψ1〉 〈ϕ0, ψ1〉 〈ϕ1, ψ1〉 · · ·

...
...

...




. (2.161)

Example 2.54 (Change to standard basis) Let Φ = {ϕk}k∈Z be any
orthonormal basis for ℓ2(Z), and let Ψ be the standard basis for ℓ2(Z). Then for
any integers k and i,

〈ϕk, ψi〉 = ϕk,i,

the ith-indexed entry of the kth vector of Φ. The change of basis operator (2.161)
simplifies to

CΦ,Ψ =




...
...

...
· · · ϕ−1,−1 ϕ0,−1 ϕ1,−1 · · ·
· · · ϕ−1,0 ϕ0,0 ϕ1,0 · · ·
· · · ϕ−1,1 ϕ0,1 ϕ1,1 · · ·

...
...

...



,

a matrix with the initial basis elements as columns.

Change of basis: Biorthogonal pairs of bases We now derive the change of basis
operator without assuming that the bases are orthonormal. Let Φ = {ϕk}k∈K and
Ψ = {ψk}k∈K be bases for a Hilbert space H . For any x in H , we can again write
x = Φα and x = Ψβ for unique α and β in ℓ2(K).

Since Ψ must be invertible, we could simply write CΦ,Ψ = Ψ−1Φ because then

CΦ,Ψα = (Ψ−1Φ)α = Ψ−1(Φα) = Ψ−1x = β.

As before, we would not want to implement CΦ,Ψ as a composition of two operators,
where the first returns computations toH . Here we have the additional complication
that Φ−1 might be difficult to interpret.
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Because of linearity, we can again form the matrix CΦ,Ψ by finding CΦ,Ψα for
particular values of α. Let α = ek, where ek is the element of the standard basis for
ℓ2(K) with a 1 in position k. Then, x = Φα = ϕk. If Ψ and Ψ̃ form a biorthogonal
pair of bases for H , the unique expansion of x with respect to Ψ is

x =
∑

i∈K
〈x, ψ̃i〉ψi =

∑

i∈K
〈ϕk, ψ̃i〉ψi,

from which we read off the ith coefficient of β as βi = 〈ϕk, ψ̃i〉. This implies that

column k of matrix CΦ,Ψ is (〈ϕk, ψ̃i〉)i∈K. The full matrix, written for the case of
K = Z, is

CΦ,Ψ =




...
...

...

· · · 〈ϕ−1, ψ̃−1〉 〈ϕ0, ψ̃−1〉 〈ϕ1, ψ̃−1〉 · · ·
· · · 〈ϕ−1, ψ̃0〉 〈ϕ0, ψ̃0〉 〈ϕ1, ψ̃0〉 · · ·
· · · 〈ϕ−1, ψ̃1〉 〈ϕ0, ψ̃1〉 〈ϕ1, ψ̃1〉 · · ·

...
...

...




. (2.162)

Note that CΦ,Ψ depends on only one dual – the dual of the new representation basis

Ψ. If the dual Ψ̃ were not already available, computation of CΦ,Ψ could be written
in terms of the inner products in (2.161) and the Gram matrix of Ψ.

Matrix representation of linear operator with orthonormal bases Consider a
Hilbert space H with orthonormal basis Φ = {ϕk}k∈K, and let A : H → H be a
linear operator. A matrix representation Γ allows A to be computed directly on
coefficient sequences in the following sense: If

y = Ax, (2.163a)

where
x =

∑

i∈K
αiϕi (2.163b)

and
y =

∑

k∈K
βkϕk, (2.163c)

then
β = Γα. (2.163d)

These relationships are depicted in Figure 2.28.
To find the matrix representation Γ, note that the kth coefficient of the ex-

pansion of y with respect to Φ is

βk
(a)
= 〈y, ϕk〉

(b)
= 〈Ax, ϕk〉

(c)
=
〈
A(
∑

i∈K αiϕi), ϕk

〉

(d)
=
〈∑

i∈K αiAϕi, ϕk

〉 (e)
=
∑

i∈K
αi〈Aϕi, ϕk〉, (2.164)
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ℓ2(K) ℓ2(K)

H H

• •

• •

α β

x y

Γ

A

Φ∗ Φ Φ∗ Φ

Figure 2.28 Conceptual illustration of the computation of a linear operator A : H → H
using a matrix multiplication Γ : ℓ2(K)→ ℓ2(K). The abstract y = Ax can be replaced by
the more concrete β = Γα, where α and β are the representations of x and y with respect
to orthonormal basis Φ of H .

where (a) follows from the expression for expansion coefficients with respect to
an orthonormal basis, (2.93a); (b) from (2.163a); (c) from (2.163b); (d) from the
linearity of A; and (e) from the linearity in the first argument of the inner product.
This computation of one component of β as a linear combination of components of
α determines one row of the matrix Γ. By gathering the equations (2.164) for all
k ∈ K (and assuming that K = Z for concreteness), we obtain

Γ =




...
...

...
· · · 〈Aϕ−1, ϕ−1〉 〈Aϕ0, ϕ−1〉 〈Aϕ1, ϕ−1〉 · · ·
· · · 〈Aϕ−1, ϕ0〉 〈Aϕ0, ϕ0〉 〈Aϕ1, ϕ0〉 · · ·
· · · 〈Aϕ−1, ϕ1〉 〈Aϕ0, ϕ1〉 〈Aϕ1, ϕ1〉 · · ·

...
...

...




. (2.165)

To check that (2.165) makes sense in a simple special case, let H = CN and
let Φ be the standard basis. For any k and i in {0, 1, . . . , N − 1},

Γi,k = 〈Aϕk, ϕi〉 = Ai,k,

because Aϕk is the kth column of A, and taking the inner product with ϕi picks
out the ith entry. Thus the conventional use of matrices for linear operators on CN

is consistent with (2.165). This extends also to the use of the standard basis for
ℓ2(Z).

For a given operator A, a frequent goal in choosing the basis is to make Γ
simple, for example, diagonal.

Example 2.55 (Diagonalizing basis) Let H = RN , and consider a linear
operator A : H → H given by a symmetric matrix. Such a matrix can be decom-
posed as A = ΦΛΦ⊤, where the columns of unitary matrix Φ are eigenvectors of A
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ℓ2(K0) ℓ2(K1)

H0 H1

• •

• •

α β

x y

Γ

A

Φ−1 Φ Ψ−1 Ψ

Figure 2.29 Conceptual illustration of the computation of a linear operator A : H0 → H1

using a matrix multiplication Γ : ℓ2(K0)→ ℓ2(K1). The abstract y = Ax can be replaced
by the more concrete β = Γα, where α is the representation of x with respect to basis Φ
of H0, and β is the representation of y with respect to basis Ψ of H1.

and Λ is the diagonal matrix of corresponding eigenvalues, {λ0, λ1, . . . , λN−1};
see (2.241b). Upon expressing the operator with respect to the orthonormal basis
Φ we obtain

Γi,k
(a)
= 〈Aϕk, ϕi〉

(b)
= 〈λkϕk, ϕi〉

(c)
= λk〈ϕk, ϕi〉

(d)
= λkδi−k,

where (a) follows from (2.165); (b) from (λk, ϕk) being an eigenpair of A; (c)
from the linearity in the first argument of the inner product; and (d) from the
orthonormality of Φ. Thus, the representation is diagonal: multiplication of
a vector by a matrix A is replaced by pointwise multiplication of expansion
coefficients of x by the eigenvalues of A.

This simple example is fundamental since many basis changes aim to diagonalize
operators. For example, we will see in Chapter 3 that the discrete Fourier trans-
form diagonalizes the circular convolution operator because it is formed from the
eigenvectors of the circular convolution operator. As in the example, multiplication
by a dense matrix becomes a pointwise multiplication in a new basis.

Moving to cases where the domain and codomain of the linear operator are
not necessarily the same Hilbert space, consider a linear operator A : H0 → H1,
and let Φ = {ϕk}k∈K0 be an orthonormal basis for H0 and Ψ = {ψk}k∈K1 be
an orthonormal basis for H1. We would like to implement A as an operation on
sequence representations with respect to Φ and Ψ. The concept is depicted in
Figure 2.29, where orthonormality of the bases gives Φ−1 = Φ∗ and Ψ−1 = Ψ∗.
The computation y = Ax is replaced by β = Γα, where α is the representation of x
with respect to Φ and β is the representation of y with respect to Ψ.

Mimicking the derivation of (2.164) leads to a counterpart for (2.165) that
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uses both bases:

Γ =




...
...

...
· · · 〈Aϕ−1, ψ−1〉 〈Aϕ0, ψ−1〉 〈Aϕ1, ψ−1〉 · · ·
· · · 〈Aϕ−1, ψ0〉 〈Aϕ0, ψ0〉 〈Aϕ1, ψ0〉 · · ·
· · · 〈Aϕ−1, ψ1〉 〈Aϕ0, ψ1〉 〈Aϕ1, ψ1〉 · · ·

...
...

...




. (2.166)

Note the information upon which Γ is determined: by linearity of A and complete-
ness of the basis Φ, the effect of A on any x ∈ H0 can be computed from its effect on
each basis element of the domain space, {Aϕk}k∈K0 ; and the expansion coefficients
of any one of these results are determined by inner products with the basis in the
codomain space, {〈Aϕk, ψi〉}i∈K1 .

Example 2.56 (Averaging operator) Consider the operator A : H0 → H1

that replaces a function by its average over intervals of length 2,

y(t) = Ax(t) =
1

2

∫ 2(ℓ+1)

2ℓ

x(τ) dτ, for 2ℓ ≤ t < 2(ℓ+ 1), ℓ ∈ Z, (2.167)

where H0 is the space of piecewise-constant, finite-energy functions with break-
points at integers and H1 the space of piecewise-constant, finite-energy functions
with breakpoints at even integers. As orthonormal bases for H0 and H1, we
choose normalized indicator functions over unit and double-unit intervals, re-
spectively:

Φ = {ϕk(t)}k∈Z =
{
1[k,k+1)(t)

}
k∈Z

,

Ψ = {ψi(t)}i∈Z =
{ 1√

2
1[2i,2(i+1))(t)

}
i∈Z

.

To evaluate Γ from (2.166) requires 〈Aϕk, ψi〉 for all integers k and i. Since
ϕ0(t) is nonzero only for t ∈ [0, 1),

Aϕ0(t) =

{
1
2 , for 0 ≤ t < 2;
0, otherwise,

from which

〈Aϕ0, ψ0〉 =

∫ 2

0

1

2

1√
2
dτ =

1√
2

and
〈Aϕ0, ψi〉 = 0 for all i 6= 0.

Since A integrates over intervals of the form [2ℓ, 2(ℓ+ 1)], Aϕ1 = Aϕ0, so

〈Aϕ1, ψi〉 =

{
1/
√
2, for i = 0;
0, otherwise.
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Continuing the computation to cover every ϕk yields Γ:

Γ =
1√
2




...
...

...
...

...
...

· · · 1 1 0 0 0 0 · · ·
· · · 0 0 1 1 0 0 · · ·
· · · 0 0 0 0 1 1 · · ·

...
...

...
...

...
...



. (2.168)

Multiplying by Γ is thus a very simple operation.

Matrix representation of linear operator with biorthogonal pairs of bases As
above, consider a linear operator A : H0 → H1. Assume that Φ and Φ̃ form a
biorthogonal pair of bases for H0, and Ψ and Ψ̃ form a biorthogonal pair of bases
for H1. We would like to implement A as an operation on sequence representations
with respect to Φ and Ψ as in Figure 2.29, where biorthogonality of the bases gives
Φ−1 = Φ̃∗ and Ψ−1 = Ψ̃∗.

Derivation of Γ, the matrix representation of the operator A, is almost un-
changed from the orthonormal case, but we repeat the key computation to show
the role of having biorthogonal bases. When

x =
∑

i∈K0

αiϕi, (2.169)

the expansion of

y = Ax (2.170)

with respect to Ψ has the kth coefficient

βk
(a)
=
〈
y, ψ̃k

〉 (b)
=
〈
Ax, ψ̃k

〉 (c)
=
〈
A(
∑

i∈K0
αiϕi), ψ̃k

〉

(d)
=
〈∑

i∈K0
αiAϕi, ψ̃k

〉
(e)
=

∑

i∈K0

αi

〈
Aϕi, ψ̃k

〉
,

where (a) follows from the expression for expansion coefficients with a biorthogonal
pair of bases, (2.113a); (b) from (2.170); (c) from (2.169); (d) from the linearity of
A; and (e) from the linearity in the first argument of the inner product. Thus the
matrix representation (assuming that K0 = K1 = Z for concreteness) is

Γ =




...
...

...

· · · 〈Aϕ−1, ψ̃−1〉 〈Aϕ0, ψ̃−1〉 〈Aϕ1, ψ̃−1〉 · · ·

· · · 〈Aϕ−1, ψ̃0〉 〈Aϕ0, ψ̃0〉 〈Aϕ1, ψ̃0〉 · · ·
· · · 〈Aϕ−1, ψ̃1〉 〈Aϕ0, ψ̃1〉 〈Aϕ1, ψ̃1〉 · · ·

...
...

...




. (2.171)
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Comparing (2.166) and (2.171), the only difference is the use of the dual basis
for the codomain space; this is natural since we require expansions of {Aϕk}k∈K0

with respect to Ψ. Also note the similarity between (2.162) and (2.171); a change
of basis operator is a special case of a matrix representation of a linear operator,
where H0 = H1 = H and the operator is the identity on H .

The next example points to how differential operators can be implemented as
matrix multiplications once bases for the domain and codomain spaces are available.

Example 2.57 (Derivative operator) Consider the derivative operator
A : H0 → H1, with H0 the space of piecewise-linear, continuous, finite-energy
functions with breakpoints at integers and H1 the space of piecewise-constant,
finite-energy functions with breakpoints at integers. As a basis for H0, choose
the triangle function

ϕ(t) =

{
1− |t|, for |t| < 1;

0, otherwise
(2.172)

and its integer shifts:

Φ = {ϕk(t)}k∈Z = {ϕ(t− k)}k∈Z.

(This is an infinite-dimensional analogue to the basis in Example 2.44 and an
example of a spline, discussed in detail in Section 6.3.) For H1, we can choose
the same orthonormal basis as in Example 2.56:

Ψ = {ψi(t)}i∈Z = {1[i,i+1)(t)}i∈Z.

To evaluate Γ from (2.171) requires 〈Aϕk, ψ̃i〉 for all integers k and i. Since

Aϕ(t) = ϕ′(t) =





1, for −1 < t < 0;
−1, for 0 < t < 1;
0, for |t| > 1,

it follows that

〈Aϕ0, ψ̃i〉 =





1, for i = −1;
−1, for i = 0;
0, otherwise.

Shifting ϕ(t) by k simply shifts the derivative:

〈Aϕk, ψ̃i〉 =





1, for i = k − 1;
−1, for i = k;
0, otherwise.

Gathering these computations into a matrix yields

Γ =




...
...

...
...

...
...

· · · 0 −1 1 0 0 0 · · ·
· · · 0 0 −1 1 0 0 · · ·
· · · 0 0 0 −1 1 0 · · ·

...
...

...
...

...
...



. (2.173)
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Figure 2.30 gives an example of a derivative operator and its computation.
The input function and expansion coefficients with respect to the basis Φ are

x(t) = ϕ(t)− ϕ(t− 1),

α =
[
. . . 0 1 −1 0 0 . . .

]⊤
,

while its derivative and expansion coefficients with respect to the basis Ψ are

x′(t) = ψ(t+ 1)− 2ψ(t) + ψ(t− 1),

β =
[
. . . 0 1 −2 1 0 . . .

]⊤
.

Then, indeed

β =




...
0
1

−2
1
0
...




=




...
...

...
...

...
...

· · · 0 −1 1 0 0 0 · · ·
· · · 0 0 −1 1 0 0 · · ·
· · · 0 0 0 −1 1 0 · · ·

...
...

...
...

...
...







...
0
0

1
−1
0
0
...




= Γα.

Matrix representation of the adjoint Example 2.18(ii) confirmed that the adjoint
of a linear operator A : CN → CM given by a finite matrix is the Hermitian
transpose of the matrix; implicit in this was the use of the standard bases for CN

and CM . The connection between the adjoint and the Hermitian transpose of a
matrix extends to arbitrary Hilbert spaces and linear operators when orthonormal
bases are used.

Consider a linear operator A : H0 → H1, and let Φ = {ϕk}k∈K0 be an or-
thonormal basis for H0 and Ψ = {ψk}k∈K1 be an orthonormal basis for H1. Let
Γ be the matrix representation of A with respect to Φ and Ψ, as given by (2.166).
The adjoint A∗ is an operator H1 → H0, and we would like to find its matrix rep-
resentation with respect to Ψ and Φ. Applying (2.166) to A∗, the entry in row i,
column k is

〈A∗ψk, ϕi〉
(a)
= 〈ψk, Aϕi〉

(b)
= 〈Aϕi, ψk〉∗

(c)
= Γ∗

k,i, (2.174)

where (a) follows from the definition of the adjoint; (b) from the Hermitian sym-
metry of the inner product; and (c) from (2.166). Thus, the matrix representation
of A∗ is indeed the Hermitian transpose of the matrix representation of A.

Now remove the assumption that Φ and Ψ are orthonormal bases and denote
the respective dual bases by Φ̃ and Ψ̃. Let Γ be the matrix representation of A with
respect to Φ and Ψ, as given by (2.171). The matrix representation of A∗ has a
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(a) Function x(t). (b) Decomposition in basis for H0.
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(c) Derivative x′(t). (d) Decomposition in basis for H1.

Figure 2.30 Example of a derivative operator.

simple form with respect to the duals Ψ̃ for Ψ in H1 and Φ̃ for Φ in H0. Applying
(2.171) to A∗, the entry in row i, column k is

〈A∗ψ̃k, ϕi〉
(a)
= 〈ψ̃k, Aϕi〉

(b)
= 〈Aϕi, ψ̃k〉∗

(c)
= Γ∗

k,i, (2.175)

where (a) follows from the definition of the adjoint; (b) from the Hermitian symme-
try of the inner product; and (c) from (2.171). Thus, the matrix representation of
A∗ is the Hermitian transpose of the matrix representation of A when the bases are
switched to the duals. To represent A∗ with respect to Ψ and Φ rather than with
respect to their duals is a bit more complicated.

2.6 Computational aspects

The cost of an algorithm is generally measured by the number of operations needed
and the precision requirements both for the input data and for the intermediate
results. These cost metrics are of primary interest and enable comparisons that are
independent of the computation platform. Running time and hardware resources
(such as chip area) can be traded off through parallelization and are also affected
by more subtle algorithmic properties.

We start with the basics of using operation counts to express the complexity
of a problem and the cost of an algorithm. We then discuss the precision of the
computation in terms of the arithmetic representation of a number, followed by
conditioning as the sensitivity of the solution to changes in the data. We close with
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120 From Euclid to Hilbert

one of the most fundamental problems in linear algebra: solving systems of linear
equations.

2.6.1 Cost, complexity, and asymptotic notations

Cost and complexity For a given problem, many algorithms might exist. We can
measure the cost of computing each of these algorithms and define the complexity
of the problem as the minimum cost over any possible algorithm. The definition of
cost should reflect the consumption of relevant resources – computation time, mem-
ory, circuit area, energy, etc. Sometimes these resources can themselves be traded
off; for example, parallelism trades area for time or, since slower circuits can operate
at lower power, area for energy. These trade-offs depend on the intricacies of hard-
ware implementations, but counting arithmetic operations is enough for high-level
comparisons of algorithms. In particular, we will see benefits from certain problem
structures. Traditionally, one counts multiplications or both multiplications and
additions. A multiplication is typically more expensive than an addition,28 as can
be seen from the steps involved in long-hand multiplication of binary numbers.

The complexity of a problem depends on the computational model (namely
which operations are allowed and their costs), the possible inputs, and the format
of the input. In the following example, the costs are the number of multiplications
µ and the number of additions ν, and we see an impact from the format of the
problem input.

Example 2.58 (Complexity of polynomial evaluation) There are sever-
al algorithms to evaluate

x(t) = a0 + a1t+ a2t
2 + a3t

3. (2.176)

The most obvious is through

output: a0 + a1 · t+ (a2 · t) · t+ ((a3 · t) · t) · t,
which has µ = 6 multiplications and ν = 3 additions. This is wasteful because
powers of t could have been saved and reused. Specifically, the computations

t2 = t · t; t3 = t2 · t; output: a0 + a1 · t+ a2 · t2 + a3 · t3
give the same final result with µ = 5 and ν = 3. An even cheaper algorithm is

output: a0 + t · (a1 + t · (a2 + t · a3)),
with µ = 3 and ν = 3. In fact, µ = 3 and ν = 3 are the minimum possible mul-
tiplicative and additive costs (and hence the problem complexity) for arbitrary
input (a0, a1, a2, a3, t). Restrictions on the input could reduce the complexity.

Other formats for the same polynomial lead to different algorithms with
different costs. For example, if the polynomial is given in its factored form

x(t) = b0(t+ b1)(t+ b2)(t+ b3), (2.177)

28This is certainly true for fixed-point arithmetic; for floating-point arithmetic, the situation is
more complicated.
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it will have a natural implementation with µ = 3 and ν = 3, matching the
complexity of the problem. However, a real polynomial could have complex
roots. When using real operations to measure cost, one could assign the costs
(µ, ν) = (4, 2) to a complex multiplication and (µ, ν) = (0, 2) to a complex
addition.29 The algorithm based on the factored form (2.177) then has higher
cost than that based on the expanded form (2.176).

This example illustrates that mathematically equivalent expressions need not be
equivalent for computation. We will revisit this, again in the context of polynomials,
when we discuss precision.

The scaling of cost and complexity with the problem size is typically of interest.
For example, the complexity determined in Example 2.58 generalizes to µ and ν
equaling the degree of the polynomial. Finding exact complexities is usually very
difficult, and we are satisfied with coarse descriptions expressed with asymptotic
notations.

Asymptotic notation The most common asymptotic notation is the big O, which
is rooted in the word order. While we define it and other asymptotic notations for
sequences indexed by n ∈ N with n → ∞, the same notation is used for functions
with the argument approaching any finite or infinite limit. Informally, x = O(y)
means that xn is eventually (for large enough n) bounded from above by a constant
multiple of yn.

Definition 2.54 (Asymptotic notation) Let x and y be sequences defined
on N. We say

(i) x is O of y and write x ∈ O(y) or x = O(y) when there exist constants γ > 0
and n0 ∈ N such that

0 ≤ xn ≤ γyn, for all n ≥ n0; (2.178)

(ii) x is o of y and write x ∈ o(y) or x = o(y) when, for any γ > 0, there exists
a constant n0 ∈ N such that (2.178) holds;

(iii) x is Ω of y and write x ∈ Ω(y) or x = Ω(y) when there exist constants γ > 0
and n0 ∈ N such that

γyn ≤ xn, for all n ≥ n0;

(iv) x is Θ of y and write x ∈ Θ(y) or x = Θ(y) when x is both O of y and Ω of
y, that is, x ∈ O(y) ∩ Ω(y).

These convenient asymptotic notations necessitate a few notes of caution: The use
of an equal sign is an abuse of that symbol because asymptotic notations are not

29These costs are based on the obvious implementation of complex multiplication as (a+ jb)(c+
jd) = (ac − bd) + j(ad + bc); a complex multiplication can also be computed with three real
multiplications and five real additions, as in Exercise 2.49.
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122 From Euclid to Hilbert

symmetric relations. Also, if the argument over which one is taking a limit is not
clear from the context, it should be written explicitly; for example, 2mn2 = On(n

2)
is correct when m does not depend on n because the added subscript specifies that
we are interested only in the scaling with respect to n. Finally, all the asymptotic
notations omit constant factors that can be critical in assessing and comparing
algorithms.

Computing the cost of an algorithm Most often, we will compute the cost of an
algorithm in terms of the number of operations, multiplications µ and additions ν,
for a total cost of

C = µ+ ν, (2.179)

followed by an asymptotic estimation of its behavior in O notation.

Example 2.59 (Matrix multiplication) We illustrate cost and complexity
with one of the most basic operations in linear algebra, matrix multiplication.
Using the definition for matrix multiplication, (2.219), directly, the product
Q = AB, with A ∈ CM×N and B ∈ CN×P , requires N multiplications and
N − 1 additions for each Qik, for a total of µ = MNP multiplications and
ν = M(N − 1)P additions, and a total cost of C = M(2N − 1)P . Setting
M = P = N , the cost for multiplying two N ×N matrices is

Cmat-mat = 2N3 −N2; (2.180a)

and, setting M = N and P = 1, the cost of multiplying an N ×N matrix by an
N × 1 vector is

Cmat-vec = 2N2 −N. (2.180b)

By specifying that (2.219) is to be used, we have implicitly identified a par-
ticular algorithm for matrix multiplication. Other algorithms might be prefer-
able. There are algorithms that reduce the number of multiplications at the
expense of having more additions; for example, for the multiplication of 2 × 2
matrices, (2.219) gives a cost of eight multiplications, but we now show that the
computation can be accomplished with seven multiplications. The product

[
Q00 Q01

Q10 Q11

]
=

[
A00 A01

A10 A11

] [
B00 B01

B10 B11

]

can be computed from intermediate results, namely

h0 = (A01 −A11)(B10 +B11), h4 = A00(B01 +B11),
h1 = (A00 +A11)(B00 +B11), h5 = A11(B10 +B00),
h2 = (A00 −A10)(B00 +B01), h6 = (A10 +A11)B00,
h3 = (A00 +A01)B11,

as
Q00 = h0 + h1 − h3 + h5, Q01 = h3 + h4,
Q10 = h5 + h6, Q11 = h1 − h2 + h4 − h6.

The µ = 7 multiplications is the minimum possible, but the number of additions
is increased to ν = 18. This procedure is known as Strassen’s algorithm (see
Solved Exercise 2.6).

Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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2.6 Computational aspects 123

2.6.2 Precision

Counting operations is important, but so is the trade-off between the cost of a
specific operation and its precision. In digital computation, operations are over a
(possibly huge) finite set of values. Not all operations are possible in the sense
that many operations will have results outside the finite set. How these cases are
handled – primarily through rounding and saturation – introduces inaccuracies into
computations. The properties of this inaccuracy depend heavily on the specific
arithmetic representation of a number. We assume binary arithmetic and discuss
two dominant cases, namely fixed-point and floating-point arithmetic.

Fixed-point arithmetic Fixed-point arithmetic deals with operations over a finite
set of evenly spaced values. Consider the values to be the integers between 0 and
2B − 1, where B is the number of bits used in the representation; then, a binary
string (b0, b1, . . . , bB−1) defines an integer in that range, given by

x = b0 + b1 · 2 + b2 · 22 + · · ·+ bB−1 · 2B−1. (2.181)

Negative numbers are handled with an extra bit and various formats; this does not
change the basic issues.

The sum of two B-bit numbers is in {0, 1, . . . , 2B − 2}. The result can thus
be represented exactly unless there is overflow, meaning that the result is too large
for the number format. Overflow could result in an error, saturation (setting the
result to the largest number 2B − 1), or wraparound (returning the remainder in
dividing the correct result by 2B). All of these make an algorithm difficult to analyze
and are generally to be avoided. One could guarantee that there is no overflow in
the computation x + y by limiting x and y to the lower half of the valid numbers
(requiring the most significant bit bB−1 to be 0). Reducing the range of possible
inputs to ensure the accuracy of the computation has its limitations; for example,
to avoid overflow in the product x · y one must restrict x and y to be less than 2B/2

(requiring half of the input bits to be zero).
Many other operations, such as taking a square root and division by a nonzero

number, have results that cannot be represented exactly. Results of these operations
will generally be rounded to the nearest valid representation point. Thus, assuming
that there is no overload, the error from a fixed-point computation is bounded
through

|x− x̂|
xmax − xmin

≤ 1/2

2B − 1
≈ 2−(B+1), (2.182)

where x is the exact result, x̂ is the result of the fixed-point computation, and
xmax − xmin is the full range of valid representation points. The error bound is
written with normalization by the range to highlight the role of the number of bits
B. To contrast with what we will see for floating-point arithmetic, note that the
error could be small relative to x (if |x| is large) or large relative to x (if x is near
0).
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124 From Euclid to Hilbert

Floating-point arithmetic Floating-point representations use numbers spread over
a vastly larger range so that overload is mostly avoided. A binary floating-point
representation has a mantissa, or significand, and an exponent. The exponent is a
fixed-point binary number used to scale the significand by a power of 2 such that the
significand lies in [1, 2). Written as a fixed-point binary number, the significand
thus has a 1 to the left of the fraction point followed by some number of bits.
Consider only strictly positive numbers and suppose that B bits are divided into
BS bits for the significand and BE = B−BS bits for the exponent. Then, a number
x can be represented in floating-point binary form as

x =

(
1 +

BS∑

n=1

bn2
−n

)
2E, (2.183)

where E is a fixed-point binary number having BE bits chosen so that the leading
bit of the significand is 1. Of course, this representation still covers a finite range
of possible numbers, but, because of the significand/exponent decomposition, this
range is larger than that in fixed-point arithmetic.

Example 2.60 (32-bit arithmetic) In the IEEE 754-2008 standard for 32-bit
floating-point arithmetic, 1 bit is reserved for the sign, 8 for the exponent, and 23
for the significand. Since the leading 1 to the left of the binary point is assumed,
the significand effectively has 24 bits. The value of the number is given by

x = (−1)sign
(
1 +

23∑

n=1

bn2
−n

)
2E−127 (2.184)

for E ∈ {1, 2, . . . , 254}. The two remaining values of E are used differently:
E = 255 is used for ±∞ and “not a number” (NaN); and E = 0 is used for 0 if the
significand is zero and for subnormal numbers if the significand is nonzero. The
subnormal numbers extend the range of representable positive numbers below
2−126 through

x = (−1)sign
(

23∑

n=1

bn2
−n

)
2−126.

All the positive numbers that can be represented through (2.184) lie in

[2−126, 2 · 2127] ≈ [1.18 · 10−38, 3.4 · 1038],
and similarly for negative numbers. To this we add subnormal numbers, the
minimum of which is approximately 1.4 ·10−45. Comparing this with [0, 4.3 ·109]
(with integer spacing) for 32-bit fixed-point arithmetic shows an advantage of
floating-point arithmetic.

In floating-point arithmetic following (2.183), the difference between a real number
and the closest valid representation might be large – but only if the number itself
is large. Suppose that x is positive and not too large to be represented. Then, its
representation x̂ will satisfy

x̂ = (1 + ε)x, where |ε| < 2−BS . (2.185)

Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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(a) Recursive summation. (b) Tree-based summation.

Figure 2.31 Two algorithms for computing an average.

This is very different than (2.182); the error |x − x̂| might be large, but it is not
large relative to x.

Multiplication of floating-point numbers amounts to taking the product of the
significands and the sum of the exponents, followed possibly by rescaling. Addition
is more involved, since, when the exponents are not equal, the significands have to
adjust the fractional point so that they can be added. When the exponents are very
different, a smaller term will lose precision, and could even be set to zero. Never-
theless, adding positive numbers or multiplying positive numbers, within the range
of the number system, will have error satisfying (2.185). Much more troublesome is
that subtracting numbers that are nearly equal can result in cancellation of many
leading bits. This is called a loss of significance error.

Example 2.61 (Computing an average) We now highlight how the choice
of an algorithm affects precision in one of the simplest operations, computation
of the average of N numbers,

x̄ =
1

N

N−1∑

n=0

xn.

An obvious algorithm is the recursive procedure illustrated in Figure 2.31(a),

x(0) = x0,

x(n) = x(n−1) + xn, n = 1, 2, . . . , N,

x̄ = x(N) =
1

N
x(N−1).

When all {xk} are close in value, the summands in step n above differ in size by
a factor of n (since x(n−1) is the partial sum of the first n numbers). With N
large, this becomes problematic as n grows.

A simple alternative is summing on a tree as in Figure 2.31(b). Assume
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126 From Euclid to Hilbert

that N = 2M , and introduce sequences x
(i)
n as partial sums of 2i terms,

x(0)n = xn,

x(i)n = x
(i−1)
2n + x

(i−1)
2n+1 ,

i = 1, 2, . . . , M,
n = 0, 1, . . . , 2M−i − 1,

x̄ =
1

N
x
(M)
0 .

Because all summations are of terms of similar size, the precision of the result
will improve. Note that the number of additions is the same as in the previous
algorithm, that is, N − 1.

2.6.3 Conditioning

So far, we have discussed two issues: algorithmic efficiency, or the number of op-
erations required to solve a given problem, and the precision of the computation,
which is linked both to machine precision and to the algorithmic structure (as in
Example 2.61). We now discuss the conditioning of a problem, which describes the
sensitivity of the solution to changes in the data. In an ill-conditioned problem, the
solution can vary widely with small changes in the input. Ill-conditioned problems
also tend to be more sensitive to algorithmic choices that would be immaterial with
exact arithmetic. We study conditioning by looking at the solution of systems of
linear equations.

Given a system of linear equations y = Ax, where x is a column vector of
length N and A is an N ×N matrix of full rank, we know that a unique solution
exists, x = A−1y. The condition number we introduce shortly will roughly say how
sensitive the solution x will be to small changes in y. In particular, if the condition
number is large, a tiny change (error) in y can lead to a large change (error) in
x. Conversely, a small condition number signifies that the error in x will be of the
same order as the error in y.

For this discussion, we use the 2 norm as defined in (2.234d) in Appendix 2.B.1:

‖A‖2 = ‖A‖2,2 = sup
‖x‖2=1

‖Ax‖2 = σmax(A) =
√
λmax(A∗A), (2.188a)

where σmax denotes the maximum singular value and λmax denotes the maximum
eigenvalue. Similarly,

‖A−1‖2 =
1

σmin(A)
=

1√
λmin(A∗A)

, (2.188b)

where σmin denotes the minimum singular value and λmin denotes the minimum
eigenvalue. For now, consider the matrix A to be exact, and let us see how changes
in y, expressed as ŷ = y + ∆y, affect the changes in the solution x, expressed as
x̂ = x+∆x. Since x̂ = A−1ŷ and x = A−1x,

∆x = x̂− x = A−1ŷ −A−1y = A−1(ŷ − y) = A−1∆y.
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Using the fact that ‖Ax‖ ≤ ‖A‖‖x‖ for any norm,

‖∆x‖2 = ‖A−1∆y‖2 ≤ ‖A−1‖2‖∆y‖2. (2.189)

To find the relative error, we divide the norm of ∆x by the norm of x̂. Using (2.189),
the relative error is bounded as

‖∆x‖2
‖x̂‖2

≤ ‖A−1‖2
‖∆y‖2
‖x̂‖2

= ‖A−1‖2‖A‖2
‖∆y‖2
‖A‖2‖x̂‖2

≤ κ(A)
‖∆y‖2
‖ŷ‖2

, (2.190)

where κ(A) is called a condition number of a matrix A,

κ(A) = ‖A‖2‖A−1‖2 =
σmax(A)

σmin(A)
=

√
λmax(A∗A)
λmin(A∗A)

. (2.191a)

When A is a basis synthesis operator, λmin(A
∗A) and λmax(A

∗A) are the constants
in Definition 2.35 (Riesz basis). For a Hermitian matrix (or more generally a normal
matrix), the condition number is simply

κ(A) =

∣∣∣∣
λmax(A)

λmin(A)

∣∣∣∣ , (2.191b)

where λmax(A) and λmin(A) are the eigenvalues of largest and smallest magnitude,
respectively (since the eigenvalues can be negative or complex). From (2.190), we
see that κ(A) measures the sensitivity of the solution: a small amount of noise on
a data vector y might grow by a factor κ(A) in the solution vector x. In some
ill-conditioned problems, the ratio between the largest and smallest eigenvalues in
(2.191) can be several orders of magnitude, sometimes leading to a useless solution.
At the other extreme, the best-conditioned problems appear when A is unitary,
since then κ(A) = 1; the error in the solution is similar to the error in the input.

Poor conditioning can come from a large |λmax|, but it more often comes from
a small |λmin|; that is, it occurs when the matrix A is almost singular. We would
like to find out how close A is to being a singular matrix. In other words, can
a perturbation ∆A lead to a singular matrix (A + ∆A)? It can be shown that
the minimum relative perturbation of A, or min(‖∆A‖2/‖A‖2), such that A +∆A
becomes singular equals 1/κ(A). We show this in a simple case, namely when
both A and its perturbation are diagonalizable by the same unitary matrix U (this
happens for certain structured matrices). Then,

U∗AU = Λ and U∗ ∆AU = ∆Λ, (2.192)

where Λ is the diagonal matrix of eigenvalues of A and ∆Λ is the diagonal matrix
of eigenvalues of the perturbation matrix ∆A. The minimum to perturb A into a
singular matrix is

min
‖∆A‖2
‖A‖2

(a)
= min

‖U∗∆AU‖2
‖U∗AU‖2

(b)
=

min‖∆Λ‖2
‖Λ‖2

(c)
=

∣∣∣∣
λmin

λmax

∣∣∣∣
(d)
=

1

κ(A)
, (2.193)
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where (a) follows from U being unitary; (b) from (2.192) and the fact that the
optimization is over the perturbation, not over A; (c) from (2.188a) and
Λ− diag(0, 0, . . . , 0, λmin) being the singular matrix closest to Λ and thus
min ‖∆Λ‖2 = |λmin|; and (d) from (2.191b).

Example 2.62 (Conditioning of matrices, Example 2.31 continued)
Take the matrix associated with the basis in Example 2.31(i),

A =
[
ϕ0 ϕ1

]
=

[
1 0
0 a

]
, a ∈ (0, ∞).

The eigenvalues of A are 1 and a, from which the condition number follows as

κ(A) =

{
a, for a ≥ 1;

1/a, for a < 1.

For Example 2.31(ii),

A =
[
ϕ0 ϕ1

]
=

[
1 cos θ
0 sin θ

]
, θ ∈ (0, 1

2π]. (2.194)

The singular value decomposition (2.230) of this matrix A leads to the condition
number

κ(A) =

√
1 + cos θ

1− cos θ
, (2.195)

which is plotted in Figure 2.32(a) on a log scale; A is ill conditioned as θ → 0,
as expected.

Example 2.63 (Averaging, Example 2.32 continued) We take another
look at Example 2.32(ii) from a matrix conditioning point of view. Multiplication
y = Ax with the N ×N matrix

A =




1
1
2

1
3

. . .
1
N







1 0 0 · · · 0
1 1 0 · · · 0
1 1 1 · · · 0
...

...
...

. . .
...

1 1 1 · · · 1




(2.196)

computes the successive averages

yk−1 =
1

k

k−1∑

n=0

xn, k = 1, 2, . . . , N.

While the matrix A is nonsingular (being a product of a diagonal matrix and
a lower-triangular matrix, both with positive diagonal entries), solving y = Ax
(finding the original values from the averages) is an ill-conditioned problem be-
cause the dependence of y on xn diminishes with increasing n. Figure 2.32(b)
shows the condition number κ(A) for N = 2, 3, . . . , 50 on a log–log scale.
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Figure 2.32 Behaviors of the condition numbers of matrices. (a) Condition numbers
of the matrices from (2.194), expressed in (2.195), plotted on a log scale. (b) Condition
numbers of the matrices from (2.196), plotted on a log–log scale.

2.6.4 Solving systems of linear equations

Having discussed conditioning of systems of linear equations, let us consider algo-
rithms to compute the solution of y = Ax where A is an N ×N matrix. In general,
as discussed in Appendix 2.B.1, the existence and uniqueness of a solution depend
on whether the vector y belongs to the range (column space) of A. If it does not,
there is no possible solution. If it does, and the columns are linearly independent,
the solution is unique; otherwise there are infinitely many solutions.

Gaussian elimination The standard algorithm to solve a system of linear equations
is Gaussian elimination. The algorithm uses elementary row operations to create a
new system of equations y′ = A′x, where A′ is an upper-triangular matrix. Because
of the upper-triangular form, the last entry of x is determined from the last entry of
y′. Back substitution of this value reduces the size of the system of linear equations.
Repeating the process, one finds the unknown vector x one entry at a time, from
last to first.

We can easily obtain the upper-triangular A′, by working on one column at a
time and using the orthogonality of length-2 vectors. For example, given a vector[
a0 a1

]⊤
, then

[
a1 −a0

]⊤
is automatically orthogonal to it. To transform the

first column, we premultiply A by the matrix B(1) with entries

B(1) =




1 0 0 · · · 0
a1,0 −a0,0 0 · · · 0
a2,0 0 −a0,0 · · · 0
...

...
...

. . .
...

aN−1,0 0 0 · · · −a0,0



, (2.197)

leading to a new matrix A(1) = B(1)A with first column a
(1)
0 =

[
a0,0 0 . . . 0

]T
.

We can continue the process by iterating on the lower-right submatrix of size
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(N − 1)× (N − 1) and so on, leading to an upper-triangular matrix

A(N−1) = B(N−1) · · ·B(2)B(1)A =




× × · · · × ×
0 × · · · × ×
0 0

. . .
...

...
...

...
. . . × ×

0 0 · · · 0 ×



. (2.198)

The initial system of equations is thus transformed into a triangular one,

B(N−1) · · ·B(2)B(1)y = A(N−1)x,

which is solved easily by back substitution.

Example 2.64 (Triangularization and back substitution) Given a 3×3
system y = Ax with a rank-3 matrix A, we can show that

B(1) =




1 0 0
a1,0 −a0,0 0
a2,0 0 −a0,0


 ,

B(2) =



1 0 0
0 1 0
0 a2,0a0,1 − a0,0a2,1 a0,0a1,1 − a1,0a0,1


 .

The new system is now of the form

y′ = B(2)B(1)y = B(2)B(1)Ax = A′x, (2.199)

with the matrix A′ upper-triangular and a′i,i 6= 0 for i ∈ {0, 1, 2} (because A is
of full rank). We can solve for x using back substitution,

x2 =
1

a′2,2
y′2,

x1 =
1

a′1,1
(y′1 − a′1,2x2),

x0 =
1

a′0,0
(y′0 − a′0,1x1 − a′0,2x2).

The form of the solution indicates that conditioning is a key issue, since, if some
a′i,i is close to zero, the solution might be ill behaved.

In the above discussion, we did not discuss ordering of operations, or choosing a
particular row to zero out the entries of a particular column. In practice, this choice,
called choosing the pivot, is important for the numerical behavior of the algorithm.
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Cost of Gaussian elimination The cost of Gaussian elimination is dominated
by the cost of forming the product B(N−1) · · ·B(2)B(1)A, resulting in the upper-
triangular matrix A(N−1). Multiplying B(1) and A uses Θ(N2) multiplications and
additions. Similarly, multiplying B(2) and B(1)A also uses Θ(N2) multiplications
and additions. Having a total of N − 1 such multiplications, the algorithm forms
A(N−1) with Θ(N3) multiplications and additions. The other steps are cheaper:
forming B(N−1) · · ·B(2)B(1)y has Θ(N2) cost; and back substitution requires N di-
visions and Θ(N2) multiplications and additions. A careful accounting gives a total
multiplicative cost of about 1

3N
3.

One can use Gaussian elimination to calculate the inverse of a matrix A. Solv-
ing Ax = ek, where ek is the kth vector of the standard basis, gives the kth column
of A−1. The cost of finding one column in this manner is Θ(N3), so the overall cost
of an inversion algorithm that finds each column independently is Θ(N4). However,
this algorithm is very inefficient because the matrix A is repeatedly transformed
to the same upper-triangular form. An inversion algorithm that forms and saves
the LU decomposition of A while solving Ax = e0 with Gaussian elimination (and
then uses this decomposition to efficiently solve Ax = ek for k ∈ {1, 2, . . . , N − 1})
has cost approximately 4

3N
3. Note that we rarely calculate A−1 explicitly; solving

y = Ax is no cheaper with A−1 than with the LU decomposition of A.

Sparse matrices and iterative solutions of systems of linear equations If the
matrix–vector product Ax is easy to compute, that is, with a cost substantially
smaller than N2, then iterative solvers can be considered. This is the case when A
is sparse or banded as in (2.247) and has only o(N2) nonzero entries.

An iterative algorithm computes a new approximate solution from an old
approximate solution with an update step; if properly designed, it will converge to
the solution. The basic idea is to write A = D −B, transforming y = Ax into

Dx = Bx+ y. (2.200)

The update step is

x(k+1) = D−1(Bx(k) + y), (2.201)

which has the desired solution as a fixed point. If D−1 is easy to compute (for
example, it is diagonal), then this is a valid approach.

To study the error, let e(k) = x− x(k). Subtracting

Dx(k+1) = Bx(k) + y

from (2.200) yields

e(k+1) = D−1Be(k) = (D−1B)k+1e(0),

with e(0) the initial error. The algorithm will converge to the true solution for any
initial guess x(0) if and only if (D−1B)k+1 → 0 as k →∞, which happens when all
the eigenvalues of D−1B are smaller than 1 in absolute value.
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Example 2.65 (Iterative solution of a Toeplitz system) Take the
Toeplitz matrix A from (2.246) and write it as D − B = I − (I − A). Then,
(2.201) reduces to

x(k+1) = (I −A)x(k) + y. (2.202)

Note that B = I−A is still Toeplitz, allowing a fast multiplication for evaluating
Bx(k), as will be seen in Section 3.9. If the eigenvalues of D−1B = I − A are
smaller than 1 in absolute value, the iterative algorithm will converge.

As an example, consider the matrix describing a two-point sum,

A =




1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1


 ,

in the system Ax = y with y =
[
1 3 5 7

]⊤
. The eigenvalues of (I − A) are

all 0, and thus the algorithm will converge. For example, start with an all-zero
vector x(0). The iterative procedure (2.202) produces

x(1) =




1
3
5
7


 , x(2) =




1
2
2
2


 , x(3) =




1
2
3
5


 , x(4) =




1
2
3
4


 ,

and converges in the fourth step (x(n) = x(4) for n ≥ 5).

Among iterative solvers of large systems of linear equations, Kaczmarz’s algorithm
has an intuitive geometric interpretation.

Example 2.66 (Kaczmarz’s algorithm) Consider a square system of linear
equations y = Ax with A real and of full rank. We can look for the solution

x =
[
x0 x1 . . . xN−1

]⊤
in two ways, concentrating on either the columns

or the rows of A. When concentrating on the columns {v0, v1, . . . , vN−1}, we
see the solution x as giving the coefficients to form y as a linear combination of
columns:

N−1∑

n=0

xnvn = y. (2.203a)

When concentrating on the rows {r⊤0 , r⊤1 , . . . , r⊤N−1}, we see the solution x as
the vector that has all the correct inner products:

〈x, rn〉 = yn, n = 0, 1, . . . , N − 1. (2.203b)

Kaczmarz’s algorithm uses the row-based view. Normalize rn to be of unit
norm, γn = rn/‖rn‖. Then, (2.203b) becomes

〈x, γn〉 =
yn
‖rn‖

= y′n, n = 0, 1, . . . , N − 1. (2.204)
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0
y′0
·

S0·
x(0)x(−1)

y′0 − 〈x(−1), γ0〉
γ0

Figure 2.33 One step of Kaczmarz’s algorithm. The update x(0) is the orthogonal
projection of the initial guess x(−1) onto the affine subspace S0 orthogonal to the subspace
spanned by γ0 and at the distance y′0 from the origin 0.

The idea of Kaczmarz’s algorithm is to iteratively satisfy the constraints (2.204).
Starting with an initial guess x(−1), the first update step is N computations

x(n) = x(n−1) + (y′n − 〈x(n−1), γn〉)γn, n = 0, 1, . . . , N − 1, (2.205)

called a sweep. With the update (2.205), x(n) satisfies

〈x(n), γn〉 = 〈x(n−1), γn〉+ y′n 〈γn, γn〉︸ ︷︷ ︸
=1

− 〈γn, γn〉︸ ︷︷ ︸
=1

〈x(n−1), γn〉 = y′n,

as desired. At the end of this sweep, it is most likely that x(N−1) will not satisfy
〈x(N−1), γ0〉 = y′0, and thus, further sweeps are required.

To understand the algorithm geometrically, note that the update x(0) is
the orthogonal projection of the initial guess x(−1) onto the affine subspace S0

orthogonal to the subspace spanned by γ0 and at distances y′0 from the origin
as in Figure 2.33. The desired solution is x = ∩ni=1Si. Convergence is geometric
in the number of sweeps, with a constant depending on how close to orthogonal
the vectors γn are. When the rows of A are orthogonal, convergence occurs in
one sweep (see Exercise 2.51). The iterative algorithm presented in Section 6.6.3
is an extension of Kaczmarz’s algorithm to a setting where entries of y are not
known exactly.

In Figure 2.34, we show three different interpretations of solving the system
of linear equations [√

3
2

1
2

0 1

][
x0
x1

]
=

[√
3+1
2

1

]
, (2.206)

which has the solution x =
[
1 1

]⊤
. The rows are already of norm 1, and thus

γn = rn and y′n = yn. Figure 2.34(a) shows the solution as a linear combination
(2.203a) of column vectors {v0, v1}. In this particular case, it turns out that
y = v0 + v1 exactly since x0 = x1 = 1. Figure 2.34(b) shows the solution as
the intersection of linear constraints (2.203b), that is, the intersection of the two
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y

v0x0v0

v1

x1v1
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γ1y1

S1

S0

(x0, x1)

x(−1)

x(0)

S0

S1x(1)

(a) (b) (c)

Figure 2.34 Different views of solving the system of linear equations in (2.206): (a) as
a linear combination (2.203a) of column vectors {v0, v1}; (b) as the intersection of linear
constraints (2.203b); and (c) as the solution to the iterative algorithm (2.205), starting
with x(−1) = 0.

subspaces S0 and S1, orthogonal to the spans of γ0 and γ1, and at the distances
from the origin y0 and y1, respectively. The intersection of S0 and S1 is exactly

the solution x =
[
1 1

]⊤
. Finally, Figure 2.34(c) shows a few steps of the iterative

algorithm (2.205), starting with x(−1) = 0.

Complexity of solving a system of linear equations The cost of the Gaussian
elimination algorithm (or any other algorithm) provides an upper bound to the
complexity of solving a general system of linear equations. The precise multiplica-
tive complexity is not known.

If the matrix A is structured, computational savings can be achieved. For
example, we will see in the next chapter that when the matrix is circulant as in
(2.245), the cost of a simple algorithm is O(N log2N) as in (3.271), because the
discrete Fourier transform (DFT) diagonalizes the circulant convolution operator,
and many fast algorithms for computing the DFT exist. Also, solvers with cost
O(N2) exist for the cases where the matrix is Toeplitz as in (2.246) or Vandermonde
as in (2.248). The Further reading gives pointers to literature on these algorithms.
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Appendix 2.A Elements of analysis and topology

This appendix reviews some basic elements of real analysis (under Lebesgue measure
as applicable) and the standard topology on the real line. Some material has been
adapted from [66,85].

2.A.1 Basic definitions

Sets Let W be a subset of R. An upper bound is a number M such that every w
in W satisfies w ≤ M . The smallest of all upper bounds is called the supremum
of W and denoted supW ; if no upper bound exists, supW = ∞. A lower bound
is a number m such that every w in W satisfies w ≥ m. The largest of all lower
bounds is called the infimum of W and denoted infW ; if no lower bound exists,
infW = −∞.

The essential supremum and essential infimum are defined similarly but are
based on bounds that can be violated by a countable number of points. An essential
upper bound is a numberM such that at most a countable number of w inW violates
w ≤M . The smallest of all essential upper bounds is called the essential supremum
of W and denoted ess supW ; if no essential upper bound exists, ess supW = ∞.
An essential lower bound is a number m such that at most a countable number
of w in W violates w ≥ m. The largest of all essential lower bounds is called the
essential infimum of W and denoted ess infW ; if no essential lower bound exists,
ess infW = −∞.

Topology Let W be a subset of R. An element w ∈W is an interior point if there
is an ε > 0 such that (w− ε, w+ ε) ⊂W . A set is open if all its points are interior
points. Facts about open sets include the following:

(i) R is open.

(ii) ∅ is open.
(iii) The union of any collection of open sets is open.

(iv) The intersection of finitely many open sets is open.

A set is closed when its complement is open. Upon complementing the sets in the
list above, facts about closed sets include the following:

(i) ∅ is closed.
(ii) R is closed.

(iii) The intersection of any collection of closed sets is closed.

(iv) The union of finitely many closed sets is closed.

The closure of a setW , denoted byW , is the intersection of all closed sets containing
W . It is also the set of all limit points of convergent sequences in the set. A set is
closed if and only if it is equal to its closure. Also, a set is closed if and only if it
contains the limit of every convergent sequence in the set.
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(c) x(t) = t3. (d) x(t) = t1/3.

Figure 2.35 Examples of different types of functions x : R → R. (a) Injective, but
not surjective; the range is R = (∞, −1] ∪ [1, ∞). (b) Surjective, but not injective. (c)
Bijective (both injective and surjective). (d) Inverse of the bijective function from (c).

Functions A function x takes an argument (input) t and produces a value (output)
x(t). The acceptable values of the argument form the domain, while the possible
function values form the range, which is also called the image. If the range is a subset
of a larger set, that set is termed the codomain. The notation x : D → C indicates
that x is a function with the domain D and the codomain C. A composition of
functions uses the output of one function as the input to another. A function that
maps a vector space into a vector space is called an operator.

A function is injective if x(t1) = x(t2) implies that t1 = t2. In other words,
different values of the function must have been produced by different arguments. A
function is surjective if the range equals the codomain, that is, if, for every y ∈ C,
there exists a t ∈ D such that x(t) = y. A function is bijective if it is both injective
and surjective. A bijective function x : D → C has an inverse x−1 : C → D such
that x−1(x(t)) = t for all t ∈ D and x(x−1(y)) = y for all y ∈ C. These concepts
are illustrated in Figure 2.35.

2.A.2 Convergence

Sequences A sequence of numbers a0, a1, . . . is said to converge to the number a
(written limk→∞ ak = a) when the following holds:

for any ε > 0 there exists a number Kε such that |ak − a| < ε for every k > Kε.
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The sequence is said to diverge if it does not converge to any (finite) number. It
diverges to ∞ (written limk→∞ ak =∞) when the following holds:

for any M there exists a number KM such that ak > M for every k > KM .

Similarly, it diverges to −∞ (written limk→∞ ak = −∞) when the following holds:

for any M there exists a number KM such that ak < M for every k > KM .

A few properties of convergence of sequences are derived in Exercise 2.52.

Series Let a0, a1, . . . be numbers. The numbers sn =
∑n

k=0 ak, n = 0, 1, . . . , are
called partial sums of the (infinite) series

∑∞
k=0 ak. The series is said to converge

when the sequence of partial sums converges. We write
∑∞

k=0 ak = ∞ when the
partial sums diverge to ∞ and

∑∞
k=0 ak = −∞ when the partial sums diverge to

−∞.
The series

∑∞
k=0 ak is said to converge absolutely when

∑∞
k=0|ak| converges. A

series that converges but does not converge absolutely is said to converge condition-
ally. The definition of convergence takes the terms of a series in a particular order.
When a series is absolutely convergent, its terms can be reordered without altering
its convergence or its value; otherwise not.30 The doubly infinite series

∑∞
k=−∞ ak

does not have a single natural choice of partial sums, so it is said to converge when
it converges absolutely.

Tests for convergence of series are reviewed in Exercise 2.53, and a few useful
series are explored in Exercise 2.54.

Functions A sequence of real-valued functions x0, x1, . . . converges pointwise
when, for any fixed t, the sequence of numbers x0(t), x1(t), . . . converges. More
explicitly, suppose that the functions have a common domain D. They converge
pointwise to function x with the domain D when, for any ε > 0 and t ∈ D, there
exists a number Kε,t (depending on ε and t) such that

|xk(t)− x(t)| < ε for all k > Kε,t.

A more restrictive form of convergence does not allow Kε,t to depend on t. A
sequence x0, x1, . . . of real-valued functions on some domain D converges uniformly
to x : D → R when, for any ε > 0, there exists a number Kε (depending on ε) such
that

|xk(t)− x(t)| < ε for all t ∈ D and all k > Kε.

Uniform convergence implies pointwise convergence. Furthermore, if a sequence
of continuous functions is uniformly convergent, the limit function is necessarily
continuous.

30A strange and wonderful fact known as the Riemann series theorem is that a conditionally
convergent series can be rearranged to converge to any desired value or to diverge.
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2.A.3 Interchange theorems

Many derivations in analysis involve interchanging the order of sums, integrals, and
limits without changing the result. Without appropriate caution, this might be
simply incorrect; refer again to Footnote 30 on page 137.

Two nested summations can be seen as a single sum over a two-dimensional
index set. Since absolute convergence allows rearrangement of the terms in a sum,
it allows changing the order of summations, yielding Fubini’s theorem for sequences:

∞∑

n=0

∞∑

k=0

|xn,k| < ∞

implies that
∞∑

n=0

∞∑

k=0

xn,k =
∞∑

k=0

∞∑

n=0

xn,k. (2.207)

When x takes nonnegative values, (2.207) holds without assuming absolute conver-
gence as well; this result, Tonelli’s theorem for sequences, implies that summing in
one order diverges to ∞ if and only if summing in the other order diverges to ∞.
These facts extend to doubly infinite summations and more than two summations.

The analogous result for absolutely integrable functions is called Fubini’s the-
orem for functions : ∫ ∞

−∞

∫ ∞

−∞
|x(t1, t2)| dt1 dt2 <∞

implies that
∫ ∞

−∞

∫ ∞

−∞
x(t1, t2) dt1 dt2 =

∫ ∞

−∞

∫ ∞

−∞
x(t1, t2) dt2 dt1. (2.208)

When x takes nonnegative values, (2.208) holds without assuming absolute integra-
bility; this result, Tonelli’s theorem for functions, implies that integrating in one
order diverges to ∞ if and only if integrating in the other order diverges to ∞.
These facts extend to more than two integrals. Tonelli’s theorem is often used to
check absolute summability or integrability before applying Fubini’s theorem.

Interchange of summation and integration can be justified by uniform conver-
gence. Suppose that a sequence of partial sums sn(t) =

∑n
k=0 xk(t), n = 0, 1, . . . ,

is uniformly convergent to s(t) on [a, b]. Then, the series may be integrated term
by term: ∫ b

a

∞∑

k=0

xk(t) dt =

∞∑

k=0

∫ b

a

xk(t) dt. (2.209)

This result extends to infinite intervals as well.
Uniform convergence is rather restrictive as a justification for (2.209), since

changing any of the xk functions on a set of zero measure would not change either
side of the equality. Another result on interchanging summation and integration is
as follows. If |xk(t)| ≤ yk(t) for all k ∈ N and almost all t ∈ [a, b], and

∑∞
k=0 yk(t)

converges for almost all t ∈ [a, b] and
∑∞

k=0

∫ b

a yk(t) dt < ∞, then (2.209) holds.
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Cambridge University Press (ISBN 110703860X) v1.1 [May 2014] [free version] Comments to book-errata@FourierAndWavelets.org



Appendix 2.A Elements of analysis and topology 139

At the heart of this result is an application of a theorem, called the dominated
convergence theorem, to the sequence of partial sums sn(t) =

∑n
k=0 xk(t), n =

0, 1, . . . .
The dominated convergence theorem enables interchange of a limit with an

integral: Let x0, x1, . . . be real-valued functions such that limk→∞ xk(t) = x(t) for
almost all t ∈ R. If there exists a (nonnegative) real-valued function y such that.
for all k ∈ N,

|xk(t)| ≤ y(t) holds for almost all t ∈ R and

∫ ∞

−∞
y(t) dt < ∞,

then x is integrable, and
∫ ∞

−∞

(
lim
k→∞

xk(t)

)
dt = lim

k→∞

∫ ∞

−∞
xk(t) dt. (2.210)

2.A.4 Inequalities

See [100] for elementary proofs and further details.

Minkowski’s inequality For any p ∈ [1, ∞),

(
∑

k∈Z

|xk + yk|p
)1/p

≤
(
∑

k∈Z

|xk|p
)1/p

+

(
∑

k∈Z

|yk|p
)1/p

. (2.211a)

This establishes that the ℓp norm (2.40a) satisfies the triangle inequality in Defini-
tion 2.9. Also, for any p ∈ [1, ∞),

(∫ b

a

|x(t) + y(t)|p dt
)1/p

≤
(∫ b

a

|x(t)|p dt
)1/p

+

(∫ b

a

|y(t)|p dt
)1/p

, (2.211b)

establishing that the Lp norm (2.42a) satisfies the triangle inequality.
Analogues of (2.211) hold for ℓ∞ and L∞ as well:

sup
k∈Z

|xk + yk| ≤ sup
k∈Z

|xk|+ sup
k∈Z

|yk| (2.212a)

and
ess sup

t∈R

|x(t) + y(t)| ≤ ess sup
t∈R

|x(t)| + ess sup
t∈R

|y(t)|. (2.212b)

Hölder’s inequality Let p and q in [1, ∞] satisfy 1/p+1/q = 1 with the convention
that 1/∞ = 0 is allowed. Then, p and q are called Hölder conjugates, and

‖xy‖1 ≤ ‖x‖p ‖y‖q (2.213)

for sequences or functions x and y, with equality if and only if |x|p and |y|q are scalar
multiples of each other. The case of p = q = 2 is the Cauchy–Schwarz inequality,
(2.29).
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Specializing (2.213) to sequences gives

∑

k∈Z

|xkyk| ≤
(
∑

k∈Z

|xk|p
)1/p(∑

k∈Z

|yk|q
)1/q

(2.214a)

for finite p and q, and

∑

k∈Z

|xkyk| ≤
(
sup
k∈Z

|xk|
)(∑

k∈Z

|yk|
)

(2.214b)

for p =∞. Similarly, for functions

∫ ∞

−∞
|x(t) y(t)| dt ≤

(∫ ∞

−∞
|x(t)|p dt

)1/p (∫ ∞

−∞
|y(t)|q dt

)1/q
(2.215a)

for finite p and q, and
∫ ∞

−∞
|x(t) y(t)| dt ≤

(
ess sup

t∈R

|x(t)|
)(∫ ∞

−∞
|y(t)| dt

)
(2.215b)

for p =∞.

Other integral inequalities If x(t) ≤ y(t) for all t ∈ [a, b], then

∫ b

a

x(t) dt ≤
∫ b

a

y(t) dt. (2.216)

The limits of integration may be a = −∞ or b =∞. If the inequality between x(t)
and y(t) is strict for all t ∈ [a, b], then (2.216) holds with strict inequality.

The inequality ∣∣∣∣∣

∫ b

a

x(t) dt

∣∣∣∣∣ ≤
∫ b

a

|x(t)| dt (2.217)

holds, where the limits of integration may be a = −∞ or b = ∞. For Riemann-
integrable functions, this follows from the triangle inequality and taking limits. The
generalization to Lebesgue-integrable functions holds as well.

2.A.5 Integration by parts

Integration by parts transforms an integral into another integral, which is then
possibly easier to solve. It can be written very compactly as

∫
u dv = uv −

∫
v du, (2.218a)

or, more explicitly, as

∫ b

a

u(t) v′(t) dt = u(t) v(t)
∣∣∣
t=b

t=a
−
∫ b

a

v(t)u′(t) dt. (2.218b)
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Appendix 2.B Elements of linear algebra

This appendix reviews basic concepts in linear algebra. Good sources for more
details include [45, 93]. Contrary to the standard convention in finite-dimensional
linear algebra, we start all indexing at 0 rather than 1; this facilitates consistency
throughout the book.

2.B.1 Basic definitions and properties

We say a matrix A is M × N or in CM×N when it has M rows and N columns.
It is a linear operator mapping CN into CM . When M = N , the matrix is called
square; otherwise it is rectangular.31 An M × 1 matrix is called a column vector,
a 1 ×N matrix a row vector, and a 1 × 1 matrix a scalar. Unless stated explicitly
otherwise, Am,n denotes the row-m, column-n entry of matrix A.

Basic operations Addition of matrices is element-by-element, so matrices can be
added only if they have the same dimensions. The product of A ∈ CM×P and
B ∈ CQ×N is defined only when P = Q, in which case it is given by

(AB)m,n =
P−1∑

k=0

Am,kBk,n,
m = 0, 1, . . . , M − 1,
n = 0, 1, . . . , N − 1.

(2.219)

Entries Am,n are on the (main) diagonal if m = n. A square matrix with unit
diagonal entries and zero off-diagonal entries is called an identity matrix and denoted
by I. It is the identity element under matrix multiplication. For square matrices A
and B, if AB = I and BA = I, B is called the inverse of A and is written as A−1. If
no such B exists, A is called singular. When the inverses exist, (AB)−1 = B−1A−1.
Rectangular matrices do not have inverses. Instead, a short matrix can have a right
inverse B, so AB = I; similarly, a tall matrix can have a left inverse B, so BA = I.

If Am,n = Bn,m for allm and n, we write A = B⊤; we call B the transpose of A.
If Am,n = B∗

n,m for allm and n, we write A = B∗; we call B the Hermitian transpose
of A. Here, ∗ denotes both complex conjugation of a scalar and the combination
of complex conjugation and transposition of a matrix. In general, (AB)⊤ = B⊤A⊤

and (AB)∗ = B∗A∗.

Determinant The determinant maps a square matrix into a scalar value. It is
defined recursively, with det a = a for any scalar a and

detA =

N−1∑

k=0

(−1)i+k(detMi,k)Ai,k =

N−1∑

k=0

Ci,kAi,k (2.220)

for A ∈ CN×N , where the minor Mi,k is the (N − 1)× (N − 1) matrix obtained by
deleting the ith row and the kth column of A; the cofactor Ci,k = (−1)i+k detMi,k

will be used later to define the adjugate. This definition is valid because the same

31We sometimes call a matrix with M > N tall ; similarly, we call a matrix with M < N short.
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142 From Euclid to Hilbert

result is obtained for any choice of i ∈ {0, 1, . . . , N − 1}; to simplify computations,
one may choose i in such a way so as to minimize the number of nonzero terms in
the sum.

The determinant of A ∈ CN×N has several useful properties, including the
following:

(i) For any scalar α, det(αA) = αN detA.

(ii) If B is obtained by interchanging two rows or two columns of A, then
detB = −detA.

(iii) detA⊤ = detA.

(iv) det(AB) = (detA)(detB).

(v) If A is triangular, that is, all of its elements above or below the main diagonal
are 0, detA is the product of the diagonal elements of A.

(vi) A is singular if and only if detA = 0.

The final property relating the determinant to invertibility has both a geometric
interpretation and a connection to a formula for a matrix inverse.

(i) When the matrix is real, the determinant is the volume of the parallelepiped
that has the column vectors of the matrix as edges. Thus, a zero deter-
minant indicates linear dependence of the columns of the matrix, since the
parallelepiped is not of full dimension. (The row vectors lead to a different
parallelepiped with the same volume.)

(ii) The inverse of a nonsingular matrix A is given by Cramer’s formula:

A−1 =
adjA

detA
, (2.221)

where the adjugate of A is the transpose of the matrix of cofactors of A:
(adjA)i,k = Ck,i. Cramer’s formula is useful for finding inverses of small
matrices by hand and as an analytical tool; it does not yield computationally
efficient techniques for inversion.

Range, null space, and rank Associated with any matrix A ∈ RM×N are four
fundamental subspaces. The range or column space of A is the span of the columns
of A and thus a subspace of RM ; it can be written as

R(A) = span({a0, a1, . . . , aN−1}) = {y ∈ RM | y = Ax for some x ∈ RN},
(2.222a)

where a0, a1, . . . , aN−1 are the columns of A. Linear combinations of rows of A
are all row vectors y⊤A, where y ∈ RM . Taking these as column vectors gives the
row space of A, which is the range of A⊤ and a subspace of RN :

R(A⊤) = span({b⊤0 , b⊤1 , . . . , b⊤M−1}) = {x ∈ RN | x = A⊤y for some y ∈ RM},
(2.222b)

where b0, b1, . . . , bM−1 are the rows of A. The null space or kernel of A is the set
of vectors that A maps to 0 (a subspace of RN ):

N (A) = {x ∈ RN | Ax = 0}. (2.222c)
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RN RM

row space

R(A⊤)
column space
R(A)

null space
N (A) left

null space
N (A⊤)

•0 • 0AA⊤

A

A⊤

R(A⊤) ⊥ N (A)

dim(R(A⊤)) + dim(N (A)) = N R(A) ⊥ N (A⊤)

dim(R(A)) + dim(N (A⊤)) = M

Figure 2.36 The four fundamental subspaces associated with a real matrix A ∈ RM×N .
The matrix determines an orthogonal decomposition of RN into the row space of A and the
null space of A, and an orthogonal decomposition of RM into the column space (range) of
A and the left null space of A. The column and row spaces of A have the same dimension,
which equals the rank of A. (Figure inspired by the cover of [94].)

The left null space is the set of transposes of vectors mapped to zero when multiplied
on the right by A. Since y⊤A = 0 is equivalent to A⊤y = 0, the left null space of
A is the null space of A⊤ (a subspace of RM ):

N (A⊤) = {y ∈ RM | A⊤y = 0}. (2.222d)

The four fundamental subspaces provide orthogonal decompositions of RN

and RM as depicted in Figure 2.36. As shown, the null space is the orthogonal
complement of the row space; the left null space is the orthogonal complement of
the range (column space); A maps the null space to 0; A⊤ maps the left null space
to 0; and A and A⊤ map between the row space and column space, which are of
equal dimension. Properties of the subspaces are summarized for the complex case
in Table 2.2.

The rank is defined by

rankA = dim(R(A)). (2.223)

It satisfies rankA = rankA∗ and rank(AB) ≤ min(rankA, rankB).

Systems of linear equations and least squares The product Ax describes a linear
combination of the columns of A weighted by the entries of x. In solving a system
of linear equations,

Ax = y, where A ∈ RM×N , (2.224)
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Space Symbol Definition Dimension

Column space (range) R(A) {y ∈ CM | y = Ax for some x ∈ CN} rankA

Left null space N (A∗) {y ∈ CM | A∗y = 0} M − rankA

dim(R(A)) + dim(N (A∗)) =M

Row space R(A∗) {x ∈ CN | x = A∗y for some y ∈ CM} rankA

Null space (kernel) N (A) {x ∈ CN | Ax = 0} N − rankA

dim(R(A∗)) + dim(N (A)) = N

Table 2.2 Summary of spaces and related characteristics for a complex matrix A ∈ CM×N

(illustrated in Figure 2.36 for a real matrix A ∈ RM×N ).

we encounter the following possibilities depending on whether y belongs to the
range (column space) of A, y ∈ R(A), and whether the columns of A are linearly
independent:

(i) Unique solution: If y belongs to the range of A and the columns of A are
linearly independent (rankA = N), there is a unique solution.

(ii) Infinitely many solutions: If y belongs to the range of A and the columns
of A are not linearly independent (rankA < N), there are infinitely many
solutions.

(iii) No solution: If y does not belong to the range of A, there is no solution. Only
approximations are possible.

Cases with and without solutions are unified by looking for a least-squares solution
x̂, meaning one that minimizes ‖y − ŷ‖2, where ŷ = Ax̂. This is obtained from the
orthogonality principle: the error y − ŷ is orthogonal to the range of A, leading to
the normal equations,

A⊤Ax̂ = A⊤y. (2.225a)

When A⊤A is invertible (rankA = N), the unique least-squares solution is

x̂ = (A⊤A)−1A⊤y. (2.225b)

When A is square, the invertibility of A⊤A implies that y ∈ R(A) and the least-
squares solution simplifies to the exact solution x̂ = A−1y.

When A⊤A is not invertible (rankA < N), the minimization of ‖y − Ax̂‖2
does not have a unique solution, so we additionally minimize ‖x̂‖2. When AA⊤ is
invertible (rankA =M), this solution is

x̂ = A⊤(AA⊤)−1y. (2.225c)

The solutions (2.225b) and (2.225c) show the two forms of the pseudoinverse
of A for rankA = min(M,N). Multiplication by the pseudoinverse solves the least-
squares problem for the case of rankA < min(M,N) as well; the pseudoinverse
is conveniently expressed using the singular value decomposition of A below. Fig-
ure 2.37 illustrates the discussion.
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Cambridge University Press (ISBN 110703860X) v1.1 [May 2014] [free version] Comments to book-errata@FourierAndWavelets.org



Appendix 2.B Elements of linear algebra 145

1

-1 1

1

ϕ0

ϕ1

ϕ2

x y

1

-1 1

1

ϕ0

ϕ1

ϕ2

x

y

(a) A =




1 0 0
1 1 1
0 0 1



. (b) A =




1 0 1
1 0 1
0 1 1



.

1

-1 1

1

ϕ0

ϕ1

ϕ2

ŷ

y

(c) A =



1 0
1 1
0 0


.

Figure 2.37 Illustration of solutions to Ax = y in R3, with y =
[
1 1 1

]⊤
. (a) Unique

solution: y ∈ R(A) and the columns of A are linearly independent. The unique solution is

x =
[
1 −1 1

]⊤
. (b) Infinitely many solutions: y ∈ R(A) and the columns of A are not

linearly independent. One of the possible solutions is x =
[
1 1 0

]⊤
. (c) No solution:

y 6∈ R(A) and the columns of A are linearly independent. The unique approximate solution

of minimum 2 norm among the vectors that minimize the error is x̂ =
[
1 0

]⊤
, which yields

ŷ = Ax̂ =
[
1 1 0

]⊤
.

Eigenvalues, eigenvectors, and spectral decomposition A number λ and a nonzero
vector v are called an eigenvalue and an eigenvector of a square matrix A (they are
also known as an eigenpair) when

Av = λv, (2.226)

as seen for general linear operators in (2.58). The eigenvalues are the roots of the
characteristic polynomial det(xI −A). When all eigenvalues of A are real, λmax(A)
denotes the largest eigenvalue and λmin(A) the smallest eigenvalue. When the
eigenvalues are real, it is conventional to list them in nonincreasing order, λ0(A) ≥
λ1(A) ≥ · · · ≥ λN−1(A).

If an N × N matrix A has N linearly independent eigenvectors, then it can
be written as

A = V ΛV −1, (2.227a)
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where Λ is a diagonal matrix containing the eigenvalues of A along the diagonal and
V contains the eigenvectors of A as its columns. This is called the spectral theorem.
Since the eigenvectors form a basis in this case, a vector x can be written as a linear
combination of eigenvectors x =

∑N−1
k=0 αkvk, and

Ax = A

(
N−1∑

k=0

αkvk

)
(a)
=

N−1∑

k=0

αk(Avk)
(b)
=

N−1∑

k=0

(αkλk)vk, (2.227b)

where (a) follows from the linearity of A; and (b) from (2.226). Expressions (2.227a)
and (2.227b) are both diagonalizations. The first shows that V −1AV is a diagonal
matrix; the second shows that expressing the input to operator A using the coordi-
nates specified by the eigenvectors of A makes the action of A diagonal. Combining
properties of the determinant that we have seen earlier with (2.227a) gives

detA = det(V ΛV −1) = det(V V −1) det(Λ) =

N−1∏

k=0

λk. (2.228)

The conclusion detA =
∏N−1

k=0 λk holds even for matrices without full sets of eigen-
vectors, as long as eigenvalues are counted with multiplicities.

The trace is defined for square matrices as the sum of the diagonal entries.
The trace of a product is invariant to cyclic permutation of the factors, for example
tr(ABC) = tr(BCA) = tr(CAB). It follows that the trace is invariant to similarity
transformations: tr(BAB−1) = tr(AB−1B) = trA. The trace is given by the sum
of eigenvalues (counted with multiplicities),

trA =
N−1∑

k=0

λk, (2.229)

which is justified by (2.227a) for diagonalizable A.

Singular value decomposition Singular value decomposition (SVD) provides a
diagonalization that applies to any rectangular or square matrix. An M × N real
or complex matrix A can be factored as follows:

A = UΣV ∗, (2.230)

where U is an M ×M unitary matrix, V is an N ×N unitary matrix, and Σ is an

M ×N matrix with nonnegative real values {σk}min(M,N)−1
k=0 called singular values

on the main diagonal and zeros elsewhere. The columns of U are called left singular
vectors and the columns of V are called right singular vectors. As for eigenvalues,
σmax(A) denotes the largest singular value and σmin(A) the smallest singular value.
Also as for eigenvalues, it is conventional to list singular values in nonincreasing
order, σmax(A) = σ0(A) ≥ σ1(A) ≥ · · · ≥ σN−1(A) = σmin(A). The number of
nonzero singular values is the rank of A. The pseudoinverse of A is

A† = V Σ†U∗, (2.231)
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where Σ† is the N ×M matrix with 1/σk in the (k, k) position for each nonzero
singular value and zeros elsewhere.

The following fact relates singular value decomposition and eigendecomposi-
tion (see also Exercise 2.56): Using the singular value decomposition (2.230),

AA∗ = (UΣV ∗)(V Σ∗U∗) = UΣ2U∗,

A∗A = (V Σ∗U∗)(UΣV ∗) = V Σ2V ∗,

so the squares of the singular values of A are the nonzero eigenvalues of AA∗ and
A∗A; that is,

σ2(A) = λ(AA∗) = λ(A∗A), for λ 6= 0. (2.232)

Matrix norms Norms on matrices must satisfy the conditions in Definition 2.9.
Many commonly used norms on M × N matrices are operator norms induced by
norms on M - and N -dimensional vectors, as in Definition 2.18. Using the vector
norms defined in (2.39a) and (2.39b),

‖A‖p,q = sup
‖x‖p=1

‖Ax‖q. (2.233)

The p = q case ‖A‖p,p is denoted ‖A‖p. A few of these norms simplify as follows:

‖A‖1 = ‖A‖1,1 = max
0≤j≤N−1

∑M−1
i=0 |Ai,j |, (2.234a)

‖A‖1,2 = max
0≤j≤N−1

(∑M−1
i=0 |Ai,j |2

)1/2
, (2.234b)

‖A‖1,∞ = max
0≤i≤M−1, 0≤j≤N−1

|Ai,j |, (2.234c)

‖A‖2 = ‖A‖2,2 = σmax(A) =
√
λmax(A∗A), (2.234d)

‖A‖2,∞ = max
0≤i≤M−1

(∑N−1
j=0 |Ai,j |2

)1/2
, (2.234e)

‖A‖∞ = ‖A‖∞,∞ = max
0≤i≤M−1

∑N−1
j=0 |Ai,j |. (2.234f)

The most common matrix norm that is not an operator norm is the Frobenius
norm:

‖A‖F =

√√√√
M−1∑

i=0

N−1∑

j=0

|Ai,j |2 =
√
tr(AA∗). (2.235)

2.B.2 Special matrices

Unitary and orthogonal matrices A square matrix U is called unitary when it
satisfies

U∗U = UU∗ = I. (2.236)

Its inverse U−1 equals its Hermitian transpose U∗. A real unitary matrix satisfies

U⊤U = UU⊤ = I, (2.237)
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and is called orthogonal.32

Unitary matrices preserve norms for all complex vectors,

‖Ux‖ = ‖x‖,

and more generally preserve inner products,

〈Ux, Uy〉 = 〈x, y〉.

Each eigenvalue of a unitary matrix has unit modulus, and all its eigenvectors
are orthogonal. Each eigenvalue of an orthogonal matrix is ±1 or part of a complex
conjugate pair e±jθ. From (2.191a), its condition number is κ(U) = 1.

Rotations and rotoinversions From (2.237), the determinant of an orthogonal
matrix satisfies (detU)2 = 1. When detU = 1, the orthogonal matrix is called a
rotation; when detU = −1, it is called an improper rotation or rotoinversion. In
R2, a rotation is always of the form

[
cos θ −sin θ
sin θ cos θ

]
, (2.238a)

and a rotoinversion is always of the form

[
cos θ sin θ
sin θ −cos θ

]
. (2.238b)

The rotoinversion can be interpreted as a composition of a rotation and a reflec-
tion of one coordinate. In RN , a rotation can always be written as a product of
N(N − 1)/2 matrices that each performs a planar rotation in one pair of coordi-
nates. For example, any rotation in R3 can be written as



cos θ01 −sin θ01 0
sin θ01 cos θ01 0

0 0 1





cos θ02 0 −sin θ02

0 1 0
sin θ02 0 cos θ02





1 0 0
0 cos θ12 −sin θ12
0 sin θ12 cos θ12


 .

A general rotoinversion can be written similarly with one planar rotation replaced
by a planar rotoinversion.

Hermitian, symmetric, and normal matrices A Hermitian matrix is equal to its
adjoint,

A = A∗. (2.239a)

Such a matrix must be square and is also called self-adjoint. A real Hermitian
matrix is equal to its transpose,

A = A⊤, (2.239b)

32It is sometimes a source of confusion that an orthogonal matrix has orthonormal (not merely
orthogonal) columns (or rows).
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and is called symmetric.
The 2 norm of a Hermitian matrix is

‖A‖2 = |λmax|. (2.240)

All the eigenvalues of a Hermitian matrix are real. All the eigenvectors cor-
responding to distinct eigenvalues are orthogonal. When an eigenvalue has mul-
tiplicity K, the corresponding eigenvectors form a K-dimensional subspace that
is orthogonal to all other eigenvectors; one can find K eigenvectors that form an
orthonormal basis for that K-dimensional subspace. A Hermitian matrix can be
diagonalized as

A = UΛU∗, (2.241a)

where U is a unitary matrix with eigenvectors of A as columns and Λ is the diagonal
matrix of corresponding eigenvalues; this is the spectral theorem for Hermitian
matrices. For the case of A real (symmetric), U is real (orthogonal); thus,

A = UΛU⊤. (2.241b)

Equation (2.241a) further means that any Hermitian matrix can be factored as
A = QQ∗, with Q = U

√
Λ. Its condition number is given in (2.191b).

A matrix A is called normal when it satisfies A∗A = AA∗; in words instead
of symbols, it commutes with its Hermitian transpose. Hermitian matrices are
obviously normal. A matrix is normal if and only if it can be unitarily diagonalized
as in (2.241a).

For a normal (Hermitian) matrix A, for each eigenvalue λk there is a singular
value σk = |λk|, where the singular values are listed in nonincreasing order, but the
eigenvalues need not be.

Positive definite matrices A Hermitian matrix A is called positive semidefinite
when, for all nonzero vectors x, the following is satisfied:

x∗Ax ≥ 0. (2.242)

This is also written as A ≥ 0. If, furthermore, (2.242) holds with strict inequality,
A is called positive definite, which is written as A > 0. When a Hermitian matrix
A has smallest and largest eigenvalues of λmin and λmax, the matrices λmaxI − A
and A− λminI are positive semidefinite,

λminI ≤ A ≤ λmaxI. (2.243)

All eigenvalues of a positive definite matrix are positive. For any positive
definite matrix A, there exists a nonsingular matrix W such that A = W ∗W ,
where W is a matrix generalization of the square root of A. One possible way to
choose such a square root is to diagonalize A as

A = QΛQ∗, (2.244)

and, since all the eigenvalues are positive, choose W ∗ = Q
√
Λ, where the square

root is applied to each diagonal element of Λ.
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Circulant matrices A (right) circulant matrix is a matrix where each row is ob-
tained by a (right) circular shift of the previous row,

C =




c0 cN−1 · · · c1
c1 c0 · · · c2
...

...
. . .

...
cN−1 cN−2 · · · c0


 . (2.245)

A circulant matrix is diagonalized by the DFT matrix (3.164), as we will see in
(3.181b). This means that the columns of the DFT matrix are the eigenvectors of
this circulant matrix, and, since the DFT matrix is unitary, these eigenvectors are
orthonormal.

Toeplitz matrices A Toeplitz T matrix is a matrix whose entry Tki depends only
on the value of k − i. A Toeplitz matrix is thus constant along diagonals,

T =




t0 t1 t2 · · · tN−1

t−1 t0 t1 · · · tN−2

t−2 t−1 t0 · · · tN−3

...
...

...
. . .

...
t−N+1 t−N+2 t−N+3 · · · t0



. (2.246)

A matrix in which blocks follow the form above is called a block Toeplitz matrix.

Band matrices A band or banded matrix is a square matrix with nonzero entries
only in a band around the main diagonal. The band need not be symmetric; there
might be Nr occupied diagonals on the right side and Nℓ on the left side. For
example, a 5× 5 matrix with Nr = 2 and Nℓ = 1 is of the following form:

B =




b00 b01 b02 0 0
b10 b11 b12 b13 0
0 b21 b22 b23 b24
0 0 b32 b33 b34
0 0 0 b43 b44



. (2.247)

Many sets of special matrices are subsets of the band matrices. For example,
diagonal matrices have Nr = Nℓ = 0, tridiagonal matrices have Nr = Nℓ = 1,
upper-triangular matrices have Nℓ = 0, and lower-triangular matrices have Nr = 0.
Square matrices have a well-defined main antidiagonal running from the lower-left
corner to the upper-right corner. An antidiagonal matrix has nonzero entries only
in the main antidiagonal. A useful matrix is the unit antidiagonal matrix, which
has ones on the main antidiagonal.
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Vandermonde matrices A Vandermonde matrix is a matrix of the form

V =




1 α0 α2
0 · · · αN−1

0

1 α1 α2
1 · · · αN−1

1
...

...
...

. . .
...

1 αM−1 α2
M−1 · · · αN−1

M−1


 . (2.248)

When M = N , the determinant of the matrix is

detV =
∏

0≤i<j≤N−1

(αi − αj). (2.249)

Many useful concepts in sequence processing use Vandermonde matrices, such as
the DFT matrix in (3.164a).

Appendix 2.C Elements of probability

This appendix reviews basic concepts in the theory of probability, with an emphasis
on continuous random variables. See [6] for a thorough but elementary introduction
or [40] for an introduction with more mathematical sophistication.

2.C.1 Basic definitions

Probabilistic models A probability law P(·) assigns probabilities to events, which
are subsets of the outcomes of an experiment. The set of all outcomes is called the
sample space and denoted Ω. A probability law satisfies the following axioms:

(i) Nonnegativity: P(A) ≥ 0 for every event A.

(ii) Additivity: If A and B are disjoint events, then P(A ∪B) = P(A)+P(B); this
additivity extends to countable unions of disjoint events.

(iii) Normalization: P(Ω) = 1.

The conditional probability of event A, given event B with P(B) > 0, is defined
as

P(A |B) =
P(A ∩B)

P(B)
. (2.250)

Conditioning on B is a restriction of the sample space to B, with rescaling of
probabilities such that P(· |B) satisfies the normalization axiom, and thus is a
probability law. If events A and B both have positive probability, then writing
P(A ∩B) = P(A |B)P(B) and P(A ∩B) = P(B |A)P(A) yields Bayes’ rule:

P(A |B) =
P(B |A)P(A)

P(B)
. (2.251)

Events A and B are called independent when P(A ∩B) = P(A) P(B).
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Continuous random variables A real, continuous random variable x has a proba-
bility density function (PDF) fx defined on the real line such that

P(x ∈ A) =

∫

A

fx(t) dt (2.252a)

is the probability that x falls in the set A ⊂ R.33 The cumulative distribution
function (CDF) of x is

Fx(t) = P(x ≤ t) =

∫ t

−∞
fx(s) ds. (2.252b)

Since probabilities are nonnegative, we must have fx(t) ≥ 0 for all t ∈ R.
Since x takes some real value, (2.252b) implies the following normalization of the
PDF: ∫ ∞

−∞
fx(t) dt = 1. (2.252c)

Elementary properties of the CDF include

lim
t→−∞

Fx(t) = 0 and lim
t→∞

Fx(t) = 1,

and that
d

dt
Fx(t) = fx(t), where the derivative exists.

By calling fx a function, we are excluding Dirac delta components from fx;
the CDF Fx is then continuous because it is the integral of the PDF.34 Allowing
Dirac delta components in fx would introduce jumps in the CDF. This is necessary
for describing discrete or mixed random variables.

Expectation, moments, and variance The expectation of a function g(x) is defined
as

E[ g(x) ] =

∫ ∞

−∞
g(t) fx(t) dt. (2.253a)

In particular, for any k ∈ N, E[ xk ] is called the kth moment. The zeroth moment
must be 1, and other moments do not always exist. The first moment is called the
mean, and the variance is obtained from the first and second moments as follows:

var(x) = E
[
(x− E[ x ])2

]
= E

[
x2
]
− (E[ x ])2. (2.253b)

The variance is nonnegative. The expectation is linear in that

E[α0g0(x) + α1g1(x) ] = α0E[ g0(x) ] + α1E[ g1(x) ] (2.253c)

33Formally, x : Ω→ R, and {ω ∈ Ω | x(ω) ∈ A} must be an event. There are technical subtleties
in the functions fx and sets A that should be allowed. It is adequate to assume that fx has a
countable number of discontinuities and that A is a countable union of intervals [40]. We refer the
reader to Footnote 10 on page 25 for our philosophy on this type of mathematical technicality.

34The Dirac delta function and its properties are discussed in Appendix 3.A.4.
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Cambridge University Press (ISBN 110703860X) v1.1 [May 2014] [free version] Comments to book-errata@FourierAndWavelets.org



Appendix 2.C Elements of probability 153

for any constants α0 and α1 and any functions g0 and g1. From this it follows that

var(α0x + α1) = α2
0var(x) (2.253d)

for any constants α0 and α1.
Random variables x and y are said to have the same distribution when E[ g(x) ]

= E[ g(y) ] for any function g. This requires their CDFs to be equal, though their
PDFs might differ at a countable number of points.35

Jointly distributed random variables Real, continuous random variables x and y
have a joint PDF fx,y defined such that

P((x, y) ∈ A) =

∫∫

A

fx,y(s, t) dt ds (2.254a)

is the probability that (x, y) falls in A ⊂ R2 and a joint CDF

Fx,y(s, t) = P(x ≤ s, y ≤ t) =

∫ s

−∞

∫ t

−∞
fx,y(u, v) dv du. (2.254b)

The expectation of a function g(x, y) is now a double integral:

E[ g(x, y) ] =

∫ ∞

−∞

∫ ∞

−∞
g(s, t)fx,y(s, t) dt ds. (2.255a)

The covariance of x and y is defined as E[ (x− E[ x ])(y− E[ y ]) ], and their corre-
lation coefficient is defined as

ρ =
E[ (x− E[ x ])(y− E[ y ]) ]√

var(x)
√
var(y)

. (2.255b)

The marginal PDF of x is

fx(s) =

∫ ∞

−∞
fx,y(s, t) dt, (2.256a)

and the marginal CDF of x is

Fx(s) = lim
t→∞

Fx,y(s, t). (2.256b)

The conditional PDF of x given y is defined as

fx|y(s | t) =
fx,y(s, t)

fy(t)
for t such that fy(t) 6= 0. (2.257a)

The conditional expectation is defined with the conditional PDF:

E[ g(x) | y = t ] =

∫ ∞

−∞
g(s) fx|y(s | t) ds. (2.257b)

35This is analogous to equality in Lp for 1 ≤ p <∞: equality of CDFs FX and FY implies that
‖fX − fY ‖Lp = 0 for any p ∈ [1, ∞).
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When fx,y is separable as

fx,y(s, t) = fx(s)fy(t) (2.258)

for PDFs fx and fy, the random variables x and y are called independent. An im-
mediate ramification of independence is that fx|y(s | t) = fx(s) for every t such that
fx|y(s | t) is defined. These definitions extend to any number of random variables,
with some subtleties for infinite collections.

A complex random variable has real and imaginary parts that are jointly
distributed real random variables. A random vector has components that are jointly
distributed scalar random variables. The mean of an N -dimensional random vector
x is a vector µx = E[ x ] ∈ CN . The covariance matrix is defined as

Σx = E[ (x− µx)(x− µx)
∗ ] . (2.259)

2.C.2 Standard distributions

Uniform random variables For any real numbers a and b with a < b, a random
variable with PDF

fx(t) =

{
1/(b− a), for t ∈ [a, b];

0, otherwise,
(2.260a)

is called uniform on [a, b]. This is denoted x ∼ U(a, b). Simple computations yield
the CDF

Fx(t) =





0, for t < a;
(t− a)/(b− a), for t ∈ [a, b];

1, for t > b,
(2.260b)

the mean E[ x ] = (a+ b)/2, and the variance var(x) = (b− a)2/12.

Gaussian random variables and vectors For any real µ and positive σ, a random
variable with PDF

fx(t) =
1√
2πσ

e−
1
2 (t−µ)2/σ2

(2.261)

is called Gaussian or normal with mean µ and variance σ2. This is denoted
x ∼ N (µ, σ2). When µ = 0 and σ = 1, the random variable is called standard.
There is no elementary expression for the CDF of a Gaussian random variable.

For any µ ∈ RN and symmetric, positive definite Σ ∈ RN×N , a random vector

x =
[
x0 x1 . . . xN−1

]⊤
with joint PDF

fx(t) =
1

(2π)N/2(det(Σ))1/2
e−

1
2 (t−µ)⊤Σ−1(t−µ) (2.262)

is called (jointly) Gaussian or multivariate normal with mean µ and covariance Σ.
This is denoted x ∼ N (µ,Σ).

Gaussianity is invariant to affine transformations: when x is jointly Gaussian,
Ax + b is also jointly Gaussian for any constant matrix A ∈ RM×N of rank M and
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constant vector b ∈ RM ;36 the new mean is Aµ + b and the new covariance matrix
is AΣA⊤.

The marginal distributions and conditional distributions are jointly Gaussian
also. Partition x, µ, and Σ (in a dimensionally compatible manner) as

x =

[
y
z

]
, µ =

[
µy

µz

]
, and Σ =

[
Σy Σy,z

Σz,y Σz

]
.

The symmetry of Σ implies that Σy = Σ⊤
y , Σz = Σ⊤

z , and Σy,z = Σ⊤
z,y. The

marginal distribution of y is jointly Gaussian with mean µy and covariance Σy,
and the conditional distribution of y given z = t is jointly Gaussian with mean
µy +Σy,zΣ

−1
z (t−µz) and covariance Σy−Σy,zΣ

−1
z Σz,y. These and other properties

of jointly Gaussian vectors are developed in Exercise 2.59.
Gaussian random variables are very common in modeling physical phenomena

because they arise from the accumulation of a large number of small, independent,
random effects. This is made precise by the central limit theorem, a simple version
of which is as follows:

Let x1, x2, . . . be independent, identically distributed (i.i.d.) random
variables with mean µ and variance σ2. For each n ∈ Z+, define a
shifted and scaled version of the sample mean of {xk}nk=1:

zn =

√
n

σ

((
1

n

n∑

k=1

xk

)
− µ

)
. (2.263a)

These random variables converge in distribution to a standard normal
random variable z:

lim
n→∞

Fzn(t) = Fz(t) for all t ∈ R. (2.263b)

Similar results hold under conditions that allow weak dependence of the variables.

2.C.3 Estimation

Estimation is the process of forming estimates of parameters of interest from ob-
servations that are probabilistically related to the parameters. Bayesian and non-
Bayesian (classical) techniques are distinguished by whether the parameters are
considered to be random variables; observations are random in either case. For
simplicity, generalities below are stated for a continuous scalar parameter and con-
tinuous scalar observations. Some examples demonstrate extensions to vectors.

36Some authors require the covariance matrix of a jointly Gaussian vector to be merely positive
semidefinite rather than positive definite. In this case, the rank condition on A can be removed,
and the PDF does not necessarily exist. A jointly Gaussian distribution with singular covariance
matrix is called degenerate.
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Bayesian estimation In Bayesian estimation, the parameter of interest is assumed
to be a random variable x. Its distribution is called the prior distribution to empha-
size that it describes x without use of observations. The conditional distribution of
the observation y, given the parameter x, follows a distribution fy|x called the likeli-
hood. After observing y = t, Bayes’ Rule, (2.251), specifies the posterior distribution
of x to be

fx|y(s | t) =
fx(s)fy|x(t | s)

fy(t)
=

fx(s)fy|x(t | s)∫∞
−∞ fx(s)fy|x(t | s) ds

.

Bayesian estimators are derived by using the posterior distribution to optimize a
criterion of interest to find the best function x̂ = g(y).

A common performance criterion is the MSE E[ (x− x̂)2 ]. In the trivial case of
having no observation available, x̂ is simply some constant c; the MSE is minimized
by c = E[ x ]. This is verified through the following computation:

E
[
(x− c)2

] (a)
= var(x− c) + (E[ x− c ])2 (b)

= var(x) + (E[ x ]− c)2
(c)

≥ var(x),

where (a) follows from (2.253b); (b) from (2.253c) and (2.253d); and (c) holds with
equality if and only if c = E[ x ]. When y = t has been observed, x is conditionally
distributed as fx|{y=t}. The MMSE estimator is thus

x̂MMSE(t) = argmin
g

E
[
(x− g(t))2

]
= E[ x | y = t ], (2.264)

where the minimization is over any function g that depends only on t.
Another common approach ismaximum a posteriori probability (MAP), mean-

ing that one chooses the maximizer of the posterior distribution of x, so the MAP
estimator is

x̂MAP(t) = argmax
s

fx|y(s | t). (2.265)

When x is a discrete random variable, the MAP estimate maximizes the probability
that the estimate is exactly correct (and hence minimizes the probability that the
estimate is in error). When x is a continuous random variable, a similar interpreta-
tion is problematic since any estimate is incorrect with probability 1; nevertheless,
the MAP estimate is often useful.

MMSE and MAP estimates are each generally difficult to compute. The fol-
lowing example establishes an important and surprising special case: when the
parameters and observations are jointly Gaussian vectors, the MMSE and MAP
estimates coincide and are linear functions of the observations. The same opti-
mal estimator arises for general (non-Gaussian) distributions when the estimator is
restricted to being linear; see Exercise 2.60.

Example 2.67 (Bayesian estimation: Gaussian case) Let x and y be

jointly Gaussian vectors, meaning that their concatenation
[
x⊤ y⊤

]⊤
has a

PDF of the form (2.262). Assume that E[ x ] = µx and E[ y ] = µy, and write the
covariance matrix as

E

[([
x
y

]
−
[
µx

µy

])([
x
y

]
−
[
µx

µy

])⊤ ]
=

[
Σx Σx,y

Σ⊤
x,y Σy

]
,
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where Σx is the covariance of x, Σy is the covariance of y, and Σx,y is the
crosscovariance between x and y, Σx,y = E[ (x− µx)(y − µy)

⊤ ].
The conditional PDF of x given y = t is jointly Gaussian with mean µx +

ΣxyΣ
−1
y (t − µy) and covariance Σx − Σx,yΣ

−1
y Σ⊤

y,x (see Appendix 2.C.2). Since
the conditional mean minimizes the MSE, we have

x̂MMSE(t) = µx +Σx,yΣ
−1
y (t− µy). (2.266a)

Its resulting MSE is

E
[
‖x− x̂MMSE‖2

]
= tr

(
Σx − Σx,yΣ

−1
y Σ⊤

y,x

)
. (2.266b)

Since the PDF of a jointly Gaussian random vector is maximum at the mean
value (from the minimum of the quadratic form (t− µ)⊤Σ−1(t− µ) in (2.262)),
we have

x̂MAP(t) = µx +Σx,yΣ
−1
y (t− µy),

which is exactly the same as the MMSE estimator in (2.266a).
As a special case, suppose that y = x + z, where z ∼ N (0, σ2

z I) and x and
z are independent. We say that y is an observation of x with additive white
Gaussian noise (AWGN). Then, µy = µx, Σx,y = E[ (x− µx)(x + z− µx)

⊤ ] =
Σx, and Σy = E[ (x + z− µx)(x + z− µx)

⊤ ] = Σx + σ2
zI. The optimal estimator

from observation y = y and its performance simplify to

x̂MMSE(t) = µx +Σx(Σx + σ2
z I)

−1(t− µx), (2.267a)

E
[
‖x− x̂MMSE‖2

]
= tr

(
Σx − Σx(Σx + σ2

z I)
−1Σx

)
. (2.267b)

Specializing further, suppose that x is scalar with mean zero and variance σ2
x.

Then

x̂MMSE(t) =
σ2
x

σ2
x + σ2

z

t (2.268a)

and

E
[
‖x− x̂MMSE‖2

]
= σ2

x

(
1− σ2

x

σ2
x + σ2

z

)
. (2.268b)

Classical estimation In classical estimation, the parameter of interest is treated
as an unknown nonrandom quantity. The observation y is random, with a likelihood
(distribution) fy;x that depends on the parameter x.37 An estimator x̂(y) produces
an estimate of x from the observation. Since it is a function of the random variable
y, an estimate is also a random variable with a distribution that depends on x. The
dependence on x is emphasized with a subscript in the following.

The error of an estimator is x̂(y)− x, and the bias is the expected error:

bx(x̂(y)) = Ex[ x̂(y)− x ] = Ex[ x̂(y) ]− x.
37Some authors write this as fy|x, with the potential to confuse random and nonrandom quan-

tities.
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An unbiased estimator has bx(x̂(y)) = 0 for all x. The mean-squared error of an
estimator is

Ex

[
|x̂(y)− x|2

]
.

It depends on x, and it can be expanded as the sum of the variance and the square
of the bias:

Ex

[
|x̂(y)− x|2

]
= varx(x̂(y)) + (bx(x̂(y)))

2
.

Sometimes attention is limited to unbiased estimators, in which case the MSE is min-
imized by minimizing the variance of the estimator. This results in the minimum-
variance unbiased estimator.

Example 2.68 (Classical MMSE estimation: Gaussian case) Let
x ∈ RN be a parameter of interest, and let y = Ax + z, where A ∈ RM×N is a
known matrix and z ∼ N (0,Σ). Since z has zero mean, the estimator x̂(y) = By
is unbiased whenever BA = I. Assuming that BA = I, the MSE of the estimator
is

Ex

[
‖B(Ax+ z)− x‖2

]
= Ex

[
‖Bz‖2

]
= tr(BΣB⊤).

Since this MSE does not depend on x, it can be minimized through the choice ofB
to yield a valid estimator. The MSE is minimized by B = (A⊤Σ−1A)−1A⊤Σ−1.
The resulting MSE is tr((A⊤Σ−1A)−1).

Note that A⊤Σ−1A must be invertible for the estimator above to exist. If
rankA < N , it is hopeless to form an estimate of x without prior information;
the component of x in the null space of A is unobserved.

As a special case, suppose that Σ = σ2
z I. Then, the optimal estimator

simplifies to B = (A⊤A)−1A⊤, the pseudoinverse of A.

Another common approach is maximum likelihood (ML), meaning that one
chooses the estimate to maximize the likelihood function,

x̂ML(t) = argmax
s

fy;x(t ; s). (2.269)

Notice the reversal of the roles of x and y relative to the MAP estimator in (2.265).
Using Bayes’ rule, the ML estimator is equivalent to the MAP estimator that would
arise if the prior distribution fx were constant.38

Example 2.69 (ML estimation: Gaussian case) As in the previous exam-
ple, let x ∈ RN be a parameter of interest, and let y = Ax+z where A ∈ RM×N

is a known matrix and z ∼ N (0,Σ). Assume that A is a tall matrix (M > N)
with a left inverse, and let S = R(A). In a classical setting, no distribution for x
is assumed, so, prior to any observation, we have no way of telling which vectors
in the N -dimensional subspace S are more or less likely values for Ax. After
observing y = t, the likelihood of x = s is the likelihood that z = t−As,

fy;x(t ; s) =
1

(2π)M/2(det Σ)1/2
e−

1
2 (t−As)⊤Σ−1(t−As),

38Note that a continuous random variable cannot have a constant density on an unbounded set
while maintaining valid normalization, (2.252c).
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where we have used the joint PDF in (2.262). Maximizing this likelihood over s is
equivalent to minimizing (t−As)⊤Σ−1(t−As) over s. Since Σ−1 is a symmetric
and positive definite matrix, (t−As)⊤Σ−1(t−As) = ‖t−As‖2 for an appropriate
Hilbert space norm (see Exercise 2.7). Thus, according to the projection theorem
(Theorem 2.26), the ML estimate of Ax is the orthogonal projection of t onto
the closed subspace S under this norm. Then, the ML estimate of x is obtained
by applying the left inverse of A. When Σ−1 = cIM , the Hilbert space norm
used here is a scalar multiple of the standard norm, and thus the orthogonal
projection follows standard Euclidean geometry.

Appendix 2.D Basis concepts

There are several ways to define the basis of a vector space. These coincide for
finite-dimensional vector spaces but not necessarily for infinite-dimensional ones, so
their distinctions are subtle.

Hamel basis In basic linear algebra, a set of vectors Φ = {ϕk}k∈K ⊂ V is called a
basis for a vector space V when

(i) Φ is linearly independent; and

(ii) V = span(Φ).

To distinguish this from other definitions, a set satisfying these conditions is called
a Hamel basis or an algebraic basis. The Hamel basis concept is not suitable for our
purposes because infinite-dimensional Hilbert spaces do not have countable Hamel
bases and an expansion with respect to a Hamel basis need not be unique when it
has infinitely many terms.

To see why Hamel bases might be uncountable, consider CZ. Recall that the
span of a set of vectors is the set of finite linear combinations of those vectors
(see Definition 2.4). The set E = {ek}k∈Z introduced in Example 2.30 is not a
Hamel basis for CZ (under any vector space norm) because CZ contains sequences
with infinitely many nonzero entries, which clearly cannot be formed by finite linear
combinations of E. In fact, a Hamel basis for any infinite-dimensional Banach space
must be uncountable.

An expansion with respect to a Hamel basis with infinitely many terms need
not be unique because linear independence is too easily satisfied in infinite-dimen-
sional spaces. Recall that linear independence of an infinite set of vectors is the
linear independence of every finite subset of those vectors (see Definition 2.5). Con-
sider Φ = E ∪ {x}, where E is the set introduced in Example 2.30 and x ∈ CZ has
infinitely many nonzero entries. Then, Φ is a linearly independent set because x
cannot be expressed as a finite linear combination of E. However, expansions with
respect to Φ with infinitely many terms are not unique because

γx+
∑

k∈K
αkek = 0x+

∑

k∈Z

(γxk + αk)ek,

for any γ ∈ C and α ∈ CZ.
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160 From Euclid to Hilbert

Schauder basis Assuming the normed vector space V to be complete, the defini-
tion of basis adopted in this book (Definition 2.34) is equivalent to what is called
a Schauder basis. The existence of the expansion (2.87) for any x ∈ V requires
the span of Φ to be dense in V , so span(Φ) = V , as in (2.88). The uniqueness of
these expansions is similar to requiring Φ to be linearly independent – but more
restrictive.

We now compare concepts of independence.

(i) {ϕk}k∈K is called linearly independent when every finite subset is linearly
independent (see Definition 2.5).

(ii) {ϕk}k∈K is called ω-independent when
∑

k∈K αkϕk = 0 implies that αk = 0
for every k ∈ K. (The sum must be taken in some fixed order, so when K is
infinite, some singly infinite ordering of K is assumed.)

(iii) {ϕk}k∈K is called minimal when ϕk 6∈ span({ϕℓ}ℓ 6=k) for every k ∈ K.

The set {ϕk}k∈K being a (Schauder) basis implies that it is minimal; being minimal
implies that it is ω-independent; and being ω-independent implies that it is linearly
independent. None of the reverse implications hold in general.

A basis is called unconditional when, for every x ∈ V , the unique expansion
(2.87) of x converges unconditionally. Equivalently, a basis is unconditional when
every one of its permutations is also a basis. Since all Riesz bases are unconditional
bases and we focus our attention on Riesz bases, we can usually drop the requirement
of assuming a fixed singly infinite ordering of K.

Orthonormal basis When attention is limited to Hilbert spaces, rather than using
Definition 2.38, which indirectly uses the Schauder basis definition, an orthonor-
mal basis {ϕk}k∈K for H can be defined directly: this is an orthonormal set (see
Definition 2.8) with span that is dense in H ; that is, span({ϕk}k∈K) = H . An
orthonormal basis defined in this way is a Riesz basis and hence an unconditional
Schauder basis. When the H is infinite-dimensional, an orthonormal basis for H is
not a Hamel basis.
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Chapter at a glance

In this chapter, we found representations given by linear operators such that

x = ΦΦ̃∗x.

After finding Φ and Φ̃ such that ΦΦ̃∗ = I , we call

α = Φ̃∗x, x = Φα = ΦΦ̃∗x,

a decomposition and a reconstruction, respectively. Also, Φα is often called a representation

of a signal. The elements of α are called expansion coefficients or transform coefficients

and include Fourier, wavelet, and Gabor coefficients, as well as many others. We de-
compose signals to look into their properties in the transform domain. After analysis or
manipulations such as compression, transmission, etc., we reconstruct the signal from its
expansion coefficients. We studied cases distinguished by the properties of Φ; we review
them in finite dimensions:

(i) If Φ is square and nonsingular, then the columns of Φ form a basis, and the columns

of Φ̃ form its dual basis.

(ii) If Φ is unitary, then the columns of Φ form an orthonormal basis, and Φ̃ = Φ.

(iii) If Φ is rectangular and short, of full rank, then the columns of Φ form a frame, and

the columns of Φ̃ form a dual frame.

(iv) If Φ is rectangular and short, with ΦΦ∗ = I , then the columns of Φ form a 1-tight

frame, and Φ̃ = Φ is a valid choice for Φ̃.

Which of these options we will choose depends on the application and the criteria for
designing such matrices (representations).

Property Orthogonal Biorthogonal λ-tight frame General frame

basis bases

Expansion
set

Φ = {ϕk}N−1
k=0 Φ = {ϕk}N−1

k=0 Φ = {ϕk}M−1
k=0 Φ = {ϕk}M−1

k=0

Φ̃ = {ϕ̃k}N−1
k=0 Φ̃ = {ϕ̃k}M−1

k=0

ϕk ∈ CN ϕk, ϕ̃k ∈ CN ϕk ∈ CN ,M ≥ N ϕk, ϕ̃k ∈ CN ,M ≥ N
Structure 〈ϕi, ϕk〉 = δi−k 〈ϕi, ϕ̃k〉 = δi−k None None

Expansion

N−1∑

k=0

〈x, ϕk〉ϕk

N−1∑

k=0

〈x, ϕ̃k〉ϕk
1

λ

M−1∑

k=0

〈x, ϕk〉ϕk

M−1∑

k=0

〈x, ϕ̃k〉ϕk

Matrix
view

Φ of size N ×N Φ of size N ×N Φ of size N ×M Φ of size N ×M

Φ unitary Φ full-rank N rows of Φ orthog. Φ full-rank N

ΦΦ∗ = Φ∗Φ = I ΦΦ̃∗ = I ΦΦ∗ = λI ΦΦ̃∗ = I

Φ̃ = (Φ∗)−1

Norm
preservation

Yes, ‖x‖2 = No Yes, ‖x‖2 = No

N−1∑

k=0

|〈x, ϕk〉|2
1

λ

M−1∑

k=0

|〈x, ϕk〉|2

Redundant No No Yes Yes

Table 2.3 Signal representations in finite-dimensional spaces.
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162 From Euclid to Hilbert

Historical remarks

The choice of the title for this chapter requires at least some acknowledgment of the two
mathematical giants figuring in it: Euclid and Hilbert.

Little is known about Euclid (c. 300 B.C.) apart from his writings.
He was a Greek mathematician who lived and worked in Alexandria,
Egypt. His book Elements [42] (in fact, 13 books) “not only was the
earliest major Greek mathematical work to come down to us, but also
the most influential textbook of all times” [9]. In it, he introduces
and discusses many topics, most of which have taken hold in our
consciousness as immutable truths, such as the principles of Euclidean
geometry. He also has numerous results in number theory, including
a simple proof that there are infinitely many prime numbers and a
procedure for finding the greatest common divisor of two numbers.
Moreover, it was Euclid who introduced the axiomatic method upon

which all mathematical knowledge today is based.

David Hilbert (1862–1943) was a German mathematician,

known for an axiomatization of geometry supplanting Euclid’s five

original axioms. His contributions were extraordinarily broad, span-

ning functional analysis, number theory, mathematical physics, and

many other branches of mathematics. At the turn of the twentieth

century, he produced a list of 23 unsolved problems, which is gen-

erally thought to be the most thoughtful and comprehensive such

list ever. He worked closely with another famous mathematician,

Minkowski, and had as students or assistants such illustrious names

as Weyl, von Neumann, and Courant, among many others. He taught all his life, first at

the University of Königsberg and then at the University of Göttingen, where he died in

1943. On his tombstone, one of his famous sayings is inscribed: Wir müssen wissen. Wir

werden wissen.39

Further reading

Linear algebra There are many good textbooks on linear algebra, for example, those by
Strang [93,94]. Good reviews are also provided by Kailath [51] and by Vaidyanathan [105].
Parameterizations of unitary matrices in various forms, such as using Givens rotations or
Householder building blocks, are given in [105].

Functional analysis and abstract vector spaces Books by Kreyszig [59], Luen-
berger [64], Gohberg and Goldberg [35], and Young [111] provide details on abstract vec-
tor spaces. In particular, parts of our proof of the projection theorem (Theorem 2.26)
follow [64] closely. Many technical details on bases, in particular that Riesz bases are
unconditional bases and justifications for statements in Appendix 2.D, are provided by
Heil [43], while more on frames can be found in [14,19,55,56].

Probability Textbooks by Bertsekas and Tsitsiklis [6] and by Papoulis [74] are recom-

mended for elementary introductions to probability. A more mathematically rigorous

introduction is provided by Grimmett and Stirzaker [40].

39We must know. We will know.
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Chapter 3

Sequences and
discrete-time systems

“Divide and conquer.”

— Julius Caesar
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Time is ordered – from past to future. Any countably infinite set of times can
be indexed by the integers to maintain this order, and associating the integers
with discrete time prompts us to refer to doubly infinite sequences as discrete-time
signals. As we saw in the previous chapter, these sequences form the vector space
CZ (assuming that they are complex-valued). Operators that map a sequence to a
sequence are called discrete-time systems.

181
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182 Sequences and discrete-time systems

Some important classes of sequences and discrete-time systems have physical
interpretations. For example, restrictions of sequences to the normed vector spaces
ℓ2(Z) and ℓ∞(Z) correspond to the physical properties of finite energy and bound-
edness. Also, many physical systems are described by time-invariant differential
equations; with uniform discretization of time, this corresponds to a shift-invariance
property for discrete-time systems. Linearity and shift invariance allow a system to
be described uniquely by convolution with the system’s impulse response. Once the
convolution operation has been defined, spectral theory allows us to construct an
appropriate Fourier transform. The Fourier transform is derived from the convolu-
tion operator, so the convolution property – which is central to signal processing –
holds naturally. Shift-invariant systems, convolution, and the discrete-time Fourier
transform also have many uses that need not have a physical underpinning.

The above discussion implicitly assumed that the underlying domain, time, is
infinite. In practice we observe a finite portion of time, so we discuss handling a
finite amount of data throughout the chapter.

3.1 Introduction

Suppose that some physical quantity is of interest, like the temperature in degrees
Celsius in front of your house, at noon every day. For mathematical convenience,
we look at this sequence as two-sided infinite,40

x =
[
. . . x−2 x−1 x0 x1 x2 . . .

]⊤
, (3.1)

with some arbitrary choice for time 0 (say January 14th). Implicit in the index
is the fact that xn corresponds to the temperature (at noon) on the nth day. A
sequence is also known under the names discrete-time signal (in signal processing)
and time series (in statistics).

In real life, we observe only a finite portion of an infinite-length sequence.
Moreover, computations are always done on finite inputs. For example, consistent
temperature recordings started in the eighteenth century and necessarily stop at
the present time, producing a sequence of length N for some finite N ∈ N,

x =
[
x0 x1 x2 . . . xN−1

]⊤
. (3.2)

Having only this data but methods that apply to all time, what do we do about
days with no measurements? In effect, we are forced to assign some values; two
techniques stand out to achieve this.

The first technique is to set xn = 0 for all n outside of {0, 1, . . . , N−1}. This
is natural because, for any subsequent computation that uses xn values linearly,
this extension by zeros is equivalent to simply omitting measurements that are not
available. However, the results are the same as if more data were available only
when the signal is zero everywhere outside of {0, 1, . . . , N − 1}.

40The boxing of the time origin is intended to serve as a reference point, which is essential when
dealing with infinite vectors/matrices.
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3.1 Introduction 183

A second, less obvious technique is to extend the signal circularly:41 periodize
the finite-length sequence, treating the observed values as one period of a periodic
sequence of period N ∈ N,

x =
[
. . . xN−1 x0 x1 . . . xN−1

︸ ︷︷ ︸
one period

x0 x1 . . .
]⊤
. (3.3)

The consequences of this implicit periodization are central in digital signal process-
ing. Other extensions are also possible, but they are much less common.

These considerations allow us to define two broad classes of sequences for
which to develop our tools.

(i) Infinite-length sequences are the vector space CZ of sequences with the domain
Z, as defined in (2.18b). The support of a sequence might be a proper subset
of Z; for example, we will often consider infinite-length sequences that are
nonzero only at nonnegative times.

(ii) Finite-length sequences, without loss of generality, have support in {0, 1, . . . ,
N−1}. The tools we will develop do not treat the vector space of finite-length
sequences as CN generically, but rather as sequences defined on a circular
domain.

Example 3.1 (Sequences)

(i) Infinite-length sequences: The sequence

xn =

(
1

2

)n
, n ∈ Z, or (3.4a)

x =
[
. . . 4 2 1 1

2
1
4 . . .

]⊤
, (3.4b)

is of infinite length and does not have finite ℓ1, ℓ2, or ℓ∞ norm. If we made
xn nonzero only for n ≥ 0, all these norms would be finite.

(ii) Finite-length sequences: A sequence obtained by observing N tosses of a
fair coin, recording a 0 for heads and 1 for tails,

x =
[
0 0 1 1 0 1 0 . . . 0

]⊤
,

is of finite length. There is no extension of this sequence outside of the N
observed values that is particularly natural.

A sinusoidal function sampled at N samples per period,

xn = sin

(
2π

N
n+ θ

)
, n ∈ Z, or

x =

[
. . . sin θ sin

(
2π

N
+ θ

)
. . . sin

(
2π

N
(N − 1) + θ

)

︸ ︷︷ ︸
one period

sin θ . . .

]⊤
,

41Another name for a circular extension is a periodic extension.
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184 Sequences and discrete-time systems

is an infinite-length periodic sequence. Taking N samples

x =
[
x0 x1 x2 . . . xN−1

]⊤

gives a finite-length sequence for which circular extension is quite natural.

Given a vector in a vector space, one can apply an operator to obtain another
vector. When the domain and the codomain of the operator constitute a vector
space of discrete-time signals (that is, a vector space of sequences), we call the
operator a discrete-time system.

The basic building block of a discrete-time system is the shift-by-1 operator
(also known as the unit delay, introduced formally in (3.39)),

yn = xn−1, n ∈ Z. (3.5)

Repeated applications of this operator or its inverse produce shifts of a sequence
forward or backward in time while maintaining the ordering of the entries of the
sequence; the ordering of the domain is essential in associating it with time.

Among discrete-time systems, we will focus almost exclusively on linear ones.
Even more restricted is the class of linear shift-invariant systems (defined later in
this chapter), an example of which is the moving-average filter.

Example 3.2 (Moving-average filter) Consider our temperature example,
and assume that we want to detect seasonal trends. The day-by-day variation
might be too erratic, so we compute a local average

yn =
1

N

(N−1)/2∑

k=−(N−1)/2

xn−k, n ∈ Z, (3.6)

where N is a small, odd positive integer. The local average reduces daily vari-
ations. This simple system is linear and shift-invariant since the same local
averaging is performed at all n.

Chapter outline

The next several sections follow the progression of topics in this brief introduction.
In Section 3.2, we start by formally defining the various types of sequences we
discussed above. Section 3.3 considers linear discrete-time systems, especially of
the shift-invariant kind, which correspond to difference equations, the discrete-time
analogue of differential equations. Next, in Sections 3.4–3.6, we develop the tools
to analyze discrete-time signals and systems, in particular the discrete-time Fourier
transform, the z-transform, and the discrete Fourier transform. We discuss the
fundamental result relating filtering to multiplication in the Fourier domain – the
convolution property. Section 3.7 looks into discrete-time systems that operate with
different rates – multirate systems, which are key for filter-bank developments in the
companion volume [57]. This is followed by discrete-time stochastic processes and
systems in Section 3.8, while important algorithms for discrete-time processing, such
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3.2 Sequences 185

as the fast Fourier transform, are covered in Section 3.9. Appendix 3.A discusses
topics from analysis, such as complex numbers, difference equations, convergence
of certain sums, and the Dirac delta function, while Appendix 3.B discusses some
elements of algebra, in particular, polynomial sequences.

Notation used in this chapter. We assume sequences to be complex in general,
at the risk of having to use more cumbersome notation at times. Thus, Hermitian
transposition is used often. We will be using ‖ · ‖ to denote the 2 norm; any other
norm, such as the 1 norm, ‖ · ‖1, will be explicitly specified.

3.2 Sequences

3.2.1 Infinite-length sequences

The set of sequences in (3.1), where xn is either real or complex, together with
vector addition and scalar multiplication, forms a vector space (see Definition 2.1).
The inner product between two infinite-length sequences is defined in (2.22b) and
induces the standard ℓ2 (or Euclidean) norm (2.26b). Other norms of interest are
the ℓ1 norm from (2.40a) with p = 1, and the ∞ norm from (2.40b).

As opposed to generic infinite-dimensional spaces, where ordering of indices
does not matter in general, discrete-time signals belong to an infinite-dimensional
space where ordering of indices is important since it represents time. Note that, in
some instances later in the book, we will be dealing with vectors of sequences, for

example, x =
[
x0 x1

]⊤
, where x0 and x1 are sequences as well. We now look into

a few spaces of interest.

Sequence spaces

Space of square-summable sequences ℓ2(Z) The constraint of a finite square
norm is necessary for turning the vector space CZ defined in (2.18b) into the Hilbert
space of finite-energy sequences ℓ2(Z). This space affords a geometric view; we now
recall a few such geometric facts from Chapter 2.

(i) The angle between real nonzero sequences x and y is

cos θ =
〈x, y〉
‖x‖ ‖y‖ .

(ii) As in Definition 2.8, if the inner product is zero,

〈x, y〉 = 0,

the sequences are said to be orthogonal to each other.

(iii) As in (2.66), given a unit-norm sequence y,

x̂ = 〈x, y〉y
is the orthogonal projection of the sequence x onto the subspace of ℓ2(Z)
spanned by the sequence y.
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186 Sequences and discrete-time systems

Space of bounded sequences ℓ∞(Z) A looser constraint than finite energy is to
bound the magnitude of the samples. The space of bounded sequences contains all
sequences x such that, for some finite M , |xn| ≤ M for all n ∈ Z. This space is
denoted ℓ∞(Z) since it consists of sequences with finite ℓ∞ norm.

Space of absolutely summable sequences ℓ1(Z) A more restrictive constraint
than finite energy is to require absolute summability (remember that ℓ1(Z) ⊂ ℓ2(Z)
from (2.41)). By definition, sequences in ℓ1(Z) have a finite ℓ1 norm.

Example 3.3 (Sequence spaces) For α ∈ R, the geometric sequence

xn =

{
0, for n < 0;

αn, for n ≥ 0
(3.7)

is in the following spaces:

x ∈





ℓ2(Z), ℓ1(Z), ℓ∞(Z), for |α| < 1;
ℓ∞(Z), for |α| = 1;

none of these, for |α| > 1.

Special sequences

We now introduce certain sequences often used in the book.

Kronecker delta sequence The simplest nonzero sequence is the Kronecker delta
sequence,

δn =

{
1, for n = 0;
0, otherwise,

n ∈ Z, or (3.8a)

δ =
[
. . . 0 1 0 . . .

]⊤
. (3.8b)

Shifting the single 1 in the sequence to position k gives what is called the Kronecker
delta sequence at location k, which is δn−k. The set of Kronecker delta sequences
{δn−k}k∈Z forms an orthonormal basis for ℓ2(Z); we called it the standard basis in
Chapter 2. Table 3.1 lists some properties of the Kronecker delta sequence. (The
shifting property uses convolution, which is defined in (3.61).)

Sinc function and sequences The sinc function appears frequently in signal pro-
cessing and approximation. It is defined as

sinc t =

{
(sin t)/t, for t 6= 0;

1, for t = 0.
(3.9a)

Evaluation of limt→0 sinc t using l’Hôpital’s rule confirms the continuity of the func-
tion. Scaling the sinc function with 1/

√
π makes it of unit norm; that is,

∥∥∥∥
1√
π
sinc t

∥∥∥∥ = 1. (3.9b)
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Kronecker delta sequence

Normalization
∑

n∈Z

δn = 1

Sifting
∑

n∈Z

xn+n0δn =
∑

n∈Z

xnδn−n0 = xn0

Sampling xnδn = x0δn

Restriction xnδn = 1{0} x

Shifting xn ∗n δn−n0 = xn−n0

Table 3.1 Properties of the Kronecker delta sequence.
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Figure 3.1 (a) The sinc function sinc t. (b) The sinc sequence sinc( 1
2
πn).

The sinc function is zero at t = nπ for nonzero integers n; together with the value
at t = 0, this gives

sinc(nπ) = δn, n ∈ Z. (3.9c)

The sinc function is illustrated in Figure 3.1(a).
For any positive T , we can obtain a sinc sequence

1√
T

sinc
(πn
T

)
=

1√
T

sin(πn/T )

πn/T
. (3.10)

This sequence is of unit norm and is in ℓ∞(Z) and in ℓ2(Z). For general values of T ,
it is not in ℓ1(Z), since it decays as 1/n (see Example 2.11, illustrating the inclusion
property (2.41) of ℓp(Z) spaces). For T = 1 (or more generally for T = 1/k for
some k ∈ Z+) the sinc sequence in (3.10) reduces to the Kronecker delta sequence
and thus is in ℓ1(Z). The sinc sequence is zero for values of n such that n/T is a
nonzero integer; this is illustrated in Figure 3.1(b) for T = 2.

Heaviside sequence The Heaviside or unit-step sequence is defined as

un =

{
1, for n ∈ N;
0, otherwise,

n ∈ Z, or (3.11a)

u =
[
. . . 0 1 1 . . .

]⊤
. (3.11b)
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188 Sequences and discrete-time systems

This sequence is bounded by 1, so it belongs to ℓ∞(Z). It belongs to neither ℓ1(Z)
nor ℓ2(Z). The Kronecker delta and Heaviside sequences are related via

un =

n∑

k=−∞
δk.

Pointwise multiplication by the Heaviside sequence implements the domain
restriction operator (2.62) for restriction from all the integers to just the nonnegative
integers,

1N x =

{
xn, for n ∈ N;
0, otherwise

= unxn, n ∈ Z.

From this we can also build other domain restriction operators. For example, the
domain restriction to {n0, n0+1, . . . , n1} is achieved with a difference of two shifted
Heaviside sequences,

1{n0,...,n1} x = (un−n0 − un−n1−1)xn =

{
xn, for n ∈ {n0, . . . , n1};
0, otherwise.

(3.12)

Box and window sequences For any positive integer n0, the (unnormalized) right-
sided box sequence is defined as

wn =

{
1, for 0 ≤ n ≤ n0 − 1;
0, otherwise,

n ∈ Z, or (3.13a)

w =
[
. . . 0 1 1 . . . 1

︸ ︷︷ ︸
n0

0 . . .
]⊤
. (3.13b)

For odd n0, the centered and normalized box sequence is defined as

wn =

{
1/
√
n0, for |n| ≤ 1

2 (n0 − 1);
0, otherwise,

n ∈ Z, or (3.14a)

w =

[
. . . 0 1√

n0
. . . 1√

n0
. . . 1√

n0
0 . . .

]⊤
. (3.14b)

Box sequences are also called rectangular window sequences.
Often, a finite-length sequence is treated as a glimpse of an infinite-length

sequence. One way to state this is by using pointwise multiplication with a window
sequence. Upon multiplying an arbitrary sequence x with the right-sided window
w given in (3.13), we obtain a windowed version of x:

x̂n = xnwn, n ∈ Z, or (3.15a)

x̂ =
[
. . . 0 x0 x1 . . . xn0−1 0 . . .

]⊤
. (3.15b)

With this use of an unnormalized rectangular window, x̂n equals xn for
n ∈ {0, 1, . . . , n0 − 1} and is zero otherwise. We sometimes study x through the
finite-length sequence x̂ that coincides with x over a window of interest.
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(a) Rectangular window (3.13). (b) Raised cosine window (3.16).

Figure 3.2 A sinusoidal sequence xn = sin( 1
8
πn+ 1

2
π) (dashed lines) and its windowed

versions wnxn (black stems) with two different windows of length n0 = 26 (solid lines).

How good is the window we just used? For example, if x is smooth,42 its
windowed version x̂ is not because of the abrupt boundaries of the rectangular
window. We might thus decide to use a different window to smooth the boundaries,
an example of which we now discuss.

Example 3.4 (Windows) Consider an infinite-length sinusoidal sequence of
frequency ω0 and phase θ,

xn = sin(ω0n+ θ),

and the following two windows:

(i) a rectangular, length-n0 window, as in (3.13); and

(ii) a raised cosine window,43 also of length n0,

wn =

{
1
2 (1− cos(2πn/(n0 − 1))), for 0 ≤ n ≤ n0 − 1;

0, otherwise.
(3.16)

The raised cosine window tapers off smoothly at the boundaries, while the rect-
angular one does not. The trade-off between the two windows is obvious from
Figure 3.2: the rectangular window does not modify the sequence inside the
window, but has abrupt transitions at the boundary, while the raised cosine win-
dow has smooth transitions at the boundary, but at the price of modifying the
sequence inside the window.

Deterministic correlation

We now discuss two operations on sequences, both deterministic, that appear through-
out the chapter. Stochastic versions of both operations will be given in Section 3.8.1.

42There is no formal definition of smoothness for a sequence. We use the word loosely, to mean
that the envelope of the sequence is smooth.

43This is also known as a Hann or Hanning window, after Julius von Hann.
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190 Sequences and discrete-time systems

Deterministic autocorrelation The deterministic autocorrelation a of a sequence
x is

an =
∑

k∈Z

xkx
∗
k−n = 〈xk, xk−n〉k, (3.17)

where the final expression introduces a notation in which the variable over which
to sum, k, is explicitly included in the inner product notation. This simplifies our
discussion because we can use xk−n instead of a new symbol for this shifted version
of x. The deterministic autocorrelation satisfies

an = a∗−n, (3.18a)

a0 =
∑

k∈Z

|xk|2 = ‖x‖2, (3.18b)

the proof of which is left for Exercise 3.2. The deterministic autocorrelation mea-
sures the similarity of a sequence with respect to shifts of itself, and it is Hermitian
symmetric as in (3.18a). For a real x,

an =
∑

k∈Z

xkxk−n = a−n. (3.18c)

When we need to specify the sequence involved, we write ax,n.

Example 3.5 (Deterministic autocorrelation) Assume that x is the box
sequence from (3.14a) with n0 = 3, that is, a constant sequence of length 3 and
height 1/

√
3. Using (3.17), we compute its deterministic autocorrelation to be

ax =
[
. . . 0 1

3
2
3 1 2

3
1
3 0 . . .

]⊤
. (3.19)

This sequence is clearly symmetric, satisfying (3.18c).

Deterministic crosscorrelation The deterministic crosscorrelation c of two se-
quences x and y is

cn =
∑

k∈Z

xky
∗
k−n = 〈xk, yk−n〉k (3.20)

and is written as cx,y,n to specify the sequences involved. It satisfies

cx,y,n =

(
∑

k∈Z

yk−nx
∗
k

)∗
(a)
=

(
∑

m∈Z

ymx
∗
m+n

)∗

= c∗y,x,−n, (3.21a)

where (a) follows from the change of variable m = k−n (see also Exercise 3.2). For
real x and y,

cx,y,n =
∑

k∈Z

xkyk−n = cy,x,−n. (3.21b)
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Example 3.6 (Deterministic crosscorrelation) Assume that x is the box
sequence from (3.14a) with n0 = 3, as in Example 3.5, and

y =

[
. . . 0 0

√
2
3

1√
3

0 0 . . .

]⊤
.

Using (3.20), we compute the deterministic crosscorrelations

cx,y =

[
. . . 0 1

3
1+

√
2

3
1+

√
2

3

√
2
3 0 0 . . .

]⊤
, (3.22a)

cy,x =

[
. . . 0 0

√
2
3

1+
√
2

3
1+

√
2

3
1
3 0 . . .

]⊤
, (3.22b)

satisfying (3.21b).

Deterministic autocorrelation of vector sequences Consider a vector of N se-

quences, x =
[
x0 x1 . . . xN−1

]⊤
, which is an infinite matrix whose (k + 1)st

row is the sequence

xk =
[
. . . xk,−1 xk,0 xk,1 . . .

]
.

Its deterministic autocorrelation is a sequence of matrices given by

An =




a0,n c0,1,n · · · c0,N−1,n

c1,0,n a1,n · · · c1,N−1,n

...
...

. . .
...

cN−1,0,n cN−1,1,n · · · aN−1,n


 ; (3.23)

that is, a matrix with individual sequence deterministic autocorrelations ai,n on the
diagonal and the pairwise deterministic crosscorrelations ci,k,n off the diagonal, for
i, k = 0, 1, . . . , N − 1, i 6= k. Because of (3.18a) and (3.21a), An satisfies

An =




a0,n c0,1,n · · · c0,N−1,n

c∗0,1,−n a1,n · · · c1,N−1,n

...
...

. . .
...

c∗0,N−1,−n c∗1,N−1,−n · · · aN−1,n


 = A∗

−n; (3.24a)

that is, it is a Hermitian matrix (see (2.239a)). For a real x, it is a symmetric
matrix,

An = A⊤
−n. (3.24b)

Example 3.7 (Deterministic autocorrelation) Assume that we are given

a vector of two sequences x =
[
x0 x1

]⊤
with x0 = x and x1 = y from Exam-

ple 3.6. Its deterministic autocorrelation is then

An =

[
a0,n c0,1,n
c1,0,n a1,n

]
.
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192 Sequences and discrete-time systems

We have already computed three out of four entries in the above matrix: the
deterministic autocorrelation sequence a0 = ax from (3.19) and the deterministic
crosscorrelation sequences c0,1 = cx,y from (3.22a) and c1,0 = cy,x from (3.22b).
The only entry left to compute is the deterministic autocorrelation sequence ay,

ay =
[
. . . 0

√
2
3 1

√
2
3 0 . . .

]⊤
. (3.25)

Because of the symmetries we already observed in Examples 3.5 and 3.6 and the
symmetry of ay, (3.24b) is satisfied. A few entries in the sequence of matrices
An, including all the nonzero entries, are


. . . ,

[
1
3

1
3

0 0

]
,

[
2
3

1+
√
2

3√
2
3

√
2
3

]
,

[
1 1+

√
2

3
1+

√
2

3 1

]
,

[
2
3

√
2
3

1+
√
2

3

√
2
3

]
,

[
1
3 0
1
3 0

]
, . . .



 .

3.2.2 Finite-length sequences

Finite-length sequences as in (3.2) are those with the domain

n ∈ {0, 1, . . . , N − 1}
for some positive integer N . A finite-length sequence can be seen either as an
infinite-length sequence that happens to take nonzero values only inside {0, 1, . . . ,
N − 1} or as a period of a periodic sequence with

xn+kN = xn, k ∈ Z. (3.26)

Sequence spaces

In the case of a periodic sequence, it is useful to think of the domain itself as
wrapping around into a circle, with N −1 next to 0. On this discrete circle domain,
incrementing the time index is not ordinary addition but rather addition modulo
N , so we could refer to the domain as ZN and to the vector space of these sequences
as CZN . We do not actually adopt the notation CZN because the standard vector
space operations (see Definition 2.1) are the same as for CN .

Differences between periodic sequences (those defined on a circular domain)
and infinite sequences with finite support emerge with operations that we introduce
later. For periodic sequences, there is a circular form of convolution. Applying
spectral theory to this convolution leads to the discrete Fourier transform. As part
of a more general theory, other convolution operators would lead to different Fourier
transforms; more details on this topic can be found in the Further reading.

Special sequences

Periodic Kronecker delta sequences A periodic version of the Kronecker delta
sequence is obtained by adding all shifts of δ by integer multiples of N ,

ϕn =
∑

ℓ∈Z

δn−ℓN , n ∈ Z.

Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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The resulting sequence is

ϕn =

{
1, for n = ℓN , ℓ ∈ Z;
0, otherwise,

n ∈ Z, or

ϕ =
[
. . . 0 1 0 . . . 0

︸ ︷︷ ︸
N

1 0 . . .
]⊤
.

The set of N sequences generated from this ϕ by shifts in {0, 1, . . . , N − 1} span
the space of N -periodic sequences.

Complex exponential sequences As we will see in Section 3.6, the complex expo-
nential sequences form a natural basis for N -periodic sequences. These are the N
sequences ϕk, k ∈ {0, 1, . . . , N − 1}, given by

ϕk,n =
1√
N
ej(2π/N)kn, k ∈ {0, 1, . . . , N − 1}, n ∈ Z. (3.27)

Each of these sequences is periodic with periodN . In Solved exercise 3.1, we explore
a few properties of complex exponential sequences.

3.2.3 Two-dimensional sequences

Today, one of the most widespread devices is the digital camera. In our notation,
a digital picture is a two-dimensional sequence, xn,m. It can be seen either as an
infinite-length sequence with a finite number of nonzero samples,

xn,m, n, m ∈ Z, (3.28)

or as a sequence with the domain n ∈ {0, 1, . . . , N − 1}, m ∈ {0, 1, . . . , M − 1},
conveniently expressed as a matrix:

x =




x0,0 x0,1 · · · x0,M−1

x1,0 x1,1 · · · x1,M−1

...
...

. . .
...

xN−1,0 xN−1,1 · · · xN−1,M−1


 . (3.29)

While circularly extending the image at the borders is perhaps not natural
(the top of the image appears next to the bottom), it is the extension that leads to
the use of the discrete Fourier transform, as we will see later in this chapter. Each
element xn,m is called a pixel, and the image has NM pixels. In reality, for xn,m to
represent a color image, it must have more than one component; often, red, green
and blue components are used (the RGB color space). Figure 3.3 gives examples of
two-dimensional sequences.

Sequence spaces The spaces we introduced in one dimension generalize to multi-
ple dimensions; for example, in two dimensions the standard inner product of two
sequences x and y is

〈x, y〉 =
∑

n∈Z

∑

m∈Z

xn,my
∗
n,m, (3.30)
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194 Sequences and discrete-time systems

(a) sin( 1
16
πn) sin( 5

6
πm). (b) sin( 1

16
πn+ 5

6
πm). (c)

Figure 3.3 Two-dimensional sequences. (a) Separable sinusoidal sequence. (b) Nonsep-
arable sinusoidal sequence. (c) Earth visible above the lunar surface, taken by Apollo 8
crew member Bill Anders on December 24, 1968.

Sequence space Symbol Finite norm

Absolutely summable ℓ1(Z2) ‖x‖1 =
∑

n,m∈Z

|xn,m|

Square-summable/finite-energy ℓ2(Z2) ‖x‖ =




∑

n,m∈Z

|xn,m|2



1/2

Bounded ℓ∞(Z2) ‖x‖∞ = sup
n,m∈Z

|xn,m|

Table 3.2 Norms and two-dimensional sequence spaces.

while the ℓ2 norm and the appropriate space ℓ2(Z2) are given in Table 3.2, together
with other relevant norms and spaces. For example, a digital picture, having finite
size and pixel values that are bounded, clearly belongs to all three spaces defined
in Table 3.2. Infinite-length multidimensional sequences, on the other hand, can be
harder to analyze.

Example 3.8 (Norms of two-dimensional sequences) Let

xn,m =
1

2n · 3m , n, m ∈ N.

Its squared ℓ2 norm can be evaluated as44

〈x, x〉 =
∑

n∈N

∑

m∈N

1

4n
1

9m
=

(
∑

n∈N

1

4n

)(
∑

m∈N

1

9m

)
=

4

3
· 9
8

=
3

2
,

yielding ‖x‖2 =
√
3/2. Similarly, ‖x‖1 = 3 and ‖x‖∞ = 1.

44We interchange summations freely, which can be done because each one-dimensional sequence
involved is absolutely summable. When this is not the case, one has to be careful, as discussed in
Appendix 2.A.3.
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3.3 Systems 195

[
. . . x−1 x0 x1 . . .

]⊤
T

[
. . . y−1 y0 y1 . . .

]⊤

Figure 3.4 A discrete-time system.

3.3 Systems

Discrete-time systems are operators having discrete-time signals (sequences) as their
inputs and outputs. Among all discrete-time systems, we will concentrate on those
that are linear and shift-invariant. This subclass is both important in practice and
amenable to analysis. The moving-average filter in (3.6) is such a linear, shift-
invariant system. After an introduction to difference equations, which are natural
descriptions of discrete-time systems, we study linear, shift-invariant systems in
detail.

3.3.1 Discrete-time systems and their properties

A discrete-time system is an operator T that maps an input sequence x ∈ V into
an output sequence y ∈ V ,

y = T (x), (3.31)

as shown in Figure 3.4. As we have seen in the previous section, the sequence space
V is typically ℓ2(Z) or ℓ∞(Z). At times, the input or the output is in a subspace of
such spaces.

Types of systems

Discrete-time systems can have a number of useful properties, which we will also
encounter for continuous-time systems in Chapter 4. After defining key properties,
we will illustrate them on certain basic systems.

Linear systems Similarly to Definition 2.17, linearity45 combines two properties:
additivity (the output of a sum of sequences is the sum of the outputs of the
sequences) and scaling (the output of a scaled sequence is the scaled output of the
sequence).

Definition 3.1 (Linear system) A discrete-time system T is called linear
when, for any inputs x and y and any α, β ∈ C,

T (αx+ βy) = αT (x) + βT (y). (3.32)

45In the engineering literature, linearity and the superposition principle are often used inter-
changeably.
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196 Sequences and discrete-time systems

The function T is thus a linear operator, and we write (3.31) as

y = Tx. (3.33)

We will often use a matrix representation for a linear system, especially when the
structure of the matrix reveals properties of the system.

As discussed in Section 2.5.5, a linear operator has a unique matrix repre-
sentation once bases have been chosen for the domain and the codomain of the
operator. Throughout this chapter, matrix representations of linear systems will be
with respect to the standard basis (the Kronecker delta sequence and its shifts) both
for the inputs and for the outputs. The general form of the matrix representation
then follows from (2.165): column k holds the output that results from taking the
shifted Kronecker delta sequence δn−k as the input. To be more explicit, for each
k ∈ Z, let input x(k) result in output y(k), where

x(k)n = δn−k, n ∈ Z.

Then, the matrix representation of the system is




...
...

...

· · · y
(−1)
−1 y

(0)
−1 y

(1)
−1 · · ·

· · · y
(−1)
0 y

(0)
0 y

(1)
0 · · ·

· · · y
(−1)
1 y

(0)
1 y

(1)
1 · · ·

...
...

...




. (3.34)

Memoryless systems Certain simple systems are instantaneous in that they act
based solely on the current input sample. It follows that if two inputs agree at
a time index k, the corresponding outputs must also agree at time index k. For
a mathematical representation of memorylessness, we use the domain-restriction
operator defined in (2.62).

Definition 3.2 (Memoryless system) A discrete-time system T is called
memoryless when, for any integer k and inputs x and x′,

1{k} x = 1{k} x
′ ⇒ 1{k} T (x) = 1{k} T (x

′). (3.35)

In a matrix representation of a linear and memoryless system, the matrix will be
diagonal; we will illustrate this and other properties of matrix representations of
linear systems in several examples shortly.

Causal systems The output of a causal system at time index k depends on the
input only up to time index k. It follows that if two inputs agree up to time k, the
corresponding outputs must agree up to time k.
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3.3 Systems 197

Definition 3.3 (Causal system) A discrete-time system T is called causal
when, for any integer k and inputs x and x′,

1{−∞,...,k} x = 1{−∞,...,k} x
′ ⇒ 1{−∞,...,k} T (x) = 1{−∞,...,k} T (x

′). (3.36)

In a matrix representation of a linear and causal system, the matrix will be lower-
triangular.

Since a computation cannot depend on inputs that will be provided only in
the future, causality can seem to be a property that is required of any implemented
system. However, this view takes the concept of the time index representing time
too literally. First, the discrete time index might represent something else entirely,
like a physical location along a line; the data can then be processed in any order.
Second, when the time index does indeed represent time, the time origins of the
input and output need not coincide; then, causality sometimes amounts to nothing
more than a convenient convention for aligning time indices of the input and output.

Shift-invariant systems In a shift-invariant system, shifting the input has the
effect of shifting the output by the same amount.

Definition 3.4 (Shift-invariant system) A discrete-time system T is called
shift-invariant when, for any integer k and input x,

y = T (x) ⇒ y′ = T (x′), where x′n = xn−k and y′n = yn−k. (3.37)

In a matrix representation of a linear and shift-invariant system, the matrix will be
Toeplitz.

Shift invariance (or, when it corresponds to time, time invariance) is often
a desirable property. For example, an MP3 player should produce the same mu-
sic from the same file on Tuesday as on Monday. Moreover, linear shift-invariant
(LSI) or linear time-invariant (LTI) systems have desirable mathematical proper-
ties. Much of the remainder of this section and Sections 3.4 and 3.5 are devoted to
the powerful analysis techniques that apply to LSI systems. Sections 3.6 and 3.7
include variations on shift invariance and the corresponding techniques.

Stable systems A critical property for a discrete-time system is its stability. While
various definitions exist, they all require that the system remain well behaved when
presented with a certain class of inputs. We define bounded-input, bounded-output
(BIBO) stability here, because it is both practical and easy to check in cases of
interest.
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198 Sequences and discrete-time systems

Definition 3.5 (BIBO-stable system) A discrete-time system T is called
bounded-input, bounded-output stable when a bounded input x produces a bounded
output y = T (x):

x ∈ ℓ∞(Z) ⇒ y ∈ ℓ∞(Z). (3.38)

In a matrix representation of a linear and BIBO-stable system, every row of the
matrix will be absolutely summable. The corresponding result for LSI systems is
developed fully in Section 3.3.3.

The definition of BIBO stability involves the ℓ∞ norm, so we can see imme-
diately that a system that is linear and BIBO-stable is a bounded linear operator
from ℓ∞(Z) to ℓ∞(Z). The absolute-summability condition on the system that en-
sures BIBO stability also ensures that the system is a bounded linear operator from
ℓ2(Z) to ℓ2(Z). Thus, when we limit attention to BIBO stable systems, we are able
to use the various results for bounded linear operators on a Hilbert space that were
developed in Chapter 2.

Basic systems

We now discuss a few basic discrete-time systems. These include some basic building
blocks that we will use frequently. Their properties are summarized in Table 3.3.

Shift The shift-by-1 operator, or delay, is defined as

yn = xn−1, n ∈ Z, or (3.39a)

y =




...
y−1

y0
y1
...




=




...
x−2

x−1

x0
...




=




...
...

...
· · · 0 0 0 · · ·
· · · 1 0 0 · · ·
· · · 0 1 0 · · ·

...
...

...







...
x−1

x0
x1
...



. (3.39b)

It is an LSI operator, causal and BIBO-stable, but not memoryless; the matrix is
Toeplitz, with a single nonzero off diagonal. A shift by k, k > 0, is obtained by
applying the delay operator k times.

The advance-by-1 operator, which maps xn into xn+1, is the inverse of the
shift-by-1 operator (3.39),

yn = xn+1, n ∈ Z, or (3.40a)

y =




...
y−1

y0
y1
...




=




...
x0
x1
x2
...




=




...
...

...
· · · 0 1 0 · · ·
· · · 0 0 1 · · ·
· · · 0 0 0 · · ·

...
...

...







...
x−1

x0
x1
...



. (3.40b)
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It is an LSI operator and BIBO-stable, but it is neither memoryless nor causal; the
matrix is Toeplitz and upper-triangular with a single nonzero off diagonal. While
it is obvious that the matrix in (3.40b) is the transpose of the one in (3.39b), it
is also true that these matrices are inverses of each other. (Caution: Any finite-
sized truncation of the matrix in (3.39b) or (3.40b), centered at the origin, is not
invertible.)

Modulator Consider pointwise multiplication of a sequence xn by (−1)n,

yn = (−1)nxn =

{
xn, for even n;
−xn, for odd n,

n ∈ Z, or (3.41a)




...
y−1

y0
y1
...




=




...
−x−1

x0
−x1
...




=




...
...

...
· · · −1 0 0 · · ·
· · · 0 1 0 · · ·
· · · 0 0 −1 · · ·

...
...

...







...
x−1

x0
x1
...



. (3.41b)

This is the simplest example of modulation, that is, a change of frequency46 of a
sequence. We use the term modulation to refer to multiplication of a sequence
by a complex exponential or sinusoidal sequence; this is equivalent to amplitude
modulation (AM) in communications. Here, modulation turns a constant sequence
xn = 1 into a fast-varying (high-frequency) sequence yn = (−1)n,

[
. . . 1 1 1 1 1 . . .

]⊤
→

[
. . . 1 −1 1 −1 1 . . .

]⊤
.

We will see in (3.90) that this operation is a shift of frequency from 0 to π. This
operator is linear, causal, memoryless, and BIBO-stable, but not shift-invariant; the
matrix is diagonal.

A more general version of (3.41a) would involve a sequence α ∈ ℓ∞(Z) multi-
plying the input,

yn = αnxn, n ∈ Z, or (3.42a)



...
y−1

y0
y1
...




=




...
α−1x−1

α0x0
α1x1
...




=




...
...

...
· · · α−1 0 0 · · ·
· · · 0 α0 0 · · ·
· · · 0 0 α1 · · ·

...
...

...







...
x−1

x0
x1
...



. (3.42b)

Like (3.41), this operator is linear, causal, memoryless, and BIBO-stable, but not
shift-invariant; the matrix is again diagonal.

46While we have not defined the notion of frequency yet, you may think of it as a rate of variation
in a sequence; the more the sequence varies in a given interval, the higher the frequency.
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200 Sequences and discrete-time systems

Accumulator The output of the accumulator is akin to the integral of the input,

yn =

n∑

k=−∞
xk, n ∈ Z, or (3.43a)




...
y−1

y0
y1
...




=




...
...

...
· · · 1 0 0 · · ·
· · · 1 1 0 · · ·
· · · 1 1 1 · · ·

...
...

...







...
x−1

x0
x1
...



. (3.43b)

This is an LSI, causal operator, but it is neither memoryless nor BIBO-stable; the
matrix is Toeplitz and lower-triangular.

If the input signal is restricted to be 0 for n < 0, (3.43) reduces to

yn =

n∑

k=0

xk, n ∈ N, or (3.44a)




y0
y1
y2
...


 =




1 0 0 · · ·
1 1 0 · · ·
1 1 1 · · ·
...

...
...

. . .







x0
x1
x2
...


 . (3.44b)

This is an LSI, causal operator, but it is neither memoryless nor BIBO-stable; the
matrix is Toeplitz and lower-triangular.

Weighting by dividing (3.44a) by the number of terms involved turns the
accumulator into a running average,

yn =
1

n+ 1

n∑

k=0

xk, n ∈ N, or (3.45a)




y0
y1
y2
...


 =




1 0 0 · · ·
1
2

1
2 0 · · ·

1
3

1
3

1
3 · · ·

...
...

...
. . .







x0
x1
x2
...


 . (3.45b)

This is a linear operator that is also causal and BIBO-stable, but it is neither
shift-invariant nor memoryless; the matrix is lower-triangular.

Other weight functions are possible, such as a decaying geometric weighting
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3.3 Systems 201

of the entries with factor α ∈ (0, 1),

yn =

n∑

k=0

αn−kxk, n ∈ N, or (3.46a)




y0
y1
y2
...


 =




1 0 0 · · ·
α 1 0 · · ·
α2 α 1 · · ·
...

...
...

. . .







x0
x1
x2
...


 . (3.46b)

This is an LSI, causal operator, but it is not memoryless; the matrix is Toeplitz and
lower-triangular. It is BIBO-stable because |α| < 1.

Averaging operators Consider a system that averages neighboring values, for ex-
ample,

yn =
1

3
(xn−1 + xn + xn+1), n ∈ Z, or (3.47a)




...
y−1

y0
y1
...




=
1

3




...
...

...
...

...
· · · 1 1 1 0 0 · · ·
· · · 0 1 1 1 0 · · ·
· · · 0 0 1 1 1 · · ·

...
...

...
...

...







...
x−2

x−1

x0
x1
x2
...




. (3.47b)

As we have seen in Example 3.2, this is a moving-average filter with N = 3. It is
called moving-average since we look at the sequence through a window of size 3,
compute the average value, and then move the window to compute the next average.
This operator is LSI and BIBO-stable, but it is neither memoryless nor causal; the
matrix is Toeplitz.

For odd N , we obtain a causal version by simply delaying the moving-average
in (3.6) by (N − 1)/2 samples. For N = 3 as here, this results in

yn =
1

3
(xn−2 + xn−1 + xn), (3.48a)




...
y−1

y0
y1
...




=
1

3




...
...

...
...

...
· · · 1 1 0 0 0 · · ·
· · · 1 1 1 0 0 · · ·
· · · 0 1 1 1 0 · · ·

...
...

...
...

...







...
x−2

x−1

x0
x1
x2
...




, (3.48b)
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202 Sequences and discrete-time systems

which is a delayed-by-1 version of (3.47). This operator is again LSI and BIBO-
stable but also causal, while still not being memoryless; the matrix is Toeplitz and
lower-triangular.

An alternative is a block average,

yn =
1

3
(x3n−1 + x3n + x3n+1), (3.49a)




...
y−1

y0
y1
...




=
1

3




...
...

...
...

...
...

· · · 0 0 0 0 0 0 · · ·
· · · 1 1 1 0 0 0 · · ·
· · · 0 0 0 1 1 1 · · ·

...
...

...
...

...
...







...
x−1

x0
x1
x2
x3
x4
...




. (3.49b)

It is easy to see that (3.49a) is simply (3.47a) evaluated at multiples of 3. Similarly,
the matrix in (3.49b) contains only every third row of the one in (3.47b). This is a
linear and BIBO-stable operator; it is not shift-invariant, not memoryless, and not
causal; the matrix is block diagonal.

A nonlinear version of the averaging operator could be

yn = median
([
xn−1 xn xn+1

])
. (3.50)

Instead of the average of the three terms, this operator takes the median value.
This operator is shift-invariant and BIBO-stable, but it is clearly not linear, not
causal, and not memoryless.

Maximum operator This simple operator computes the maximum value of the
input up to the current time,

yn = max
([
. . . xn−2 xn−1 xn

])
. (3.51)

This operator is clearly neither linear nor memoryless, but it is causal, shift-invariant,
and BIBO-stable.

3.3.2 Difference equations

An important class of discrete-time systems can be described by linear difference
equations that relate the input sequence and past outputs to the current output,

yn =
∑

k∈Z

b
(n)
k xn−k −

∞∑

k=1

a
(n)
k yn−k. (3.52)

If we require shift invariance, then the coefficients a
(n)
k and b

(n)
k are constant (do

not depend on n), and we get a linear, constant-coefficient difference equation,

yn =
∑

k∈Z

bkxn−k −
∞∑

k=1

akyn−k. (3.53)
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3.3 Systems 203

Linear Shift inv. Causal Memoryless BIBO-stable

Def. 3.1 Def. 3.4 Def. 3.3 Def. 3.2 Def. 3.5

Shift delay (3.39) X X X × X

advance (3.40) X X × × X

Modulator (3.41) X × X X X

general (3.42) X × X X X

Accumulator (3.43) X X X × ×
restricted input (3.44) X X X × ×

weighted (3.45) X × X × X

exp. weighted (3.46) X × X × X (|α| < 1)

Averaging operator (3.47) X X × × X

causal (3.48) X X X × X

block (3.49) X × × × X

median (3.50) × X × × X

Maximum operator (3.51) × X X × X

Matrix representation X Toeplitz Lower- Diagonal Rows

triangular absolutely

summable

Table 3.3 Basic discrete-time systems and their properties. Matrix representation as-
sumes linearity.

Such an equation does not determine whether a system is causal. However, (3.53)
is suggestive of a recursive computation of the output, forward in time (increasing
n); we will concentrate on such solutions. To make the system causal, we restrict
the dependence on x to the current and past values, leading to

yn =

∞∑

k=0

bkxn−k −
∞∑

k=1

akyn−k. (3.54)

Realizable systems will have only a finite number of nonzero coefficients ak,
k ∈ {1, 2, . . . , N}, and bk, k ∈ {0, 1, . . . , M}, reducing (3.54) to

yn =
M∑

k=0

bkxn−k −
N∑

k=1

akyn−k, (3.55)

as illustrated in Figure 3.5. We discuss finding solutions to such difference equations
in Appendix 3.A.2.

Example 3.9 (Difference equation of the accumulator) As an exam-
ple, consider the accumulator seen in (3.43a),

yn =

n∑

k=−∞
xk = xn +

n−1∑

k=−∞
xk = xn + yn−1, (3.56)
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204 Sequences and discrete-time systems

x b0 + +− y

D

b1 +

bM−1 +

D

bM

D

a1+

aN−1+

D

aN

Figure 3.5 System representation of the difference equation (3.55), where D stands for
unit delay, or shift-by-1 operator.

which is of the form (3.55), with b0 = 1 and a1 = −1. The infinite sum has been
turned into a recursive formula (3.56), showing also how one could implement
the accumulator: to obtain the current output yn, add the current input xn to
the previously saved output yn−1.

Let us take xn = δn, and see what the accumulator does. Assume that we
are given y−1 = β. Then, for n ≥ 0,

y0 = x0 + y−1 = 1 + β, y1 = x1 + y0 = 1 + β, . . . , yn = 1 + β, . . . .

Thus, the accumulator does exactly what it is supposed to do: at time n = 0, it
adds the value of the input x0 = 1 to the previously saved output y−1 = β, and
then stays constant as the input for all n > 0 is zero. For n < 0, we can solve
(3.56) by expressing yn−1 = yn − xn; it is easy to see that yn = β, for all n < 0.
Together, the expressions for n ≥ 0 and n < 0, lead to

yn = β + un, (3.57)

that is, the initial value before the input is applied plus the input from the
moment it is applied on.

From the above example, we see that, unless the initial conditions are zero, the
system is not linear; for example, one could have a zero input producing a nonzero
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3.3 Systems 205

output. Similarly, the system is shift-invariant only if the initial conditions are zero.
These properties are fundamental and hold beyond the case of the accumulator:
difference equations as in (3.55) are linear and shift-invariant if and only if the initial
conditions are zero. This also means that the homogeneous solution is necessarily
zero (see Appendix 3.A.2 and Exercise 3.4).

3.3.3 Linear shift-invariant systems

Impulse response

A linear operator is specified by its outputs in response to each element of a basis
for its domain space (see Section 2.5.5). As we saw in (3.34), this allows matrix
representation of a linear discrete-time system. Such a matrix representation has
columns that are the output sequences in response to the Kronecker delta sequence
and its shifts as inputs. When, in addition, the system is shift-invariant, to satisfy
(3.37) all these output sequences are themselves related by shifting. Thus, the
system is specified completely by the output sequence resulting from the Kronecker
delta sequence as the input.

Definition 3.6 (Impulse response) A sequence h is called the impulse re-
sponse of LSI discrete-time system T when input δ produces output h.

The impulse response h of a causal linear system always satisfies hn = 0 for all
n < 0. This is required because, according to (3.36), the output in response to
input δ must match on {−∞, . . . , −2, −1} to the 0 output sequence that results
from the 0 input sequence.

Example 3.10 (Impulse response from a difference equation) The lin-
ear, constant-coefficient difference equation (3.54) with zero initial conditions
represents an LSI system. An impulse response of the system is an output that
results from Kronecker delta input, x = δ. Thus, an impulse response satisfies

hn
(a)
=

∞∑

k=0

bkδn−k −
∞∑

k=1

akhn−k
(b)
= bn −

∞∑

k=1

akhn−k, (3.58)

where (a) follows from (3.54); and (b) from the sifting property of the Kronecker
delta sequence (see Table 3.1).

If we restrict our attention to causal systems, then the difference equation
uniquely specifies the system. The impulse response satisfies hn = 0 for all n < 0,
and hn can be computed for all n ≥ 0 by using (3.58) recursively for n = 0, 1, . . . .

Convolution

The impulse response and its shifts form the columns of the matrix representation
of an LSI system, as in (3.34). Expressing this as a summation is instructive and
introduces the key concept of convolution.
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206 Sequences and discrete-time systems

Since an arbitrary input x to an LSI system T can be written as

xn =
∑

k∈Z

xkδn−k (3.59)

for all n ∈ Z (see the sifting property of the Kronecker delta sequence in Table 3.1),
we can express the output as

y = Tx = T
∑

k∈Z

xkδn−k
(a)
=
∑

k∈Z

xkTδn−k
(b)
=
∑

k∈Z

xkhn−k = h ∗ x, (3.60)

where (a) follows from linearity; and (b) from shift invariance and the definition of
the impulse response, defining the convolution.47

Definition 3.7 (Convolution) The convolution between sequences h and x is
defined as

(Hx)n = (h ∗ x)n =
∑

k∈Z

xkhn−k =
∑

k∈Z

xn−khk, (3.61)

where H is called the convolution operator associated with h.

When it is not clear from the context, we will use a subscript on the convolution
operator, such as ∗n, to denote the argument over which we perform the convolution
(for example, xn−m ∗n hℓ−n =

∑
k xk−mhℓ−n+k).

Example 3.11 (Solution to an LSI difference equation) Let us go back
to the accumulator defined in (3.56). Either by using (3.56) directly or by using
(3.58) with b0 = 1 and a0 = −1, we can determine the impulse response for this
system by computing the output due to the input x = δ,

h =
[
. . . 0 1 1 1 1 . . .

]⊤
.

The convolution (3.61) expresses the output at time n due to an arbitrary input
x as a linear combination of shifted versions of h. To illustrate this, suppose that
x is supported on {0, 1 . . . , L}. Then, (3.61) expresses the output y at all times

47Convolution is sometimes called linear convolution to distinguish it from the circular convo-
lution of finite-length sequences as in Definition 3.9.
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through a linear combination of h and its shifts by 1, 2, . . . , L,




...
y−1

y0
y1
y2
...
yL
yL+1

...




= x0




...
0

1
1
1
...
1
1
...




+x1




...
0

0
1
1
...
1
1
...




+x2




...
0

0
0
1
...
1
1
...




+ · · ·+xL




...
0

0
0
0
...
1
1
...




=




...
0
x0

x0 + x1
x0 + x1 + x2

...
x0 + · · ·+ xL
x0 + · · ·+ xL

...




;

this is indeed the accumulator output for an input supported on {0, 1, . . . , L}.

Properties The convolution (3.61) satisfies the following properties:

(i) Connection to the inner product:

(h ∗ x)n =
∑

k∈Z

xkhn−k = 〈xk, h∗n−k〉k. (3.62a)

(ii) Commutativity:

h ∗ x = x ∗ h. (3.62b)

(iii) Associativity:

g ∗ (h ∗ x) = g ∗ h ∗ x = (g ∗ h) ∗ x. (3.62c)

(iv) Deterministic autocorrelation:

an =
∑

k∈Z

xkx
∗
k−n = xn ∗n x∗−n. (3.62d)

(v) Shifting: For any k ∈ Z,

xn ∗n δn−k = xn−k. (3.62e)

Properties (i)–(iv) above depend on the sums – whether written explicitly or implic-
itly – converging. Convergence of the convolution is discussed in Appendix 3.A.3.
The following example illustrates the apparent failure of the associative property
when a convolution sum does not converge.
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208 Sequences and discrete-time systems

Example 3.12 (When convolution is not associative) Since a convolu-
tion might fail to converge, one needs to be careful about associativity. For g,
choose the Heaviside sequence from (3.11), gn = un, for h choose the first-order
differencing sequence, hn = δn − δn−1, and for x choose the constant sequence,
xn = 1. Now,

g ∗ (h ∗ x) (a)
= u ∗ 0 = 0, while (g ∗ h) ∗ x (b)

= δ ∗ 1 = 1,

where (a) follows because convolving a constant with the differencing operator
yields a zero sequence; and (b) because convolving a Heaviside sequence with the
differencing operator yields a Kronecker delta sequence. This failure of associa-
tivity occurs because g ∗h∗x is not well defined; for it to be well defined requires
absolute convergence of ∑

m∈Z

∑

k∈Z

gn−mhm−kxk

for every n ∈ Z, which does not hold.

Filters The impulse response of a system is often called a filter and convolution
with the impulse response is called filtering. Here are some basic classes of filters:

(i) Causal filters are such that hn = 0 for all n < 0.

(ii) Anticausal filters are such that hn = 0 for all n > 0.

(iii) Two-sided filters are neither causal nor anticausal.

(iv) Finite impulse response (FIR) filters have only a finite number of coefficients
hn different from zero.

(v) Infinite impulse response (IIR) filters have infinitely many nonzero terms.

For example, the impulse response of the accumulator in Example 3.11 is causal
and IIR.

Stability We now discuss the stability of LSI systems.

Theorem 3.8 (BIBO stability) An LSI system is BIBO-stable if and only if
its impulse response is absolutely summable.

Proof. To prove sufficiency (absolute summability implies BIBO stability), consider an
absolutely summable impulse response h ∈ ℓ1(Z), so ‖h‖1 < ∞, and a bounded input
x ∈ ℓ∞(Z), so ‖x‖∞ <∞. The absolute value of any one sample at the output can be
bounded as follows:

|yn| (a)
=

∣∣∣∣∣
∑

k∈Z

hkxn−k

∣∣∣∣∣
(b)

≤
∑

k∈Z

|hk| |xn−k|
(c)

≤ ‖x‖∞
∑

k∈Z

|hk| (d)
= ‖x‖∞ ‖h‖1 < ∞,
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where (a) follows from (3.61); (b) from the triangle inequality (Definition 2.9(iii)); (c)
from bounding each |xn−k| by ‖x‖∞; and (d) from the definition of the ℓ1 norm. This
proves that y is bounded.48

We prove necessity (BIBO stability implies absolute summability) by contradic-
tion. For any h that is not absolutely summable we choose a particular input x (which
depends on h) to create an unbounded output. Consider a real impulse response49 h,
and define the input sequence to be

xn = sgn h−n, where sgn t =





−1, for t < 0;
0, for t = 0;
1, for t > 0

is the sign function. Now, compute the convolution of x with h at n = 0,

y0 =
∑

k∈Z

hkx−k =
∑

k∈Z

|hk| = ‖h‖1, (3.63)

which is unbounded when h is not in ℓ1(Z).

The impulse response of the accumulator, for example, does not belong to ℓ1(Z);
a bounded input to the accumulator can lead to an unbounded output. Limiting
attention to filters in ℓ1(Z) avoids technical difficulties since it guarantees both the
convergence of the convolution sum and that the resulting sequence is in a suitable
sequence space. When h ∈ ℓ1(Z) and x ∈ ℓp(Z) for any p ∈ [1, ∞], the result of
h ∗ x is in ℓp(Z) as well; see Solved exercise 3.2.

Matrix view As we have shown in Section 2.5.5, any linear operator can be ex-
pressed in matrix form. We may visualize (3.61) as

y =




...
y−2

y−1

y0
y1
y2
...




=




...
...

...
...

...
· · · h0 h−1 h−2 h−3 h−4 · · ·
· · · h1 h0 h−1 h−2 h−3 · · ·
· · · h2 h1 h0 h−1 h−2 · · ·
· · · h3 h2 h1 h0 h−1 · · ·
· · · h4 h3 h2 h1 h0 · · ·

...
...

...
...

...




︸ ︷︷ ︸
H




...
x−2

x−1

x0
x1
x2
...




= Hx. (3.64)

This again shows that the terms LSI discrete-time system, linear operator (on se-
quences), filter, and (doubly infinite) matrix are all synonyms. The key elements
in (3.64) are the time reversal of the impulse response (in each row of the matrix,
the impulse response goes from right to left), and the Toeplitz structure of the ma-
trix (each row is a shifted version of the previous row, and the matrix is constant
along diagonals; see (2.246)). In Figure 3.6, an example convolution is computed
graphically, emphasizing time reversal.

48This boundedness is equivalent to the convergence of the convolution sum as discussed in
Appendix 3.A.3.

49For a complex-valued impulse response, a slight modification, using xn = h∗−n/|h−n| for
|h−n| 6= 0, and xn = 0 otherwise, leads to the same result.
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Figure 3.6 Example of the convolution of a sequence and a filter. (a) Sequence x. (b)
Impulse response h. (c) Result of convolution y = h ∗ x. (d) Time-reversed version of
the impulse response, h−n. (e)–(f) Two time-reversed and shifted versions of the impulse
response involved in computing the convolution.

Adjoint The adjoint of the convolution operator H is the unique H∗ satisfying
(2.48):

〈Hx, y〉 = 〈x, H∗y〉. (3.65)

From the matrix form of the convolution operator, (3.64), we can find the matrix
form of the adjoint by Hermitian transposition. The result is

H∗ =




...
...

...
...

...
· · · h∗0 h∗1 h∗2 h∗3 h∗4 · · ·
· · · h∗−1 h∗0 h∗1 h∗2 h∗3 · · ·
· · · h∗−2 h∗−1 h∗0 h∗1 h∗2 · · ·
· · · h∗−3 h∗−2 h∗−1 h∗0 h∗1 · · ·
· · · h∗−4 h∗−3 h∗−2 h∗−1 h∗0 · · ·

...
...

...
...

...




, (3.66)

which is the convolution operator associated with the time-reversed and conjugated
version of h. It is instructive to also verify this algebraically,

〈x, H∗y〉 (a)
= 〈Hx, y〉 =

∑

n∈Z

(h ∗ x)ny∗n =
∑

n∈Z

(
∑

k∈Z

xkhn−k

)
y∗n

=
∑

k∈Z

xk
∑

n∈Z

hn−ky
∗
n =

∑

k∈Z

xk

(
∑

n∈Z

h∗n−kyn

)∗

, (3.67)
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where (a) follows from (2.48). This implies that

H∗y =
∑

n∈Z

h∗n−kyn for all y ∈ ℓ2(Z),

so the adjoint operator is the convolution with the time-reversed and conjugated
version of h.

Circular convolution

We now consider what happens with our second class of sequences, namely those
that are of finite length and circularly extended.

Linear convolution with circularly extended signal Given a sequence x with cir-
cular extension as in (3.26) and a filter h in ℓ1(Z), we can compute the convolution
as usual,

yn = (h ∗ x)n =
∑

k∈Z

xkhn−k =
∑

k∈Z

hkxn−k. (3.68)

Since x is N -periodic, y is N -periodic as well,

yn+N =
∑

k∈Z

hkxn+N−k
(a)
=
∑

k∈Z

hkxn−k = yn,

where (a) follows from the periodicity of x.
Let us now define a periodized version of h, with period N , as

hN,n =
∑

k∈Z

hn−kN , (3.69)

where the sum converges for each n because h ∈ ℓ1(Z). While this periodization
is not equivalent to circular extension in general, it is equivalent when h is an FIR
filter with support in {0, 1, . . . , N − 1}. We now want to show how we can express
the convolution (3.68) in terms of what we will define as a circular convolution in
Definition 3.9,

(h ∗ x)n =
∑

k∈Z

hkxn−k
(a)
=
∑

ℓ∈Z

(ℓ+1)N−1∑

k=ℓN

hkxn−k

(b)
=
∑

ℓ∈Z

N−1∑

k′=0

hk′+ℓNxn−k′−ℓN
(c)
=
∑

ℓ∈Z

N−1∑

k=0

hk+ℓNxn−k

(d)
=

N−1∑

k=0

∑

ℓ∈Z

hk+ℓN

︸ ︷︷ ︸
=hN,k

xn−k =
N−1∑

k=0

hN,kxn−k

(e)
=

N−1∑

k=0

hN,kx(n−k) mod N = (hN ⊛ x)n, (3.70)
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(a) Finite-length x, and circularly extended. (b) Impulse response h.
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(c) Result of convolution y = h ∗ x. (d) Equivalent, periodized filter hN .

Figure 3.7 Example of the convolution, y = h ∗ x, of a periodic sequence x with period
N = 4 and a filter h. Circular convolution of x and periodized hN , y = hN ⊛ x, leads to
the same output y as in (c).

where in (a) we split the set of integers into length-N segments; (b) follows from the
change of variable k′ = k− ℓN ; (c) follows from the periodicity of x and the change
of variable k = k′; in (d) we were allowed to exchange order of summation because
h ∈ ℓ1(Z) (see Appendix 2.A.3); and (e) follows from the periodicity of x. The
expression above tends to be more convenient as it involves only one period both
of x and of the periodized version hN of the impulse response h. The equivalence
between the convolution of h and a circularly extended finite-length sequence x,
and the circular convolution of hN and the sequence x is illustrated in Figure 3.7.

Example 3.13 (Impulse response and its periodized version) Let

hn =

(
2

3

)n
un, n ∈ Z,

as shown in Figure 3.7(b). We compute its periodized version as in (3.69),

hN,n =
∑

k∈Z

hn−kN =
∑

k∈Z

(
2

3

)n−kN

un−kN .
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For n ∈ {0, 1, . . . , N − 1},

hN,n =

0∑

k=−∞

(
2

3

)n−kN
(a)
=

∞∑

m=0

(
2

3

)n+mN

=

(
2

3

)n ∞∑

m=0

((
2

3

)N)m

=

(
2

3

)n
1

1−
(
2
3

)N ,

where (a) follows from the change of variable m = −k. For N = 4, this becomes

h4,n =

(
2

3

)n
1

1−
(
2
3

)4 =

(
2

3

)n
1

1− 16/81
=

(
2

3

)n
81

65
,

as shown in Figure 3.7(d).

Definition of the circular convolution Above in (3.70), we implicitly defined a
new form of convolution of a length-N input sequence x and a length-N impulse
response h.

Definition 3.9 (Circular convolution) The circular convolution between
length-N sequences h and x is defined as

(Hx)n = (h⊛ x)n =

N−1∑

k=0

xkh(n−k) mod N =

N−1∑

k=0

x(n−k) mod Nhk, (3.71)

where H is called the circular convolution operator associated with h.

The result of the circular convolution is a length-N sequence. While circular con-
volution is a separate concept from linear convolution, we have just seen that the
two are related when one sequence in a linear convolution is periodic and the other
is not. We made the connection by periodizing the aperiodic sequence.

Equivalence of circular and linear convolutions We have just seen that linear and
circular convolutions are related; we now see that there are instances when the two
are equivalent. Assume that we have a length-M input x and a length-L impulse
response h,

x =
[
. . . 0 x0 x1 . . . xM−1 0 . . .

]⊤
, (3.72a)

h =
[
. . . 0 h0 h1 . . . hL−1 0 . . .

]⊤
. (3.72b)

The result of the linear convolution (3.61) has at most L+M − 1 nonzero samples,

y =
[
. . . 0 y0 y1 . . . yL+M−2 0 . . .

]⊤
.
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214 Sequences and discrete-time systems

as can be verified by using the length restrictions in (3.72). While we have chosen
to write the sequences as infinite-length vectors, we could have chosen to write each
as a finite-length vector with appropriate length; however, as these lengths are all
different, we would have had to choose a common vector length N . Choosing this
common length is exactly the crucial point in determining when the linear and
circular convolutions are equivalent, as we show next.

Theorem 3.10 (Equivalence of circular and linear convolutions)
Linear and circular convolutions between a length-M sequence x and a length-L
sequence h are equivalent when the period of the circular convolution N satisfies

N ≥ L+M − 1. (3.73)

Proof. Take x and h as in (3.72). The linear and circular convolutions, y(lin) and y(circ),
are given by (3.61) and (3.71), respectively:

y(lin)n = (h0xn + · · ·+ hnx0) + (hn+1x−1 + · · ·+ hL−1x−L+1+n), (3.74a)

y(circ)n = (h0xn + · · ·+ hnx0) + (hn+1xN−1 + · · ·+ hL−1xN−L+1+n), (3.74b)

for n ∈ {0, 1, . . . , N − 1}. In the above, we broke each convolution sum into positive
indices of xn and the rest (negative ones for the linear convolution, and mod N for the
circular convolution). Note that in (3.74b) the index goes from 0 to (N − 1), but stops
at (L− 1) since h is zero after that.

Since x has no nonzero values for negative values of n, the second sum in (3.74a) is
zero, and so must the second sum in (3.74b) be (and that for every n = 0, 1, . . . , N−1),
if (3.74a) and (3.74b) are to be equal. This, in turn, is possible only if xN−L+1+n

(the last x term in the second sum of the circular convolution) has an index that is
outside of the range of nonzero values of x, that is, if N − L + 1 + n ≥ M , for every
n = 0, 1, . . . , N − 1. As this is true for n = 0 by assumption (3.73), it will be true for
all larger n as well.

Figure 3.8 depicts this equivalence and Example 3.14 examines it in matrix notation
for M = 4, L = 3.

Matrix view As we have done for linear convolution in (3.64), we visualize circular
convolution (3.71) using matrices,

y =




y0
y1
y2
...

yN−1




=




h0 hN−1 hN−2 · · · h1
h1 h0 hN−1 · · · h2
h2 h1 h0 · · · h3
...

...
...

. . .
...

hN−1 hN−2 hN−3 · · · h0




︸ ︷︷ ︸
H




x0
x1
x2
...

xN−1




= Hx. (3.75)

H is a circulant matrix as in (2.245) with h as its first column, and it represents the
circular convolution operator when both the sequence x and the impulse response
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Figure 3.8 Equivalence of circular and linear convolutions. (a) Sequence x of length
M = 4. (b) Filter h of length L = 3. (c) Linear convolution results in a sequence of length
L+M − 1 = 6, the same as a circular convolution with a period N ≥ L+M − 1, N = 6
in this case. (d) Circular convolution with a smaller period, N = 5, does not lead to the
same result.

h are finite; when the impulse response is not finite, the elements of H would be
samples of the periodized impulse response hN .

Example 3.14 (Equivalence of circular and linear convolutions) We
now look at a length-3 filter convolved with a length-4 sequence. The result of
the linear convolution is of length 6,




...
0
y0
y1
y2
y3
y4
y5
0
...




=




...
...

...
...

...
...

...
...

· · · h0 0 0 0 0 0 0 0 · · ·
· · · h1 h0 0 0 0 0 0 0 · · ·
· · · h2 h1 h0 0 0 0 0 0 · · ·
· · · 0 h2 h1 h0 0 0 0 0 · · ·
· · · 0 0 h2 h1 h0 0 0 0 · · ·
· · · 0 0 0 h2 h1 h0 0 0 · · ·
· · · 0 0 0 0 h2 h1 h0 0 · · ·
· · · 0 0 0 0 0 h2 h1 h0 · · ·

...
...

...
...

...
...

...
...







...
0
x0
x1
x2
x3
0
0
0
...




. (3.76a)

To calculate circular convolution, we choose N = M + L − 1 = 6, and form a
6 × 6 circulant matrix H as in (3.75) by using h as its first column. Then, the
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Cambridge University Press (ISBN 110703860X) v1.1 [May 2014] [free version] Comments to book-errata@FourierAndWavelets.org



216 Sequences and discrete-time systems

circular convolution leads to the same result as before,




y0
y1
y2
y3
y4
y5




=




h0 0 0 0 h2 h1
h1 h0 0 0 0 h2
h2 h1 h0 0 0 0
0 h2 h1 h0 0 0
0 0 h2 h1 h0 0
0 0 0 h2 h1 h0







x0
x1
x2
x3
0
0



. (3.76b)

Had the period N been chosen smaller (for example, N = 5), the equivalence
would have not held.

This example also shows that, to compute the linear convolution, we can compute
the circular convolution instead by choosing the appropriate period N ≥M+L−1.
This is often done, as the circular convolution can be computed using the length-N
discrete Fourier transform (see Section 3.9.2), and fast algorithms for the discrete
Fourier transform abound (see Section 3.9.1).

3.4 Discrete-time Fourier transform

In the present section and the next two sections, we introduce various ways to
analyze sequences and discrete-time systems. They range from the analytical to
the computational and are all variations of the Fourier transform. Why do Fourier
methods play such a prominent role? Simply because they are based on eigense-
quences of LSI systems (convolution operators). Thus far, we have seen two con-
volution operators (linear and circular). We will see that these have different sets
of eigensequences, which lead to different Fourier transforms for sequences. The
eigensequence property leads to the convolution property – an equivalence between
convolving sequences and multiplying Fourier transforms of the sequences. This is
also interpreted as diagonalization of convolution operators by the Fourier trans-
form.

In this section, we introduce the discrete-time Fourier transform (DTFT) –
the Fourier transform for infinite-length discrete-time signals. It is a 2π-periodic
function of frequency ω ∈ R that we write as X(ejω), both to stress the periodicity
and to create a unified notation for the DTFT and the z-transform X(z), which
we discuss in Section 3.5. The z-transform has argument z ∈ C, where z can have
any modulus; the DTFT is related to the z-transform by restricting the domain to
the unit circle. In Section 3.6, we focus on the discrete Fourier transform (DFT) –
the Fourier transform both for infinite-length periodic sequences and for circularly
extended length-N sequences (both of these can be viewed as existing on a discrete
circle of length N). The DFT is an N -dimensional vector we write as Xk.

3.4.1 Definition of the DTFT

Eigensequences of the convolution operator We start with a fundamental prop-
erty of LSI systems: they have all unit-modulus complex exponential sequences as
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3.4 Discrete-time Fourier transform 217

eigensequences. This follows from the convolution representation of LSI systems
(3.61) and a simple computation.

Consider a complex exponential sequence

vn = ejωn, n ∈ Z, (3.77)

where ω is any real number. The quantity ω is called the angular frequency; it is
measured in radians per second. With ω = 2πf , the quantity f is called frequency;
it is is measured in hertz, or the number of cycles per second. The sequence v is
bounded since |vn| = 1 for all n ∈ Z. If the impulse response h is in ℓ1(Z), then,
according to Theorem 3.8, the output h ∗ v is bounded as well. Along with being
bounded, h ∗ v takes a particular form:

(Hv)n = (h ∗ v)n =
∑

k∈Z

vn−khk =
∑

k∈Z

ejω(n−k)hk

=
∑

k∈Z

hke
−jωk

︸ ︷︷ ︸
λω

ejωn
︸︷︷︸
vn

. (3.78)

This shows that applying the convolution operator H to the complex exponential
sequence v gives a scalar multiple of v; in other words, v is an eigensequence of H
with the corresponding eigenvalue λω . We denote this eigenvalue by H(ejω) using
the frequency response of the system, which is defined formally in (3.110a) in the
discussion of filters. We can thus rewrite (3.78) as

Hv = h ∗ v = H(ejω) v. (3.79)

DTFT Finding the appropriate Fourier transform now amounts to projecting onto
the subspaces generated by each of the eigensequences.

Definition 3.11 (Discrete-time Fourier transform) The discrete-time
Fourier transform of a sequence x is

X(ejω) =
∑

n∈Z

xne
−jωn, ω ∈ R. (3.80a)

It exists when (3.80a) converges for all ω ∈ R; we then call it the spectrum of x.
The inverse DTFT of a 2π-periodic function X(ejω) is

xn =
1

2π

∫ π

−π

X(ejω)ejωn dω, n ∈ Z. (3.80b)

When the DTFT exists, we denote the DTFT pair as

xn
DTFT←→ X(ejω).
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Since e−jωn is a 2π-periodic function of ω for every n ∈ Z, the DTFT is always
a 2π-periodic function, which is emphasized by the notation X(ejω). Note that
the sum in (3.80a) is formally equivalent to an ℓ2(Z) inner product, although the
sequence ejωn has no decay and is thus not in ℓ2(Z). We now discuss limitations
on the inputs and the corresponding types of convergence.

3.4.2 Existence and convergence of the DTFT

The existence of the DTFT depends on the sequence x. When a doubly infinite
series as in (3.80a) is given without a specification of how to interpret it as a limiting
process, one must consider the series well defined only when it converges absolutely
(see Appendix 2.A.2). This immediately implies the existence of the DTFT for
all sequences in ℓ1(Z). To extend the discussion beyond ℓ1(Z), we must specify a
limiting process and a sense of convergence. Consider the partial sums

XN (ejω) =

N∑

n=−N

xne
−jωn, N = 0, 1, . . . . (3.81)

If we consider the DTFT to exist whenever this sequence of partial sums converges
under the L2([−π, π)) norm, then the DTFT exists for all sequences in ℓ2(Z). Note
that the DTFT can be a useful tool even when (3.80a) diverges to∞ for some values
of ω; this, however, requires more caution.

Sequences in ℓ1(Z) If x ∈ ℓ1(Z), then (3.80a) converges absolutely for every ω,
since

∑

n∈Z

∣∣xnejωn
∣∣ =

∑

n∈Z

|xn|
∣∣ejωn

∣∣ =
∑

n∈Z

|xn| = ‖x‖1 < ∞.

This tells us that the DTFT of x exists. Moreover, as a consequence of absolute
convergence for all ω, the limit X(ejω) is a continuous function of ω.50

Since the DTFT itself is well defined, we can verify the inversion formula by
substituting (3.80a) into (3.80b). First,

1

2π

∫ π

−π

(
∑

k∈Z

xke
−jωk

)
ejωn dω

(a)
=
∑

k∈Z

xk
1

2π

∫ π

−π

ejω(n−k) dω, (3.82a)

where in (a) we are allowed to exchange the order of summation and integration
because x ∈ ℓ1(Z) (see Section 2.A.3). The integral

∫ π

−π e
jω(n−k) dω must be treated

separately for n = k and n 6= k. Each case gives an elementary computation, and
the result is ∫ π

−π

ejω(n−k) dω = 2πδn−k (3.82b)

50Absolute convergence of (3.80a) implies uniform convergence of the sequence of functions XN

in (3.81) to X. Looking at the DTFT as a function defined on a compact (closed and bounded)
domain such as [−π, π], the uniform convergence and the continuity of each XN imply that X is
continuous.
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using the Kronecker delta sequence to combine the cases. We can then rewrite
(3.82a) as

1

2π

∫ π

−π

(
∑

k∈Z

xke
−jωk

)
ejωn dω

(a)
=
∑

k∈Z

xkδn−k
(b)
= xn,

where (a) follows from (3.82b); and (b) from the definition of the Kronecker delta
sequence (3.8), proving the inversion.

Sequences in ℓ2(Z) For sequences not in ℓ1(Z), the DTFT series (3.80a) might
fail to converge for some values of ω. Nevertheless, convergence can be extended to
the larger space of sequences ℓ2(Z) by changing the sense of convergence.

If x ∈ ℓ2(Z), the partial sum XN (ejω) in (3.81) converges to a function
X(ejω) ∈ L2([−π, π)) in the sense that

lim
N→∞

‖X(ejω)−XN (ejω)‖ = 0. (3.83)

This convergence in L2([−π, π)) norm51 implies convergence of (3.80a) for almost
all values of ω, but there is no guarantee of the convergence being uniform or the
limit function X(ejω) being continuous.

The sense in which the inversion formula holds changes subtly as well. We
return to this in Section 4.5.2.

Example 3.15 (Mean-square convergence of DTFT) Take the sinc
sequence from Figure 3.1(b),

xn =
1√
2
sinc

(
1

2
πn

)
=

1√
2

sin(12πn)
1
2πn

. (3.84)

It decays too slowly to be absolutely summable but fast enough to be square
summable; that is, x ∈ ℓ2(Z) but x 6∈ ℓ1(Z). Thus, we cannot guarantee that
(3.80a) converges for every ω, but the DTFT still converges in mean square. To
see this, in Figure 3.9 we plot the DTFT partial sum (3.81),

XN (ejω) =
1√
2

N∑

n=−N

sin(12πn)
1
2πn

e−jωn, (3.85)

for various values of N . As Figure 3.9 suggests, convergence in mean square is
to

X(ejω) =

{√
2, for |ω| ∈ [0, 1

2π);

0, for |ω| ∈ (12π, π],

and the convergence as N →∞ is nonuniform: it is very slow near ω = 1
2π and

faster farther away. In fact, while there is no convergence at ω = 1
2π, lack of

convergence at this isolated point does not prevent convergence in mean square.

51This is also called convergence in the mean-square sense or convergence in mean square.
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(a) N = 10. (b) N = 100.
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ω
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9Π�20 Π�2

2

ω
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(c) N = 1000. (d) Detail of (c).

Figure 3.9 Truncated DTFT of the sinc sequence, illustrating the Gibbs phenomenon.
Shown are |XN (ejω)| from (3.85) with different N . Observe how oscillations narrow from
(a) to (c), but their amplitude remains constant (the topmost grid line in every plot), at
1.089

√
2.

The partial sum XN (ejω) oscillates near the points of discontinuity, with
oscillations becoming narrower as N increases but not decreasing in size. This
overshoot and undershoot is of the order of 9%, and is called the Gibbs phe-
nomenon (see also Figure 1.3).52

Using the DTFT without convergence The DTFT is still a useful tool even in
some cases where it converges neither pointwise over ω nor in mean square. These
are cases where an expression for the DTFT involving a Dirac delta function makes
sense because evaluating the inverse DTFT gives the desired result. As with other
uses of the Dirac delta function, we must be cautious; for more details and properties
of the Dirac delta function, see Appendix 3.A.4.

Example 3.16 (DTFT of constant sequence) Let xn = 1 for all n ∈ Z.
This sequence belongs to neither ℓ1(Z) nor ℓ2(Z), so neither of our previous
discussions of convergence applies. In fact, there is no value of ω for which the
DTFT series (3.80a) converges. However, the lack of convergence is not the same
for all values of ω. When ω is an integer multiple of 2π, (3.80a) diverges to ∞
because every term in the sum is 1. For other values of ω, it is tempting (but
not mathematically correct; see Appendix 2.A.2) to assign the value of zero to

52For any piecewise continuously differentiable function with a discontinuity of height α, the
overshoot is 0.089α, roughly 9% higher than the original height.
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3.4 Discrete-time Fourier transform 221

the sum because the terms in (3.80a) all lie on the unit circle, with no direction
preferred.

Despite the lack of convergence of the DTFT, the expression

X(ejω) = 2πδ(ω), ω ∈ [−π, π], (3.86a)

with δ the Dirac delta function, proves useful. It is valid in the sense that
substituting it into the inverse DTFT, (3.80b), recovers the constant sequence
with which we started, xn = 1, for all n ∈ Z. The same DTFT can also be
written as

X(ejω) = 2π

∞∑

k=−∞
δ(ω − k2π) (3.86b)

to capture the 2π-periodicity of X(ejω).

Example 3.17 (DTFT of cosine sequence) Let

X(ejω) = π (δ(ω + ω0) + δ(ω − ω0)) , ω ∈ [−π, π], (3.87a)

for some ω0 ∈ (−π, π). Then, by evaluating the inverse DTFT, for any n ∈ Z,

xn
(a)
=

1

2π

∫ π

−π

X(ejω)ejωn dω
(b)
=

1

2π

∫ π

−π

π (δ(ω + ω0) + δ(ω − ω0)) e
jωndω

=
1

2

(∫ π

−π

δ(ω + ω0)e
jωndω +

∫ π

−π

δ(ω − ω0)e
jωndω

)

(c)
=

1

2

(
e−jω0n + ejω0n

) (d)
= cosω0n, (3.87b)

where (a) follows from (3.80b); (b) from (3.87a); (c) from the sifting property of
the Dirac delta function, (3.293); and (d) from (3.286). We may also derive this
DTFT pair from (3.86) and the linearity and shift in frequency properties in the
following section.

3.4.3 Properties of the DTFT

We list here basic properties of the DTFT; Table 3.4 summarizes these, together
with symmetries as well as a few standard transform pairs. Of course, all the
expressions must be well defined for these properties to hold.

Linearity The DTFT operator F is a linear operator, or

αxn + βyn
DTFT←→ αX(ejω) + βY (ejω). (3.88)

Shift in time The DTFT pair corresponding to a shift in time by n0 is

xn−n0

DTFT←→ e−jωn0X(ejω). (3.89)
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222 Sequences and discrete-time systems

DTFT properties Time domain DTFT domain

Basic properties

Linearity αxn + βyn αX(ejω) + βY (ejω)

Shift in time xn−n0 e−jωn0X(ejω)

Shift in frequency ejω0nxn X(ej(ω−ω0))

Scaling in time

Downsampling xNn
1

N

N−1∑

k=0

X(ej(ω−2πk)/N )

Upsampling xn/N , n/N ∈ Z X(ejNω)

Time reversal x−n X(e−jω)

Differentiation in frequency (−jn)kxn
∂kX(ejω)

∂ωk

Moments mk =
∑

n∈Z

nkxn = (−j)k ∂X(ejω)

∂ω

∣∣∣∣
ω=0

Convolution in time (h ∗ x)n H(ejω)X(ejω)

Circular convolution in frequency hnxn
1

2π
(H ⊛X)(ejω)

Deterministic autocorrelation an =
∑

k∈Z

xkx
∗
k−n A(ejω) = |X(ejω)|2

Deterministic crosscorrelation cn =
∑

k∈Z

xky
∗
k−n C(ejω) = X(ejω)Y ∗(ejω)

Parseval equality ‖x‖2 =
∑

n∈Z

|xn|2 =
1

2π

∫ π

−π
|X(ejω)|2 dω =

1

2π
‖X‖2

Related sequences

Conjugate x∗n X∗(e−jω)

Conjugate, time-reversed x∗−n X∗(ejω)

Real part ℜ(xn) (X(ejω) +X∗(e−jω))/2

Imaginary part ℑ(xn) (X(ejω)−X∗(e−jω))/(2j)

Conjugate-symmetric part (xn + x∗−n)/2 ℜ(X(ejω))

Conjugate-antisymmetric part (xn − x∗−n)/(2j) ℑ(X(ejω))

Symmetries for real x

X conjugate symmetric X(ejω) = X∗(e−jω)

Real part of X even ℜ(X(ejω)) = ℜ(X(e−jω))

Imaginary part of X odd ℑ(X(ejω)) = −ℑ(X(e−jω))

Magnitude of X even |X(ejω)| = |X(e−jω)|
Phase of X odd argX(ejω) = −argX(e−jω)

Common transform pairs

Kronecker delta sequence δn 1

Shifted Kronecker delta sequence δn−n0 e−jωn0

Constant sequence 1 2π
∞∑

k=−∞
δ(ω − 2πk)

Geometric sequence αnun, |α| < 1 1/(1 − αe−jω)

Arithmetic–geometric sequence nαnun, |α| < 1 αe−jω/(1− αe−jω)2

Sinc sequence
(ideal lowpass filter)

√
ω0

2π
sinc( 1

2
ω0n)

{√
2π/ω0, |ω| ≤ 1

2
ω0;

0, otherwise.

Box sequence

{
1/
√
n0, |n| ≤ 1

2
(n0−1);

0, otherwise.

√
n0

sinc( 1
2
n0ω)

sinc( 1
2
ω)

Table 3.4 Properties of the discrete-time Fourier transform.

Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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3.4 Discrete-time Fourier transform 223

Shift in frequency The DTFT pair corresponding to a shift in frequency by ω0 is

ejω0nxn
DTFT←→ X(ej(ω−ω0)). (3.90)

A shift in frequency is often referred to as modulation. The shift in time and shift in
frequency are the first of several Fourier transform properties that are duals in that
swapping the roles of time and frequency results in a pair of similar statements.53

Scaling in time Scaling in time appears in two flavors.

(i) The DTFT pair corresponding to scaling in time by N is

xNn
DTFT←→ 1

N

N−1∑

k=0

X(ej(ω−2πk)/N ). (3.91)

This type of scaling is referred to as downsampling; we will discuss it in more
detail in Section 3.7.

(ii) The DTFT pair corresponding to scaling in time by 1/N is
{
xn/N , for n/N ∈ Z;

0, otherwise
DTFT←→ X(ejNω). (3.92)

This type of scaling is referred to as upsampling; we will discuss it in more
detail in Section 3.7.

Time reversal The DTFT pair corresponding to time reversal x−n is

x−n
DTFT←→ X(e−jω). (3.93)

For a real xn, the DTFT of the time-reversed version x−n is X∗(ejω).

Differentiation The DTFT pair corresponding to differentiation in frequency is

(−jn)kxn DTFT←→ ∂kX(ejω)

∂ωk
. (3.94)

Moments Computing the kth moment using the DTFT results in

mk =
∑

n∈Z

nkxn =

(
∑

n∈Z

nkxne
−jωn

)∣∣∣∣∣
ω=0

= (−j)k ∂X(ejω)

∂ω

∣∣∣∣
ω=0

, k ∈ N,

(3.95a)
as a direct application of (3.94). The first two moments are

m0 =
∑

n∈Z

xn =

(
∑

n∈Z

xne
−jωn

)∣∣∣∣∣
ω=0

= X(0), (3.95b)

m1 =
∑

n∈Z

nxn =

(
∑

n∈Z

nxne
−jωn

)∣∣∣∣∣
ω=0

= −j ∂X(ejω)

∂ω

∣∣∣∣
ω=0

. (3.95c)

53In this section, time is discrete and frequency is continuous; dualities are more transparent
when both are discrete (see Section 3.6) or both are continuous (see Section 4.4).
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224 Sequences and discrete-time systems

Convolution in time The DTFT pair corresponding to convolution in time is

(h ∗ x)n DTFT←→ H(ejω)X(ejω). (3.96)

We first present a direct algebraic proof: The spectrum Y (ejω) of the sequence
y = h ∗ x can be written as

Y (ejω)
(a)
=
∑

n∈Z

yne
−jωn (b)

=
∑

n∈Z

(
∑

k∈Z

xkhn−k

)
e−jωn

=
∑

n∈Z

∑

k∈Z

xke
−jωkhn−ke

−jω(n−k)

(c)
=
∑

k∈Z

xke
−jωk

∑

n∈Z

hn−ke
−jω(n−k) (d)

= X(ejω)H(ejω), (3.97)

where (a) follows from the definition of the DTFT; (b) from the definition of convo-
lution; (c) from interchanging the order of summation, which is an allowed operation
since absolute summability is implied by h ∗ x being well defined; and (d) from the
definition of the DTFT.

This key result is also a direct consequence of the eigensequence property of
complex exponential sequences v from (3.77): when x is written as a combination of
spectral components, the effect of the convolution operator is to simply scale each
spectral component by the corresponding eigenvalue of the convolution operator.
The DTFT thus diagonalizes the convolution operator, and, furthermore, this is the
motivation for the definition of the DTFT.

Circular convolution in frequency The DTFT pair corresponding to circular con-
volution in frequency is

hnxn
DTFT←→ 1

2π
(H ⊛X)(ejω), (3.98)

where we have introduced the circular convolution between 2π-periodic functions

(H ⊛X)(ejω) =

∫ π

−π

X(ejθ)H(ej(ω−θ)) dθ. (3.99)

The circular convolution in frequency property (3.98) is dual to the convolution in
time property (3.96) (see Exercise 3.6).

Deterministic autocorrelation The DTFT pair corresponding to the deterministic
autocorrelation of a sequence x is

an =
∑

k∈Z

xkx
∗
k−n

DTFT←→ A(ejω) = |X(ejω)|2 (3.100)

and satisfies

A(ejω) = A∗(ejω), (3.101a)

A(ejω) ≥ 0. (3.101b)
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3.4 Discrete-time Fourier transform 225

Thus, A(ejω) is not only real, (3.101a), but also positive semidefinite, (3.101b). To
verify (3.100), express the deterministic autocorrelation as a convolution of x and
its time-reversed version as in (3.62d), xn ∗ x∗−n. We know from Table 3.4 that the
DTFT of x∗−n is X∗(ejω). Then, using the convolution property (3.96), we obtain
(3.100). For a real x,

A(ejω) = |X(ejω)|2 = A(e−jω), (3.101c)

since X(e−jω) = X∗(ejω).
The quantity A(ejω) is called the energy spectral density (it is the deterministic

counterpart of the power spectral density for WSS sequences54 in (3.242)). The
energy is the average of the energy spectral density over the frequency range,

E =
1

2π

∫ π

−π

A(ejω) dω =
1

2π

∫ π

−π

|X(ejω)|2 dω =
∑

n∈Z

|xn|2 = a0. (3.102)

Thus, the energy spectral density measures the distribution of energy over the
frequency range. Mimicking the relationship between the energy spectral density for
deterministic sequences and the power spectral density for WSS sequences, (3.102)
is the deterministic counterpart of the power for WSS sequences (3.243).

Deterministic crosscorrelation The DTFT pair corresponding to the deterministic
crosscorrelation of sequences x and y is

cn =
∑

k∈Z

xky
∗
k−n

DTFT←→ Cx,y(e
jω) = X(ejω)Y ∗(ejω), (3.103)

the proof of which is left for Exercise 3.2. The deterministic crosscorrelation satisfies

Cx,y(e
jω) = C∗

y,x(e
jω). (3.104a)

For real x and y,

Cx,y(e
jω) = X(ejω)Y (e−jω) = Cy,x(e

−jω). (3.104b)

Deterministic autocorrelation of vector sequences The DTFT pair correspond-
ing to the deterministic autocorrelation of a length-N vector sequence x is

An
DTFT←→ A(ejω) =




A0(e
jω) C0,1(e

jω) · · · C0,N−1(e
jω)

C1,0(e
jω) A1(e

jω) · · · C1,N−1(e
jω)

...
...

. . .
...

CN−1,0(e
jω) CN−1,1(e

jω) · · · AN−1(e
jω)


 ,

(3.105)

54WSS stands for wide-sense stationary, defined in Section 3.8.3.
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226 Sequences and discrete-time systems

where An is given in (3.23). Because of (3.101a) and (3.104a), this energy spectral
density matrix is Hermitian, that is,

A(ejω) =




A0(e
jω) C0,1(e

jω) · · · C0,N−1(e
jω)

C∗
0,1(e

jω) A1(e
jω) · · · C1,N−1(e

jω)
...

...
. . .

...
C∗

0,N−1(e
jω) C∗

1,N−1(e
jω) · · · AN−1(e

jω)


 = A∗(ejω).

(3.106a)
For a real x,

A(ejω) = A⊤(e−jω). (3.106b)

Parseval equality As noted earlier, from the form of (3.80a), the DTFT is a linear
operator from the space of sequences to the space of 2π-periodic functions. Let us
denote this through X = Fx. We have F : ℓ2(Z)→ L2([−π, π)) because x ∈ ℓ2(Z)
implies that X(ejω) has finite L2([−π, π)) norm. Specifically,

‖X‖2 (a)
=

∫ π

−π

|X(ejω)|2 dω =

∫ π

−π

X(ejω)X∗(ejω) dω

(b)
=

∫ π

−π

(
∑

n∈Z

xne
jωn

)(
∑

k∈Z

xke
jωk

)∗

dω

(c)
=
∑

n∈Z

∑

k∈Z

∫ π

−π

xnx
∗
ke

jω(n−k) dω =
∑

n∈Z

∑

k∈Z

xnx
∗
k

∫ π

−π

ejω(n−k) dω

(d)
=
∑

n∈Z

∑

k∈Z

xnx
∗
k2πδn−k

(e)
= 2π

∑

n∈Z

xnx
∗
n

= 2π
∑

n∈Z

|xn|2
(f)
= 2π ‖x‖2, (3.107)

where (a) follows from the definition of the L2([−π, π)) norm; (b) from the definition
of the DTFT; (c) from an interchange that is allowed because x ∈ ℓ2(Z) implies
absolute convergence of the sums in the integrand; (d) from (3.82b); (e) from the
definition of the Kronecker delta sequence, (2.9); and (f) from the definition of the
ℓ2(Z) norm.

If it were not for the 2π factor, the equality (3.107) would be like the equality
(2.56) for a unitary operator; (3.107) is the version of the Parseval equality for the
DTFT. The Parseval equality is often termed the energy conservation property, as
the energy (3.102) is the integral of the energy spectral density over the frequency
range.

A computation similar to (3.107) shows that F/
√
2π is a unitary operator (see

(2.55)):
〈 1√

2π
Fx,

1√
2π
Fy
〉

= 〈x, y〉 for every x and y in ℓ2(Z),

or,

〈x, y〉 =
1

2π
〈X, Y 〉 for every x and y in ℓ2(Z), (3.108)
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3.4 Discrete-time Fourier transform 227

where X and Y are the DTFTs of x and y. This is the version of the generalized
Parseval equality for the DTFT, which follows immediately from the convolution
in frequency property (3.98) and the fact that the DTFT of x∗n is X∗(ejω) (see
Table 3.4).

Adjoint The adjoint of the DTFT, F ∗ : L2([−π, π)) → ℓ2(Z), is determined
uniquely by

〈Fx, y〉 = 〈x, F ∗y〉 for every x ∈ ℓ2(Z) and y in L2([−π, π)).
Since we have already concluded that F/

√
2π is a unitary operator, by Theo-

rem 2.23, (
1√
2π
F

)∗
=

(
1√
2π
F

)−1

=
√
2πF−1.

Thus,
F ∗ = 2πF−1, (3.109)

with F−1 given by (3.80b).

3.4.4 Frequency response of filters

The DTFT of a filter (the impulse response of an LSI system) h is called the
frequency response:

H(ejω) =
∑

n∈Z

hne
−jωn, ω ∈ R. (3.110a)

The inverse DTFT of the frequency response recovers the impulse response,

hn =
1

2π

∫ π

−π

H(ejω)ejωn dω, n ∈ Z. (3.110b)

We often write the magnitude and phase separately:

H(ejω) = |H(ejω)|ej arg(H(ejω)),

where the magnitude response |H(ejω)| is a 2π-periodic real-valued, nonnegative
function, and the phase response arg(H(ejω)) is a 2π-periodic real-valued function
between −π and π.55 A filter is said to have zero phase when its frequency response
is real; this is equivalent to the phase response taking only values that are integer
multiples of π. A filter is said to have generalized linear phase when its frequency
response can be written in the form

H(ejω) = r(ω)ej(αω+β), (3.111)

where r(ω) is real-valued and α and β are real numbers; this corresponds to a phase
response that is affine in ω (straight lines with slope α) except where there are
jumps by 2π. When furthermore β = 0, the filter is said to have linear phase.
Solved exercise 3.3 explores filters as projections through their frequency response.

55The argument of the complex number H(ejω) can be equally well defined to be on [0, 2π).
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(e) Impulse response. (f) Magnitude response.

Figure 3.10 Impulse responses and magnitude responses of ideal filters.

Ideal filters The frequency response of a filter is typically used to design a filter
with specific properties, where we want to let certain frequencies pass – the passband,
while blocking others – the stopband. The magnitude response of an ideal filter
is constant in its passband and zero outside of its passband. For example, an
ideal lowpass filter passes frequencies below some cutoff frequency 1

2ω0 and blocks
the others; its passband is thus the interval [− 1

2ω0,
1
2ω0]. Figure 3.10(b) gives an

example for ω0 = π. Figures 3.10(d) and (f) show magnitude responses for ideal
highpass and bandpass filters.

To find the impulse response of an ideal lowpass filter, we start with the desired
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3.4 Discrete-time Fourier transform 229

Ideal filters Time domain DTFT domain

Ideal lowpass filter

√
ω0

2π
sinc

(
1

2
ω0n

) {√
2π/ω0,

0,

|ω| ≤ 1
2
ω0;

otherwise

Ideal Nth-band filter
1√
N

sinc
(πn
N

) {√
N,

0,

|ω| ≤ π/N ;

otherwise

Ideal half-band lowpass filter
1√
2
sinc

(
1

2
πn

) {√
2,

0,

|ω| ≤ 1
2
π;

otherwise

Table 3.5 Ideal filters with unit-norm impulse responses.

frequency response:

H(ejω) =

{√
2π/ω0, for |ω| ≤ 1

2ω0;
0, otherwise.

(3.112a)

This is a zero-phase filter and a box function in frequency.56 Upon applying the
inverse DTFT, we obtain the impulse response as

hn =
1√
2πω0

∫ ω0/2

−ω0/2

ejωn dω =

√
ω0

2π
sinc

(
1

2
ω0n

)
(3.112b)

by elementary integrations, with the n = 0 and n 6= 0 cases separated. This impulse
response is of unit norm. A case of particular interest is the half-band filter that
arises from ω0 = π; it has a passband of [− 1

2π,
1
2π], half of the full band [−π, π].

The impulse response

hn =
1√
2
sinc

(
1

2
πn

)
=

1√
2

sin(12πn)
1
2πn

(3.113)

and magnitude response are shown in Figures 3.10(a) and (b). More generally,
an Nth-band filter has ω0 = 2π/N . These ideal filters are summarized in Ta-
ble 3.5. Their impulse responses decay slowly as O(1/n) and are thus not absolutely
summable. This lack of absolute summability of the impulse response h is unavoid-
able when the desired frequency response H is discontinuous; see Section 3.4.2.

FIR filters Ideal filters are not realizable; thus, we now explore a few examples
of filters with realizable frequency responses. We start with an FIR filter we have
already seen in Example 3.2.

Example 3.18 (Moving-average filter, Example 3.2 continued) The
impulse response of the moving-average filter in (3.6) is (we assumed that N is
odd)

hn =

{
1/N, for |n| ≤ 1

2 (N − 1);
0, otherwise,

56Table 4.5 in Chapter 4 summarizes box and sinc functions in time and frequency.
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(a) Impulse response. (b) Magnitude response.

Figure 3.11 Moving-average filter (3.6) with N = 7.

which is the same, within scaling, as the box sequence from (3.14a). Its frequency
response is

H(ejω) =
1

N

(N−1)/2∑

n=−(N−1)/2

e−jωn (a)
=

1

N
ejω(N−1)/2

N−1∑

k=0

e−jωk

(b)
=

1

N
ejω(N−1)/2 1− e−jωN

1− e−jω
=

1

N

ejωN/2 − e−jωN/2

ejω/2 − e−jω/2
=

1

N

sin(12Nω)

sin(12ω)
,

where (a) follows from the change of variable k = n+ 1
2 (N −1); and (b) from the

formula for the finite geometric series, (P2.54-1). Figure 3.11 shows the impulse
response and magnitude response of this filter for N = 7.

Linear-phase filters Real-valued FIR filters have linear phase when they are sym-
metric or antisymmetric. Consider causal filters with length L, so the support is
{0, 1, . . . , L− 1}. These filters then satisfy

symmetric
hn = hL−1−n

antisymmetric
hn = −hL−1−n

(3.114)

These symmetries are illustrated in Figure 3.12 for L even and odd. Let us now show
that an even-length, symmetric filter as in part (a) of Figure 3.12 does indeed lead
to linear phase; other cases follow similarly. We compute the frequency response of
hn,

H(ejω) =

L−1∑

n=0

hne
−jωn (a)

=

L/2−1∑

n=0

hn

(
e−jωn + e−jω(L−1−n)

)

=

L/2−1∑

n=0

hne
−jω(L−1)/2

(
ejω(n−(L−1)/2) + e−jω(n−(L−1)/2)

)

(b)
= 2

L/2−1∑

n=0

hn cos

(
ω

(
n− L− 1

2

))
e−jω((L−1)/2)

= r(ω)ejαω , (3.115a)
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Figure 3.12 Filters with symmetries.

with

r(ω) = 2

L/2−1∑

n=0

hn cos

(
ω

(
n− L− 1

2

))
and α = −L− 1

2
, (3.115b)

where (a) follows from gathering factors with the same hn because of symmetry
in (3.114); and (b) from using (3.286). This frequency response fits the form of
(3.111), so the filter does indeed have linear phase.

Allpass filters Another important class is filters with unit magnitude response,
that is,

|H(ejω)| = 1. (3.116)

Since all frequencies go through without change of magnitude, a filter satisfying
(3.116) is called an allpass filter. Allpass filters have some interesting properties.

(i) Energy conservation: The allpass property corresponds to energy conserva-
tion, since we have

‖y‖2 (a)
=

1

2π
‖Y ‖2 =

1

2π
‖HX‖2 =

1

2π

∫ π

−π

|H(ejω)X(ejω)|2 dω

(b)
=

1

2π

∫ π

−π

|X(ejω)|2 dω (c)
= ‖x‖2,

where (a) follows from the Parseval equality (3.107); (b) from (3.116); and (c)
from the Parseval equality again.
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232 Sequences and discrete-time systems

(ii) Orthonormal set: The allpass property implies that all the shifts of h,
{hn−k}k∈Z, form an orthonormal set:

〈hn, hn−k〉n =
∑

n∈Z

hnh
∗
n−k

(a)
=

1

2π

∫ π

−π

H(ejω)
(
e−jωkH(ejω)

)∗
dω

=
1

2π

∫ π

−π

ejωkH(ejω)H∗(ejω) dω

(b)
=

1

2π

∫ π

−π

ejωk |H(ejω)|2︸ ︷︷ ︸
=1

dω
(c)
= δk, (3.117)

where (a) follows from the generalized Parseval equality (3.108) and the shift
in time property (3.89); (b) from (3.116); and (c) from (3.82b). We summarize
this property as

〈hn, hn−k〉n = δk
DTFT←→ |H(ejω)| = 1. (3.118)

(iii) Orthonormal basis: The allpass property implies that {ϕk}k∈Z, where
ϕk,n = hn−k, n ∈ Z, is an orthonormal basis for ℓ2(Z). Having already shown
in (3.117) that the set is orthonormal, we can use Theorem 2.42 to show that
the set is a basis for ℓ2(Z). For x ∈ ℓ2(Z), let β denote the coefficient sequence
obtained by analysis with {ϕk}k∈Z. Then

βk = 〈x, ϕk〉 = 〈xn, hn−k〉n
(a)
= xn ∗n h∗k−n, k ∈ Z,

where (a) follows from (3.62a). To apply Theorem 2.42, we would like to show
that ‖β‖2 = ‖x‖2. This equality does indeed hold

‖β‖2 (a)
=

1

2π
‖X(ejω)H∗(ejω)‖2 (b)

=
1

2π
‖X(ejω)‖2 (c)

= ‖x‖2,

where (a) follows from the Parseval equality (3.107), the convolution property
(3.96), and using (3.93) for the time reversal of h; (b) from (3.116); and (c)
from the Parseval equality again.

This discussion contains a piece of good news – there exist shift-invariant
orthonormal bases for ℓ2(Z), as well as a piece of bad news – these bases have
no frequency selectivity (they are allpass sequences). This is one of the main
reasons to search for more general orthonormal bases for ℓ2(Z), as we do in
the companion volume to this book, [57].

Example 3.19 (Allpass filters) Consider the simple shift-by-k filter given
in (3.39a) with the impulse response hn = δn−k. By evaluating (3.110a), the
frequency response is H(ejω) = e−jωk. Thus, h is an allpass filter,

|H(ejω)| = 1, arg(H(ejω)) = −ωk mod 2π.

This filter has linear phase with a slope −k given by the delay.
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Figure 3.13 Phase of a first-order allpass filter as in (3.119) with α = 1
2
.

We now look at a more sophisticated allpass filter. It provides an example
where key properties not plainly visible in the time domain become obvious in
the frequency domain. Start with a sequence

gn = αnun, g =
[
. . . 0 1 α α2 α3 . . .

]⊤
,

with α ∈ C and |α| < 1, and un is the Heaviside sequence from (3.11). Suppose
that h satisfies

hn = −α∗gn + gn−1, n ∈ Z.

We now show that h is an allpass filter, so filtering a sequence x with h will not
change its magnitude; moreover, h is of norm 1 and orthogonal to all its shifts
as in (3.118). To start, find the frequency response of gn,

G(ejω) =
∑

n∈Z

αne−jωn (a)
=

1

1− αe−jω
,

where (a) follows from the formula for the infinite geometric series (P2.54-3).
Then,

H(ejω) = −α∗G(ejω) + e−jωG(ejω) =
e−jω − α∗

1− αe−jω
. (3.119)

The magnitude squared of H(ejω) is

|H(ejω)|2 = H(ejω)H∗(ejω) =
(e−jω − α∗)(ejω − α)
(1− αe−jω)(1− α∗ejω)

= 1,

and thus |H(ejω)| = 1 for all ω. The phase response is shown in Figure 3.13.

3.5 z-transform

While the DTFT has many nice properties, its use is limited by the convergence
issues discussed in Section 3.4.2. The z-transform introduces a set of rescalings
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234 Sequences and discrete-time systems

of sequences so that almost any sequence has a rescaling such that the DTFT
converges. This makes the z-transform more widely applicable than the DTFT.

Take the Heaviside sequence from (3.11), which is neither in ℓ1(Z) nor in ℓ2(Z)
(and is not in any other ℓp(Z) space except ℓ∞(Z)), and thus has no DTFT. If we
were to multiply it by a geometric sequence rn, with r ∈ [0, 1), yielding xn = rnun,
we could take the DTFT of xn, as we now have an absolutely summable sequence.
By controlling the rescaling with r, we have a set of DTFTs indexed by r, and we
can think of this as a new transform with arguments r and ω. Upon combining r
and ω through z = rejω , we obtain a transform with argument z ∈ C, where z need
not have unit modulus.

Because of the close connection to the DTFT, we will see that a convolution
property holds as well as many other properties similar to those in Section 3.4.3, but
now for more general sequences. This is the essential motivation behind extending
the analysis that uses the unit-norm complex exponential sequences in (3.77) to
more general complex exponential sequences vn = zn = (rejω)n. We will also see
that convolution of causal, finite-length sequences becomes polynomial multiplica-
tion in the z-transform domain.

3.5.1 Definition of the z-transform

Eigensequences of the convolution operator The eigensequence property (3.78)
extends from complex exponentials with unit modulus to those with any modulus.
Consider the sequence

vn = zn = (rejω)n, n ∈ Z, (3.120)

where r ∈ [0, ∞) and ω ∈ R, so z is any complex number. Like a complex expo-
nential sequence with unit modulus, this is also an eigensequence of the convolution
operator H associated with the LSI system with impulse response h since

(Hv)n = (h ∗ v)n =
∑

k∈Z

vn−khk =
∑

k∈Z

zn−khk

=
∑

k∈Z

hkz
−k

︸ ︷︷ ︸
λz

zn︸︷︷︸
vn

. (3.121)

This shows that applying the convolution operatorH to the sequence v gives a scalar
multiple of v; in other words, v is an eigensequence of H with the corresponding
eigenvalue λz. We denote this eigenvalue byH(z) using the transfer function defined
formally in (3.154). We can thus rewrite (3.121) as

Hv = h ∗ v = H(z) v. (3.122)

The key distinction from (3.78) is that the set of impulse responses h for which the
sum (3.121) converges now depends on |z|.
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z-transform The z-transform is defined similarly to the DTFT in Definition 3.11.

Definition 3.12 (z-transform) The z-transform of a sequence x is

X(z) =
∑

n∈Z

xnz
−n, z ∈ C. (3.123)

It exists when (3.123) converges absolutely for some values of z; these values of z
are called the region of convergence (ROC),

ROC = {z | |X(z)| <∞}. (3.124)

When the z-transform exists, we denote the z-transform pair as

xn
ZT←→ X(z),

where the ROC is part of the specification of X(z).

Relation of the z-transform to the DTFT Given a sequence x and its z-transform
X(z) with an ROC that includes the unit circle |z| = 1, the z-transform evaluated
on the unit circle is equal to the DTFT of the same sequence,

X(z)|z=ejω = X(ejω). (3.125)

Conversely, suppose that yn = r−nxn has DTFT Y (ejω). Then

Y (ejω) =
∑

n∈Z

r−nxne
−jωn =

∑

n∈Z

xn
(
rejω

)−n
= X(rejω),

so

X(z)|z=rejω = Y (ejω), (3.126)

and the circle |z| = r is in the ROC of X(z).

3.5.2 Existence and convergence of the z-transform

Convergence For the z-transform to exist and have z = rejω in its ROC, (3.123)
must converge absolutely. Since

∑

n∈Z

∣∣xnz−n
∣∣ =

∑

n∈Z

∣∣xnr−n
∣∣ ∣∣e−jωn

∣∣ =
∑

n∈Z

∣∣xnr−n
∣∣ ,

absolute summability of xnr
−n is necessary and sufficient for the circle |z| = r to

be in the ROC of X(z). Thus, the ROC is a ring of the form (see also Table 3.6)

ROC = {z | 0 ≤ r1 < |z| < r2 ≤ ∞}. (3.127)
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Figure 3.14 Illustration of Example 3.20. (a) The right-sided geometric series sequence
and (b) the associated ROC of its z-transform. (c) The left-sided geometric series sequence
sequence and (d) the associated ROC of its z-transform. The unit circle is marked in both
(b) and (d) for reference.

By convention, the ROC concept is extended to |z| = ∞ by including |z| = ∞ in
the ROC when xn = 0 for all n < 0 and excluding it otherwise. Similarly, z = 0 is
in the ROC when xn = 0 for all n > 0 and not in the ROC otherwise. Exercise 3.8
explores a number of properties of the ROC.

Example 3.20 (ROCs) To develop intuition, we look at a few examples.

(i) Shift-by-n0 sequence:

xn = δn−n0

ZT←→ X(z) = z−n0; ROC =




|z| > 0, for n0 > 0;

all z, for n0 = 0;
|z| <∞, for n0 < 0.

The shift-by-one maps to z−1, which is why z−1 is often called a delay
operator. It also follows that

xn−n0

ZT←→ z−n0X(z); ROC = ROCx,

with the only possible changes to the ROC at 0 or ∞.

(ii) Right-sided geometric sequence:

xn = αnun
ZT←→ X(z) =

1

1− αz−1
; ROC = {z | |z| > |α|}.

(3.128a)
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3.5 z-transform 237

Now, z = α is a zero of the denominator of the complex function X(z),
and we see that the ROC is bounded from inside by a circle containing
the z = α. This is a general property, since the ROC cannot contain a
singularity (a z such that X(z) does not exist).

(iii) Left-sided geometric sequence:

xn = −αnu−n−1
ZT←→ X(z) =

1

1− αz−1
; ROC = {z | |z| < |α|}.

(3.128b)
The expression forX(z) is exactly as in the previous case; the only difference
is in the ROC. Had we been given only this X(z) without the associated
ROC, we would not have been able to tell whether it originated from x in
(3.128a) or in (3.128b). This shows why the z-transform and its ROC form
a pair that should not be broken.

A standard way of showing the ROC is a plot of the complex plane, as in Fig-
ure 3.14. Marking the unit circle establishes the scale of the plot, and the DTFT
converges for all ω when the unit circle is in the ROC.

Rational z-transforms An important class of z-transforms consists of those that
are rational functions, since transfer functions of most realizable systems (systems
that can be built and used in practice) are rational. We will see in Section 3.5.4 that
these are directly related to difference equations with a finite number of coefficients,
as in (3.55). Such transfer functions are of the form

H(z) =
B(z)

A(z)
, (3.129)

where A(z) and B(z) are polynomials in z−1 with no common roots, of degreeN and
M , respectively. The degrees satisfy M ≤ N , otherwise, polynomial division would
lead to a sum of a polynomial and a rational function satisfying this constraint.
The zeros of the numerator B(z) and denominator A(z) are called the zeros and
poles of the rational transfer function H(z); they are typically shown on a pole–
zero plot with “◦” for zeros and “×” for poles (see Figure 3.15 on Page 248 for an
example). Many properties of LSI systems depend on the zeros and poles and their
multiplicities.

Consider a finite-length sequence h =
[
h0 h1 . . . hM

]⊤
. Then, H(z) =∑M

k=0 hkz
−k, which has M poles at z = 0 and M zeros at the roots {zk}Mk=1 of the

polynomial H(z).57 Therefore, H(z) can be written as

H(z) = h0

M∏

k=1

(1− zkz−1), |z| > 0, (3.130)

57The fundamental theorem of algebra (Theorem 3.23) states that a degree-M polynomial has
M complex roots.

Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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where the form of the factorization shows explicitly both the roots and the multi-
plicative factor h0. The rational z-transform in (3.129) can thus be written as

H(z) =
b0
∏M

k=1(1− zkz−1)

a0
∏N

k=1(1− pkz−1)
, (3.131)

where {zk}Mk=1 are zeros and {pk}Nk=1 poles (remember that M ≤ N). The ROC
cannot contain any poles and is thus, assuming a right-sided sequence, all z outside
of the pole largest in magnitude. If M is smaller than N , then H(z) has N −M
additional zeros at 0. This can be seen in our previous example (3.128a), which can
be rewritten as 1/(1− αz−1) = z/(z − α) and has thus a pole at z = α and a zero
at z = 0.

Inversion

Given a z-transform and its ROC, how do we invert the z-transform? The general
inversion formula for the z-transform involves contour integration, which is a stan-
dard topic of complex analysis. However, most z-transforms encountered in practice
can be inverted using simpler methods, which we now discuss; the Further reading
gives pointers for a more detailed treatment of the inverse z-transform.

Inversion by inspection This method is just a way of recognizing certain z-transform
pairs. For example, from Table 3.6 in Section 3.5.3, we see that the z-transform

X(z) =
1

1− 1
4z

−1

has the form of 1/(1 − az−1), with a = 1
4 . From Table 3.6, we can then read the

sequence that generated it as one of the following two:
(
1

4

)n
un, if ROC =

{
z
∣∣ |z| > 1

4

}

or

−
(
1

4

)n
u−n−1, if ROC =

{
z
∣∣ |z| < 1

4

}
;

no other ROC is possible.

Inversion using partial fraction expansion When the z-transform is given as a
rational function, partial fraction expansion results in a sum of terms, each of which
can be inverted by inspection. Here we consider cases in which the numerator and
denominator are polynomials in z−1, as in (3.131).

(i) M < N , simple poles: If all the N poles are of first order, we can express
X(z) as

X(z) =

N∑

k=1

Ak

1− pkz−1
, Ak = (1− pkz−1)X(z)

∣∣
z=pk

. (3.133a)
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Cambridge University Press (ISBN 110703860X) v1.1 [May 2014] [free version] Comments to book-errata@FourierAndWavelets.org
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Each term has a simple inverse z-transform, which depends on the ROC of
X(z). The ROC takes one of the following forms:

ROC =





{z | |z| < |p1|},
{z | |pk| < |z| < |pk+1|} for some k, or,
{z | |z| > |pN |},

where we have assumed that |p1| ≤ |p2| ≤ · · · ≤ |pN | for simplicity. Each
distinct ROC corresponds to a different sequence. Often the ROC is
{z | |z| > |pN |}, resulting in

xn =
N∑

k=1

Ak(pk)
nun. (3.133b)

(ii) M < N , poles with multiplicity: Suppose that X(z) has pole pi of order s > 1.
Then, in general, the ith term in (3.133a) is replaced by s terms

s∑

k=1

Ck

(1− piz−1)k
.

The k = 1 term is inverted as before, and the terms for k > 1 are inverted
using the differentiation rule from Table 3.6.

(iii) M ≥ N : Assume that all poles are of first order; multiplicities can be treated
as above. Using polynomial division, we can write X(z) as

X(z) =

M−N∑

k=0

Bkz
−k +

N∑

k=1

Ak

1− pkz−1
. (3.134a)

The first summation of (3.134a) is clearly the z-transform of the sequence

[
. . . 0 B0 B1 B2 . . . BM−N 0 . . .

]⊤
.

There are many possible ROCs, each determining a distinct sequence corre-
sponding to the second summation in (3.134a). When the ROC is outside of
the largest pole, putting together both summations of (3.134a) yields

xn =

M−N∑

k=0

Bkδn−k +

N∑

k=1

Ak(pk)
nun. (3.134b)

We illustrate the method with an example:

Example 3.21 (Inversion using partial fraction expansion) Given

X(z) =
1− z−1

1− 5z−1 + 6z−2
=

1− z−1

(1− 2z−1)(1 − 3z−1)
,
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240 Sequences and discrete-time systems

with poles at z = 2 and z = 3, we compute the coefficients as in (3.133a) to be

A1 =
1− z−1

1− 3z−1

∣∣∣∣
z=2

= −1, A2 =
1− z−1

1− 2z−1

∣∣∣∣
z=3

= 2,

yielding

X(z) =
−1

1− 2z−1
+

2

1− 3z−1
.

The original sequence is then

xn =





(2n − 2 · 3n)u−n−1, if ROC = {z | |z| < 2};
−2nun − 2 · 3nu−n−1, if ROC = {z | 2 < |z| < 3};

(−2n + 2 · 3n)un, if ROC = {z | |z| > 3}.

Inversion using power-series expansion This method is most useful for finite-
length sequences. For example, given X(z) = (1 − z−1)(1 − 2z−1), we can expand
it in its power-series form as

X(z) = 1− 3z−1 + 2z−2.

Knowing that each of the elements in this power series corresponds to a delayed
Kronecker delta sequence, we can read off the sequence directly,

xn = δn − 3δn−1 + 2δn−2.

Example 3.22 (Inversion using power-series expansion) Suppose that

X(z) = log(1 + 2z−1); ROC = {z | |z| > 2}. (3.135)

To invert this z-transform, we use its power-series expansion from Table P2.54-1.
By substituting x = 2z−1, we confirm that |x| = |2z−1| < 2 · 12 = 1, and thus the
series expansion

log(1 + 2z−1) =

∞∑

n=1

(−1)n+1 2
n

n
z−n

holds for the z values of interest. Thus, the desired inverse z-transform is

xn =

{
(−1)n+12nn−1, for n ≥ 1;

0, otherwise.

3.5.3 Properties of the z-transform

The z-transform has the same properties as the DTFT, but for a larger class of
sequences. The main new twist is the need to properly account for ROCs. As an
example, the convolution of two sequences can be computed as a product in the
transform domain even when the sequences do not have proper DTFTs, provided
that the sequences have some part of their ROCs in common. A summary of
z-transform properties can be found in Table 3.6. As both convolution in frequency
and the Parseval equality involve contour integration, we opt not to state them
here; a number of standard texts cover those.
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3.5 z-transform 241

Linearity The z-transform is a linear operator, or

αxn + βyn
ZT←→ αX(z) + βY (z); ROCαx+βy ⊃ ROCx ∩ ROCy. (3.136)

Shift in time The z-transform pair corresponding to a shift in time by n0 is

xn−n0

ZT←→ z−n0X(z), (3.137)

with no changes to the ROC except possibly at z = 0 or |z| =∞.

Scaling in time Scaling in time appears in two flavors.

(i) The z-transform pair corresponding to scaling in time by N is

xNn
ZT←→ 1

N

N−1∑

k=0

X(W k
Nz

1/N ); (ROCx)
1/N . (3.138)

We have already seen this operation of downsampling in (3.91), and will discuss
it in more detail in Section 3.7.

(ii) The z-transform pair corresponding to scaling in time by 1/N is

{
xn/N , for n/N ∈ Z;

0, otherwise
ZT←→ X(zN); (ROCx)

N . (3.139)

We have already seen this operation of upsampling in (3.92), and will discuss
it in more detail in Section 3.7.

Scaling in z The z-transform pair corresponding to scaling in z by α−1 is

αnxn
ZT←→ X(α−1z); |α|ROCx. (3.140)

Time reversal The z-transform pair corresponding to time reversal x−n is

x−n
ZT←→ X(z−1);

1

ROCx
. (3.141)

Differentiation The z-transform pair corresponding to differentiation in z is

nkxn
ZT←→ (−1)kzk ∂

kX(z)

∂zk
; ROCx. (3.142)

Moments Computing the kth moment using the z-transform results in

mk =
∑

n∈Z

nkxn =

(
∑

n∈Z

nkxnz
−n

)∣∣∣∣∣
z=1

= (−1)k ∂
kX(z)

∂zk

∣∣∣∣
z=1

, k ∈ N,

(3.143a)
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242 Sequences and discrete-time systems

as a direct application of (3.142). The first two moments are

m0 =
∑

n∈Z

xn =

(
∑

n∈Z

xnz
−n

)∣∣∣∣∣
z=1

= X(0), (3.143b)

m1 =
∑

n∈Z

nxn =

(
∑

n∈Z

nxnz
−n

)∣∣∣∣∣
z=1

= − ∂X(z)

∂z

∣∣∣∣
z=1

. (3.143c)

Convolution in time The z-transform pair corresponding to convolution in time
is

(h ∗ x)n ZT←→ H(z)X(z); ROCh∗x ⊃ ROCh ∩ROCx. (3.144)

This key result is the z-transform analogue of the DTFT property (3.96). The
z-transform of y = h ∗ x can be obtained with slight modifications of (3.97):

Y (z)
(a)
=
∑

n∈Z

ynz
−n (b)

=
∑

n∈Z

(
∑

k∈Z

xkhn−k

)
z−n

=
∑

n∈Z

∑

k∈Z

xkz
−khn−kz

−(n−k)

(c)
=
∑

k∈Z

xkz
−k
∑

n∈Z

hn−kz
−(n−k) (d)

= X(z)H(z), (3.145)

where (a) follows from the definition of the z-transform; (b) from the definition
of convolution; (c) from interchanging the order of summation; and (d) from the
definition of the z-transform. The distinction from (3.97) is that (c) might hold when
DTFTs of x and h do not exist; when z ∈ ROCh∩ROCx, each series following (c) is
absolutely convergent, enabling the interchange. The wider applicability of (3.144)
than (3.96) is a key feature of the z-transform.

Example 3.23 (z-transform convolution property) For some α ∈ R+,
consider

xn = un, hn = αnun.

We cannot use the DTFT to compute the convolution y = h ∗ x because x does
not have a DTFT, and, for α ≥ 1, neither does h. The z-transform exists for
both x and h, and it can be used to compute the convolution, provided that the
ROCs overlap. The z-transforms are

X(z) =
1

1− z−1
; ROCx = {z | |z| > 1},

and

H(z) =
1

1− αz−1
; ROCh = {z | |z| > α},

and thus

Y (z) =
1

(1 − αz−1)(1− z−1)
; ROCy ⊃ {z | |z| > max{α, 1}}.
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3.5 z-transform 243

z-Transform properties Time domain z-Transform domain ROC

ROC properties General sequence An open annulus

Finite-length sequence
All z, except

possibly 0, ∞
Right-sided sequence |z| > largest pole

Left-sided sequence |z| < smallest pole

BIBO-stable ⊃ |z| = 1

Basic properties

Linearity αxn + βyn αX(z) + βY (z) ⊃ ROCx ∩ROCy

Shift in time xn−n0 z−n0X(z) ROCx

Scaling in time

Downsampling xNn
1

N

N−1∑

k=0

X(W k
Nz

1/N ) (ROCx)1/N

Upsampling

{
xn/N , n/N ∈ Z;

0, otherwise.
X(zN ) (ROCx)N

Scaling in z αnxn X(α−1z) |α|ROCx

Time reversal x−n X(z−1) 1/ROCx

Differentiation nkxn (−1)kzk∂kX(z)/∂zk ROCx

mk =
∑

n∈Z

nkxn = (−1)k∂kX(z)/∂zk
∣∣∣
z=1

Convolution in time (h ∗ x)n H(z)X(z) ⊃ ROCh ∩ ROCx

Deterministic
autocorrelation

an =
∑

k∈Z

xkx
∗
k−n A(z) = X(z)X∗(z−1) ROCx ∩ 1/ROCx

Deterministic
crosscorrelation

cn =
∑

k∈Z

xky
∗
k−n C(z) = X(z)Y∗(z−1) 1/ROCx ∩ROCy

Related sequences

Conjugate x∗n X∗(z∗) ROCx

Conjugate, time-
reversed

x∗−n X∗(z−1) 1/ROCx

Real part ℜ(xn) (X(z) +X∗(z∗))/2 ROCx

Imaginary part ℑ(xn) (X(z) −X∗(z∗))/(2j) ROCx

Symmetries for real x

X conjugate
symmetric

X(z) = X∗(z∗)

Common transform
pairs

Kronecker delta
sequence

δn 1 All z

Shifted Kronecker
delta sequence

δn−n0 z−n0
All z, except

possibly 0, ∞
Geometric sequence αnun 1/(1 − αz−1) |z| > |α|

−αnu−n−1 |z| < |α|
Arithmetic–geometric

sequence
nαnun αz−1/(1 − αz−1)2 |z| > |α|
−nαnu−n−1 |z| < |α|

Table 3.6 Properties of the z-transform (X∗(z) denotes X
∗(z∗)).
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244 Sequences and discrete-time systems

By partial fraction expansion, we can rewrite Y (z) as

Y (z) =
−α/(1− α)
1− αz−1

+
1/(1− α)
1− z−1

,

leading to

yn = − α

1− αα
nun +

1

1− αun =
1− αn+1

1− α un.

As a check, we can compute the time-domain convolution directly,

yn =
∑

k∈Z

xkhn−k =

∞∑

k=0

hn−k =

n∑

k=0

αn−k =
1− αn+1

1− α un.

When α ∈ [0, 1), the DTFT of y exists, but we nevertheless needed the z-
transform to compute the convolution because the DTFT of x does not exist.
When α > 1, the DTFT of y does not exist, while the z-transform Y (z) exists
with ROC {z | |z| > α}.

Example 3.24 (Failure of z-transform convolution property) Here is
an example where the convolution sum converges, but even the z-transform does
not help in computing it:

xn = 1, n ∈ Z, hn = αnun, 0 < α < 1.

We can compute the convolution directly,

yn = h ∗ x =
∑

n∈Z

hnxk−n =
∑

n∈N

αn =
1

1− α.

However, there are no values of z such that the z-transform of x converges; that is,
the ROC is empty. This prohibits the use of the z-transform for the computation
of this convolution.

For finite-length, right-sided sequences, (3.144) connects convolution with polyno-
mial multiplication. Given a length-N sequence x and a length-M impulse response
h, the z-transforms of x and h are

H(z) =

M−1∑

n=0

hnz
−n, X(z) =

N−1∑

n=0

xnz
−n.

Each is a polynomial in z−1. The product polynomial H(z)X(z) has powers of z−1

going from 0 to M +N − 2, and its nth coefficient is obtained from the coefficients
in H(z) and X(z) that have powers summing to n, that is, the convolution h ∗ x
given in (3.61).
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3.5 z-transform 245

Deterministic autocorrelation The z-transform pair corresponding to the deter-
ministic autocorrelation of a sequence x is

an =
∑

k∈Z

xkx
∗
k−n

ZT←→ A(z) = X(z)X∗(z
−1); ROCx ∩

1

ROCx
, (3.146)

where X∗(z) denotes X∗(z∗), which amounts to conjugating coefficients but not z.
This z-transform satisfies

A(z) = A∗(z
−1). (3.147a)

For a real x,
A(z) = X(z)X(z−1) = A(z−1). (3.147b)

Proof of (3.147b) is left for Exercise 3.11. We know that, on the unit circle, the
deterministic autocorrelation is the squared magnitude of the spectrum |X(ejω)|2 as
in (3.100). This quadratic form, when extended to the z-plane, leads to a particular
symmetry of poles and zeros when A(z) is a rational function.

Theorem 3.13 (Rational autocorrelation) A rational function A(z) is the
z-transform of the deterministic autocorrelation of a stable real sequence x, if and
only if

(i) its complex poles and zeros appear in quadruples:

{zi, z∗i , z−1
i , (z−1

i )∗}, {pi, p∗i , p−1
i , (p−1

i )∗}; (3.148a)

(ii) its real poles and zeros appear in pairs:

{zi, z−1
i }, {pi, p−1

i }; (3.148b)

and

(iii) its zeros on the unit circle are double zeros:

{zi, z∗i , z−1
i , (z−1

i )∗} = {ejωi , e−jωi , e−jωi , ejωi}, (3.148c)

with possibly double zeros at z = ±1. There are no poles on the unit circle.

Proof. The proof is based on the following two facts:

1. Since the sequence x is real, its deterministic autocorrelation a is real. From
Table 3.6, this implies that

A∗(z) = A(z∗) ⇒ pi pole ⇒ p∗i pole,
zi zero ⇒ z∗i zero.

(3.149a)

2. Since any deterministic autocorrelation satisfies a−n = a∗n and a is real, a−n = an.
From Table 3.6, this implies that

A(z−1) = A(z) ⇒ pi pole ⇒ p−1
i pole,

zi zero ⇒ z−1
i zero.

(3.149b)
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246 Sequences and discrete-time systems

We now proceed to prove that A(z) being the z-transform of the autocorrelation of a
stable and real sequence x implies (i)–(iii). The converse follows similarly.

(i) From (3.149a) and (3.149b), we have that

pi pole ⇒ p∗i pole
p−1
i pole

⇒ (p∗i )
−1 pole,

and similarly for zeros, and we obtain the pole/zero quadruples in (3.148a).

(ii) If a zero/pole is real, it is its own conjugate, and thus quadruples in (3.148a)
become pairs in (3.148b).

(iii) Since x is stable, there are no poles on the unit circle. Since x is real, X∗(z) =
X(z∗). Thus, a rational A(z) has only zeros on the unit circle from X(z) and
X(z−1).

zi zero ofX(z) ⇒ z−1
i zero of X(z−1)
z∗i zero of X(z)

⇒ (z∗i )
−1 zero ofX(z−1) ⇒ zi = (z∗i )

−1 zero ofX(z).

Thus, both X(z) and X(z−1) have zi as a zero, leading to double zeros on the
unit circle.

Deterministic crosscorrelation The z-transform pair corresponding to the deter-
ministic crosscorrelation of sequences x and y is

cn =
∑

k∈Z

xky
∗
k−n

ZT←→ Cx,y(z) = X(z)Y∗(z
−1); ROCx∩

1

ROCy
, (3.150)

and satisfies
Cx,y(z) = Cy,x∗(z

−1). (3.151a)

For real x and y,
Cx,y(z) = X(z)Y (z−1) = Cy,x(z

−1). (3.151b)

Deterministic autocorrelation of vector sequences The z-transform pair corre-
sponding to the deterministic autocorrelation of a length-N vector sequence x is

An
ZT←→ A(z) =




A0(z) C0,1(z) · · · C0,N−1(z)
C1,0(z) A1(z) · · · C1,N−1(z)

...
...

. . .
...

CN−1,0(z) CN−1,1(z) · · · AN−1(z)


 , (3.152)

where An is given in (3.23). Because of (3.21a), A(z) satisfies

A(z) =




A0(z) C0,1(z) · · · C0,N−1(z)
C0,1∗(z−1) A1(z) · · · C1,N−1(z)

...
...

. . .
...

C0,N−1∗(z−1) C1,N−1∗(z−1) · · · AN−1(z)


 = A∗(z

−1). (3.153a)
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3.5 z-transform 247

Here, A∗(z) = A∗(z∗) extends the previous notation to mean transposition of A
and conjugation of coefficients, but not of z.58 For a real x,

A(z) = A⊤(z−1). (3.153b)

Spectral factorization The particular pattern of poles and zeros which charac-
terizes a rational autocorrelation in Theorem 3.13 leads to a key procedure called
spectral factorization. This amounts to taking the square root of A(ejω), and, by
extension, of A(z), factoring it into rational factors X(z) and X(z−1),59 as a direct
corollary of Theorem 3.13.

Corollary 3.14 (Spectral factorization) A rational z-transform A(z) is
the deterministic autocorrelation of a stable real sequence x if and only if it can
be factored as A(z) = X(z)X(z−1).

Spectral factorization amounts to assigning poles and zeros from quadruples and
pairs (3.148a)–(3.148c) to X(z) and X(z−1). For the poles, there is a unique rule:
take all poles inside the unit circle and assign them toX(z). This is because stability
of x requires X(z) to have only poles inside the unit circle (see Theorem 3.15), while
x being real requires that conjugate pairs be kept together. For the zeros, there is
a choice, since we are not forced to assign only zeros inside the unit circle to X(z).
Doing so, however, creates a unique solution called the minimum-phase solution.60

It is now clear why it is important that the zeros on the unit circle appear in pairs:
it allows the assignment of one of each to X(z) and X(z−1).

Example 3.25 (Spectral factorization) We now illustrate both the pro-
cedure and how we can recognize a deterministic autocorrelation of a real and
stable sequence (see Figure 3.15).

(i) The first sequence we examine is a finite-length, symmetric sequence an
with its associated z-transform,

an = 2δn+1 + 5δn + 2δn−1,

A(z) = 5 + 2(z + z−1) = (1 + 2z−1)(1 + 2z),

which is depicted in Figures 3.15(a) and (b). This sequence is a deter-
ministic autocorrelation since it has two zeros, z = − 1

2 and z = −2, which
appear in a pair as per Theorem 3.13. As we said above, we have a choice of
whether to assign − 1

2 or −2 to X(z); the minimum-phase solution assigns
− 1

2 to X(z) and −2 = (− 1
2 )

−1 to X(z−1).

58Note that in (3.106) we could have written the elements below the diagonal, for example,
C∗

0,1(e
jω), as C0,1∗(e−jω) to parallel the z-transform. Here, the subscript ∗ would just mean

conjugation of coefficients, as conjugation of ejω is taken care of by negation.
59Note that, since A(ejω) is real and nonnegative, one could write X(ejω) =

√
A(ejω). However,

such a spectral root will in general not be rational.
60The name stems from the fact that, among the various solutions, this one will create a minimal

delay, or that the sequence is most concentrated toward the origin of time.
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(e) Not an autocorrelation. (f) Pole–zero plot.

Figure 3.15 Pole–zero plots of sequences that are or are not deterministic autocorrela-
tions. (a)–(b) Finite-length, symmetric sequence that is a deterministic autocorrelation.
(c)–(d) Infinite-length, symmetric sequence that is a deterministic autocorrelation. (e)–(f)
Finite-length, symmetric sequence that is not a deterministic autocorrelation.

(ii) The second sequence is an infinite-length, symmetric sequence an with its
associated z-transform that we find from Table 3.6,

an =

(
1

2

)n
un + 2nu−n−1,

A(z) =
1

1− 1
2z

−1
− 1

1− 2z−1
= −

3
2z

−1

(1− 1
2z

−1)(1− 2z−1)
,

which is depicted in Figures 3.15(c) and (d). This sequence is a determin-
istic autocorrelation since it has two poles, z = 1

2 and z = 2, which appear
in a pair as per Theorem 3.13. We now have no choice but to assign 1

2 to
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3.5 z-transform 249

X(z), since for a stable sequence all its poles must be inside the unit circle;
the other pole, 2 = (12 )

−1, goes to X(z−1).

(iii) Finally, we examine the following finite-length, symmetric sequence an with
its associated z-transform,

an = 2δn+1 + 7δn + 7δn−1 + 2δn−2,

A(z) = 7(1 + z−1) + 2(z + z−2) =

(
1 +

1

2
z−1

)
(1 + 2z−1)(1 + z−1),

which is depicted in Figures 3.15(e) and (f). This sequence is not a deter-
ministic autocorrelation since it has three zeros, two appearing in a pair as
in part (i) and the third, a single zero on the unit circle, violating Theo-
rem 3.13. The DTFT of an is not real; for example, A(ejπ/2) = − 5

2 (1 + j).

3.5.4 z-transform of filters

For filters,

H(z) =
∑

n∈Z

hnz
−n (3.154)

is the counterpart of the frequency response in (3.110a); it is well defined for values
of z for which hnz

−n is absolutely summable. As mentioned previously, there is a
one-to-one relationship between a rational z-transform and a realizable difference
equation (one with a finite number of coefficients). After revisiting this relationship,
we establish a necessary and sufficient condition for stability of causal systems with
rational transfer functions.

Difference equations with finite number of coefficients Consider a causal solu-
tion of a difference equation with a finite number of terms as in (3.55) with zero
initial conditions. Assuming that x and y have well-defined z-transforms X(z) and
Y (z), and using the fact that xn−k and z−kX(z) are a z-transform pair, we can
rewrite (3.55) as

Y (z) =

(
M∑

k=0

bkz
−k

)
X(z)−

(
N∑

k=1

akz
−k

)
Y (z).

The transfer function is given by

H(z) =
Y (z)

X(z)
=

∑M
k=0 bkz

−k

1 +
∑N

k=1 akz
−k
. (3.155)

In other words, a linear discrete-time system satisfying difference equation (3.55)
has a rational transfer function H(z) in the z-transform domain; that is, the z-
transform of the impulse response of the system is a rational function.
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x + +− y

z−1

b1

z−1

a1+

z−1

a2

Figure 3.16 A simple discrete-time system, where z−1 stands for unit delay.

Example 3.26 (Rational transfer function) Consider the simple system
in Figure 3.16. The output is given by

yn = xn + b1xn−1 − a1yn−1 − a2yn−2,

or, in the z-transform domain,

Y (z) = X(z) + b1z
−1X(z)− a1z−1Y (z)− a2z−2Y (z),

yielding the system transfer function

H(z) =
1 + b1z

−1

1 + a1z−1 + a2z−2
.

We now discuss stability for systems with rational transfer functions.

Theorem 3.15 (BIBO stability with rational transfer functions) A
causal, LSI discrete-time system with a rational transfer function is BIBO-stable
if and only if the poles of its transfer function are inside the unit circle.

Proof. Using the partial fraction inversion method described in Section 3.5.2, the im-
pulse response of a causal, LSI discrete-time system with rational transfer function is
a linear combination of right-sided geometric sequences as in (3.133b) – possibly with
multiplication by nk factors (stemming from multiplicities of poles) and with additional
terms that are shifted Kronecker delta sequences (from the numerator having higher
degree than the denominator as in (3.134b)). When each pole is inside the unit circle,
each term in this linear combination is absolutely summable, so the impulse response
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3.5 z-transform 251

is absolutely summable as well; thus, according to Theorem 3.8, the system is BIBO-
stable. Conversely, if any pole is outside the unit circle, the impulse response is not
absolutely summable; thus, according to Theorem 3.8, the system is not BIBO stable.

Filters

A major application of the z-transform is in the analysis and design of filters.
With the restriction to rational functions for realizability, designing a desirable
filter is essentially the problem of strategically placing poles and zeros in the z-
plane. Although this might sound simple, filter design is a rather sophisticated
problem, and it has led to a vast literature and numerous numerical procedures.
Here we briefly discuss the z-transform domain properties of certain useful classes
of filters. The design of linear-phase FIR filters will be discussed in Section 6.2.6.

FIR filters The z-transform of a length-L FIR filter is a polynomial in z−1,

H(z) =

L−1∑

n=0

hnz
−n,

and is given in its factored form as (3.130).

Linear-phase filters In the z-transform domain, the symmetries from (3.114) be-
come

symmetric
hn = hL−1−n

ZT←→ H(z) = z−L+1H(z−1), (3.156a)

antisymmetric
hn = −hL−1−n

ZT←→ H(z) = −z−L+1H(z−1), (3.156b)

In the z-transform domain, H(z−1) reverses the filter, z−L+1 makes it causal again,
and ± determines the type of symmetry.

Allpass filters The basic single-zero, single-pole allpass building block given in
(3.119) has the z-transform

H(z) =
z−1 − α∗

1− αz−1
, (3.157)

with the zero 1/α∗ and pole α. For stability in the causal case, |α| < 1 is required.
A more general allpass filter is formed by cascading these elementary building blocks
as

H(z) =
N∏

i=1

z−1 − α∗
i

1− αiz−1
= z−N B∗(z−1)

B(z)
, (3.158)

where B(z) =
∏N

i=1(1 − αiz
−1). The z-transform of the deterministic autocorrela-

tion of such an allpass filter is given by

A(z) = H(z)H∗(z
−1) =

N∏

i=1

z−1 − α∗
i

1− αiz−1

N∏

i=1

z − αi

1− α∗
i z

= 1,
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252 Sequences and discrete-time systems

and thus an allpass filter has the deterministic autocorrelation sequence am = δm.
Poles and zeros appear in pairs as {α, 1/α∗} = {r0ejω0 , (1/r0)e

jω0} for some real
r0 ∈ (0, 1) and angle ω0. They appear across the unit circle at the same angle and
at reciprocal magnitudes, and thus the magnitude |H(ejω)| is not influenced while
the phase is, as was shown in Figure 3.13.

3.6 Discrete Fourier transform

As was already mentioned, one way in which a finite-length sequence arises is from
one period of an infinite-length periodic sequence. The version of the Fourier trans-
form designed for finite-length sequences treats all finite-length sequences this way,
so effectively we are circularly extending any finite-length sequence. As we have
seen in Section 3.3.3, the circular convolution operator (3.71) is the appropriate
description of LSI systems operating on circularly extended finite-length inputs.

The version of the Fourier transform for this combination of a sequence space
and convolution is the discrete Fourier transform. We will introduce the DFT using
eigensequences of the circular convolution operator; this is analogous to our discus-
sion on eigensequences of the linear convolution operator leading to the definition of
the DTFT. As expected from this construction, the DFT diagonalizes the circular
convolution operator.

The use of the DFT extends far beyond the analysis of periodic sequences.
One important use arises from the connection between circular and linear convolu-
tion; specifically, we will see that the DFT is a tool for fast computation of linear
convolution. The DFT computes the DTFT of a finite segment of an infinite-length
signal at a finite number of frequencies; it is thus the operational tool for computing
the DTFT, which cannot be computed in full.

3.6.1 Definition of the DFT

Eigensequences of the circular convolution operator Upon mimicking what we
did for the DTFT, the DFT arises from identifying the unit-modulus eigensequences
of the circular convolution operator defined in (3.71). We can guess that any unit-
modulus eigensequence is a complex exponential of the form vn = ejωn like in
Section 3.4.1. In addition, since we will be representing sequences of period N , we
can guess that any eigensequence should be periodic with period N as well, and
thus,

vn+N = ejω(n+N) = vn ⇔ ejωN = 1, (3.159)

so ω = 2πk/N for some k ∈ Z. Let us check that

vn = ej(2π/N)kn = W−kn
N , v =

[
1 W−k

N . . . W
−(N−1)k
N

]⊤
, (3.160)
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3.6 Discrete Fourier transform 253

where WN = e−j2π/N (for details, see (3.287) in Appendix 3.A.1) is indeed an
eigensequence of the circular convolution operator H from (3.71),

(Hv)n = (h⊛ v)n =

N−1∑

i=0

v(n−i) mod Nhi =

N−1∑

i=0

W
−k[(n−i) mod N ]
N hi

(a)
=

N−1∑

i=0

W
−k(n−i)
N hi =

N−1∑

i=0

hiW
ki
N

︸ ︷︷ ︸
λk

W−kn
N︸ ︷︷ ︸
vn

, (3.161)

where (a) follows from the fact that WN
N = 1. Thus, applying the convolution

operator H to the complex exponential sequence v does indeed result in the same
sequence, albeit scaled by the corresponding eigenvalue λk. We denote this eigen-
value by Hk using the frequency response of the system, which is defined formally
in (3.180a). We can thus rewrite (3.161) as

Hv = h⊛ v = Hk v. (3.162)

The quantity k is called the discrete frequency. Since k and k + ℓN , ℓ ∈ Z,
lead to the same complex exponential sequence, we have exactly N distinct complex
exponential sequences of period N , indexed by k ∈ {0, 1, . . . , N − 1}.

DFT Finding the appropriate Fourier transform now amounts to projecting onto
the subspaces generated by each of the eigensequences.

Definition 3.16 (Discrete Fourier transform) The discrete Fourier
transform of a length-N sequence x is

Xk = (Fx)k =

N−1∑

n=0

xnW
kn
N , k ∈ {0, 1, . . . , N − 1}; (3.163a)

we call it the spectrum of x. The inverse DFT of a length-N sequence X is

xn =
1

N
(F ∗X)n =

1

N

N−1∑

k=0

XkW
−kn
N , n ∈ {0, 1, . . . , N − 1}. (3.163b)

We denote the DFT pair as

xn
DFT←→ Xk.

Within the definition, we have introduced F : CN → CN to represent the linear
DFT operator. The relationship between the inverse and the adjoint in (3.163b) is
verified shortly.

Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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254 Sequences and discrete-time systems

Matrix view The DFT expression (3.163a) is the vector–vector product

Xk =
[
1 W k

N . . . W
(N−1)k
N

]
x,

where as usual x ∈ CN is a column vector. By stacking the results for
k ∈ {0, 1, . . . , N − 1} to produce the column vector X ∈ CN , we have

X =




1 1 1 · · · 1

1 WN W 2
N · · · WN−1

N

1 W 2
N W 4

N · · · W
2(N−1)
N

...
...

...
. . .

...

1 WN−1
N W

2(N−1)
N · · · W

(N−1)2

N



x.

Thus, the matrix F ∈ CN×N introduced in (3.163a) is

F =




1 1 1 · · · 1

1 WN W 2
N · · · WN−1

N

1 W 2
N W 4

N · · · W
2(N−1)
N

...
...

...
. . .

...

1 WN−1
N W

2(N−1)
N · · · W

(N−1)2

N



. (3.164a)

Using orthogonality of the the roots of unity (see (3.288c) in Appendix 3.A.1), we
can easily verify that

F−1 =
1

N




1 1 1 · · · 1

1 W−1
N W−2

N · · · W
−(N−1)
N

1 W−2
N W−4

N · · · W
−2(N−1)
N

...
...

...
. . .

...

1 W
−(N−1)
N W

−2(N−1)
N · · · W

−(N−1)2

N



. (3.164b)

Thus,

F−1 =
1

N
F ∗, (3.164c)

as asserted in (3.163b). This shows that the DFT is a unitary operator (up to a
scaling factor).61 Note also that F is a Vandermonde matrix (see (2.248)).

DFT as analysis with an orthogonal basis The expression (3.163a) is an inner
product Xk = 〈x, ϕk〉, where

ϕk =
[
1 W−k

N . . . W
−(N−1)k
N

]⊤
=
[
1 ej(2π/N)k . . . ej(2π/N)(N−1)k

]⊤
.

(3.165)

61A normalized version uses a factor of 1/
√
N on both F and its inverse.

Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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3.6 Discrete Fourier transform 255

Thus, the DFT of a length-N sequence is a set of N inner products obtained by
applying the analysis operator associated with the basis {ϕk}N−1

k=0 of CN (see (2.91)).

The basis {ϕk}N−1
k=0 is orthogonal (see (3.288c) in Appendix 3.A.1), and each

element has norm
√
N . The associated dual basis is

ϕ̃k =
1

N
ϕk, k ∈ {0, 1, . . . , N − 1},

and the inverse DFT (3.163b) is obtained by applying the synthesis operator asso-
ciated with this basis (see (2.90)).

Relation of the DFT to the DTFT Given a length-N sequence x to analyze, we
might first turn to what we already have for infinite sequences – the DTFT. How-
ever, since x is only N -dimensional, we should not need a function of a continuous
variable X(ejω) to characterize it. Choosing any N distinct samples within one 2π
period of X(ejω) allows recovery of x and thus contains all the information present.
Choosing those sampling points to be

ωk =
2π

N
k, k ∈ {0, 1, . . . , N − 1} (3.166a)

gives the DFT:

X(ejω)
∣∣
ω=ωk

(a)
= X(ej(2π/N)k)

(b)
=
∑

n∈Z

xne
−j(2π/N)kn

(c)
=

N−1∑

n=0

xne
−j(2π/N)kn (d)

= Xk, (3.166b)

where (a) follows from the choice of sampling points; (b) from the definition of the
DTFT, (3.80a); (c) from x being finite of length N ; and (d) from the definition of
the DFT (3.163a). Thus, sampling the DTFT uniformly results in the DFT.

3.6.2 Properties of the DFT

We list here basic properties of the DFT; Table 3.7 summarizes these, together with
symmetries as well as standard transform pairs, while Exercise 3.15 explores proofs
for some of the properties.

Linearity The DFT operator F is a linear operator, or

αxn + βyn
DFT←→ αXk + βYk. (3.167)

Circular shift in time The DFT pair corresponding to a circular shift in time by
n0 is

x(n−n0) mod N
DFT←→ W kn0

N Xk. (3.168)
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256 Sequences and discrete-time systems

DFT properties Time domain DFT domain

Basic properties

Linearity αxn + βyn αXk + βYk
Circular shift

in time
x(n−n0) mod N W kn0

N Xk

Circular shift
in frequency

W−k0n
N xn X(k−k0) mod N

Circular time reversal x−n mod N X−k mod N

Circular convolution
in time

(h⊛ x)n HkXk

Circular convolution
in frequency

hnxn
1
N
(H ⊛X)k

Circular deterministic
autocorrelation

an =

N−1∑

k=0

xkx
∗
(k−n) mod N Ak = |Xk|2

Circular deterministic
crosscorrelation

cn =

N−1∑

k=0

xky
∗
(k−n) mod N Ck = XkY

∗
k

Parseval equality ‖x‖2 =

N−1∑

n=0

|xn|2 =
1

N

N−1∑

k=0

|Xk|2 =
1

N
‖X‖2

Related sequences

Conjugate x∗n X∗
−k mod N

Conjugate, time-reversed x∗−n mod N X∗
k

Real part ℜ(xn) (Xk +X∗
−k mod N )/2

Imaginary part ℑ(xn) (Xk −X∗
−k mod N )/(2j)

Conjugate-symmetric part (xn + x∗−n mod N )/2 ℜ(Xk)

Conjugate-antisymmetric
part

(xn − x∗−n mod N )/(2j) ℑ(Xk)

Symmetries for real x

X conjugate symmetric Xk = X∗
−k mod N

Real part of X even ℜ(Xk) = ℜ(X−k mod N )

Imaginary part of X odd ℑ(Xk) = −ℑ(X−k mod N )

Magnitude of X even |Xk| = |X−k mod N |
Phase of X odd argXk = −argX−k mod N

Common transform pairs

Kronecker delta sequence δn 1

Shifted Kronecker delta
sequence

δ(n−n0) mod N W kn0
N

Constant sequence 1 Nδk

Geometric sequence αn (1 − αW kN
N )/(1 − αW k

N )

Periodic sinc sequence
(ideal lowpass filter)

√
k0
N

sinc(πnk0/N)
sinc(πn/N)

{√
N
k0
,
∣∣∣k − N

2

∣∣∣ ≥ k0−1
2

;

0, otherwise.

Box sequence

{
1√
n0
,
∣∣∣n− N

2

∣∣∣ ≥ n0−1
2

;

0, otherwise.

√
n0

sinc(πn0k/N)

sinc(πk/N)

Table 3.7 Properties of the discrete Fourier transform. (For all sequences in common
transform pairs, n = 0, 1, . . . , N − 1, and k = 0, 1, . . . , N − 1.)
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3.6 Discrete Fourier transform 257

Circular shift in frequency The DFT pair corresponding to a circular shift in
frequency by k0 is

W−k0n
N xn

DFT←→ X(k−k0) mod N . (3.169)

As for the DTFT, a shift in frequency is often referred to as modulation.

Circular time reversal The DFT pair corresponding to circular time reversal
x−n mod N is

x−n mod N
DFT←→ X−k mod N . (3.170)

For a real xn, the DFT of the time-reversed version x−n mod N is X∗
k .

Circular convolution in time The DFT pair corresponding to circular convolution
in time is

(h⊛ x)n
DFT←→ HkXk. (3.171)

We have seen analogous properties for linear convolution: (3.96) for the DTFT and
(3.144) for the z-transform. We can derive (3.171) similarly; the proof is left for
Exercise 3.15.

At an abstract level, the properties (3.96) (for linear convolution and the
DTFT) and (3.171) (for circular convolution and the DFT) have identical justifi-
cations: when x is written as a combination of spectral components, the effect of
the convolution operator is to simply scale each spectral component by the corre-
sponding eigenvalue of the convolution operator; thus, using the appropriate Fourier
transform has diagonalized the convolution operator. The diagonalization repre-
sented by (3.171) gains extra significance from two facts: linear convolution of a
finite-length sequence and a finite-length filter can be computed using a circular
convolution of appropriate length as in Theorem 3.10; and there are fast algorithms
for computing the DFT, as discussed in Section 3.9.1. These together yield fast
algorithms for computing linear convolution, as discussed in Section 3.9.2.

Circular convolution in frequency The DFT pair corresponding to circular con-
volution in frequency is

hnxn
DFT←→ 1

N
(H ⊛X)k. (3.172)

The circular convolution in frequency property (3.172) is dual to the convolution in
time property (3.171).

Circular deterministic autocorrelation The DFT pair corresponding to the circu-
lar deterministic autocorrelation of a sequence x is

an =

N−1∑

k=0

xkx
∗
(k−n) mod N

DFT←→ Ak = |Xk|2 (3.173)

and satisfies
Ak = A∗

k, (3.174a)

Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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258 Sequences and discrete-time systems

Ak ≥ 0. (3.174b)

For a real x,

Ak = |Xk|2 = A−k mod N . (3.174c)

Circular deterministic crosscorrelation The DFT pair corresponding to the cir-
cular deterministic crosscorrelation of sequences x and y is

cn =

N−1∑

k=0

xky
∗
(k−n) mod N

DFT←→ Ck = XkY
∗
k (3.175)

and satisfies

Cx,y,k = C∗
y,x,k. (3.176a)

For real x and y,

Cx,y,k = XkY−k mod N = Cy,x,−k mod N . (3.176b)

Circular deterministic autocorrelation of vector sequences The DFT pair corre-
sponding to the circular deterministic autocorrelation of a length-N vector sequence
x is

An
DFT←→ Ak =




A0,k C0,1,k · · · C0,N−1,k

C1,0,k A1,k · · · C1,N−1,k

...
...

. . .
...

CN−1,0,k CN−1,1,k · · · AN−1,k


 , (3.177)

and satisfies

Ak =




A0,k C0,1,k · · · C0,N−1,k

C∗
0,1,k A1,k · · · C1,N−1,k

...
...

. . .
...

C∗
0,N−1,k C∗

1,N−1,k · · · AN−1,k


 = A∗

k. (3.178a)

For a real x,

Ak = A⊤
−k mod N . (3.178b)

Parseval equality The DFT operator F is a unitary operator (up to scaling) and
thus preserves the Euclidean norm (up to scaling); see (2.56):

‖x‖2 =

N−1∑

n=0

|xn|2 =
1

N

N−1∑

k=0

|Xk|2 =
1

N
‖X‖2 =

1

N
‖Fx‖2. (3.179)

This follows from F/
√
N being a unitary matrix since F ∗F = NI.
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3.6.3 Frequency response of filters

The DFT of a length-N filter (impulse response of an LSI system) h is called the
frequency response:

Hk =

N−1∑

n=0

hnW
kn
N , k ∈ {0, 1, . . . , N − 1}. (3.180a)

The inverse DFT of the frequency response recovers the impulse response,

hn =
1

N

N−1∑

k=0

HkW
−kn
N , n ∈ {0, 1, . . . , N − 1}. (3.180b)

We can again denote the magnitude and phase as

Hk = |Hk|ej arg(Hk), k ∈ {0, 1, . . . , N − 1},

where the magnitude response |Hk| is an N -periodic real-valued, nonnegative se-
quence, and the phase response arg(Hk) is an N -periodic, real-valued sequence
between −π and π.

Diagonalization of the circular convolution operator Let H be the circular con-
volution operator associated with the length-N filter h (see (3.71) and the matrix
representation in (3.75)). The frequency response of h gives a diagonal form for the
operator H . Specifically, let

Λ = diag(H0, H1, . . . , HN−1), where Hk =

N−1∑

n=0

hnW
kn
N .

Also, let Xk denote the spectrum of length-N sequence xn. Then, since the circular
convolution property (3.171) shows that the DFT of h⊛ x is HkXk, we have

F (Hx) = ΛFx,

where F is the DFT operator as in (3.164a). Since this is true for any x,

H = F−1ΛF, (3.181a)

so the DFT operator F diagonalizes the circular convolution operator H ,

FHF−1 = Λ. (3.181b)

We illustrate this diagonalization in Figure 3.17, and explore it further in Solved
exercise 3.5.
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x DFT

H0×
H1×

HN−1

×

...

Inverse
DFT

y

Figure 3.17 Diagonalization property of the DFT. The circular convolution operation
y = Hx = h⊛ x is implemented by a pointwise multiplication of the spectrum of x by the
frequency response of h.

DFT analysis of infinite sequences and LSI systems While the DFT is intimately
related to circular convolution, we should keep in mind that LSI systems described
by linear convolution are of primary interest. These systems are characterized by the
DTFT of the system impulse response. Since the DFT computes the DTFT at only
N frequencies, analysis with the DFT can be incomplete or misleading. In particu-
lar, the DFT involves an implicit periodic extension, which might introduce features
that require careful interpretation. Furthermore, windowing a longer sequence to
length N so that the DFT can be applied also has important consequences.

The following example shows that looking at the frequency response of a filter
at only N frequencies can give incorrect impressions about properties of the filter.

Example 3.27 (Inferring DTFT properties from the DFT)

(i) The DFT could indicate allpass behavior despite a nonconstant magnitude
response of the DTFT. The length-N DFT Hk of a filter h can satisfy
|Hk| = 1 for all k ∈ {0, 1, . . . , N − 1} while arg(Hk) takes arbitrary val-
ues. For almost every choice of arg(Hk) values, the filter h is not allpass.
Figures 3.18(a)–(c) show an example of a filter of length 8, along with the
magnitude and phase of its DTFT and DFT. Between any two samples
of the DTFT that are calculated by the DFT, the magnitude response
|H(ejω)| is not constant. The example was generated with antisymmetric
phase arg(Hk) = −arg(H−k mod 8) so that Hk has the conjugate symmetry
Hk = H∗

−k mod 8 associated with h being real.
Actually, the only allpass filters having finite length are pure delays or

advances, hn = δn−n0 for some n0 ∈ Z. This follows from the discussion of
the poles and zeros of allpass filters in Section 3.5.4.

(ii) Similarly, the DFT could indicate linear phase despite a nonlinear phase
response of the DTFT. Figures 3.18(d)–(f) show an example of a filter g of
length 8 generated by setting the phase to be

arg(Gk mod 8) =

{
− 1

4πk, for k ∈ {−3, −2, . . . , 3};
0, for k = 4,

and setting the magnitude to satisfy |Gk| = |G−k mod 8|. The full DTFT
phase response arg(G(ejω)) is not linear.
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Figure 3.18 DFT analysis of a filter can be misleading. (a)–(c) Example of a length-8
filter h that is not an allpass filter although its length-8 DFT satisfies |Hk| = 1 for all
k ∈ {0, 1, . . . , 7}. (d)–(f) Example of a length-8 filter g that does not have linear phase
although its length-8 DFT satisfies arg(Gk mod 8) = − 1

4
πk for all k ∈ {−3, −2, . . . , 3}. In

(b)–(f), the discrete frequency k of the DFT (solid stems) is converted to the continuous
frequency scale of the DTFT (dashed lines) using (3.166a).

The next example illustrates the importance of periodic extension in interpreting
the DFT.

Example 3.28 (Frequencies present in the DFT) Let

xn = cos

(
2π

16
n

)
=

1

2

(
e−j(2π/16)n + ej(2π/16)n

)
,

yn = cos

(
2π

32
n

)
=

1

2

(
e−j(2π/32)n + ej(2π/32)n

)
.

Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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Figure 3.19 Periodic extension is important in interpreting the DFT. (a) Sequences
xn = cos((2π/16)n) (black stems) and yn = cos((2π/32)n) (dashed stems) restricted to
n ∈ {0, 1, . . . , 15}. (b) Length-16 DFT magnitudes |Xk| (black stems) and |Yk| (gray
stems). (c) 16-periodic extensions of the length-16 sequences in (a).

These sequences, shown in Figure 3.19(a), vary slowly, and thus we expect them
to have spectra dominated by low frequencies. Their DFTs of length 16 are shown
in Figure 3.19(b). The spectrum Xk is indeed very simple, with content only at
discrete frequencies ±1 (equivalently, 1 and 15). However, Yk shows nonzero
content at every discrete frequency, even though yn is even more slowly varying
than xn. The periodic extension of yn with N = 16 is not a single sinusoid; as
shown in Figure 3.19(c), it has a large jump at every multiple of 16, and thus
significant high-frequency content. The extreme simplicity of Xk is because the
period of the single sinusoid in xn is a divisor of the length of the DFT.

Since the DFT is applied to a finite number of data samples, it implicitly involves
the windowing of a sequence. This is important when interpreting the DFT as
giving samples of the DTFT, as we illustrate in the following example.

Example 3.29 (Length of DFT, spectral resolution, and windowing)
Let

xn = cos

(
2π

10
n

)
+

1

2
cos

(
2π

3
n

)
, n ∈ Z, (3.182)

and suppose that we wish to estimate the frequencies of the sinusoidal compo-
nents of x from the DFT applied to a block of samples of x. We will see that
the number of data samples used and the length of the DFT influence the result
differently.
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Figure 3.20 Effect of windowing and length of DFT on spectral analysis.

When we apply the DFT of length N , we use the values of the sequence at
n ∈ {0, 1, . . . , N − 1}. We can express this as windowing. Specifically, let

yn = wnxn, n ∈ Z,

where w is the right-sided box sequence of length 32 (see (3.13)). The sequence y
is now of length 32, as shown in Figure 3.20(a), and the magnitude of its length-32
DFT is shown in Figure 3.20(b). Since y is real, its spectral magnitude exhibits
the symmetry |Yk| = |Y−k mod 32|. Two pairs of peaks are apparent in the DFT,
at discrete frequencies ±3 and ±11. These correspond to sinusoidal components
at frequencies 3π/16 and 11π/16, which do not quite match the frequencies 2π/10
and 2π/3 in (3.182). Figure 3.20(b) also shows the DTFT magnitude |Y (ejω)|,
and we can see that the DFT samples miss the peaks of |Y (ejω)|.

To have finer resolution of frequencies in Y (ejω), we can compute a longer
DFT of the same data segment. Figure 3.20(c) shows y as a length-128 sequence
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264 Sequences and discrete-time systems

(32 samples of x padded with 96 zeros), and Figure 3.20(d) shows the magnitude
of the length-128 DFT of y along with the DTFT of y. The peaks of the longer
DFT are at discrete frequencies ±13 and ±43, which correspond to sinusoids at
frequencies 13π/64 and 43π/64, which are indeed closer to 2π/10 and 2π/3.

Lengthening the DFT improves the estimation of the peaks, but it does
not bring us closer to seeing only the two sinusoidal components in (3.182). The
DFTs in Figures 3.20(b) and (d) show increasing density of samples from the
DTFT Y (ejω) (see (3.166)). Using the convolution in frequency property of the
DTFT, (3.98), we have

Y (ejω) =
1

2π
(W ⊛X)(ejω).

Thus, we are observing the spectrum X(ejω) only after it is smeared by convolu-
tion with W (ejω), which is shown in Figure 3.20(e). The smearing is dominated
by the width of the main lobe of W (ejω).

To get closer to the spectrum of x requires W (ejω) to be narrower, which
can be achieved by lengthening the window w. To illustrate this, double the
number of data samples: let

y′n = w′
nxn, n ∈ Z,

where w′ is the right-sided box sequence of length 64. Figure 3.20(f) shows y′

as a length-128 sequence (64 samples padded with 64 zeros), and Figure 3.20(g)
shows the magnitude of the length-128 DFT of y′. The width of the main lobe
of W ′(ejω) is half that of W (ejω), as shown in Figure 3.20(h), and its impact is
apparent in comparing Figures 3.20(d) and (g).

3.7 Multirate sequences and systems

In our study of sequences and discrete-time systems with time indexed by integers
thus far, the time index has implicitly had the same physical meaning for all se-
quences. This is as if every physical process had been converted to a sequence by
taking samples at the same regular intervals (for example, every second).

In multirate sequence processing, different sequences might have different time
scales. Thus, the index n of the sequence might refer to different physical times for
different sequences. We might ask both why one should do that and how one can
go between these different scales. Let us look at a simple example. Start with a
sequence xn and derive a downsampled sequence yn by dropping every other sample,

yn = x2n, n ∈ Z, or (3.183a)

y =
[
. . . x−2 x0 x2 . . .

]⊤
. (3.183b)

If xn is the sample of a physical process taken at time t = n, then yn is a sample
taken at time t = 2n. In other words, y has a timeline with intervals of 2 seconds
when x has a timeline with intervals of 1 second; the clock of y is twice as slow. The
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3.7 Multirate sequences and systems 265

x 2 y

Figure 3.21 Block diagram representation of downsampling by 2.

operation above is called downsampling by 2, and it has a number of properties that
we will study in detail. For example, it is irreversible: once we remove samples, we
cannot get them back. It is also shift-varying, requiring more complicated analysis.

The dual operation to downsampling is upsampling. For example, upsampling
a sequence x by 2 results in a new sequence y that is obtained by inserting a zero
between every neighboring two samples,

yn =

{
xn/2, for n even;

0, for n odd,
or (3.184a)

y =
[
. . . x−1 0 x0 0 x1 0 . . .

]⊤
. (3.184b)

The index of yn corresponds to a time that is half of that for xn. For example, if x
has intervals of 1 second between samples, then y has intervals of 0.5 seconds; the
clock of y is twice as fast.

What we just saw for rate changes by 2 can be done for any positive integer. By
combining upsampling by N and downsampling by M , we can achieve any rational
rate change. To smooth a sequence before dropping samples, downsampling is
preceded by lowpass filtering, while to fill in the zeros, upsampling is followed by
filtering; thus combinations of filtering with changes in sampling rate are important.

The purpose of this section is to study multirate operations and their conse-
quences on sequences and their spectra. These operations create linear periodically
shift-varying (LPSV) systems, which are represented by block-Toeplitz instead of
Toeplitz matrices. For example, in Section 3.3.1, we encountered a block-averaging
operator, (3.49), which is linear but not shift-invariant; it is, however, LPSV. While
the LPSV nature of multirate systems does complicate analysis, we use a relatively
simple and powerful tool called polyphase analysis to mitigate the problem.

3.7.1 Downsampling

Downsampling by 2 Downsampling62 by 2, as introduced in (3.183), is represented
by the block diagram in Figure 3.21. It is not shift-invariant because the output in
response to the input xn = δn is yn = δn, whereas the output in response to the
shifted input xn = δn−1 is zero. However, this simple system does satisfy a less
strict invariance property.

62Downsampling is often referred to as subsampling or decimation.
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266 Sequences and discrete-time systems

Definition 3.17 (Periodically shift-varying system) A discrete-time sys-
tem T is called periodically shift-varying of order (L,M) when, for any integer k
and input x,

y = T (x) ⇒ y′ = T (x′), where x′n = xn−Lk and y′n = yn−Mk. (3.185)

Downsampling by 2 is periodically shift-varying of order (2, 1) because shifting the
input by 2k shifts the output by k.

Downsampling by 2 is a linear operator, so it has a matrix representation:




...
y−1

y0
y1
y2
...




=




...
...

...
...

...
...

...
· · · 1 0 0 0 0 0 0 · · ·
· · · 0 0 1 0 0 0 0 · · ·
· · · 0 0 0 0 1 0 0 · · ·
· · · 0 0 0 0 0 0 1 · · ·

...
...

...
...

...
...

...




︸ ︷︷ ︸
D2




...
x−2

x−1

x0
x1
x2
x3
x4
...




=




...
x−2

x0
x2
x4
...




, (3.186a)

y = D2x, (3.186b)

where D2 stands for the downsampling-by-2 operator. Inspection of D2 shows that
it is similar to an identity matrix, but with the odd rows taken out. Intuitively, it is
a rectangular operator, with the output space being a subspace of the input space
(one would like to say that it is of half the size, but both are infinite-dimensional).

To find the z-transform Y (z), we break downsampling into two steps: first xn
is transformed to a sequence x0,n having the even samples of xn, with the odd ones
set to zero; then, x0,n is contracted by removing those zeros to obtain yn. Thus, let

x0,n =

{
xn, for n even;
0, for n odd.

A clever way to express x0,n in terms of xn without having two cases is

x0,n =
1

2
(1 + (−1)n)xn, n ∈ Z. (3.187)

From (3.187), we can use linearity and the z-transform property (3.140) to obtain

X0(z) =
1

2
[X(z) +X(−z)]

=
1

2

[
(· · ·+ x0 + x1z

−1 + x2z
−2 + · · · ) + (· · ·+ x0 − x1z−1 + x2z

−2 + · · · )
]

= (· · ·+ x−2z
2 + x0 + x2z

−2 + · · · ) =
∑

n∈Z

x2nz
−2n,
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(a) Spectrum of a sequence. (b) Spectrum of downsampled version.

Figure 3.22 Effect of downsampling by 2 on the DTFT.

canceling out the odd powers of z and keeping the even ones. We now get Y (z) by
contracting X0(z) as

Y (z) =
∑

n∈Z

x2nz
−n = X0(z

1/2) =
1

2

[
X(z1/2) +X(−z1/2)

]
. (3.188)

To find the DTFT Y (ejω), we simply evaluate Y (z) at z = ejω,

Y (ejω) =
1

2

[
X(ejω/2) +X(ej(ω−2π)/2)

]
, (3.189)

where −ejω/2 can be written as ej(ω−2π)/2 since e−jπ = −1. With the help of
Figure 3.22, we now interpret this formula. First, X(ejω/2) (black dashed line)
is a stretched version of X(ejω), by a factor of 2, and is thus 4π-periodic; since
downsampling contracts time, it is natural that it expands frequency accordingly.
Then, X(ej(ω−2π)/2) (gray dashed line) is not only a stretched version of X(ejω),
but also shifted by 2π. The sum is again 2π-periodic, since Y (ejω) = Y (ej(ω−2kπ)).
Both stretching and shifting can create content at frequencies not present in the
original sequence.63 The shifted version X(ej(ω−2π)/2) is called the aliased version
of the original (a ghost image).

Example 3.30 (Downsampling) Consider first a standard example illustrat-
ing the effect of downsampling: xn = (−1)n = cos(πn), the highest-frequency
discrete sequence. Its downsampled version is yn = x2n = cos(2πn) = 1, the
lowest-frequency discrete sequence (a constant),
[
. . . 1 −1 1 −1 1 . . .

]⊤ 2↓−→
[
. . . 1 1 1 1 1 . . .

]⊤
,

completely changing the nature of the sequence.
Consider now the right-sided geometric series sequence, xn = αnun with

|α| < 1, from (3.128a). Its z-transform is (from Table 3.6)

X(z) =
1

1− αz−1
.

63This cannot happen with LSI processing. Because of the eigensequence property of complex
exponentials, frequency components are only scaled by the system and thus cannot emerge from
nothing.
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The downsampled version of the sequence is

yn = x2n = α2nu2n
(a)
= α2nun,

where (a) follows from u2n = un, with the z-transform (from Table 3.6)

Y (z) =
1

1− α2z−1
.

We could have also obtained this z-transform using the expression for downsam-
pling, (3.188), yielding

1

2

(
1

1− αz1/2 +
1

1 + αz−1/2

)
=

1

1− α2z−1
.

The downsampled sequence is again exponential, but decays faster.

Downsampling by N We can generalize the discussion of downsampling by 2 to
any positive integer N . A sequence downsampled by N and its z-transform are

yn = xNn
ZT←→ Y (z) =

1

N

N−1∑

k=0

X(W k
Nz

1/N). (3.190)

The corresponding DTFT pair is

yn = xNn
DTFT←→ Y (ejω) =

1

N

N−1∑

k=0

X(ej(ω−2πk)/N ), (3.191)

using

W k
Nz

1/N
∣∣∣
z=ejω

= e−j(2π/N)kejω/N = ej(ω−2πk)/N .

We have already seen these expressions in Section 3.4.3 and Table 3.4 as scaling in
time. The proof is an extension of the N = 2 case, and we leave it as Exercise 3.17.
We denote the downsampling-by-N operator by DN .

3.7.2 Upsampling

Upsampling by 2 Upsampling by 2, as introduced in (3.184), is represented by
the block diagram in Figure 3.23. It is not shift-invariant; it is instead periodically
shift-varying of order (1, 2) because shifting the input by k shifts the output by 2k.
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x 2 y

Figure 3.23 Block diagram representation of upsampling by 2.

Upsampling by 2 is a linear operator, so it has a matrix representation




...
y−2

y−1

y0
y1
y2
y3
y4
...




=




...
...

...
...

· · · 1 0 0 0 · · ·
· · · 0 0 0 0 · · ·
· · · 0 1 0 0 · · ·
· · · 0 0 0 0 · · ·
· · · 0 0 1 0 · · ·
· · · 0 0 0 0 · · ·
· · · 0 0 0 1 · · ·

...
...

...
...




︸ ︷︷ ︸
U2




...
x−1

x0
x1
x2
...




=




...
x−1

0
x0
0
x1
0
x2
...




, (3.192a)

y = U2x, (3.192b)

where U2 stands for the upsampling-by-2 operator. The matrix U2 is an identity
matrix with a row of zeros in between every two rows.

In the z-transform domain, the expression for upsampling by 2 is

Y (z) =
∑

n∈Z

ynz
−n (a)

=
∑

n∈Z

y2nz
−2n (b)

=
∑

n∈Z

xnz
−2n = X(z2), (3.193)

where (a) follows from yn = 0 for all odd n; and (b) from y2n = xn following (3.184).
To find the DTFT Y (ejω), we simply evaluate Y (z) at z = ejω,

Y (ejω) = X(ej2ω), (3.194)

a contraction by a factor of 2 as shown in Figure 3.24.

Example 3.31 (Upsampling) Take the constant sequence xn = 1. Its upsam-
pled version

y =
[
. . . 1 0 1 0 1 . . .

]⊤

can be written as

yn =
1

2
(1 + (−1)n) =

1

2
(1 + cos(πn)),

indicating that it contains both the original frequency (constant, zero frequency)
and a new high frequency (at ω = π, since (−1)n = cos(πn)).
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-Π Π

|X(ejω)|

ω
-Π Π

|X(e2jω)|

ω

(a) Spectrum of a sequence. (b) Spectrum of upsampled version.

Figure 3.24 Effect of upsampling by 2 on the DTFT.

Upsampling by N We can generalize the discussion of upsampling by 2 to any
positive integer N . A sequence upsampled by N and its z-transform are given by

yn =

{
xn/N , for n/N ∈ Z;

0, otherwise
ZT←→ Y (z) = X(zN). (3.195)

The corresponding DTFT pair is

yn =

{
xn/N , for n/N ∈ Z;

0, otherwise
DTFT←→ Y (ejω) = X(ejNω). (3.196)

We denote the upsampling-by-N operator by UN .

3.7.3 Combinations of downsampling and upsampling

By comparing (3.186a) and (3.192a), we see that the downsampling and upsampling
operators are transposes of each other; since they have real entries, they are also
adjoints of each other,

U2 = D⊤
2 = D∗

2 . (3.197)

Upsampling followed by downsampling Upsampling by 2 followed by downsam-
pling by 2 results in the identity

D2U2 = I, (3.198)

since the zeros added by upsampling are at odd-indexed locations and are subse-
quently eliminated by downsampling.

Similarly, for any positive integer N ,

DNUN = I.

Downsampling followed by upsampling Carrying out the operations in the reverse
order is more interesting; downsampling by 2 followed by upsampling by 2 results
in a sequence where all odd-indexed samples have been replaced by zeros, or

[
. . . x−1 x0 x1 x2 . . .

]⊤ ↓2−→ ↑2−→
[
. . . 0 x0 0 x2 . . .

]⊤
.
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This operator,
P = U2D2, (3.199)

is an orthogonal projection operator onto the subspace of sequences with all odd-
indexed samples equal to zero. To verify this, we check idempotency (see Defini-
tion 2.27),

P 2 = (U2D2)(U2D2) = U2(D2U2)D2 = U2D2 = P,

using (3.198), as well as self-adjointness,

P ∗ = (U2D2)
∗ = D∗

2U
∗
2 = U2D2 = P,

using (3.197). Applying this projection operator to a sequence x, we get the ex-
pressions in the DTFT and the z-transform domains as

Px
DTFT←→ 1

2 (X(ejω) +X(ej(ω+π))),
ZT←→ 1

2 (X(z) +X(−z)).
(3.200)

Similarly, for any positive integer N ,

PN = UNDN

is an orthogonal projection operator. Applying this projection operator to a se-
quence x, we get the expressions in the DTFT and the z-transform domains as

PNx
DTFT←→ 1

N

∑N−1
k=0 X(ej(ω−2πk/N)),

ZT←→ 1
N

∑N−1
k=0 X(W k

Nz).
(3.201)

Commutativity of upsampling and downsampling We have just seen that D2U2

and U2D2 are quite different – one is the identity and the other sets all odd-indexed
samples to zero. Thus, upsampling and downsampling by the same factor do not
commute. However, upsampling by N and downsampling by M commute if and
only if N and M are relatively prime (that is, they have no common factors). The
proof is the topic of Exercise 3.22, and a couple of illustrative examples are given
in Exercise 3.23.

Example 3.32 (Commutativity of upsampling and downsampling) We
look at upsampling by 2 and downsampling by 3. If we apply U2 to x we get

U2x =
[
. . . x0 0 x1 0 x2 0 x3 0 . . .

]⊤
;

then, upon applying D3, we get

D3U2x =
[
. . . x−3 0 x0 0 x3 0 x6 . . .

]⊤
.

Upon applying D3 first we get

D3x =
[
. . . x−3 x0 x3 x6 . . .

]⊤
,

which, when followed by U2,a leads to the same result, U2D3x = D3U2x.
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3.7.4 Combinations of downsampling, upsampling, and filtering

In multirate processing, the scaling of frequencies (up with downsampling and
down with upsampling) is a consequence of time-scale change. However, in many
applications, the introduction of new high-frequency components, as shown in
Figures 3.22(b) and 3.24(b), is not desired. This is one of the reasons why down-
sampling is often preceded by filtering and upsampling is often followed by filtering.
We now consider these two cases in more detail.

Downsampling preceded by filtering Consider downsampling by 2, preceded by
filtering by g̃,64 with operator G̃ as in (3.64), as illustrated in Figure 3.25(a). This
can be written as (with a causal, length-4 FIR filter for illustration)

y =




...
y−1

y0
y1
y2
...




=




...
...

...
...

...
...

· · · g̃1 g̃0 0 0 0 0 · · ·
· · · g̃3 g̃2 g̃1 g̃0 0 0 · · ·
· · · 0 0 g̃3 g̃2 g̃1 g̃0 · · ·
· · · 0 0 0 0 g̃3 g̃2 · · ·

...
...

...
...

...
...




︸ ︷︷ ︸
D2G̃




...
x−3

x−2

x−1

x0
x1
x2
...




= D2G̃x. (3.202)

The operator D2G̃ is the convolution operator G̃ with the odd rows removed; it is
block Toeplitz with blocks of size 1 × 2. From (3.202), and using (3.62a), we can
also express y as

yn = (g̃ ∗ x)2n =
∑

k∈Z

xkg̃2n−k = 〈xk, g̃∗2n−k〉k, n ∈ Z. (3.203)

In the z-transform and the DTFT domains, the output of downsampling by 2
preceded by filtering is

Y (z) =
1

2

[
G̃(z1/2)X(z1/2) + G̃(−z1/2)X(−z1/2)

]
, (3.204a)

Y (ejω) =
1

2

[
G̃(ejω/2)X(ejω/2) + G̃(ej(ω−2π)/2)X(ej(ω−2π)/2)

]
. (3.204b)

Figure 3.25 shows the effect of downsampling by 2 preceded by filtering in the DTFT
domain. The input spectrum is as in Figure 3.24(a), the spectrum after filtering
is shown in Figure 3.25(b), and the final output spectrum after downsampling is
shown in Figure 3.25(c). In this example, the filter is an ideal lowpass filter with
cutoff frequency 1

2π. The spectrum of the input from − 1
2π to 1

2π is conserved, the
rest is put to zero so that no aliasing occurs, and the central lowpass part of the
spectrum is conserved in the downsampled version.

64From this point on, we use g̃ to denote a filter when followed by a downsampler; similarly,
we use g to denote a filter when preceded by an upsampler. In Chapter 5 and the companion
volume, [57], this will be standard notation.
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x g̃ 2 y

(a) Block diagram.

-Π Π
ω

-Π Π
ω

|Y (ejω)|

(b) Spectrum of filtered sequence. (c) Spectrum of output.

Figure 3.25 Downsampling preceded by filtering, and the effect on the DTFT.

Example 3.33 (Downsampling preceded by filtering) Consider the two-
point averaging filter g̃n = 1

2 (δn + δn−1), whose output, downsampled by 2,

y = D2G̃x, is

yn =
1

2
(x2n + x2n−1), n ∈ Z.

Because of filtering, all input samples influence the output, as opposed to down-
sampling without filtering, where the odd-indexed samples had no impact.

Upsampling followed by filtering Consider upsampling by 2 followed by filtering
by g, with operator G as in (3.64), as illustrated in Figure 3.26(a). This can be
written as (with a causal, length-4 FIR filter for illustration)

y =




...
y−2

y−1

y0
y1
y2
y3
...




=




...
...

...
...

· · · g2 g0 0 0 · · ·
· · · g3 g1 0 0 · · ·
· · · 0 g2 g0 0 · · ·
· · · 0 g3 g1 0 · · ·
· · · 0 0 g2 g0 · · ·
· · · 0 0 g3 g1 · · ·

...
...

...
...




︸ ︷︷ ︸
GU2




...
x−2

x−1

x0
x1
...




= GU2x. (3.205)

The operator GU2 is the convolution operator G with the odd columns removed; it
is block Toeplitz with blocks of size 2× 1. From (3.205), we can also express y as

yn =
∑

k∈Z

gn−2kxk, n ∈ Z. (3.206)
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x 2 g y

(a) Block diagram.

-Π Π
ω

-Π Π
ω

|Y (ejω)|

(b) Spectrum of upsampled sequence. (c) Spectrum of output.

Figure 3.26 Upsampling followed by filtering, and the effect on the DTFT.

Another way to look at (3.205) and (3.206) is to see that each input sample xk
generates a response gn delayed by 2k samples and weighted by xk.

In the z-transform and the DTFT domains, the output of upsampling by 2
followed by filtering is

Y (z) = G(z)X(z2), (3.207a)

Y (ejω) = G(ejω)X(ej2ω). (3.207b)

Figure 3.26 shows the effect of upsampling by 2 followed by filtering in the DTFT
domain. The input spectrum is again as in Figure 3.24(a), the spectrum after
upsampling is shown in Figure 3.26(b), and the final output spectrum after ideal
lowpass filtering is shown in Figure 3.26(c). In this example, the filter is an ideal
lowpass filter with cutoff frequency 1

2π. We see that the ghost spectrum at 2π
produced by upsampling is removed; only the base spectrum around the origin
remains.

Example 3.34 (Upsampling followed by filtering) Let gn = δn + δn−1.
The sequence x, upsampled by 2 and filtered with g, leads to

y =
[
. . . x−1 x−1 x0 x0 x1 x1 . . .

]⊤
, (3.208)

which is a staircase sequence, with stairs of height xn and length 2. The filter thus
performs piecewise-constant interpolation. A smoother interpolation is obtained
with a linear interpolator: gn = 1

2δn−1 + δn + 1
2δn+1. From (3.205) or (3.206),

the even-indexed outputs are equal to input samples (at half the index), while
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(c) Piecewise-constant interpolation. (d) Linear interpolation.

Figure 3.27 Examples of upsampling followed by filtering.

the odd-indexed outputs are averages of two input samples,

yn =

{
xn/2, for n even;

1
2

(
x(n+1)/2 + x(n−1)/2

)
, for n odd,

(3.209)

y =
[
. . . x−1

1
2 (x−1 + x0) x0

1
2 (x0 + x1) x1 . . .

]⊤
.

Compare (3.209) with (3.208) to see why (3.209) is a smoother interpolation, and
see Figure 3.27 for an example.

Interchange of multirate operations and filtering Filtering preceding downsam-
pling and filtering following upsampling are the most frequent combinations of mul-
tirate operations. These combinations in reversed order satisfy simple, useful iden-
tities.

(i) Downsampling by N followed by filtering with G̃(z) is equivalent to filtering

with G̃(zN) followed by downsampling by N , as shown in Figure 3.28(a).

(ii) Filtering with G(z) followed by upsampling by N is equivalent to upsampling
by N followed by filtering with G(zN ), as shown in Figure 3.28(b).

Proofs of these identities are left as Exercise 3.24.

Downsampling, upsampling and filtering Earlier, we noted the duality of down-
sampling and upsampling, which was made explicit in the adjoint relation (3.197).
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x N G̃(z) y ≡ x G̃(zN) N y

(a) Downsampling and filtering.

x G(z) N y ≡ x N G(zN ) y

(b) Filtering and upsampling.

Figure 3.28 Interchange of multirate operations and filtering.

Can their combinations with filtering, D2G̃ and GU2, also be adjoints? The matrix
representations allow us to answer this by inspection. These operators are adjoints
when g̃∗n = g−n, since then65

(D2G̃)
∗ =




...
...

...
...

...
· · · g̃∗−2 g̃∗0 g̃∗2 g̃∗4 g̃∗6 · · ·
· · · g̃∗−3 g̃∗−1 g̃∗1 g̃∗3 g̃∗5 · · ·
· · · g̃∗−4 g̃∗−2 g̃∗0 g̃∗2 g̃∗4 · · ·
· · · g̃∗−5 g̃∗−3 g̃∗−1 g̃∗1 g̃∗3 · · ·
· · · g̃∗−6 g̃∗−4 g̃∗−2 g̃∗0 g̃∗2 · · ·

...
...

...
...

...




=




...
...

...
...

...
· · · g2 g0 g−2 g−4 g−6 · · ·
· · · g3 g1 g−1 g−3 g−5 · · ·
· · · g4 g2 g0 g−2 g−4 · · ·
· · · g5 g3 g1 g−1 g−3 · · ·
· · · g6 g4 g2 g0 g−2 · · ·

...
...

...
...

...




= GU2. (3.210)

We could also show the above by using the definition of the adjoint operator in
(2.48). That is, we want to find a G̃ so that D2G̃ and GU2 are adjoints of each
other,

〈D2G̃x, y〉 = 〈x, GU2y〉. (3.211)

We thus write

〈D2G̃x, y〉
(a)
= 〈G̃x, D∗

2y〉
(b)
= 〈G̃x, U2y〉

(c)
= 〈x, G̃∗U2y〉, (3.212)

65Note that, unlike in (3.202) and (3.205), here we do not assume causal filters.
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where (a) and (c) follow from the definition of the adjoint; and (b) from (3.197).

Then, (3.211) will hold only if G̃∗ = G, that is, g̃∗n = g−n.
The above proof that Hermitian transposition equals time-reversal will appear

prominently in the analysis of sampling in Section 5.3. In particular, we will prove
that when the impulse response of the filter g is orthogonal to its even shifts as in
(3.213) below and g̃∗n = g−n, then the operation of filtering with g̃, downsampling
by 2, upsampling by 2, and filtering with g is an orthogonal projection onto the
subspace spanned by g and its even shifts.

Orthogonality of a filter’s impulse response to its even shifts Filters that have
impulse responses orthogonal to their even shifts,

〈gn, gn−2k〉n = δk, (3.213)

play an important role in the analysis of filter banks. Geometrically, (3.213) means
that the columns of GU2 in (3.205) are orthonormal to each other (similarly for the

rows of D2G̃); that is,

I = (GU2)
∗(GU2) = U∗

2G
∗GU2 = D2G

∗GU2. (3.214)

While we have written the above in its most general form using Hermitian trans-
position to allow for complex filters, most of the time, we will be dealing with real
filters, and thus simple transposition.

We can see (3.213) as the deterministic autocorrelation of g downsampled by
2. Write the deterministic autocorrelation of g as in (3.17),

ak = 〈gn, gn−k〉n,

and note that it has a single nonzero even term, g0 = 1,

a2k = δk. (3.215)

Assuming now a real g, in the z-transform domain, A(z) = G(z)G(z−1) using
(3.146). Keeping only the even terms can be accomplished by adding A(z) and
A(−z) and dividing by 2. Therefore, (3.215) can be expressed as

A(z) +A(−z) = G(z)G(z−1) +G(−z)G(−z−1) = 2, (3.216)

which on the unit circle leads to

|G(ejω)|2 + |G(ej(ω+π))|2 = 2. (3.217)

This quadrature mirror formula, also called power complementarity, is central in the
design of orthonormal filter banks. In reaching (3.217) we have assumed that g is
real, and used both

G(z)G(z−1)
∣∣
z=ejω

= G(ejω)G(e−jω) = G(ejω)G∗(ejω) = |G(ejω)|2,
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and

G(−z)G(−z−1)
∣∣
z=ejω

= |G(ej(ω+π))|2.

In summary, a real filter satisfying any of the conditions below is called or-
thogonal :

〈gn, gn−2k〉n = δk

MatrixView←→ D2G
⊤GU2 = I,

ZT←→ G(z)G(z−1) +G(−z)G(−z−1) = 2,
DTFT←→ |G(ejω)|2 + |G(ej(ω+π))|2 = 2.

(3.218)

Compare this with the expression for the allpass filter in (3.118). An allpass impulse
response h is orthogonal to all its shifts, at the expense of having no frequency
selectivity; here we have a basis containing only even shifts, and some frequency
selectivity exists (g is a half-band lowpass filter).

3.7.5 Polyphase representation

Multirate processing brings a major twist to signal processing: shift invariance is
replaced by periodic shift variance, which replaces Toeplitz matrices with block-
Toeplitz matrices. This section examines polyphase representation, a method to
transform single-input, single-output linear periodically shift-varying systems into
multiple-input, multiple-output linear shift-invariant systems. For simplicity, we
introduce all of the concepts for period 2 and generalize to period N only at the
end of the section.

Polyphase representation of sequences The polyphase decomposition with period
2 splits a sequence into its even- and odd-indexed subsequences, called even and
odd polyphase components. We will see later why it is convenient to use both of
two different conventions: for the odd subsequence to be either advanced or delayed
relative to the even subsequence.

Using the convention of advancing the odd subsequence, a sequence x is de-
composed into

[
. . . x−2 x0 x2 x4 . . .

]⊤
and

[
. . . x−1 x1 x3 x5 . . .

]⊤
.

This splitting operation, using operations we have studied thus far, is illustrated in
Figure 3.29: to get the even polyphase component, we simply downsample by 2 to
remove the odd samples from x; to get the odd polyphase component, we shift x
to the left by one (advance by one represented by z) and then downsample by 2 to
remove the odd samples. The polyphase components and their z-transforms are

x0,n = x2n
ZT←→ X0(z) =

∑

n∈Z

x2nz
−n, (3.219a)

x1,n = x2n+1
ZT←→ X1(z) =

∑

n∈Z

x2n+1z
−n. (3.219b)
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x 2 x0

z 2 x1

2 +

2 z−1

x

Figure 3.29 Forward and inverse polyphase transform.

To get the original sequence back, we interleave the two polyphase compo-
nents. Figure 3.29 illustrates this: upsampling the even polyphase component by 2
gives the even-indexed samples of x; upsampling the odd polyphase component and
shifting to the right by one (delay by one represented by z−1) gives the odd-indexed
samples of x,

xn =

{
x0,n/2, for n even;
x1,(n−1)/2, for n odd

ZT←→ X(z) = X0(z
2) + z−1X1(z

2).

(3.219c)

Deterministic autocorrelation Let us denote by a0,n the deterministic autocor-
relation sequence of the polyphase component x0,n, by a1,n the deterministic au-
tocorrelation sequence of the polyphase component x1,n, and by c0,1,n their de-
terministic crosscorrelation. Then, we can represent the polyphase components of
the deterministic autocorrelation (3.146) via the deterministic autocorrelation and
crosscorrelation of the polyphase components (for simplicity, we show it for a real
sequence x and in the z-transform domain),

A(z) = X(z)X(z−1)

= (X0(z
2) + z−1X1(z

2))(X0(z
−2) + zX1(z

−2))

= (A0(z
2) +A1(z

2)) + z−1(C1,0(z
2) + z2C0,1(z

2)), (3.220)

where the first and second terms are the first and second polyphase components of
the deterministic autocorrelation, respectively, and satisfy

A0(z
2) +A1(z

2) = A0(z
−2) +A1(z

−2), (3.221a)

C1,0(z
2) + z2C0,1(z

2) = z2(C1,0(z
−2) + z−2C0,1(z

−2)). (3.221b)

The polyphase transform maps a sequence to a length-2 vector sequence with
its polyphase components as elements. Using (3.24), its deterministic autocorrela-
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tion is a matrix given by

An =

[
a0,n c0,1,n
c∗0,1,−n a1,n

]
= A∗

−n, (3.222a)

A(ejω) =

[
A0(e

jω) C0,1(e
jω)

C∗
0,1(e

jω) A1(e
jω)

]
= A∗(ejω), (3.222b)

A(z) =

[
A0(z) C0,1(z)

C0,1∗(z−1) A1(z)

]
= A∗(z

−1). (3.222c)

Polyphase representation of filtering Applying the polyphase decomposition to
an impulse response g gives a pair of filters,
[
. . . g−2 g0 g2 g4 . . .

]⊤
and

[
. . . g−1 g1 g3 g5 . . .

]⊤
,

leading to

g0,n = g2n
ZT←→ G0(z) =

∑

n∈Z

g2nz
−n, (3.223a)

g1,n = g2n+1
ZT←→ G1(z) =

∑

n∈Z

g2n+1z
−n, (3.223b)

G(z) = G0(z
2) + z−1G1(z

2). (3.223c)

When g is an FIR filter, its polyphase components are also FIR filters, each of about
half the length of the original filter.

The polyphase decomposition can be used to break filtering of x with g into
two steps: first, each polyphase component of x is filtered with each polyphase
component of g; then, the results are appropriately combined. As we will verify,
the appropriate way to combine the results is as depicted in Figure 3.30(b) using
z-transform expressions. The filters in Figure 3.30(b) can be gathered into the
polyphase matrix

Gp(z) =

[
G0(z) z−1G1(z)
G1(z) G0(z)

]
(3.224)

to give the equivalent block diagram shown in Figure 3.30(c). The matrix Gp(z) is
pseudocirculant (see Appendix 3.B.2).

To check that the equivalence is correct, we perform the following calculation:

Y (z)
(a)
=
[
1 z−1

]
Gp(z

2)

[
X0(z

2)
X1(z

2)

]

=
[
1 z−1

] [G0(z
2) z−2G1(z

2)
G1(z

2) G0(z
2)

] [
X0(z

2)
X1(z

2)

]

=
[
1 z−1

] [G0(z
2)X0(z

2) + z−2G1(z
2)X1(z

2)
G1(z

2)X0(z
2) +G0(z

2)X1(z
2)

]

= G0(z
2)X0(z

2) + z−2G1(z
2)X1(z

2) + z−1(G1(z
2)X0(z

2) +G0(z
2)X1(z

2))

=
(
G0(z

2) + z−1G1(z
2)
) (
X0(z

2) + z−1X1(z
2)
)

(b)
= G(z)X(z),
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X(z) G(z) Y (z)

(a) A filter.

X(z) 2 G0(z) + 2 +

G1(z)

z−1G1(z)

z 2 G0(z) + 2 z−1

Y (z)

(b) An equivalent system using polyphase decompositions.

X(z) 2

Gp(z)

2 +

z 2 2 z−1

Y (z)

(c) An equivalent system using the polyphase matrix.

Figure 3.30 Polyphase representation and implementation of filtering.

where (a) follows from the inspection of Figure 3.30(c) and the effect of upsampling
by 2 being the replacement of z with z2; and (b) from (3.219c) and (3.223c).

We have seen in (3.66) that the adjoint of the filter operator G is G∗ = G̃
when g̃n = g∗−n. Applying the polyphase decomposition to the time-reversed and
conjugated version of g gives the pair of filters

[
. . . g∗2 g∗0 g∗−2 g∗−4 . . .

]⊤
and

[
. . . g∗1 g∗−1 g∗−3 g∗−5 . . .

]⊤
.

Assuming real filter coefficients, this gives

G̃0(z) = G0(z
−1) and G̃1(z) = zG1(z

−1) (3.225)

in the z-transform domain. We thus find the polyphase representation of the adjoint
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282 Sequences and discrete-time systems

as

G̃p(z)
(a)
=

[
G̃0(z) z−1G̃1(z)

G̃1(z) G̃0(z)

]
(b)
=

[
G0(z

−1) G1(z
−1)

zG1(z
−1) G0(z

−1)

]
= G⊤

p (z
−1), (3.226)

where (a) follows from (3.224); and (b) from (3.225). This is consistent with the
definition of the adjoint of a polynomial matrix in Appendix 3.B.2.

Example 3.35 (Polyphase representation of filtering) Let
G(z) = 1 + z−1. Then, its polyphase representation (3.224) is

Gp(z) =

[
1 z−1

1 1

]
. (3.227)

Its adjoint is (see (3.307))

G⊤
p (z

−1) =

[
1 1
z 1

]
=

[
G̃0(z) z−1G̃1(z)

G̃1(z) G̃0(z)

]
, (3.228)

yielding G̃(z) = 1 + z, which is consistent with (3.66).

Polyphase representation of upsampling followed by filtering Using the block
diagram in Figure 3.30(b), we will deduce a simple polyphase representation for
upsampling by 2 followed by filtering with g as in Figure 3.26(a). Suppose that an
upsampled signal is input to the system in Figure 3.30(b). The upsampled input has
only an even polyphase component (that is, the odd polyphase component equals
zero), so the output of the lower downsampler is zero. We may thus omit the third
and fourth filters in the dashed box in Figure 3.30(b). In the top input branch,
the downsampling by 2 cancels the upsampling by 2, so Figure 3.31(a) provides an
equivalent block diagram.

For a polyphase expression of the output, it follows from Figure 3.31(a) that

Y (z) = G0(z
2)X(z2) + z−1G1(z

2)X(z2) = Y0(z
2) + z−1Y1(z

2),

with Y0(z) = G0(z)X(z) and Y1(z) = G1(z)X(z) the polyphase components of
Y (z).

The polyphase representation can lead to a reduction in computational com-
plexity. In the direct implementation shown in Figure 3.26(a), the filtering with g is
done after upsampling and thus at twice the rate of the filtering in Figure 3.31(a).
Suppose that g is an FIR filter. Then, relative to the direct implementation, each of
the two filters in the polyphase implementation operates at half the rate and with
filters of half the length. This leads to computational savings by about a factor of
two. Similar savings arise from polyphase representation of downsampling preceded
by filtering. These are discussed in detail in Section 3.9.3.
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x g0

g1

2 +

2 z−1

y

(a) Polyphase implementation of upsampling and filtering from Figure 3.26(a).

X(z) 2

z 2

G0(z)

z−1G1(z)

+

(b) System equivalent to system of Figure 3.30(b) followed by downsampling by 2.

x 2

z 2

g̃0

g̃1

+ y

(c) Polyphase implementation of filtering and downsampling from Figure 3.25(a).

Figure 3.31 Polyphase representations of multirate operations. Note that the definitions
of polyphase components in (a) and (c) are different; see (3.223) and (3.229).

Polyphase representation of downsampling preceded by filtering Similar reason-
ing with block diagrams leads us to a simple equivalent for filtering with g̃ followed
by downsampling by 2 as in Figure 3.25(a). Suppose that the output of the system
in Figure 3.30(b) is downsampled by 2. Since the second and fourth filters inside
the dashed box lead only to odd-indexed samples, which are discarded by downsam-
pling by 2, we may omit the second and fourth filters. In the top output branch,
the upsampling by 2 is canceled by the subsequent downsampling by 2, so we get
the equivalent system shown in Figure 3.31(b).

The presence of the delay factor z−1 in the second filter z−1G1(z) is inelegant
and can be eliminated by a change of convention in the definition of polyphase com-
ponents. Changing the numbering of the odd polyphase component by 1 (replacing
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284 Sequences and discrete-time systems

an advance with a delay), we decompose filter g̃ into polyphase components

[
. . . g̃−2 g̃0 g̃2 g̃4 . . .

]⊤
and

[
. . . g̃−3 g̃−1 g̃1 g̃3 . . .

]⊤
,

leading to

g̃0,n = g̃2n
ZT←→ G̃0(z) =

∑

n∈Z

g̃2nz
−n, (3.229a)

g̃1,n = g̃2n−1
ZT←→ G̃1(z) =

∑

n∈Z

g̃2n−1z
−n, (3.229b)

G̃(z) = G̃0(z
2) + zG̃1(z

2). (3.229c)

With these polyphase components, we obtain the equivalent system shown in Fig-
ure 3.31(c).

Note that the duality between downsampling preceded by filtering and up-
sampling followed by filtering we have seen earlier shows through the polyphase
decomposition as well, (3.229c) and (3.223c). This duality, including the change
from z−1 to z, is related to the transposition and time reversal seen in (3.210).

Polyphase representation with period N Generalizations now follow naturally.
The polyphase transform of size N decomposes a sequence into N phases,

[
. . . xN(n−1)+j xNn+j xN(n+1)+j . . .

]⊤
, j ∈ {0, 1, . . . , N − 1},

leading to the expressions for a polyphase representation of a sequence, and two
conventions for polyphase representation of a filter:

xj,n = xNn+j
ZT←→ Xj(z) =

∑

n∈Z

xNn+jz
−n, (3.230a)

X(z) =

N−1∑

j=0

z−jXj(z
N), (3.230b)

gj,n = gNn+j
ZT←→ Gj(z) =

∑

n∈Z

gNn+jz
−n, (3.230c)

G(z) =

N−1∑

j=0

z−jGj(z
N ), (3.230d)

g̃j,n = g̃Nn−j
ZT←→ G̃j(z) =

∑

n∈Z

g̃Nn−jz
−n, (3.230e)

G̃(z) =

N−1∑

j=0

zjG̃j(z
N ). (3.230f)

Note the difference between how polyphase components of g̃ are defined compared
with the polyphase components of g. Those for g are numbered forward modulo N ,
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3.8 Stochastic processes and systems 285

that is, the zeroth polyphase component is the one at nN , the first is the one at
nN + 1, the second that at nN + 2, and so on (the same as for sequences). Those
for g̃, on the other hand, are numbered in reverse modulo N , that is, the zeroth
polyphase component is the one at nN , but the first is the one at (Nn − 1), the
second is that at (Nn − 2), and so on, in reverse order from those for G. As an
illustration, we give below both conventions for N = 3:

g0,n =
[
. . . g−3 g0 g3 g6 . . .

]⊤
,

g1,n =
[
. . . g−2 g1 g4 g7 . . .

]⊤
,

g2,n =
[
. . . g−1 g2 g5 g8 . . .

]⊤
,

g̃0,n =
[
. . . g̃−3 g̃0 g̃3 g̃6 . . .

]⊤
,

g̃1,n =
[
. . . g̃−4 g̃−1 g̃2 g̃5 . . .

]⊤
,

g̃2,n =
[
. . . g̃−5 g̃−2 g̃1 g̃4 . . .

]⊤
.

3.8 Stochastic processes and systems

Many applications of signal processing involve resolving, reducing, or exploiting un-
certainty. Resolving uncertainty includes identifying which out of a set of sequences
was transmitted over a noisy channel; reducing uncertainty includes estimating pa-
rameters from noisy observations; and exploiting uncertainty includes cryptographic
encoding in which the meanings of symbols are hidden from anyone lacking the key.
Careful modeling of uncertainty is also exploited in compression when short descrip-
tions are assigned to the most likely inputs.

One of the tools for modeling uncertainty is probability theory (see Appendix
2.C). In what follows, we discuss the use of probabilistic models for sequences
within the context of discrete-time signal processing. Following the structure of the
chapter in its entirety, we progress from discrete-time stochastic processes (random
sequences) to the effect of systems (almost exclusively LSI systems) on stochastic
processes in the time domain,66 then the application of Fourier-domain analysis,
and the analysis of multirate systems. Finally, we apply Hilbert space tools to
minimum mean-squared error estimation of stochastic processes.

3.8.1 Stochastic processes

A discrete-time stochastic process x is a countably infinite collection of jointly dis-
tributed random variables {. . . , x0, x1, x2, . . .}. For example, our temperature ex-
ample from the opening of the chapter – the temperature at noon in front of your
house measured every day – could be modeled as a stochastic process. Especially

66We study systems that act deterministically on random signals. Some of this is analogous to
systems acting randomly on deterministic signals, but we do not study the latter explicitly.
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286 Sequences and discrete-time systems

when the index represents time, a stochastic process is often called a time series.
Other commonly studied time series include stock market closing prices.

We use the following notations for moments and related quantities defined on
stochastic processes:

mean µx,n E[ xn ]

variance var(xn) E
[
|xn − µx,n|2

]

standard deviation σx,n
√
var(xn)

autocorrelation ax,n,k E
[
xnx

∗
n−k

]

crosscorrelation cx,y,n,k E
[
xny

∗
n−k

]

(3.231)

Since these are moments up to second order, they are often referred to as second-
order statistics. The mean, variance, and standard deviation are (determinis-
tic) sequences. The autocorrelation and crosscorrelation are (deterministic) two-
dimensional sequences. The variance can be computed from the autocorrelation
and mean through

σ2
x,n = ax,n,0 − |µx,n|2, n ∈ Z. (3.232)

The autocorrelation and crosscorrelation satisfy the symmetries

ax,n,k = a∗x,n−k,−k, k, n ∈ Z, (3.233a)

and
cy,x,n,k = c∗x,y,n−k,−k, k, n ∈ Z. (3.233b)

There is a common abbreviation to express that all the random variables in
a stochastic process are independent and identically distributed : i.i.d. For an i.i.d.
process, the mean, variance, and standard deviation are constant sequences,

µx,n = µx, n ∈ Z,

var(xn) = σ2
x, n ∈ Z,

σx,n = σx, n ∈ Z.

The autocorrelation also has a restricted form,

ax,n,k =

{
E
[
|xn|2

]
, for k = 0;

E[ xn ] E
[
x∗n−k

]
, for k 6= 0

=

{
σ2
x + µxµ

∗
x, for k = 0;

µxµ
∗
x, for k 6= 0

= |µx|2 + σ2
xδk.

Stationarity Stationarity generalizes the i.i.d. property by allowing dependence
between the random variables in a stochastic process, but only in a manner that
preserves invariance under a shift operator.
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Cambridge University Press (ISBN 110703860X) v1.1 [May 2014] [free version] Comments to book-errata@FourierAndWavelets.org
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Definition 3.18 (Stationary process) A discrete-time stochastic process x
is called stationary when, for any finite set of time indices {n0, n1, . . . , nL} ⊂ Z

and any time shift k ∈ Z, the joint distributions of

(xn0 , xn1 , . . . , xnL
) and (xn0+k, xn1+k, . . . , xnL+k)

are identical.

Stationarity is a highly restrictive condition. Most of the time, we will assume the
weaker condition of wide-sense stationarity, which depends only on second-order
statistics.

Definition 3.19 (Wide-sense stationary process) A discrete-time stochas-
tic process x is called wide-sense stationary (WSS) when its mean sequence µx,n

is a constant,
µx,n = E[ xn ] = µx, n ∈ Z, (3.234a)

and its autocorrelation depends only on the time difference k,

ax,n,k = E
[
xnx

∗
n−k

]
= ax,k, k, n ∈ Z. (3.234b)

Stochastic processes x and y are called jointly WSS when each is WSS and their
crosscorrelation depends only on the time difference k,

cx,y,n,k = E
[
xny

∗
n−k

]
= cx,y,k, k, n ∈ Z. (3.234c)

With wide-sense stationarity, (3.232) and (3.233a) simplify to

σ2
x,n = ax,0 − |µx|2 = σ2

x, n ∈ Z,

and
ax,k = a∗x,−k, k ∈ Z.

With joint wide-sense stationarity, (3.233b) simplifies to the conjugate symmetry

cy,x,k = c∗x,y,−k, k ∈ Z.

As with any other modeling assumption, wide-sense stationarity should be
used with caution. It is often a useful approximation over a short enough time
period; for example, many biological processes are approximately stationary over
a period of milliseconds, while the noise in a communications channel might be
approximately stationary over a much longer period of time.67

67Consideration of an appropriate time scale is an essential part of modeling. As John Maynard
Keynes wrote, “The long run is a misleading guide to current affairs. In the long run we are all
dead.”
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x h y

Figure 3.32 An LSI system with WSS input.

White noise A white noise68 process x is a WSS stochastic process whose mean
is zero and whose elements are uncorrelated,

µx,n = 0; var(xn) = σ2
x; σx,n = σx; ax,k = σ2

xδk. (3.235)

The random variables in a white noise process are not always independent. The
term whitening, or decorrelation, is used to mean processing that results in a white
noise process. It is basically a diagonalization of the covariance matrix.

Gaussian processes The distribution of a Gaussian process – a stochastic process
consisting of jointly Gaussian random variables – is completely specified by its
second-order statistics. Since jointly Gaussian random variables are uncorrelated
if and only if they are independent, any white Gaussian process is i.i.d. White
Gaussian processes often arise in physical models as additive noise; thus, the term
additive white Gaussian noise (AWGN) is common.

3.8.2 Systems

Consider a BIBO-stable LSI system described by its impulse response h with WSS
input sequence x, as depicted in Figure 3.32. What can we say about the output y?
It is given by the convolution (3.61), so each yn is a linear combination of random
variables. We will demonstrate that y is a WSS process by deriving formulas for its
second-order statistics.

We start with the mean,

µy,n = E[ yn ]
(a)
= E

[
∑

k∈Z

xkhn−k

]
(b)
=
∑

k∈Z

E[ xk ]hn−k
(c)
=
∑

k∈Z

µx,khn−k

(d)
=
∑

k∈Z

µxhn−k = µx

∑

k∈Z

hn−k
(e)
= µxH(ej0) = µy, (3.236a)

where (a) follows from (3.61); (b) from the linearity of the expectation; (c) from the
definition of the mean sequence; (d) from x being WSS, (3.234a); and (e) from the
frequency response of the LSI system (which exists because the system is BIBO-
stable). The final equality emphasizes that the mean of the output is a constant,

68We will shortly see that the DTFT of the autocorrelation of a white noise is a constant,
mimicking the spectrum of white light; thus the term white noise.
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independent of n. The autocorrelation is

ay,n,k = E
[
yny

∗
n−k

] (a)
= E

[
∑

m∈Z

xn−mhm
∑

ℓ∈Z

x∗n−k−ℓh
∗
ℓ

]

(b)
=

∑

m∈Z

∑

ℓ∈Z

hmh
∗
ℓE
[
xn−mx∗n−k−ℓ

] (c)
=

∑

m∈Z

∑

ℓ∈Z

hmh
∗
ℓax,n−m,k−(m−ℓ)

(d)
=

∑

m∈Z

∑

ℓ∈Z

hmh
∗
ℓax,k−(m−ℓ)

(e)
=
∑

p∈Z

(
∑

m∈Z

hmh
∗
m−p

)
ax,k−p

(f)
=
∑

p∈Z

ah,pax,k−p = ay,k, (3.236b)

where (a) follows from (3.61); (b) from the linearity of the expectation; (c) from
the definition of the autocorrelation; (d) from x being WSS, (3.234b); (e) from
the change of variable p = m − ℓ; and (f) from the definition of deterministic
autocorrelation (3.17). The final step emphasizes the lack of dependence of ay,n,k on
n. Combined with the lack of dependence of µy,n on n, we see that, when the input
x is WSS, the output y is WSS as well. We also see that the autocorrelation of the
output is the convolution of the autocorrelation of the input and the deterministic
autocorrelation of the impulse response of the system,

ay,k = ah,k ∗k ax,k (3.236c)

(a)
= hk ∗k h∗−k ∗k ax,k, (3.236d)

where (a) follows from (3.62d). The z-transform equivalents are

Ay(z) = Ah(z)Ax(z) (3.236e)

= H(z)H∗(z
−1)Ax(z), (3.236f)

assuming that the regions of convergence of Ah(z) and Ax(z) have a nonempty
intersection.

Computing the crosscorrelation between the input and the output shows that
they are jointly WSS:

cx,y,n,k = E
[
xny

∗
n−k

] (a)
= E

[
xn
∑

ℓ∈Z

h∗ℓx
∗
n−k−ℓ

]
= E

[
∑

ℓ∈Z

h∗ℓxnx
∗
n−(k+ℓ)

]

(b)
=
∑

ℓ∈Z

h∗ℓE
[
xnx

∗
n−(k+ℓ)

]
(c)
=
∑

ℓ∈Z

h∗ℓax,n,k+ℓ

(d)
=
∑

ℓ∈Z

h∗ℓax,k+ℓ = cx,y,k, (3.237a)

where (a) follows from (3.61); (b) from the linearity of the expectation; (c) from the
definition of the autocorrelation; and (d) from x being WSS, (3.234b). The final
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ax,k h∗−k hk ay,k
cx,y,k

ax,k hk h∗−k
ay,k

cy,x,k

Figure 3.33 Block diagram representations for the autocorrelation and crosscorrelations
resulting from filtering a WSS process with an LSI system as in Figure 3.32.

step emphasizes the lack of dependence of cx,y,n,k on n. This crosscorrelation can
also be written as a convolution,

cx,y,k = h∗−k ∗k ax,k
ZT←→ Cx,y(z) = H∗(z

−1)Ax(z). (3.237b)

Similarly,

cy,x,k = hk ∗k ax,k ZT←→ Cy,x(z) = H(z)Ax(z). (3.237c)

Expressions (3.236d), (3.237b), and (3.237c) are represented by the block diagrams
in Figure 3.33. We will use these expressions shortly to make some important
observations in the Fourier domain.

Autoregressive moving-average process When a white noise process is input to
a BIBO-stable, causal LSI system with a rational transfer function, the output is
called an autoregressive moving-average (ARMA) process. LSI systems with ratio-
nal transfer functions are those described by linear, constant-coefficient difference
equations. A generative model for an ARMA process is thus

yn =

M∑

k=0

bkxn−k +

N∑

k=1

akyn−k, (3.238)

where x is a white noise process with σ2
x = 1. This expression is the same as the

linear, constant-coefficient difference equation (3.55) except for the sign in front of
the second sum.

When every ak is zero, the generative model simplifies to

yn =

M∑

k=0

bkxn−k.

This sequence is called a moving-average (MA) process since it is the average over
a moving or sliding window of input samples (see also Example 3.2). The number
M of past input samples in the generative model is the order of the MA process.
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Example 3.36 (First-order MA process) AnMA-1 process is generated by

yn = b0xn + b1xn−1, (3.239)

where x is a white noise process with σ2
x = 1. Let hn = b0δn + b1δn−1. Then,

y is generated by filtering white noise x by h. The mean of y is zero; this
follows from (3.236a) and µx = 0. The most convenient expression for finding
the autocorrelation of y is (3.236f)

Ay(z) = (b0 + b1z
−1)(b∗0 + b∗1z)σ

2
x = b0b

∗
1z + (|b0|2 + |b1|2) + b∗0b1z

−1.

By taking the inverse z-transform, we have

ay,k = b0b
∗
1δk+1 + (|b0|2 + |b1|2)δk + b∗0b1z

−1δk−1.

The variance of y is
σ2
y = ay,0 = |b0|2 + |b1|2.

When, instead, b0 is nonzero and bk = 0 for k > 0, the generative model simplifies
to

yn = b0xn +

N∑

k=1

akyn−k.

The sequence is called an autoregressive (AR) process. The number N of past
output samples in the generative model is the order of the AR process.

Example 3.37 (First-order AR process) An AR-1 process is generated by

yn = bxn + ayn−1, (3.240)

where x is a white noise process with σ2
x = 1. For this generative model to be

BIBO-stable, we must have |a| < 1. As in the previous example, the mean of the
process is zero. We may follow the same steps to compute the autocorrelation
and variance. Instead, we illustrate a recursive computation.

Starting with (3.240),

σ2
y = E

[
|bxn + ayn−1|2

] (a)
= |b|2σ2

x + |a|2E
[
|yn−1|2

] (b)
= |b|2 + |a|2σ2

y,

where (a) follows from the linearity of the expectation and xn being uncorrelated
with yn−1 (since x is white and the generative model is causal); and (b) from the
wide-sense stationarity of y and σ2

x = 1. Thus,

ay,0 = σ2
y =

|b|2
1− |a|2 .

For k ∈ Z+,

ay,k = E
[
yny

∗
n−k

] (a)
= E

[
(bxn + ayn−1)y

∗
n−k

]

(b)
= bE

[
xny

∗
n−k

]
+ aE

[
yn−1y

∗
n−k

] (c)
= aay,k−1,
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292 Sequences and discrete-time systems

where (a) follows from (3.240); (b) from the linearity of the expectation; and
(c) from xn being uncorrelated with past values of y and the definition of the
autocorrelation. Similarly, for k ∈ Z−,

ay,k = E
[
yny

∗
n−k

] (a)
= E[ yn(bxn−k + ayn−k−1)

∗ ]

(b)
= b∗E

[
ynx

∗
n−k

]
+ a∗E

[
yny

∗
n−k−1

] (c)
= a∗ay,k+1,

where (a) follows from (3.240); (b) from the linearity of the expectation; and
(c) from xn−k being uncorrelated with past values of y and the definition of the
autocorrelation. By solving these recursions, we get

ay,k =

{
akσ2

y, for k = 0, 1, . . . ;
(a∗)−kσ2

y, for k = −1, −2, . . . .

When a is real, the autocorrelation has the simpler form

ay,k = a|k|σ2
y, k ∈ Z.

To normalize to σ2
y = 1, set b =

√
1− |a|2, leading to the generating filter

hn =
√

1− |a|2anun, n ∈ Z. (3.241)

3.8.3 Discrete-time Fourier transform

Just like for deterministic sequences, we can use Fourier techniques to gain insight
into the behavior of discrete-time stochastic processes and systems. While we cannot
take a DTFT of a stochastic process,69 we can make assessments based on averages
(moments), such as taking the DTFT of the autocorrelation.

Power spectral density Let x be a WSS stochastic process. The DTFT of its
autocorrelation (3.234b) (which we assume to have sufficient decay so as to be
absolutely summable) is

Ax(e
jω) =

∑

k∈Z

ax,ke
−jωk =

∑

k∈Z

E
[
xnx

∗
n−k

]
e−jωk. (3.242)

This is called the power spectral density, the counterpart of the energy spectral
density for deterministic sequences in (3.100). The power spectral density exists
if and only if x is WSS, which is a consequence of the Wiener–Khinchin theorem.
When x is real, the power spectral density is nonnegative and thus admits a spectral
factorization

Ax(e
jω) = U(ejω)U∗(ejω),

69The technical difficulties can be subtle, but the lack of decay of stationary processes puts them
outside the classes of signals for which we considered convergence of the DTFT in Section 3.4.2.
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Deterministic sequences WSS discrete-time stochastic processes

Energy spectral density Power spectral density

A(ejω) = |X(ejω)|2 A(ejω) =
∑

k∈Z

E[ xnx
∗
n−k ]e−jωk

Energy Power

E =
1

2π

∫ π

−π
A(ejω) dω P =

1

2π

∫ π

−π
A(ejω) dω

E = a0 =
∑

n∈Z

|xn|2 P = a0 = E[ |xn|2 ]

Table 3.8 Energy concepts for deterministic sequences and their counterpart power
concepts for WSS discrete-time stochastic processes.

where U(ejω) is its (nonunique) spectral root. The average of the power spectral
density over the frequency range,

Px =
1

2π

∫ π

−π

Ax(e
jω) dω = ax,0 = E

[
|xn|2

]
, (3.243)

is the power, the counterpart of the energy for deterministic sequences in (3.102).
The power spectral density measures the distribution of power over the frequency
range. These four concepts – energy and energy spectral density for deterministic
sequences, and power and power spectral density for WSS processes – are summa-
rized in Table 3.8.

Example 3.38 (First-order MA process, Example 3.36 continued)
Consider a unit-power version of an MA-1 process as in (3.239) by setting
b0 = b1 = 1/

√
2. Its power spectral density is

Ay(e
jω) =

1

2
(1 + ejω)(1 + e−jω) = 1 +

1

2
(ejω + e−jω) = 1 + cosω. (3.244)

It is positive semidefinite; that is, Ay(e
jω) ≥ 0.

Example 3.39 (First-order AR process, Example 3.37 continued)
Consider a unit-power version of an AR-1 process as generated by the filter in
(3.241) with real-valued a. Its power spectral density is

Ay(e
jω) =

1− a2
(1 − aejω)(1 − ae−jω)

=
1− a2

|1− ae−jω|2 , |a| < 1. (3.245)

This function is positive definite; that is, Ay(e
jω) > 0.

Power spectral density estimation is typically done by estimating local behavior,
requiring some form of local Fourier transform.
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294 Sequences and discrete-time systems

White noise Using (3.235) and Table 3.4, we see that the power spectral density
of white noise is a constant,

A(ejω) = σ2
x. (3.246)

Its variance, or power, is

a0 =
1

2π

∫ π

−π

σ2
x dω = σ2

x.

Effect of filtering Consider an LSI system with impulse response h, WSS input x,
andWSS output y, as depicted in Figure 3.32. Using (3.236c) for the autocorrelation
of y, the power spectral density of the output is given by

Ay(e
jω) = Ah(e

jω)Ax(e
jω) = |H(ejω)|2Ax(e

jω), (3.247)

where Ah(e
jω) = |H(ejω)|2 is the DTFT of the deterministic autocorrelation of h,

according to Table 3.4. The quantity

Py = E
[
y2n
]

=
1

2π

∫ π

−π

Ay(e
jω) dω =

1

2π

∫ π

−π

|H(ejω)|2Ax(e
jω) dω = ay(0)

is the output power. Similarly to (3.247), using (3.237b) and (3.237c), we can express
the cross power spectral density between the input and the output as

Cx,y(e
jω) = H∗(ejω)Ax(e

jω), (3.248a)

Cy,x(e
jω) = H(ejω)Ax(e

jω). (3.248b)

3.8.4 Multirate sequences and systems

When a discrete-time stochastic process makes its way through a multirate system,
stationarity or wide-sense stationarity is in general not preserved. We will see that
periodic shift variance for deterministic systems has its counterpart in wide-sense
cyclostationarity70 for stochastic systems.

Definition 3.20 (Wide-sense cyclostationary process) A stochastic pro-
cess x is called wide-sense cyclostationary of period N (WSCSN ) when the vector
of its polyphase components is WSS.

Our temperature example comes in handy again. Take the temperature se-
quence x and decompose it into its polyphase components modulo 365. Then, each
calendar day can follow its own statistical behavior. For example, the temperature
at noon on January 14th in New York City will likely be low, while the measurement
taken on July 14th will likely be high. The notion of cyclostationarity for LPSV
systems is intuitive, given their cyclic nature. We now discuss a few basic operations
for illustration only; see the Further reading for pointers to the literature.

70Cyclostationarity is also called block-stationarity or N-stationarity.
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Cambridge University Press (ISBN 110703860X) v1.1 [May 2014] [free version] Comments to book-errata@FourierAndWavelets.org



3.8 Stochastic processes and systems 295

x 2

z 2

σ0

σ1

2 +

2 z−1

y

Figure 3.34 Generative model for the WSCS2 sequence from Example 3.40. The input
x is WSS, while the output y is WSCS2.

The mean and autocorrelation of a WSCSN sequence x satisfy

µx,n+N = E[ xn+N ] = E[ xn ] = µx,n, (3.249a)

ax,n+N,k = E
[
xn+Nx∗n+N−k

]
= E

[
xnx

∗
n−k

]
= ax,n,k, (3.249b)

exhibiting a periodicity with respect to time index n, in contrast to the lack of
dependence on n in (3.234a) and (3.234b). Note also that

x is WSCSN ⇒ x is WSCSℓN , ℓ ∈ Z+.

Beware that (3.249b) does not imply that ax,n,k is periodic in the time lag k, as we
now illustrate.

Example 3.40 (Generative model for a WSCS2 sequence) Consider
the system in Figure 3.34, where x is a white noise process with σ2

x = 1. The
system scales xn by σ0 for even n and by σ1 for odd n, with σ0 and σ1 real
numbers. Since the components of x are uncorrelated,

ay,2n,k = E
[
y2ny

∗
2n−k

]
= σ2

0δk, k, n ∈ Z,

ay,2n+1,k = E
[
y2n+1y

∗
2n+1−k

]
= σ2

1δk, k, n ∈ Z.

It is easy to check that (3.249) holds, so the sequence y is WSCS with period 2.
The autocorrelation is not, however, a periodic function of the time lag k,

ay,2n,k+2 = E
[
y2ny

∗
2n−k−2

]
= σ2

0δk+2 6= σ2
0δk = ay,2n,k.

As we have done earlier for deterministic sequences, we can characterize vector
processes using autocorrelation matrices. For the sake of simplicity, let us consider
a WSS sequence x and the vector of its polyphase components of period 2. Its
matrix autocorrelation will be

Ak =

[
a0,k c01,k
c10,k a1,k

]
=

[
E[ x0,nx

∗
0,n−k ] E[ x0,nx

∗
1,n−k ]

E[ x1,nx
∗
0,n−k ] E[ x1,nx

∗
1,n−k ]

]

(a)
=

[
E[ x2nx

∗
2n−2k ] E[ x2nx

∗
2n−2k+1 ]

E[ x2n+1x
∗
2n−2k ] E[ x2n+1x

∗
2n−2k+1 ]

]
(b)
=

[
a2k a2k−1

a2k+1 a2k

]
,
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where (a) follows from the definition of the polyphase components of x; and (b)
from x being WSS. In the DTFT domain,

A(ejω) =

[
A0(e

jω) e−jωA1(e
jω)

A1(e
jω) A0(e

jω)

]
, (3.250)

where A(ejω) is the power spectral density of x, and A0(e
jω) and A1(e

jω) are
the DTFTs of the polyphase components of ak. The matrix A(ejω) is positive
semidefinite, which we now prove. For simplicity, we assume real entries. First,
we know that A(ejω) is an even function of ω, (3.101c), and nonnegative, (3.101b).
Furthermore,

A0(e
2jω) = 1

2 [A(e
jω) +A(ej(ω+π))] = A0(e

−2jω),

A1(e
2jω) = ejω 1

2 [A(e
jω)−A(ej(ω+π))] = e−2jωA1(e

−2jω).

We thus get that

A0(e
2jω) + e−jωA1(e

2jω) = A(ejω)
(a)

≥ 0,

A0(e
2jω)− e−jωA1(e

2jω) = A(ej(ω+π))
(b)

≥ 0,

where (a) follows from (3.101b); and (b) from (3.101a) and (3.101b). Then,

(A0(e
2jω) + e−jωA1(e

2jω))(A0(e
2jω)− e−jωA1(e

2jω))

= A2
0(e

2jω)− e−2jωA2
1(e

2jω) ≥ 0. (3.251)

To prove that A(ejω) is positive semidefinite, we must prove that all of its principal
minors have nonnegative determinants (see Section 2.B.2). In this case, that means
that A0(e

jω) ≥ 0, which we know from (3.101b), as well as

det(A(ejω)) = A2
0(e

jω)− e−jωA2
1(e

jω)
(a)

≥ 0,

where (a) follows from (3.251), proving that A(ejω) is positive semidefinite.

Example 3.41 (First-order AR process, Example 3.39 continued)
Consider the vector of polyphase components of period 2 of the AR-1 process y
with power spectral density as in (3.245). The matrix A(ejω) is then

A(ejω) =
1− a4

(1− a2e−jω)(1− a2ejω)

[
1 a

1+a2 (1 + ejω)
a

1+a2 (1 + e−jω) 1

]
. (3.252)

To check that the matrix is positive definite, we compute v⊤A(ejω) v, for an

arbitrary v =
[
cos θ sin θ

]⊤
:

[
cos θ sin θ

]
A(ejω)

[
cos θ
sin θ

]
= (1− a2) (1 + a2) + a(1 + cosω) sin 2θ

1 + a4 − 2a2 cosω
.
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The denominator of the above expression is always positive since

1 + a4 − 2a2 cosω
(a)

≥ 1 + a4 − 2a2 = (1− a2)2 > 0,

where (a) follows from a2 ≥ 0 and |cosω| ≤ 1. Then, we just have to show that
the following expression is nonnegative:

(1 + a2) + a(1 + cosω) sin 2θ
(a)

≥ 1 + a2 − 2|a| = (1− |a|)2
(b)
> 0,

where (a) follows from |(1 + cosω) sin 2θ| ≤ 2; and (b) from |a| < 1.
We could have saved ourselves all this computation had we observed that

A(ejω) = U(ejω)U⊤(e−jω), (3.253a)

with

U(ejω) =

√
1− a2

1− a2e−jω

[
1 a

ae−jω 1

]
, (3.253b)

making it obvious that A(ejω) is positive semidefinite.

Example 3.42 (First-order MA process, Example 3.38 continued)
Consider the vector of polyphase components of period 2 of the MA-1 process y
with power spectral density as in (3.244). The autocorrelation matrix is

A(ejω) =

[
A0(e

jω) A1(e
jω)

A∗
1(e

−jω) A0(e
jω)

]
=

[
1 (1 + ejω)/2

(1 + e−jω)/2 1

]

=
1√
2

[
1 ejω

1 1

]
1√
2

[
1 1

e−jω 1

]
= U(ejω)U⊤(e−jω),

and is thus clearly positive semidefinite since it admits a spectral factorization.

We now establish some basic results involving multirate operations with WSS or
WSCS inputs; a summary is given in Table 3.9.

Downsampling Consider downsampling by N as in (3.190). If the input x is WSS,
the output y is WSS as well,

ay,n,k = E
[
yny

∗
n−k

] (a)
= E

[
xNnx

∗
N(n−k)

]
(b)
= ax,Nk = ay,k, (3.254)

where (a) follows from (3.190); and (b) from x being WSS.
Under the weaker condition that x is WSCSN , y is again WSS,

ay,n,k = E
[
yny

∗
n−k

] (a)
= E

[
xNnx

∗
N(n−k)

]
(b)
= ax,Nk = ay,k,

where again, (a) follows from (3.190); and (b) from x being WSCSN .
The above two cases are special cases of the more general fact that if x is

WSCSM , then y is WSCSL, with L = M/gcd(M,N). For this, and other special
cases, see the Further reading.
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System Input x Output y

Downsampling by N WSS WSS

WSCSN WSS

WSCSM WSCSL L =M/gcd(M,N)

Upsampling by N WSS WSCSN

Filtering with h WSS WSS

WSCSN WSCSN

Downsampling by N preceded by filtering WSS WSS

Upsampling by N followed by filtering WSS WSCSN
WSS WSS Filter has alias-free support

Rational change (M up N down) WSS WSCSL L =M/gcd(M,N)

Table 3.9 Summary of results for multirate systems with stochastic inputs.

The power spectral density of the output is given by

Ay(e
jω)

(a)
=
∑

k∈Z

ay,ke
−jωk (b)

=
∑

k∈Z

ax,Nke
−jωk

(c)
=

1

N

N−1∑

n=0

Ax(e
j(ω−2πn)/N ), (3.255)

where (a) follows from the definition of the power spectral density (3.242); (b) from
(3.254); and (c) from the expression for downsampling by N , (3.191).

Upsampling Consider upsampling by N as in (3.195). If the input x is WSS, the
output y is WSCSN . This is easily seen if we remember Definition 3.20: y will be
WSCSN if all of its polyphase components are WSS. All polyphase components
of y, except for the first one, are zero, and are thus WSS. The first polyphase
component is just the input sequence x, which is WSS by assumption.

The power spectral density of the output is given by

Ay(e
jω) = Ax(e

jNω), (3.256)

from the expression for upsampling by N , (3.196).

Filtering We need one more element, a filter, to be able to build basic multirate
systems. Given a WSCSN input sequence x and an LPSV system with period N ,

Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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the output y will also be WSCSN ,

ay,n+N,k = E
[
yn+Ny∗n+N−k

] (a)
= E

[
∑

m∈Z

hmxn+N−m

∑

ℓ∈Z

h∗ℓx
∗
n+N−k−ℓ

]

(b)
=

∑

m∈Z

∑

ℓ∈Z

hmh
∗
ℓE
[
xn+N−mx∗n+N−k−ℓ

]

(c)
=

∑

m∈Z

∑

ℓ∈Z

hmh
∗
ℓax,n+N−m,k+ℓ−m

(d)
=

∑

m∈Z

∑

ℓ∈Z

hmh
∗
ℓax,n−m,k+ℓ−m

(e)
=

∑

m∈Z

∑

ℓ∈Z

hmh
∗
ℓE
[
xn−mx∗n−k−ℓ

]

(f)
= E

[
∑

m∈Z

hmxn−m

∑

ℓ∈Z

h∗ℓx
∗
n−k−ℓ

]
(g)
= E

[
yny

∗
n−k

]
= ay,k,

where (a) and (g) follow from the convolution expression (3.61); (b) and (f) from
linearity of the expectation and h being deterministic; (c) and (e) from the definition
of the autocorrelation of x, (3.231); and (d) from x being WSCSN , (3.249b).

Downsampling preceded by filtering Consider downsampling preceded by filter-
ing as in Figure 3.25(a). We have already seen that downsampling does not change
the nature of the sequence, and neither does filtering. Thus, if x is WSS, y is WSS
as well. In the DTFT domain, using (3.247) and (3.255), we get

Ay(e
jω) =

1

N

N−1∑

n=0

Ag̃(e
j(ω−2πn)/N )Ax(e

j(ω−2πn)/N ), (3.257)

where Ag̃(e
jω) = |G̃(ejω)|2 is the DTFT of the deterministic autocorrelation of g̃.

Upsampling followed by filtering We finally look at upsampling followed by fil-
tering, as shown in Figure 3.26(a). If x is WSS, y is WSCSN . To see that, we use
what we have shown so far. We know that if x is WSS, the output of the upsampler
will be WSCSN . As this is the input to an LSI (and consequently LPSV) system,
its output will be WSCSN . We illustrate this with an example.

Example 3.43 (Upsampling and filtering, Example 3.34 continued)
Consider the system in Figure 3.26(a), with gn = δn + δn−1 as in Example 3.34
and x a white noise process with σ2

x = 1. After upsampling, the first polyphase
component is just x itself, so it is WSS, while the second polyphase component is
all zero, and is thus WSS as well. The output of the upsampler is thus WSCS2,
but it is not WSS since (3.234b) is not satisfied. After filtering, the output is
the staircase sequence from (3.208). This stochastic process is not WSS, but it
is WSCS2 as each of its two polyphase components is now equal to the WSS
process x.
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300 Sequences and discrete-time systems

Rational sampling rate change Suppose now that we have a combination of up-
sampling by M , followed by filtering, followed by downsampling by N . We can say
that if x is WSS, then y is WSCSL, with L = M/gcd(M,N). This follows directly
from the fact we just proved on upsampling followed by filtering and applying the
result on downsampling.

3.8.5 Minimum mean-squared error estimation

The projection theorem establishes that orthogonality is central to optimal approx-
imation in a Hilbert space (see Section 2.4.1). By applying this to Hilbert spaces
of random variables under the standard inner product 〈x, y〉 = E[ xy∗ ], we saw
that orthogonality is also central to minimum mean-squared error estimation of
random variables and finite-dimensional random vectors (see Definition 2.33 and
Section 2.4.4). We now consider MMSE estimation of discrete-time stochastic pro-
cesses, with an emphasis on linear estimation of one process from another when the
pair is jointly WSS.

Orthogonality of stochastic processes Orthogonality of vectors is defined by their
inner product being zero. Just like for finite-dimensional random vectors (see Sec-
tion 2.4.4), we need an extension of this concept to handle stochastic processes.

Definition 3.21 (Orthogonal stochastic processes) Discrete-time
stochastic processes x and y are said to be orthogonal when

cx,y,k,n = E
[
xky

∗
k−n

]
= 0, for all k, n ∈ Z. (3.258a)

For jointly WSS processes, the condition on crosscorrelation has no dependence
on the time lag k,

cx,y,n = E
[
xky

∗
k−n

]
= 0, for all n ∈ Z, (3.258b)

and can be written equivalently as a condition on the cross power spectral density,

Cx,y(e
jω) = 0, for all ω ∈ R. (3.258c)

Condition (3.258a) requires orthogonality of every pair of scalar random variables
(xk, yℓ), as in (2.86). Joint wide-sense stationarity reduces the number of inde-
pendent conditions to (3.258b) since orthogonality of the pair (xk, yℓ) implies the
orthogonality of (xk+m, yℓ+m) for every m ∈ Z.

Orthogonality properties both for deterministic sequences and for WSS discrete-
time stochastic processes are summarized in Table 3.10.

Wiener filtering In Section 2.4.4, we derived the optimal linear estimator of CN -
valued random vector x from CM -valued random vector y (see (2.85)). In principle,
this derivation holds unchanged for discrete-time stochastic processes. However,
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Deterministic sequences WSS discrete-time stochastic processes

Time cx,y,k = 〈xn, yn−k〉n = 0 cx,y,k = E[ xny∗n−k ] = 0

Frequency Cx,y(ejω) = X(ejω)Y ∗(ejω) = 0 Cx,y(ejω) = 0

Table 3.10 Orthogonality for deterministic sequences and WSS discrete-time stochastic
processes.

x

y h x̂

+
−

e

Figure 3.35 Wiener filtering is the optimal linear estimation of a WSS process from
another WSS process, where the pair of processes is jointly WSS. Wiener filter h produces
an MMSE estimate x̂ of the WSS process x from y by minimizing the MSE E[ e2n ].

when working with infinite-length sequences, we are motivated to have a structured
linear estimator (one implemented with an LSI system) and a restricted model for
the autocorrelations and crosscorrelation (wide-sense stationarity). Wiener filtering
(or Wiener–Kolmogorov filtering) is the name for MMSE estimation in this setting.
Here we derive the Wiener filter without concern for implementability; see the
Further reading for pointers to results that require the filter to be causal or FIR.

Suppose that stochastic processes x and y are jointly WSS. We observe y and
wish to estimate x from it. We want to find a filter h such that the filter output in
response to input y,

x̂ = h ∗ y,
is a linear MMSE estimate of x; that is, we wish to minimize the power of the
estimation error e = x− x̂ as shown in Figure 3.35:

min
h

E
[
|en|2

]
= min

h
E
[
|xn − x̂n|2

]
. (3.259)

It is convenient to assume that both x and y have mean zero; if not, subtract µy from
y before filtering by h and add µx after filtering by h to reduce to the zero-mean
case.

The minimization (3.259) can be solved by writing E[ |en|2 ] as a function of
the impulse response h and setting the derivatives with respect to each entry of h
to zero (see Solved exercise 3.7). Instead, we use a geometric approach.

Since x̂ = h ∗ y, the estimate lies in the subspace S = span({yn−k}k∈Z). The
orthogonality principle states that, with the best estimator, the error e is orthog-
onal to S and, in particular, orthogonal to the estimate x̂. From Definition 3.21,
orthogonality of e and x̂ is expressed as

E
[
(xn − x̂n)x̂

∗
n−k

]
= 0, k ∈ Z.
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x

w

+
y

h x̂

+
−

e

Figure 3.36 Wiener filtering configuration for estimating x from an observation that is
corrupted by additive noise w.

Using the linearity of expectation, we have

E
[
xnx̂

∗
n−k

]
= E

[
x̂nx̂

∗
n−k

]
, k ∈ Z,

or
cx,x̂,k = ax̂,k, k ∈ Z. (3.260a)

In the DTFT domain, this is

Cx,x̂(e
jω) = Ax̂(e

jω), ω ∈ R. (3.260b)

Using the fact that x̂ is the filtered version of x and (3.247)–(3.248a), (3.260b) is
equivalent to

H∗(ejω)Cx,y(e
jω) = |H(ejω)|2Ay(e

jω), ω ∈ R,

so the Wiener filter is determined by

H(ejω) =
Cx,y(e

jω)

Ay(ejω)
, ω ∈ R. (3.261)

Example 3.44 (Filtering to remove uncorrelated additive noise)
Consider the setting depicted in Figure 3.36, where x and w are uncorrelatedWSS
processes. Assume that x and w have mean zero so that y does as well. Find-
ing filter h to minimize the power of the estimation error e is a Wiener filtering
problem because y = x+w and x are jointly WSS. We can find the Wiener filter
by specializing (3.261) to our setting.

Since x and w are uncorrelated and y = x + w,

Cx,y(e
jω) = Ax(e

jω), (3.262a)

Ay(e
jω) = Ax(e

jω) +Aw(e
jω), (3.262b)

detailed verification of which is left for Exercise 3.28. Substituting (3.262) into
(3.261) gives

H(ejω) =
Ax(e

jω)

Ax(ejω) +Aw(ejω)
. (3.263)
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(a) Power spectral density. (b) Wiener filters.

Figure 3.37 Wiener filtering. (a) Power spectral density Ax(e
jω) of an AR-1 process

with a = 0.9 in (3.245) and noise levels of Aw(e
jω) = σ2

w ∈ {0.5, 1, 2, 5} (white grid
lines). (b) Magnitude responses of the corresponding Wiener filters H(ejω) for noise levels
of Aw(e

jω) = σ2
w ∈ {0.5, 1, 2, 5}.

This has intuitive limiting behavior: if there is no noise (Aw(e
jω) = 0), the

Wiener filter is the identity; if the signal x is weak relative to the noise w
(|Ax(e

jω)/Aw(e
jω)| → 0), the Wiener estimate is zero (the mean of x).

As a numerical example, suppose that x is an AR-1 process as in Exam-
ple 3.39 with power spectral density as in (3.245). Assume that w is a white
noise process with variance σ2

w, so Aw(e
jω) = σ2

w. Then, the Wiener filter is

H(ejω) =
1− a2

1− a2 + σ2
w|1− ae−jω |2 , (3.264)

which is illustrated in Figure 3.37 for a = 0.9 and various noise levels. The
magnitude response shows that the Wiener filter preserves the frequency com-
ponents at which the signal is strong relative to the noise while it suppresses the
frequency components at which the noise is strong relative to the signal. As the
noise variance σ2

w increases, less of y is preserved.

When, in addition to being jointly WSS, x and y are jointly Gaussian, the linear
MMSE estimator we have derived here also minimizes the MSE over all estimators,
including those that are not linear and not shift-invariant. This is analogous to the
finite-dimensional case discussed in Example 2.67 of Appendix 2.C.3.

3.9 Computational aspects

In this section we give an overview of fast Fourier transform (FFT) algorithms and
their application to the computation of circular and linear convolutions. We then
discuss the complexity of some multirate operations.

3.9.1 Fast Fourier transforms

We have thus far studied the DFT as the natural analysis tool for either periodic
sequences or circularly extended finite-length sequences. We now study efficient
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304 Sequences and discrete-time systems

algorithms for computing the DFT called fast Fourier transform algorithms. To
work with different lengths, we denote the N ×N DFT matrix, (3.164a), by FN .

Each term of the DFT, defined in (3.163a), is a sum of N complex terms, each
the product of a complex constant (a power of WN ) and a component of the input
sequence x. Thus, each DFT coefficient can be computed with N multiplications
and (N−1) additions.71 There are N such DFT coefficients, and thus the full DFT
can be computed with µ = N2 multiplications and ν = N(N − 1) additions, for a
total cost of

CDFT,direct = N(N − 1) +N2 = 2N2 −N, (3.265)

which is exactly the cost of a direct matrix–vector multiplication of FN by an N×1
vector x, as in (2.180b).

The special structure of the DFT allows its computation with far fewer than
2N2 operations. Savings are based on a divide and conquer approach, where a DFT
is decomposed into smaller DFTs, and only a few simple operations are needed to
combine the results of the smaller DFTs into the original DFT. For illustration
purposes, we consider in detail the case of N = 2k, k ∈ Z+, and only briefly
comment on fast algorithms for other values of N .

Radix-2 FFT Starting with the definition of the DFT (3.163a), write

Xk =
N−1∑

n=0

xnW
kn
N

(a)
=

N/2−1∑

n=0

x2nW
k(2n)
N +

N/2−1∑

n=0

x2n+1W
k(2n+1)
N

(b)
=

N/2−1∑

n=0

x2nW
kn
N/2 +W k

N

N/2−1∑

n=0

x2n+1W
kn
N/2, (3.266)

where (a) separates the summation over odd- and even-numbered terms; and (b)
follows from W 2

N = WN/2. Recognize the first sum as the length-N/2 DFT of the

sequence
[
x0 x2 . . . xN−2

]⊤
and the second sum as the length-N/2 DFT of the

sequence
[
x1 x3 . . . xN−1

]⊤
. It is now apparent that the length-N DFT compu-

tation can make use of FN/2D2x and FN/2C2x, where D2 is the downsampling-by-2
operator defined in (3.186b), and C2 is a similar operator, except that it keeps the
odd-indexed values. Since the length-N/2 DFT is (N/2)-periodic in k, (3.266) can
be used both for k ∈ {0, 1, . . . , sN/2− 1} and for k ∈ {N/2, N/2+ 1, . . . , N − 1}.

To get a compact matrix representation, we introduce the diagonal matrix

AN/2 = diag(1, WN , W
2
N , . . . , W

(N/2)−1
N )

71We are counting complex multiplications and complex additions. It is customary to not count
multiplications by (−1) and thus lump together additions and subtractions.
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and rewrite (3.266) as



X0

...
XN/2−1


 = FN/2D2x+AN/2FN/2C2x, (3.267a)



XN/2

...
XN−1


 = FN/2D2x−AN/2FN/2C2x, (3.267b)

where the final twist was to realize that W k
N = −W k−N/2

N , leading to

X = FNx =

[
IN/2 AN/2

IN/2 −AN/2

] [
FN/2 0
0 FN/2

] [
D2

C2

]
x

=

[
IN/2 IN/2

IN/2 −IN/2

] [
IN/2 0
0 AN/2

] [
FN/2 0
0 FN/2

] [
D2

C2

]
x. (3.268)

If this turns out to be a useful factorization, then we can repeat it to represent
FN/2 using FN/4, etc., until we reach F2, which requires no multiplications, µ2 = 0,
and only ν2 = 2 additions. Let us count computations in the factored form to see
whether the factorization leads to savings.

With µN and νN the number of multiplications and additions in computing a
length-N DFT, the factorization (3.268) shows that a length-N DFT can be com-
puted using two length-N/2 DFTs, N/2 multiplications, and N additions. Iterating
on the length-N/2 DFTs, then length-N/4 DFTs, and so on, leads to the following
recursions:

νN = 2νN/2 +N

= 2

(
2νN/22 +

N

2

)
+N = 22νN/22 + 2N

= 22
(
2νN/23 +

N

4

)
+ 2N = 23νN/23 + 3N

(a)
=

N

2
ν2 + (log2N − 1)N

(b)
= N log2N, (3.269a)

µN = 2µN/2 +
N

2

= 2

(
2µN/22 +

N

4

)
+
N

2
= 22µN/22 + 2

N

2

= 22
(
2µN/23 +

N

8

)
+ 2

N

2
= 23µN/23 + 3

N

2

(c)
=

N

2
µ2 + (log2N − 1)

N

2

(d)
=

N

2
log2N −

N

2
, (3.269b)

where (a) and (c) follow from continuing the recursion; (b) from ν2 = 2; and (d)
from µ2 = 0. Combining these into a total number of operations gives

CDFT,radix−2 =
3

2
N log2N −

N

2
. (3.270)
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Thus, using the asymptotic notation Θ(·) to express the dominating term in the
dependence on N without regard for constant factors (see Definition 2.54), recursive
application of (3.268) reduces the cost from Θ(N2) in (3.265) to Θ(N log2N) in
(3.270). We illustrate the above procedure with a simple example.

Example 3.45 (Computation of the length-4 FFT) We check that the
factorization (3.268) does indeed equal the length-4 DFT:

F4 =

[
I2 A2

I2 −A2

] [
F2 0
0 F2

] [
D2

C2

]

=




1 0 1 0
0 1 0 j
1 0 −1 0
0 1 0 −j







1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




=




1 1 1 1
1 j −1 −j
1 −1 1 −1
1 −j −1 j


 =




1 1 1 1
1 W4 W 2

4 W 3
4

1 W 2
4 W 4

4 W 6
4

1 W 3
4 W 6

4 W 9
4


 ,

which is exactly (3.164a). We can also write out (3.266),

Xk =
3∑

n=0

xnW
kn
4 =

3∑

n=0

x2nW
k(2n)
4 +

3∑

n=0

x2n+1W
k(2n+1)
4

=
3∑

n=0

x2nW
kn
2 +W k

4

3∑

n=0

x2n+1W
kn
2

= (x0W
0
2 + x2W

k
2 ) +W k

4 (x1W
0
2 + x3W

k
2 )

= (x0 + (−1)kx2) +W k
4 (x1 + (−1)kx3),

which is equivalent to computing one DFT of length 2 on even samples, then one
DFT of length 2 on odd samples, and finally multiplying the latter by a constant
W k

4 .

Other FFT algorithms A famous class of FFT algorithms, the Cooley–Tukey FFT,
works for any composite length N = N1N2. The algorithm breaks down a length-
N DFT into N2 length-N1 DFTs, N complex multiplications, and N1 length-N2

DFTs. Often, either N1 or N2 is a small factor called a radix.
The Good–Thomas FFT works for N = N1N2, where N1 and N2 are coprime.

It is based on the Chinese remainder theorem and avoids the complex factors of the
Cooley–Tukey FFT. Thus, the algorithm breaks down a length-N DFT into N2

length-N1 DFTs and N1 length-N2 DFTs, equivalent to a two-dimensional length-
(N1 ×N2) DFT.

Rader’s FFT works for prime-length N . It is based on mapping the computa-
tion of the DFT into a computation of a circular convolution of length N −1 (recall
that (3.181b) shows that the DFT diagonalizes the circular convolution operator).
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Winograd extended Rader’s FFT to include powers of prime lengths, so Rader’s
FFT is sometimes considered a subclass of the Winograd FFT.

The Winograd FFT is often used for small lengths. It is based on considering
N1 length-N2 DFTs as a two-dimensional DFT of length (N1 × N2), as we have
seen for the Good–Thomas algorithm. If N1 and N2 are prime, we can use Rader’s
FFT on each N1 and N2. While it is less costly in terms of required additions and
multiplications, it is also complicated and thus not often used.

The split-radix FFT is used for values of N that are multiples of 4. It recur-
sively splits length-N DFTs into terms of one length-N/2 DFT and two length-N/4
DFTs and boasts the lowest operations count for N = 2k, k > 1.

Remember that the cost in terms of additions and multiplications is just one
measure of how fast an algorithm can be computed; many other factors come into
play, including the specific computing platform. As a result, the Cooley–Tukey
FFT is still the prevalent one, despite some of the other algorithms having lower
multiplication, addition, or total operation counts. Most FFT algorithms have a
cost of

CDFT,FFT = αN log2N + βN = Θ(N log2N), (3.271)

where α and β are small constants that depend on the choice of algorithm.

3.9.2 Convolution

In discussing convolution, for the first time we will encounter the distinction between
computing on a finite-length input and on an infinite-length one. In the first case,
we will be computing the cost per block of input samples (as we have done in
Section 3.9.1), while in the second, we will be computing the cost per input sample.

Computing circular convolution Circular convolution of length-N sequences can
be written as a matrix–vector product with an N×N matrix and anN×1 vector, as
in (3.75). Treating it as a generic matrix multiplication, performed in the standard
way, gives an algorithm with Θ(N2) cost as in (2.180b). Since the DFT operator
diagonalizes circular convolution, algorithms with lower cost are obtained from FFT
algorithms. Using (3.181a), applying operatorH requires a length-N DFT,N scalar
multiplications for multiplication by the diagonal matrix, and a length-N inverse
DFT. Using (3.271) for the cost of the DFT and inverse DFT, computing the
circular convolution through this algorithm has a cost of

Ccconv,freq = 2 (αN log2N + βN) +N = Θ(N log2N), (3.272)

per N input samples, or Θ(log2N) per input sample.

Computing linear convolution We start with a straight implementation of linear
convolution in the time domain, (3.61), for a finite-length input x. Without loss of
generality, assume that the input is of lengthM and the filter h is of length L < M .
We need one multiplication and no additions to compute y0 = h0x0, two multipli-
cations and one addition for y1 = h1x0 +h0x1, all the way to L multiplications and

Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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(L− 1) additions for yL−1 =
∑L−1

k=0 xkhL−1−k, yL, . . . , yM−1, and then back down
to one multiplication and no additions for yM+L−1 = hL−1xM−1, leading to

Clconv,time = ν + µ

=

[
2

L−2∑

k=1

k + (M − L+ 1)(L− 1)

]
+

[
2

L−1∑

k=1

k + (M − L+ 1)L

]

= 2
(L− 2)(L− 1)

2
+ 2

(L− 1)L

2
+ (M − L+ 1)(2L− 1)

= 2ML−M − L+ 1 (3.273)

per M input samples, or Θ(L) per input sample.
In (3.272), we saw the cost of an efficient implementation of the circular convo-

lution using FFTs. We will now show how to compute the linear convolution of an
infinite-length input with a sequence of circular convolutions. Using the results we
just developed for efficient circular convolution, we will have an efficient algorithm
for linear convolution. To that end, we build upon Example 3.14 on the equivalence
of circular and linear convolutions.

Example 3.46 (Linear convolution from circular convolution) In
Example 3.14, we wanted to compute the linear convolution of a length-3 filter
with a length-4 sequence, and we found that computing a circular convolution
instead was equivalent – when the length of the circular convolution was at least
as large as the length of the result of the linear convolution. We rewrite (3.76b)
as follows:




y0
y1
y2
y3
y4
y5




=




h0 0 0 0 h2 h1
h1 h0 0 0 0 h2
h2 h1 h0 0 0 0
0 h2 h1 h0 0 0
0 0 h2 h1 h0 0
0 0 0 h2 h1 h0







x0
x1
x2
x3
0
0




=




h0 0 0 0 h2 h1
h1 h0 0 0 0 h2
h2 h1 h0 0 0 0
0 h2 h1 h0 0 0
0 0 h2 h1 h0 0
0 0 0 h2 h1 h0







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0







x0
x1
x2
x3




= H6

[
I4

02×4

]



x0
x1
x2
x3


 , (3.274)

where the input vector is now stated explicitly without the trailing zeros, H6 is
the 6× 6 circulant matrix as in (3.75), I4 is a 4× 4 identity matrix, and 02×4 is
a 2× 4 all-zero matrix.
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Now, with filter h still of length 3, suppose that the input sequence x is of
infinite length. The result y of the linear convolution h ∗ x is

...

y0 = h2x−2 + h1x−1 + h0x0

y1 = h2x−1 + h1x0 + h0x1

©y2 = h2x0 + h1x1 + h0x2

©y3 = h2x1 + h1x2 + h0x3

y4 = h2x2 + h1x3 +
✞

✝

☎

✆
h0x4

y5 = h2x3 +
✞

✝

☎

✆
h1x4 +

✞

✝

☎

✆
h0x5

©y6 =
✞

✝

☎

✆
h2x4 +

✞

✝

☎

✆
h1x5 +

✞

✝

☎

✆
h0x6

©y7 =
✞

✝

☎

✆
h2x5 +

✞

✝

☎

✆
h1x6 +

✞

✝

☎

✆
h0x7

y8 =
✞

✝

☎

✆
h2x6 +

✞

✝

☎

✆
h1x7 + h0x8

y9 =
✞

✝

☎

✆
h2x7 + h1x8 + h0x9

...

The quantities in boxes depend on the input block (x0, x1, x2, x3), and the
quantities in ovals depend on the next input block (x4, x5, x6, x7). The circled
samples of y can be computed using just one input block; y2 and y3 can be
computed from the first input block alone, while y6 and y7 can be computed
from the second input block alone. The samples in between (y4 and y5) require
the combination of contributions from the two input blocks. For an arbitrary
number of input samples, the contribution from each input block of length 4 can
be computed as in (3.274); these overlap and should be added to give the linear
convolution.

We can write this procedure more formally using the linearity and shift
invariance of the (linear) convolution operator. The output y is the sum of the
outputs resulting from each input block

x̄k,n =

{
xn, for n = 4k, 4k + 1, 4k + 2, 4k + 3;
0, otherwise,

k ∈ Z.

Specifically, since x =
∑

k∈Z
x̄k, we have

y =
∑

k∈Z

h ∗ x̄k. (3.275)

To implement the convolutions in (3.275) with (3.274), the input block should
be supported on {0, 1, 2, 3}, so shift each block x̄k by 4k to define

x̃k =
[
x4k x4k+1 x4k+2 x4k+3

]⊤
, k ∈ Z.

By shift invariance of the (linear) convolution operator, the computation (3.275)
can be replaced by

yn =
∑

k∈Z

ỹk,n−4k,
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where

ỹk = H6

[
I4

02×4

]
x̃k, k ∈ Z.

In this computation, each input block of length 4 generates an intermediate
block of length 6. These intermediate blocks are shifted by multiples of 4 in
generating the output. We can write the full linear convolution as

y = AHEx, with A =




. . .

I2 0 0
0 I2 0
0 0 I2 I2 0 0

0 I2 0
0 0 I2

. . .




,

H =




. . .

H6

H6

. . .



, and E =




. . .

I4
02×4

I4
02×4

. . .




.

We now see why the computation of the convolution as above would be
efficient, since multiplication by E is merely the insertion of zeros (extension),
multiplication by H is circular convolution as we have just seen, and multipli-
cation by A (addition) requires only two additions for each block of four input
samples.

The overlap–add algorithm generalizes this simple example to any filter length and
input block size. Given a length-L FIR filter h and input sequence x, we choose an
input block length ofM samples. For computation of the linear convolution on one
block to coincide with the circular convolution, the length of the circular convolution
should be N = L +M − 1 according to Theorem 3.10. (Using any larger value of
N provides no benefit in principle, but N is often chosen to be the smallest integer
power of 2 that is at least L+M − 1.) Then, the (linear) convolution y = h ∗x can
be computed with the following factorization:

y = AHEx, (3.276)

where the extension matrix E is block-diagonal with
[

IM
0L−1×M

]

on the diagonal, so it extends blocks of M input samples to N samples; H is a
block-diagonal matrix with circular convolution operator HN on the diagonal; and
addition matrix A has blocks of IN on the diagonal, offset by M rows.
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We now compute the cost of the algorithm. As we said, E merely inserts
zeros and thus has no cost, H costs (2αN log2N +(2β+1)N) operations per block
according to (3.272), and A requires (N −M) additions per block, for a total cost
of

Clconv,overlap−add =
2α

M
N log2N +

2β + 2

M
N − 1 = Θ(log2N) (3.277)

per input sample, assuming that N is proportional toM . This is a significant saving
compared with (3.273) when L is large.

The overlap–save algorithm can be written with a similar factorization. Its
cost is similar, with a small advantage of there being no additions in the final stage
but a disadvantage that the DFTs are calculated on denser input vectors, which
might make the FFTs more costly. This algorithm is developed in Exercise 3.30.

3.9.3 Multirate operations

The key to improving the computational efficiency in multirate signal processing is
simple: always operate at the lowest possible sample rate. We now show this idea in
action, bearing in mind that downsampling and upsampling cost nothing in terms
of additions and multiplications (although they might require memory access).

Downsampling preceded by filtering We start with the time-domain computation.
Assume that we directly compute the convolution (h∗x) of a length-M input x and
a length-L filter h, and discard every other sample. Using (3.273), the cost is

Ctime,direct = 2ML−M − L+ 1 (3.278a)

per M input samples. However, it is wasteful to compute samples that are subse-
quently discarded. A polyphase implementation, as shown in Figure 3.31(c), avoids
this wastefulness and follows the principle of applying filtering at the lowest possible
rate. The polyphase components of the input, x0 and x1, each of length M/2, are

convolved with the polyphase components of the filter, h̃0 and h̃1, each of length
L/2.72 We thus have to compute two convolutions at half the length and add the
results of these convolutions. Using (3.273), the cost is ML−M −L+2 operations
for the two convolutions plus M/2 + L/2 − 1 additions (since the result of each
convolution is now of length M/2 + L/2− 1), for a total cost of

Ctime,poly = ML− M

2
− L

2
+ 1 (3.278b)

per M input samples, which, although it amounts to a saving of roughly 50%, is
still Θ(ML).

Whether or not we use polyphase representations, we can replace the time-
domain computation of convolution with a frequency-domain computation as in

72The lengths are actually ⌊M/2⌋, ⌈M/2⌉, ⌊L/2⌋, and ⌈L/2⌉. Accounting for this yields the
same costs for the time-domain computations and slightly different costs for the frequency-domain
computations.
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g̃ 2 g̃ 2 g̃ 2

Figure 3.38 Cascade of K filters followed by downsamplers.

Section 3.9.2. Using circular convolution of the minimum length, M +L− 1, imple-
mented with a length-(M+L−1) DFT, the cost without polyphase implementation
is

Cfreq,direct = 2α(M + L− 1) log2(M + L− 1) + (2β + 1)(M + L− 1) (3.278c)

perM input samples, by substitution into (3.272). With polyphase implementation,
we need two convolutions at half the length and the addition of the results of these
convolutions, for a total cost of

Cfreq,poly = 2α(M+L−2) log2(M+L−2)+
(
2β − 2α+

3

2

)
(M+L−2) (3.278d)

per M input samples, giving a small additional saving that is dependent on the
sizes M and L.

This discussion generalizes straightforwardly to downsampling factors larger
than 2. The cost saving factor from using the polyphase implementation in the
time-domain computations is equal to the downsampling factor.

Example 3.47 (Iteration of downsampling preceded by filtering)
Consider a cascade of K filters followed by downsamplers as in Figure 3.38. Us-
ing any of the expressions we just derived for the cost of one stage C, we can
calculate the cost for K stages. For the second stage, it is C/2 (because it runs
at half the rate of the input), for the third stage it is C/4, etc., leading to the
total cost of

C +
C

2
+
C

4
+ · · ·+ C

2K−1

(a)
=

(
2− 1

2K−1

)
C < 2C, (3.279)

where (a) follows from (P2.54-1), the formula for a finite geometric series.

Upsampling followed by filtering Analysis of the cost of upsampling followed by
filtering is similar to the analysis of the cost of downsampling preceded by filtering.
In fact, these operations are dual, as exhibited by the transpose relationship between
(3.202) and (3.205), so they have the same cost.

As before, the savings in using the polyphase implementation shown in Fig-
ure 3.31(a) comes from filtering at the lowest possible rate. The direct implemen-
tation is wasteful because it performs arithmetic operations on samples that equal
zero.
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Appendix 3.A Elements of analysis

3.A.1 Complex numbers

The imaginary unit j is defined as a number that satisfies j2 = −1; since j2 = −1
implies that (−j)2 = −1, we are simply fixing one of the two solutions to have the
name j.73 A complex number z ∈ C is then a number of the form

z = a+ jb, a, b ∈ R. (3.280)

In (3.280), a is called the real part while b is called the imaginary part. The complex
conjugate of z is denoted by z∗ and is by definition

z∗ = a− jb. (3.281)

The basic operations on complex numbers are as follows:

z1 + z2 = (a1 + a2) + j(b1 + b2),

z1 − z2 = (a1 − a2) + j(b1 − b2),
z1z2 = (a1a2 − b1b2) + j(b1a2 + a1b2),

z1
z2

=
a1a2 + b1b2
a22 + b22

+ j
a2b1 − a1b2
a22 + b22

.

Any complex number can be represented in polar form:

z = rejθ , (3.282)

where r is called the modulus or magnitude and θ is the argument or phase. Using
Euler’s formula,

ejθ = cos θ + j sin θ, (3.283)

we can express a complex number further as

z = rejθ = r(cos θ + j sin θ). (3.284)

It allows us to easily find a power of a complex number as

(cos θ + j sin θ)n = (ejθ)n = ejnθ = cosnθ + j sinnθ. (3.285)

Euler’s formula highlights that the argument of a complex number is not unique;
adding any integer multiple of 2π to the argument does not change the number,

ej(θ+k2π) = ejθej2kπ = ejθ(ej2π)k = ejθ, for any k ∈ Z,

since ej2π = 1. Two other useful relations that can be derived using Euler’s formula
are

cos θ =
ejθ + e−jθ

2
and sin θ =

ejθ − e−jθ

2j
. (3.286)

73Mathematicians and physicists typically use i for the imaginary unit, while j is more common
in engineering.
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Complex numbers are typically shown in the complex plane. The complex
plane has a one-to-one correspondence with R2, with the real part shown horizon-
tally and the imaginary part vertically. Conversion from polar form ejθ to standard
(or rectangular) form a+ jb is by

a = r cos θ, b = r sin θ.

Conversion from standard form to polar form is simple by just looking at the com-
plex plane, but more complicated to write. One solution is as follows:

r =
√
a2 + b2, θ =





arctan(b/a), for a > 0;
arctan(b/a) + π, for a < 0, b ≥ 0;
arctan(b/a)− π, for a < 0, b < 0;

π/2, for a = 0, b > 0;
−π/2, for a = 0, b < 0;

undefined, for a = 0, b = 0,

where arctan returns a value in (− 1
2π,

1
2π).

Roots of unity In the same way as j was defined as the square root of unity, we
can define the principal Nth root of unity as

WN = e−j2π/N . (3.287)

It is easy to check that W k
N , for k ∈ {2, 3, . . . , N}, are also Nth roots of unity,

meaning that (W k
N )N = 1. If we drew all N roots of unity in the complex plane,

we would see that they slice up the unit circle by equal angles; the choice of WN

as the principal root makes W 0
N , W

1
N , . . . , W

N−1
N consecutive in clockwise order.

Figure 3.39 shows an example with N = 8.
Here are some useful identities involving the roots of unity:

WN
N = 1, (3.288a)

W kN+n
N = Wn

N , with k, n ∈ Z, (3.288b)

N−1∑

k=0

Wnk
N =

{
N, for n = ℓN, ℓ ∈ Z;
0, otherwise.

(3.288c)

The last relation is often referred to as orthogonality of the roots of unity. To prove
it, for any n not an integer multiple of N , use the finite sum formula from (P2.54-1),

N−1∑

k=0

(Wn
N )k =

1−WNn
N

1−Wn
N

= 0, (3.289)

since the numerator is 0 and the denominator is nonzero. For n = ℓN with ℓ ∈ Z,
W kn

N =W kℓN
N = 1, and thus, by direct substitution into (3.288c), we get N .
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Cambridge University Press (ISBN 110703860X) v1.1 [May 2014] [free version] Comments to book-errata@FourierAndWavelets.org



Appendix 3.A Elements of analysis 315

W8

W 2
8

W 3
8

W 4
8

W 5
8

W 6
8

W 7
8

W 8
8 = 1

Figure 3.39 Roots of unity for N = 8. The principal one is denoted by a solid line.

3.A.2 Difference equations

Finding solutions to the linear difference equations introduced in Section 3.3.2 in-
volves the following steps:

(i) Homogeneous solution: First, we find a solution to the homogeneous equation,

y(h)n = −
N∑

k=1

akyn−k, (3.290a)

which is obtained by setting the input x in (3.55) to zero. The solution is of
the form

y(h)n =

N∑

k=1

αkλ
n
k , (3.290b)

where λk, k = 1, 2, . . . , N , are obtained by solving the characteristic equation
of the system,

N∑

k=0

akλ
N−k = 0. (3.290c)

(ii) Particular solution: Then, any particular solution to (3.55), y
(p)
n , is found

(independently of y
(h)
n ). This is typically done by assuming that y

(p)
n is of the

same form as xn, possibly scaled.

(iii) Complete solution: By superposition, the complete solution yn is the sum of

the homogeneous solution y
(h)
n and the particular solution y

(p)
n :

yn = y(h)n + y(p)n =

N∑

k=1

αkλ
n
k + y(p)n . (3.290d)

Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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We determine the coefficients αk in y
(h)
n by specifying initial conditions for yn

and then solving the resulting system of equations.

3.A.3 Convergence of the convolution sum

Recall from Appendix 2.A.2 that a doubly infinite sum is said to converge when it
converges absolutely. Thus, the convolution h∗x between sequences h and x is well
defined when the sum

∑
k∈Z

xkhn−k converges absolutely for every value of n.
When h and x are in ℓ2(Z), convergence is guaranteed by the fact that the

standard ℓ2 inner product is defined on all of ℓ2(Z) (see Exercise 2.14). Specifically,

for each n ∈ Z, define the sequence h̃(n) by

h̃
(n)
k = h∗n−k for all k ∈ Z.

Then, each h̃(n) is in ℓ2(Z) because time reversal, shifting, and conjugation do not

change the ℓ2 norm. Thus, for every n ∈ Z, the inner product 〈x, h̃(n)〉 = (h ∗ x)n
is well defined, so the convolution is well defined.

In signal processing, we are not quite satisfied with restricting attention to
sequences in ℓ2(Z); for example, simple sequences like constants and sinusoids are
not in ℓ2(Z). To ensure convergence of the convolution sum while loosening the
constraints on x requires tightening the constraints on h, or vice versa. Hölder’s
inequality for sequences (2.214) gives a simple condition: The convolution sum is
guaranteed to converge absolutely when h ∈ ℓp(Z) and x ∈ ℓq(Z) for some p and q
in [1,∞] satisfying 1/p+ 1/q ≥ 1.74 This use of Hölder’s inequality gives a bound

|(h ∗ x)(n)| ≤ ‖h‖p ‖x‖q, for any n ∈ Z,

that is uniform over n and hence shows that, beyond being merely well defined,
h ∗ x is in ℓ∞(Z).

We employ the p = 1, q =∞ case often: By restricting an LSI system impulse
response h to ℓ1(Z), we can allow the input x to be any sequence in ℓ∞(Z) (that is,
merely bounded) while ensuring that the output sequence h ∗ x is well defined and
furthermore in ℓ∞(Z). Note that the condition h ∈ ℓ1(Z) was already used in BIBO
stability of the LSI system with impulse response h and is a common assumption.

3.A.4 Dirac delta function

Definition 3.22 (Dirac delta function) The Dirac delta function δ satisfies
∫ ∞

−∞
x(t)δ(t) dt = x(0), (3.291)

for any function x that is continuous at 0.

74Hölder’s inequality is given with p and q as Hölder conjugates, 1/p + 1/q = 1, and making p
or q smaller makes the corresponding sequence space smaller; see (2.41).

Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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The definition is based on what the Dirac delta function does as part of an integrand
rather than an expression that is valid pointwise. This is necessary because no
function δ can actually satisfy the defining property. In fact, the use of the word
“function” is merely to distinguish the Dirac delta from a sequence, that is, to
indicate that we integrate δ as if it were a function with domain R.75

One immediate consequence of the definition is that
∫ ∞

−∞
δ(t) dt = 1, (3.292)

which follows from the continuity at 0 of x(t) = 1. Also, for any x that is continuous
at t0, ∫ ∞

−∞
x(t+ t0)δ(t) dt = x(t0) (3.293a)

follows from the continuity at 0 of the shifted function x(t+ t0); furthermore,
∫ ∞

−∞
x(t)δ(t − t0) dt = x(t0) (3.293b)

follows from changing the variable of integration to τ = t+ t0.
Since the dependence of the integral in (3.291) on x is only through x(0), the

range of integration need not be (−∞, ∞). The limits of integration can be any a
and b satisfying a < 0 < b.

An equation with a Dirac delta function that is not part of an integrand
cannot be checked pointwise. Instead, it is a shorthand for having equality after
multiplying both sides by a continuous function and integrating.76 For example,
for any function y that is continuous at 0, we say

y(t)δ(t) = y(0)δ(t). (3.294)

To verify this, let x be any function that is continuous at 0. Then,
∫ ∞

−∞
x(t)y(t)δ(t) dt

(a)
= x(0)y(0)

(b)
=

∫ ∞

−∞
x(t)y(0)δ(t) dt,

where (a) follows from the continuity of x(t)y(t) at t = 0; and (b) from the continuity
of x(t)y(0) at t = 0. Similarly, for any a ∈ R+,

δ(t/a) = aδ(t).

To verify this, let x be any function that is continuous at 0. Then,
∫ ∞

−∞
x(t)δ(t/a) dt

(a)
=

∫ ∞

−∞
x(aτ)δ(τ)a dτ = a

∫ ∞

−∞
x(aτ)δ(τ) dτ

(b)
= ax(0),

75Dirac called this δ an improper function, others have used the terms generalized function and
delta distribution, and it is called a measure in measure theory.

76As Dirac wrote in introducing the δ function [21, p. 59]: “The use of improper functions
. . . does not involve any lack of rigour in the theory, but is merely a convenient notation, enabling
us to express in a concise form certain relations which we could, if necessary, rewrite in a form
not involving improper functions, but only in a cumbersome way which would tend to obscure the
argument.”
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Dirac delta function

Normalization

∫ ∞

−∞
δ(t) dt = 1

Sifting

∫ ∞

−∞
x(t+ t0) δ(t) dt =

∫ ∞

−∞
x(t) δ(t − t0) dt = x(t0)

Sampling x(t) δ(t) = x(0) δ(t)

Scaling δ(t/a) = |a| δ(t) for any nonzero a ∈ R

Shifting x(t) ∗t δ(t − t0) = x(t − t0)

Table 3.11 Properties of the Dirac delta function. Sifting requires continuity of x at t0
and sampling requires continuity of x at 0.

where (a) follows from the change of variable τ = t/a; and (b) from the continuity
at 0 of the scaled function x(at). Combined with a similar argument for a ∈ R−,
we have

δ(t/a) = |a| δ(t) (3.295)

for any nonzero a ∈ R.
Properties of the Dirac delta function are summarized in Table 3.11. Note

that the shifting property uses the convolution operation defined in (4.31) in Sec-
tion 4.3.3.

Appendix 3.B Elements of algebra

3.B.1 Polynomials

A polynomial is a function of the following form:

p(z) =

N∑

n=0

anz
n. (3.296)

Assuming that aN 6= 0, the degree of the polynomial is N . The set of polynomials
with coefficients an from a given ring itself forms a ring.77

The roots of a polynomial are obtained by equating a polynomial function
p(z), a function obtained by evaluating a polynomial p(z) over a given domain of
z, to zero. The following theorem, formulated by Gauss, is a useful tool in algebra:

Theorem 3.23 (Fundamental theorem of algebra) Every polynomial
with complex coefficients of degree N possesses exactly N complex roots.

77A ring is a set together with two binary operations, addition and multiplication. The ad-
dition must be commutative and associative, while the multiplication must be associative, and
distributive over addition. There exists an additive identity element and each element must have
an additive inverse. A standard example of a ring is the set of integers, Z, with ordinary addition
and multiplication.
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Cambridge University Press (ISBN 110703860X) v1.1 [May 2014] [free version] Comments to book-errata@FourierAndWavelets.org



Appendix 3.B Elements of algebra 319

Thus, the degree of the polynomial is also the number of complex roots of that
polynomial. For example, p(z) = a2z

2 + a1z + a0 is a quadratic polynomial and
has two roots. An irreducible quadratic polynomial is a quadratic polynomial with
no real roots. For example, p(z) = z2 + 2 has no real roots; rather, its roots are
complex, ±j

√
2.

We can factor any polynomial with real coefficients into a product of linear
factors, (z − bn), and irreducible quadratic factors, (z2 + cnz + dn), where the
coefficients bn, cn, and dn are all real; for a polynomial with complex coefficients,
the factors are all linear, (z − zn), where the coefficients zn are complex,

p(z) =

N∑

n=0

anz
n =





aN
∏N−2k−1

n=0 (z − bn)
∏k−1

n=0(z
2 + cnz + dn),

an, bn, cn, dn ∈ R,
or

aN
∏N−1

n=0 (z − zn),
an, zn ∈ C.

(3.297)

Two polynomials p(z) and q(z) are called coprime, written as (p(z), q(z)) = 1,
when they have no common factors. The Bézout identity states that if p(z) and
q(z) are coprime, there exist two other polynomials a(z) and b(z) such that

a(z) p(z) + b(z) q(z) = 1, for all z. (3.298)

Euclid’s algorithm is a constructive way of finding a(z) and b(z) in (3.298).

Laurent polynomials A Laurent polynomial is like a polynomial except that neg-
ative powers are allowed in (3.296),

p(z) =

N∑

n=−M

anz
n. (3.299)

This can be written as

p(z) = z−Mq(z) with q(z) =

N+M∑

n=0

anz
n, (3.300)

where q(z) is now just an ordinary polynomial.

Ratios of polynomials A rational function r(z) is a ratio of two polynomials,

r(z) =
p(z)

q(z)
=

∑N
n=0 anz

n

∑M
n=0 bnz

n
. (3.301)

In general, we assume that M ≥ N , as otherwise, we could use polynomial division
to write (3.301) as a sum of a polynomial and a ratio of polynomials with the
numerator now of degree smaller or equal to M .

Assume that p(z) and q(z) are coprime; otherwise, we can cancel common
factors and proceed. When M = N , by Theorem 3.23, (3.301) has N zeros and M

Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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poles (zeros of the denominator q(z)) in the complex plane. When M < N , there
are N −M additional zeros at z =∞. When M > N , there are M −N additional
poles at z =∞, indicating that a rational function has max(M,N) poles and zeros,
including ones at 0 and ∞.

Discrete polynomials A polynomial sequence is a sequence whose nth element is
a finite sum of the following form:

pn =
N∑

k=0

akn
k, n ∈ Z. (3.302)

For example, a constant polynomial sequence is of the form pn = a, a linear poly-
nomial sequence is of the form pn = a0+ a1n, and a quadratic polynomial sequence
is of the form pn = a0 + a1n+ a2n

2. The z-transform of such a sequence is

P (z) =
∑

n∈Z

pnz
−n =

∑

n∈Z

(
N∑

k=0

akn
k

)
z−n.

When we study wavelets and filter banks, we will be concerned with the moment-
annihilating/preserving properties of such systems. The following fact will then be
of use: Convolution of the polynomial sequence with a differencing filter
dn = (δn− δn−1), or multiplication of P (z) by D(z) = (1− z−1), reduces the degree
of the polynomial by 1, as in

D(z)P (z) = (1− z−1)
∑

n∈Z

pnz
−n = (1− z−1)

∑

n∈Z

(
N∑

k=0

akn
k

)
z−n

=
∑

n∈Z

N∑

k=0

akn
kz−n −

∑

n∈Z

N∑

k=0

akn
kz−(n+1)

=
∑

n∈Z

N∑

k=0

akn
kz−n −

∑

n∈Z

N∑

k=0

ak(n− 1)kz−n

=
∑

n∈Z

N∑

k=0

ak(n
k − (n− 1)k)z−n

(a)
=
∑

n∈Z

(
N−1∑

k=0

bkn
k

)
z−n =

∑

n∈Z

rnz
−n,

where rn is a polynomial of degree (N − 1), and (a) follows from (nN − (n− 1)N )
being a polynomial of degree (N − 1). The above process can be seen as applying a
differencing filter with a zero at z = 1. Extending the above argument, we see that
by repeatedly applying the differencing filter we will eventually reach a degree-0
polynomial sequence (a constant) and then the all-zero sequence.
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3.B.2 Vectors and matrices of polynomials

Notions of vectors and matrices can be combined with polynomials and rational
functions. For simplicity, we introduce all concepts on 2 × 1 vectors and 2 × 2
matrices.

A vector of polynomials, or polynomial vector, is given by

v(z) =

[∑N
n=0 anz

n

∑N
n=0 bnz

n

]
=

[
p(z)
q(z)

]
=

N∑

n=0

vnz
n, (3.303)

where each vn is a 2× 1 vector of scalars.
Similarly, a matrix of polynomials, or polynomial matrix, is given by

H(z) =

[∑N
n=0 anz

n
∑N

n=0 bnz
n

∑N
n=0 cnz

n
∑N

n=0 dnz
n

]
=

[
p(z) q(z)
r(z) s(z)

]
=

N∑

n=0

Hnz
n, (3.304)

where each Hn is a 2× 2 matrix of scalars. In both of the above expressions, N is
the maximum degree of any of the entries.

Rank is more subtle for polynomial matrices than for ordinary ones. For
example, if λ = 3,

H(z) =

[
a+ bz 3(a+ bz)
c+ dz λ(c+ dz)

]

is rank-deficient for every value of z. On the other hand, if λ 6= 3, then it is rank-
deficient only if z = −a/b or z = −c/d, leading to the notion of normal rank. The
normal rank of H(z) is the size of the largest minor that has a determinant that is
not identically zero. In the above example, for λ = 3, the normal rank is 1, while
for λ 6= 3, the normal rank is 2.

A square polynomial matrix of full normal rank has an inverse, which can be
computed identically to a scalar matrix as in (2.221),

H−1(z) =
adj(H(z))

det(H(z))
. (3.305)

A polynomial matrix H(z) is called unimodular if |detH(z)| = 1 for all z. The
product of two unimodular matrices is unimodular, and the inverse of a unimodular
matrix is unimodular as well. A polynomial matrix is unimodular if and only if its
inverse is a polynomial matrix. All these facts can be proven using properties of
determinants.

Example 3.48 (Unimodular polynomial matrix) The determinant of the
polynomial matrix

H(z) =

[
1 + z 2 + z
z 1 + z

]

is given by detH(z) = (1 + z)2− z(2 + z) = 1; it is thus unimodular. Its inverse
is

H−1(z) =

[
1 + z −(2 + z)
−z 1 + z

]
,

which is also a unimodular polynomial matrix.
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Vectors and matrices of Laurent polynomials Just as polynomials can be ex-
tended to Laurent polynomials, matrices of polynomials can be extended to matrices
of Laurent polynomials, or Laurent polynomial matrices,

H(z) =

[∑N
n=−N anz

n
∑N

n=−N bnz
n

∑N
n=−N cnz

n
∑N

n=−N dnz
n

]
=

N∑

n=−N

Hnz
n,

and similarly for vectors. The normal rank is defined as for polynomial matrices. A
Laurent polynomial matrix H(z) is called Laurent unimodular if |detH(z)| = czk

for all z ∈ C, for some c ∈ C and k ∈ Z. The inverse of a Laurent polynomial matrix
is again a Laurent polynomial matrix only if it is Laurent unimodular, since the
adjugate in (3.305) is again a Laurent polynomial matrix, while the determinant is
a monomial.

Example 3.49 (Laurent unimodular polynomial matrix) The Laurent
polynomial matrix

H(z) =
1

4z

[
1 + 3z 1− 3z
3 + z 3− z

]

has determinant z−1; it is thus unimodular. Its inverse is

H−1(z) =
1

4

[
3− z −1 + 3z
−3− z 1 + 3z

]
,

which is also a Laurent unimodular polynomial matrix.

Vectors and matrices of ratios of polynomials A matrix of rational functions, or
rational matrix, has entries that are ratios of polynomials,

H(z) =

[
p00(z)/q00(z) p01(z)/q01(z)
p10(z)/q10(z) p11(z)/q11(z)

]
,

where each pij(z) and qij(z) is a polynomial in z. The normal rank is defined as for
polynomial matrices. The inverse of a rational matrix is again a rational matrix.

Adjoint of a polynomial vector or matrix We now discuss the adjoint of a vector
or matrix of polynomials; extensions to vectors and matrices of Laurent polynomials
and rational functions follow similarly. The adjoints of a vector of polynomials v(z)
and matrix of polynomials H(z) are defined to be used with z-transform represen-
tations of LSI systems; the adjoint of v(z) or H(z) gives the z-transform represen-
tation of the adjoint of the corresponding system. The definitions also ensure that
the products v∗(z)v(z) and H∗(z)H(z) are positive semidefinite on the unit circle,
|z| = 1.78 This is because we are extending the idea of autocorrelation (3.146) to
vectors and matrices.

78A polynomial representing a z-transform turns into the DTFT on the unit circle.
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For simplicity, we consider polynomials with real coefficients first. The adjoint
of a 2× 1 vector of polynomials (3.303) is

v∗(z) = v⊤(z−1) =
[
p(z−1) q(z−1)

]
. (3.306)

The product

v∗(z) v(z) =
[
p(z−1) q(z−1)

] [p(z)
q(z)

]
= p(z−1)p(z) + q(z−1)q(z)

is positive semidefinite on the unit circle since it is the sum of two positive semidef-
inite functions on the unit circle. The same holds for matrices of polynomials: the
adjoint of a 2× 2 matrix of polynomials (3.304) is

H∗(z) = H⊤(z−1) =

[
p(z−1) r(z−1)
q(z−1) s(z−1)

]
; (3.307)

the product H∗(z)H(z) is a Laurent polynomial matrix and is positive semidefinite
on the unit circle.

An extension of the spectral factorization Corollary 3.14 states the following:

Theorem 3.24 (Extension of spectral factorization) Let A(z) be a
Laurent polynomial matrix. Then, it is positive semidefinite on the unit circle,
that is, A(ejω) ≥ 0, if and only if

A(z) = H(z)H∗(z
−1), (3.308)

where H(z) is a polynomial matrix and H∗(z) = H∗(z∗) amounts to conjugating
the coefficients of H but not its argument.

Such a matrix is given in Example 3.41 and its factorization in (3.253).
When polynomial coefficients are complex, the adjoint of the matrix in (3.304)

is

H∗(z) = H∗(z
−1) =

[
p∗(z−1) r∗(z−1)
q∗(z−1) s∗(z−1)

]
=

N∑

n=0

H∗
nz

−n. (3.309)

Paraunitary matrices A square matrix of polynomials, Laurent polynomials, or
rational functions, U(z), is called unitary when every value of the argument z gives
a unitary matrix,

U∗(z)U(z) = I, for all z ∈ C. (3.310a)

When evaluated for z = ejω , (3.310a) reduces to

U∗(ejω)U(ejω) = I, for all ω ∈ R. (3.310b)

The unitary condition (3.310a) is very restrictive; for example, it makes uni-
tary matrices a subset of unimodular matrices. Extending the condition (3.310b)
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away from the unit circle in a less restrictive manner gives the paraunitary condi-
tion. A square matrix of polynomials, Laurent polynomials, or rational functions,
U(z), is called paraunitary when it satisfies

U∗(z
−1)U(z) = I, for all z ∈ C. (3.311a)

Restricting (3.311a) to the unit circle is equivalent to (3.310b), giving the connection
to unitary matrices. Since for a matrix with real coefficients U∗(z−1) = U∗(z−1) =
U⊤(z−1), a paraunitary matrix with real coefficients satisfies

U⊤(z−1)U(z) = I, for all z ∈ C. (3.311b)

When a paraunitary matrix has polynomial entries (not Laurent polynomials), it is
called lossless.

Example 3.50 (Paraunitary matrix) The matrix

U(z) =
1√
2

[
1 1
1 −1

] [
1 0
0 z

] [ 1
2 −

√
3
2√

3
2

1
2

]
=

1√
2

[
1+

√
3z

2
−
√
3+z
2

1−
√
3z

2
−
√
3−z
2

]

is paraunitary since (3.311b) is satisfied. Since its entries are polynomials, it is
lossless as well.

Pseudocirculant polynomial matrices The extension of circulant matrices (2.245)
to polynomial matrices are pseudocirculant matrices, an example of which is (3.224).
Such a matrix has polynomial entries and is circulant with entries above the diagonal
multiplied by z−1 (thus pseudocirculant), for example,

H(z) =



h0(z) z−1h2(z) z−1h1(z)
h1(z) h0(z) z−1h2(z)
h2(z) h1(z) h0(z)


 . (3.312)

3.B.3 Kronecker product

The Kronecker product of two matrices is defined as




a0,0 · · · a0,N−1

...
. . .

...
aM−1,0 · · · aM−1,N−1


⊗B =




a0,0B · · · a0,N−1B
...

. . .
...

aM−1,0B · · · aM−1,N−1B


 , (3.313)

where each aij is a scalar, B is a matrix, and neither matrix need be square. The
Kronecker product has the following useful property with respect to the usual matrix
product:

(A⊗B)(C ⊗D) = (AC)⊗ (BD), (3.314)

where all the matrix products have to be well defined. See Solved exercise 3.8 for
an application of Kronecker products.
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Chapter at a glance

We now summarize the main concepts and results seen in this chapter, some in a tabular
form. One of the key elements was finding the appropriate Fourier transform for a given
space of sequences (such as ℓ2(Z) or circularly extended finite-length ones). That procedure
can be summarized as follows:

(i) Start with a given time shift δn−1.

(ii) Determine the induced convolution operator Tx = Hx = h ∗ x.
(iii) Find the eigensequences xn of H (ejωn for infinite-length sequences and ej(2π/N)kn

for finite-length sequences).

(iv) Identify the frequency response as the eigenvalues corresponding to the above eigense-
quences (H(ejωn) for infinite-length sequences, Hk for finite-length sequences).

(v) The appropriate Fourier transform projects sequences on the spaces spanned by
eigensequences identified in (iii) (discrete-time Fourier transform for infinite-length
sequences, discrete Fourier transform for finite-length sequences).

Concept Notation Infinite-length sequences Finite-length sequences

Shift δn−1 linear circular

Sequence xn n ∈ Z n ∈ {0, 1, . . . , N − 1}
vector

LSI system hn n ∈ Z n ∈ {0, 1, . . . , N − 1}
filter

impulse response

operator

Convolution h ∗ x
∑

k∈Z

xkhn−k

N−1∑

k=0

xkhN,(n−k) mod N

Eigensequence v ejωn ej(2π/N)kn

satisfies h ∗ vλ = λvλ h ∗ vω = H(ejω) vω h ∗ vk = Hkvk
invariant space Sλ Sω = {αejωn} Sk = {αej(2π/N)kn}

α ∈ C, ω ∈ R α ∈ C, k ∈ Z

Frequency response λ λω = H(ejω) λk = Hk

eigenvalue
∑

n∈Z

hne
−jωn

N−1∑

n=0

hne
−j(2π/N)kn

Fourier transform X DTFT DFT

spectrum X(ejω) =
∑

n∈Z

xne
−jωn Xk =

N−1∑

n=0

xne
−j(2π/N)kn

Table 3.12 Concepts in discrete-time processing.
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Concept Expression

Sampling factor 2

Input xn, X(z), X(ejω)

Downsampling yn = x2n

y = D2x

Y (z) =
1

2

[
X(z1/2) +X(−z1/2)

]

Y (ejω) =
1

2

[
X(ejω/2) +X(ej(ω−2π)/2)

]

Upsampling yn =

{
xn/2, n even;

0, otherwise.

y = U2x

Y (z) = X(z2)

Y (ejω) = X(ej2ω)

Downsampling y = D2Hx

preceded by filtering Y (z) =
1

2

[
H(z1/2)X(z1/2) +H(−z1/2)X(−z1/2)

]

Y (ejω) =
1

2

[
H(ejω/2)X(ejω/2) +H(ej(ω−2π)/2)X(ej(ω−2π)/2)

]

Upsampling y = GU2x

followed by filtering Y (z) = G(z)X(z2)

Y (ejω) = G(ejω)X(ej2ω)

Sampling factor N

Input xn, X(z), X(ejω)

Downsampling yn = xNn

y = DNx

Y (z) =
1

N

N−1∑

k=0

X(W k
Nz

1/N )

Y (ejω) =
1

N

N−1∑

k=0

X(ej(ω−2πk/N))

Upsampling yn =

{
xn/N , n/N ∈ Z;

0, otherwise.

y = UNx

Y (z) = X(zN )

Y (ejω) = X(ejNω)

Table 3.13 Concepts in multirate discrete-time processing.
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Domain Autocorrelation/crosscorrelation Properties

Sequences xn, yn

Time an
∑

k∈Z
xkx

∗
k−n an = a∗−n

cn
∑

k∈Z
xky

∗
k−n cx,y,n = c∗y,x,−n

DTFT A(ejω) |X(ejω)|2 A(ejω) = A∗(ejω)

C(ejω) X(ejω)Y ∗(ejω) Cx,y(ejω) = C∗
y,x(e

jω)

z-transform A(z) X(z)X∗(z−1) A(z) = A∗(z−1)

C(z) X(z)Y∗(z−1) Cx,y(z) = Cy,x∗(z−1)

DFT Ak |Xk|2 Ak = A∗
−k mod N

Ck XkY
∗
k Ck = C∗

y,x,−k mod N

Real sequences xn, yn

Time an
∑

k∈Z
xkxk−n an = a−n

cn
∑

k∈Z
xkyk−n cx,y,n = cy,x,−n

DTFT A(ejω) |X(ejω)|2 A(ejω) = A(e−jω)

C(ejω) X(ejω)Y (e−jω) Cx,y(ejω) = Cy,x(e−jω)

z-transform A(z) X(z)X(z−1) A(z) = A(z−1)

C(z) X(z)Y (z−1) Cx,y(z) = Cy,x(z−1)

DFT Ak |Xk|2 Ak = A−k mod N

Ck XkYk Ck = Cy,x,−k mod N

Vector of sequences
[
x0,n x1,n

]⊤

Time An

[
a0,n c0,1,n

c1,0,n a1,n

]
An = A∗

−n

An = A⊤
−n

DTFT A(ejω)

[
A0(ejω) C0,1(ejω)

C1,0(ejω) A1(ejω)

]
A(ejω) = A∗(ejω)

A(ejω) = A⊤(e−jω)

z-transform A(z)

[
A0(z) C0,1(z)

C1,0(z) A1(z)

]
A(z) = A∗(z−1)

A(z) = A⊤(z−1)

DFT Ak

[
A0,k C0,1,k

C1,0,k A1,k

]
Ak = A∗

−k mod N

Ak = A⊤
−k mod N

Table 3.14 Summary of concepts related to deterministic autocorrelation and crosscor-
relation of a sequence (upper half) and a vector of sequences (lower half). For vectors of
sequences, an example for a vector of two sequences is given. Also for vectors of sequences,
under properties, two are given each time: the first is for complex sequences and the sec-
ond for real sequences. The DFT entries are for circular deterministic autocorrelation and
crosscorrelation. Note that we overload the notations A(ejω), A(z), and Ak to mean either
a scalar or a matrix depending on the sequence.
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Historical remarks

The impact signal processing has had in practical terms is perhaps due in large part to

the advent of fast Fourier transform algorithms, spurred on by the paper of Cooley

and Tukey in 1965 [16]. It breaks the computation of the discrete Fourier transform of

length N = N1N2 into a recursive computation of smaller DFTs of lengths N1 and N2,

respectively (see Section 3.9.1). Unbeknownst to them, a similar algorithm had been

published by Gauss some 150 years earlier, in his attempt to track asteroid trajectories.

Further reading

Signal processing books The standard textbook on discrete-time signal processing
is the one by Oppenheim and Schafer [72]. For multidimensional signal processing, see
the book by Dudgeon and Mersereau [27]; for multirate signal processing, see books by
Crochiere and Rabiner [18] and by Vaidyanathan [105]; for statistical signal processing,
the book by Porat [80]; for fast algorithms for discrete-time signal processing, see the book
by Blahut [7]; and for signal processing for communications, see the book by Prandoni and
Vetterli [82].

Inverse z-transform via contour integration The formal inversion process for the
z-transform is given by contour integration using Cauchy’s integral formula when X(z)
is a rational function of z. When X(z) is not rational, inversion can be quite difficult; a
short account is given in [54], and more details can be found in [72].

Algebraic theory of signal processing A framework for signal processing in algebraic
terms is a recent development whose foundations can be found in [83]; some of the observa-
tions in this chapter were inspired by this framework. It provides a recipe for starting with
a sequence space, shift, and method of extension, and deriving from these an appropriate
convolution operator and Fourier transform. For example, using a symmetric extension
rather than the circular one in Section 3.6 can be more natural for signals whose domain
represents space rather than time; this leads to the discrete cosine transform (DCT), which
is well known in image processing. The existence and forms of fast algorithms for comput-
ing transforms, including the well-known trigonometric ones, all follow from this theory.

Pseudocirculant matrices We have seen the importance of these matrices in multirate
systems, in particular in representing convolution in the polyphase domain. A thorough
presentation of such matrices can be found in [106].

Stochastic multirate systems In Section 3.8.4, we examined only a few basic oper-

ations in stochastic multirate systems. A thorough discussion of other cases, including

different periods for cyclostationarity of the input and the output, can be found in [86].
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Chapter 4

Functions and
continuous-time systems

“The profound study of nature is the most fertile source of
mathematical discoveries.”

— Joseph Fourier
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In contrast to Chapter 3, discrete time is now replaced with continuous time.
Sequences are replaced by functions defined on the domain of real numbers, which
we associate with continuous time. As we saw in Chapter 2, these functions form
the vector space CR (assuming that they are complex-valued). Operators that map
a function to a function are called continuous-time systems.

As in Chapter 3, some important classes of functions and continuous-time
systems have physical interpretations. Restricting functions to the normed vector
spaces L2(R) and L∞(R) corresponds to the physical properties of finite energy
and boundedness. Shift-invariance of a continuous-time system sometimes follows
directly from our assumption that physical laws do not change over time. A linear
continuous-time system with the shift-invariance property is described by convolu-
tion with the system’s impulse response. An impulse response is a function, and we
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344 Functions and continuous-time systems

will see that it is appropriate to require that it belong to L1(R) or L2(R). Once the
convolution operation has been defined, spectral theory allows us to construct the
Fourier transform.

The above discussion implicitly assumed that the underlying domain, time,
is infinite. In practice we observe a finite portion of time. In Chapter 3, we dealt
with this issue by assuming that a finite-length sequence was circularly extended,
leading to the notion of circular convolution and the discrete Fourier transform;
in this chapter, circularly extended finitely supported functions will also have an
appropriate circular convolution as well as an appropriate Fourier transform, the
mapping to Fourier series coefficients.

4.1 Introduction

In most of Chapter 3, we considered sequences; here, we look at functions defined
for all times t ∈ R. Such a function,

x(t), t ∈ R, (4.1)

could be the sound pressure sensed by a microphone, or the temperature at a sensor,
etc.; the key is that a value exists at every time instant.

In real life, we observe only a finite portion of a function on the real line,

x(t), t ∈ [0, T ). (4.2)

Moreover, computations are always done on finite-length inputs, requiring a decision
on how to treat the function at times that are not observed. As with sequences,
there are two principal techniques: either set x(t) = 0 for all t outside of [0, T ) or
extend x circularly (creating a periodic function in the process):

x(t+ T ) = x(t), t ∈ R. (4.3)

While finite-length functions in (4.2) and infinite-length periodic ones in (4.3) have
a fundamentally different character, we will use the same types of tools to analyze
them. Techniques designed explicitly for finite-length functions are mathematically
rooted in treating the function as one period of an infinite-length periodic function.
The consequences of this implicit periodization are central to signal processing.

As in Chapter 3, we thus define two broad classes of functions for which to
develop our tools.

(i) Functions on the real line form the vector space CR of functions with the
domain R, as defined in (2.18c). The support of a function might be a proper
subset of R; for example, we will often consider functions on the real line that
are nonzero only at nonnegative times.

(ii) Functions on a finite interval, without loss of generality, have support in [0, T ).
The tools we will develop do not treat the vector space of functions with
support in [0, T ) generically, but rather as functions defined on a circular
domain.
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4.2 Functions 345

The functions we consider are typically bounded, often smooth, and sometimes
periodic.

An operator with a domain and codomain of continuous-time signals (that is,
a vector space of functions) is called a continuous-time system. Many continuous-
time systems, such as a microphone responding to pressure variations, are physical
systems governed by differential equations; for example, the sound waves reaching
a microphone obey the wave equation. Often, these differential equations have a
smoothing effect, and functions with singularities (such as a point of discontinuity)
are smoothed by the time they are observed. In the microphone example, a gunshot
is first smoothed by the wave equation, and further smoothed by the microphone
itself. We mention these effects to emphasize the difference between mathematical
abstractions and observed phenomena. These differential equations are often linear,
or even linear and shift-invariant; in Chapter 3, the same was true of difference
equations.

Chapter outline

Section 4.2 discusses continuous-time signals, where we introduce function spaces
of interest and comment on local and global smoothness. We follow with a short
overview of continuous-time systems in Section 4.3, and in particular, linear, shift-
invariant systems stemming from linear constant-coefficient differential equations.
This discussion leads to the convolution operator and its properties, such as stability.
Section 4.4 develops the Fourier transform and its properties. We emphasize the
eigenfunction property of complex exponentials and give key relations of the Fourier
transform, together with properties for certain function spaces. We briefly discuss
the Laplace transform, an extension of the Fourier transform akin to the z-transform
seen in the previous chapter, allowing us to deal with larger classes of functions. In
Section 4.5, we discuss the natural orthonormal basis for periodic functions given by
the Fourier series. We study circular convolution and the eigenfunction property of
complex exponentials as well as properties of the Fourier series. Then, we explore
the duality with the DTFT for sequences seen in Chapter 3. In Section 4.6, we
study continuous-time stochastic processes and systems.

4.2 Functions

4.2.1 Functions on the real line

The set of functions in (4.1), where x(t) is either real or complex, together with
vector addition and scalar multiplication, forms a vector space (see Definition 2.1).
The standard inner product between two functions on the real line was defined in
(2.22c) and induces the standard L2 (or Euclidean) norm (2.26c). Other norms of
interest are the L1 norm from (2.42a) with p = 1, and the L∞ norm from (2.42b).
We now look into a few spaces of interest.
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346 Functions and continuous-time systems

Function spaces

Space of square-integrable functions L2(R) The constraint of a finite square
norm is necessary for turning the vector space CR defined in (2.18c) into the Hilbert
space of finite-energy functions L2(R). As for sequences, this space affords a geo-
metric view, for example, the projection theorem (Theorem 2.26).

Space of bounded functions L∞(R) The space of bounded functions contains all
functions x(t) such that, for some finite M , |x(t)| ≤ M for all t ∈ R. This space is
denoted L∞(R) since it consists of functions with finite L∞ norm.

Space of absolutely integrable functions L1(R) The space of absolutely integrable
functions consists of those with finite L1 norm.

The Lp spaces do not satisfy a nesting property as the ℓp sequence spaces do in
(2.41). Therefore, when inclusion in different Lp spaces is needed to avoid technical
difficulties, we restrict the discussion to the intersection of the spaces. For example,
certain theorems apply only to functions that are both absolutely integrable and
square integrable, that is, those belonging to L1(R) ∩ L2(R).

Spaces of smooth functions To describe the global smoothness of a function, we
use its continuity and the continuity of its derivative(s); these characterize the Cq

spaces we saw in Section 2.2.4. Even a single point where the qth derivative does
not exist or is not continuous prevents membership in Cq. Thus, global smoothness
can fail to capture distinctions between important, frequently encountered types
of functions and those that are quite esoteric. For example, the simple function
u(t) = 1 for t ≥ 0 and u(t) = 0 for t < 0 is infinitely differentiable at every nonzero
t, but it fails to be even in C0; in terms of global smoothness, it is no different than
a function that is discontinuous everywhere. Therefore, to distinguish functions in
terms of smoothness, we consider local smoothness as well.

In calculus, it is natural to look at differentiability at various points in the
domain of the function. In signal processing, on the other hand, it is often preferable
to define local smoothness using the global smoothness of a windowed version of a
function. We illustrate this with an example.

Example 4.1 (Continuous and piecewise-linear function) Let (x0, x1,
. . . , xL) be a sequence of real numbers with x0 = xL = 0. Construct the function

x(t) =

{
xn + (t− n)(xn+1 − xn), for n ≤ t < n+ 1, n ∈ {0, 1, . . . , L− 1};

0, for t /∈ [0, L),
(4.4a)

a linear interpolation between the integer points as in Figure 4.1(a) such that
x(n) = xn. This function is in L1(R), L2(R), and L∞(R), since the sequence
{xn} is finite and bounded. In terms of smoothness, looking only at a single linear
piece, the function seems to be in C∞, but, since the function is not differentiable
at the integers, it is only in C0.
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Figure 4.1 (a) A piecewise-linear function x(t) obtained by linearly interpolating a finite
sequence of real values xn via (4.4a). (b) Two different windows wT (t) from (4.4b) for
widths T = 2 (solid line) and T = 1

2
(dashed line). (c) Windowed versions y2,3/2 (solid

line) and y1/2,3/2 (dashed line) obtained with the two different window widths and the
same shift. Both are in C0, but only y1/2,3/2 is in C1. (d) Windowed versions y2,4 (solid
line) and y1/2,4 (dashed line), again obtained with the two window widths and the same
shift. Both are in C0, and neither is in C1.

We investigate local smoothness using a window that is in C1, for example,

wT (t) =

{
1
2 (1 + cos(2πt/T )), for |t| ≤ 1

2T ;
0, otherwise,

(4.4b)

where T > 0. The window support is of size T and centered around the origin.
The window has one continuous derivative, that is, wT ∈ C1. Figure 4.1(b)
shows wT for two values of T .

For any fixed width parameter T and shift parameter τ , define the windowed
version of x(t) as

yT,τ (t) = x(t)wT (t− τ). (4.4c)

The global smoothness of yT,τ varies depending on the parameters T and τ
and gives us information about the local smoothness of x. As a product of
continuous functions, yT,τ is always continuous (that is, it is in C0). When
T > 1, the support of the shifted window will always include at least one integer
point, no matter what τ is; thus, yT,τ will not be in C1 (see the solid plots in
Figures 4.1(c) and (d) for examples with T = 2). When T < 1, depending on T
and τ , some of the windowed versions will be in C1; for example, for T = 1

2 and
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348 Functions and continuous-time systems

τ ∈ [n+ 1
4 , n+ 3

4 ] for an integer n, the windowed version yT,τ is in C1 (see the
dashed plot in Figure 4.1(c)).

Space of functions of bounded variation Functions of bounded variation are
easiest to understand when they are also continuous. A continuous function has
bounded variation if the length of its graph on any finite interval is finite. While
most of the functions we encounter satisfy this criterion, some do not. For example,
consider the following functions:

x1(t) = sin

(
1

t

)
, x2(t) = t sin

(
1

t

)
, x3(t) = t2 sin

(
1

t

)
,

where each is defined to equal 0 for t = 0. On the interval [0, 1], x3 is of bounded
variation while x1 and x2 are not.79 Another example is a function x4 defined on
the unit interval [0, 1] and having value ±1 over dyadic intervals,

x4(t) = (−1)i, 2−i ≤ t < 2−i+1, i ∈ Z+, t ∈ [0, 1],

or, equivalently,
x4(t) = (−1)⌈log2(1/t)⌉.

This function is not of bounded variation either. All four functions are shown in
Figure 4.2.

Formally, the total variation of a function x over [a, b] is defined as

V b
a (x) = sup

N∈N

sup
t0,t1,...,tN

N−1∑

k=0

|x(tk+1)− x(tk)|,

where the inner supremum is taken over all increasing sequences (t0, t1, . . . , tN ) in
[a, b]. Then, a real-valued x(t) is said to be of bounded variation over [a, b] when
V b
a (x) is finite.

Special functions

We now introduce certain functions often used in the book.

Heaviside function The Heaviside or unit-step function is defined as

u(t) =

{
1, for t ≥ 0;
0, otherwise,

t ∈ R. (4.5)

This function is bounded by 1, so it belongs to L∞(R). It belongs to neither L1(R)
nor L2(R). The Dirac delta function defined in Appendix 3.A.4 and the Heaviside
function are related via

u(t) =

∫ t

−∞
δ(τ) dτ, t 6= 0. (4.6)

79The lack of bounded variation of x1 on [0, 1] follows immediately from x1(t) having infinitely
many local extrema (of nondiminishing magnitude) as t→ 0. It is more subtle to show that x2(t)
remains of unbounded variation despite the diminishing magnitudes of the extrema as t→ 0 and
that x3(t) has bounded variation.
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Figure 4.2 Functions illustrating the concept of bounded/unbounded variations. On
the interval [0, 1], only x3(t) is of bounded variation.

Pointwise multiplication by the Heaviside function implements the domain re-
striction operator (2.64) for restriction from all real numbers to just the nonnegative
real numbers:

1R+ x =

{
x(t), for t ≥ 0;

0, otherwise
= u(t)x(t), t ∈ R.

From this we can also build other domain restriction operators. For example, the
domain restriction to [t0, t1) is achieved with a difference of two shifted Heaviside
functions:

1[t0,t1) x = (u(t− t0)− u(t− t1))x(t) =

{
x(t), for t ∈ [t0, t1);

0, otherwise.
(4.7)

Box function For any positive real number t0, the centered and normalized box
function is given by

w(t) =

{
1/
√
t0, for |t| ≤ 1

2 t0;
0, otherwise.

(4.8a)

This is a normalized indicator function of the interval [− 1
2 t0,

1
2 t0],

w(t) =
1√
t0
1[−t0/2,t0/2](t). (4.8b)
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350 Functions and continuous-time systems

It is of unit L2 norm, and when t0 = 1 it has unit integral:
∫∞
−∞ w(t) dt = 1. The

box function and the sinc function (see (3.9a)) are intimately related; they form a
Fourier transform pair, as we will see later.

Gaussian function A Gaussian function is defined as

g(t) = γe−α(t−µ)2 , (4.9a)

where µ shifts the center of the function to t = µ, and α and γ are positive constants.
When α = 1/(2σ2) and γ = 1/(σ

√
2π), ‖g‖1 = 1, and thus g can be seen as a

probability density function, with µ and σ interpreted as the mean and standard
deviation, respectively,

‖g‖1 =

∫ ∞

−∞
|g(t)| dt =

∫ ∞

−∞
γe−α(t−µ)2 dt

=

∫ ∞

−∞

1

σ
√
2π
e−(t−µ)2/(2σ2) dt = 1. (4.9b)

When γ = (2α/π)1/4, ‖g‖2 = 1; that is, g is of unit energy,

‖g‖2 =

(∫ ∞

−∞
|g(t)|2 dt

)1/2
=

(∫ ∞

−∞
γ2e−2α(t−µ)2 dt

)1/2

=

(∫ ∞

−∞

√
2α

π
e−2α(t−µ)2 dt

)1/2

= 1. (4.9c)

Deterministic correlation

We now discuss two operations on functions, both deterministic, that appear
throughout the chapter. These are analogous to the notions of deterministic auto-
correlation and crosscorrelation for sequences defined in Section 3.2.1. Stochastic
versions of both operations will be given in Section 4.6.1.

Deterministic autocorrelation The deterministic autocorrelation a of a function
x is

a(τ) =

∫ ∞

−∞
x(t)x∗(t− τ) dt = 〈x(t), x(t− τ)〉t, τ ∈ R. (4.10)

The deterministic autocorrelation satisfies

a(τ) = a∗(−τ), (4.11a)

a(0) =

∫ ∞

−∞
|x(t)|2 dt = ‖x‖2, (4.11b)

analogously to (3.18). The deterministic autocorrelation measures the similarity
of a function with respect to shifts of itself, and it is Hermitian symmetric as in

Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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4.3 Systems 351

(4.11a). For a real x,

a(τ) =

∫ ∞

−∞
x(t)x(t − τ) dt = a(−τ). (4.11c)

When we need to specify the function involved, we write ax.

Deterministic crosscorrelation The deterministic crosscorrelation c of two func-
tions x and y is

c(τ) =

∫ ∞

−∞
x(t) y∗(t− τ) dt = 〈x(t), y(t− τ)〉t, τ ∈ R, (4.12)

and is written as cx,y when we want to specify the functions involved. It satisfies

cx,y(τ) =

(∫ ∞

−∞
y(t− τ)x∗(t) dt

)∗
(a)
=

(∫ ∞

−∞
y(t′)x∗(t′ + τ) dt′

)∗
= c∗y,x(−τ),

(4.13a)
where (a) follows from the change of variable t′ = t− τ . For real x and y,

cx,y(τ) =

∫ ∞

−∞
x(t) y(t− τ) dt = cy,x(−τ). (4.13b)

4.2.2 Periodic functions

Periodic functions with period T satisfy

x(t+ T ) = x(t), t ∈ R. (4.14)

Such functions appear in many physical problems, most notably in the original
work of Fourier on heat conduction in a circular wire. Such functions cannot have
finite L1 or L2 norms unless they are zero almost everywhere. Instead, we consider
functions with one period in L1(R) or L2(R); equivalently, the functions are in
L1([− 1

2T,
1
2T )) or L2([− 1

2T,
1
2T )):

80

∫ T/2

−T/2

|x(t)| dt < ∞ or

∫ T/2

−T/2

|x(t)|2 dt < ∞. (4.15)

As we said earlier, another way to look at these functions is as functions on an
interval, circularly extended, similarly to what we have seen in Chapter 3.

4.3 Systems

Continuous-time systems are operators having continuous-time signals (functions)
as their inputs and outputs. Among all continuous-time systems, we will concentrate
on those that are linear and shift-invariant. This subclass is both important in
practice and amenable to analysis. After an introduction to differential equations,
which are natural descriptions of continuous-time systems, we study linear, shift-
invariant systems in detail.

80We write a half-closed interval [− 1
2
T, 1

2
T ), excluding 1

2
T , to emphasize that the function at

1
2
T is determined by its value at − 1

2
T by periodicity.
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x T y

Figure 4.3 A continuous-time system.

4.3.1 Continuous-time systems and their properties

A continuous-time system is an operator T that maps an input function x ∈ V into
an output function y ∈ V ,

y = T (x), (4.16)

as shown in Figure 4.3. As we have seen in the previous section, the function space
V is typically L2(R) or L∞(R). At times, the input or the output is in a subspace
of such spaces.

Types of systems

For each of the types of systems seen in the previous chapter, we have a continuous-
time counterpart. As the concepts are identical, we list them with little elaboration.
It is instructive to compare the discrete-time and continuous-time definitions.

Linear systems The definition of linearity of a continuous-time system is similar
to Definition 2.17 of a linear operator and Definition 3.1 of a linear discrete-time
system.

Definition 4.1 (Linear system) A continuous-time system T is called linear
when, for any inputs x and y and any α, β ∈ C,

T (αx+ βy) = αT (x) + βT (y). (4.17)

The function T is thus a linear operator, and we write (4.16) as

y = Tx. (4.18)

Memoryless systems The definition of a memoryless system closely follows Def-
inition 3.2, with the system output at any instant depending only on the input at
the same instant.

Definition 4.2 (Memoryless system) A continuous-time system T is called
memoryless when, for any real τ and inputs x and x′,

1{τ} x = 1{τ} x
′ ⇒ 1{τ} T (x) = 1{τ} T (x

′). (4.19)
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4.3 Systems 353

Causal systems The output of a causal system at time t depends on the input
only up to time t. It follows that if two inputs agree up to time t, the corresponding
outputs must agree up to time t.

Definition 4.3 (Causal system) A continuous-time system T is called causal
when, for any real τ and inputs x and x′,

1(−∞,τ ] x = 1(−∞,τ ] x
′ ⇒ 1(−∞,τ ] T (x) = 1(−∞,τ ] T (x

′). (4.20)

As was discussed in Section 3.3.1, causality can seem to be a property that is
required of any real system. When the time variable literally represents time and
the same time origin is used for the input and output functions, causality is indeed
necessary for accurate models of physical systems.

Shift-invariant systems In a shift-invariant system, shifting the input has the
effect of shifting the output by the same amount.

Definition 4.4 (Shift-invariant system) A continuous-time system T is
called shift-invariant when, for any real τ and input x,

y = T (x) ⇒ y′ = T (x′), where x′(t) = x(t− τ) and y′(t) = y(t− τ). (4.21)

As in Chapter 3, linear shift-invariant (LSI) or linear time-invariant (LTI) systems
have desirable mathematical properties.

Stable systems As for discrete-time systems, we consider bounded-input, bounded-
output (BIBO) stability exclusively.

Definition 4.5 (BIBO-stable system) A continuous-time system T is called
bounded-input, bounded-output stable when a bounded input x produces a bounded
output y = T (x):

x ∈ L∞(R) ⇒ y ∈ L∞(R). (4.22)

Basic systems

We now discuss a few basic continuous-time systems.

Shift The shift-by-t0 operator is defined as

y(t) = x(t− t0), t ∈ R, (4.23)

Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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and simply delays x(t) by t0. It is an LSI operator, causal (for t0 ≥ 0) and BIBO-
stable, but not memoryless. While this is one of the simplest continuous-time
systems, it is also the most important, as the entire concept of time processing is
based on this simple operator. Compare this continuous-time shift operator with
the discrete-time one defined in (3.39).

Modulator While the shift we just saw is the shift in time, modulation is shift
in frequency (as we will see later in this chapter). A modulation by a complex
exponential of frequency ω0 is given by

y(t) = ejω0tx(t), t ∈ R. (4.24)

This operator is linear, causal, memoryless, and BIBO-stable, but not shift-invariant.
For those already familiar with Fourier analysis, (4.24) shifts the spectrum of x to
the position ω0 in frequency. Compare this continuous-time modulation operator
with the discrete-time one defined in (3.41).

Integrator Similarly to the discrete-time accumulator (3.43), an integrator sums
up the inputs up to the present time,

y(t) =

∫ t

−∞
x(τ) dτ, t ∈ R. (4.25)

This is an LSI, causal operator, but it is neither memoryless nor BIBO-stable.

Averaging operators As in (3.47), for any fixed T > 0, we could consider a system
that takes an average of the input,

y(t) =
1

T

∫ t+T/2

t−T/2

x(τ) dτ, t ∈ R. (4.26)

This is a moving-average filter since we look at the function through a window of
length T . This operator is LSI and BIBO-stable, but it is neither memoryless nor
causal.

We could obtain a causal version by simply delaying the moving average in
(4.26) by 1

2T , resulting in

y(t) =
1

T

∫ t

t−T

x(τ) dτ, t ∈ R. (4.27)

This operator is again LSI and BIBO-stable but it is also causal, while still not
being memoryless.

Maximum operator This simple operator computes the maximum value of the
input up to the current time,

y(t) = max(1{−∞,...,t} x). (4.28)

This operator is clearly neither linear nor memoryless, but it is causal, shift-invariant,
and BIBO-stable.
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4.3.2 Differential equations

In Chapter 3, we have examined the basic principles behind difference equations.
Just as in discrete time, where a linear difference equation relates an input sequence
and an output sequence, in continuous time, a linear differential equation relates an
input function and an output function. In particular, a linear constant-coefficient
differential equation (compare with a linear constant-coefficient difference equation
in (3.55)) describes an LSI system and is of the form

y(t) =

M∑

k=0

bk
dkx(t)

dtk
−

N∑

k=1

ak
dky(t)

dtk
. (4.29)

To find the solution, we follow the procedure outlined in Section 3.A.2: we find a
solution y(h)(t) to the homogeneous equation obtained by setting the input x(t) in
(4.29) to zero; we then find any particular solution y(p)(t) to (4.29), typically by
assuming the output to be of the same form as the input; and finally, the complete
solution is formed by superposition of the solution to the homogeneous equation and
the particular solution. The coefficients in the homogeneous solution are found by
specifying initial conditions for y(t) and then solving the system. A standard way of
finding solutions to differential equations is to use Fourier and Laplace transforms.

4.3.3 Linear shift-invariant systems

Impulse response

The impulse response of an LSI continuous-time system is defined with the Dirac
delta function playing the role that the Kronecker delta sequence plays in discrete
time. The impulse response is sufficient for specifying the discrete-time system
completely; this is clear from the fact that the Kronecker delta sequence and its
shifts form a basis for ℓ2(Z). While we cannot create a basis for L2(R) with the
Dirac delta function and its shifts, we will see shortly that an expression analogous
to (3.59) leads again to specifying an LSI system through convolution with the
impulse response.

Definition 4.6 (Impulse response) A function h is called the impulse re-
sponse of LSI continuous-time system T when input δ produces output h.

The impulse response h of a causal linear system always satisfies h(t) = 0 for all
t < 0. This is required because, according to (4.20), the output in response to input
δ must match on (−∞, 0) to the 0 output function that results from the 0 input
function.
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356 Functions and continuous-time systems

Convolution

To parallel (3.59), we can express an arbitrary input x to an LSI system T as

x(t) =

∫ ∞

−∞
x(τ)δ(t − τ) dτ, (4.30)

where the equality holds for all t ∈ R at which x is continuous (see the sifting
property of the Dirac delta function in (3.293)).81 Then, the output resulting from
this input is

y = Tx = T

∫ ∞

−∞
x(τ) δ(t − τ) dτ (a)

=

∫ ∞

−∞
x(τ)Tδ(t− τ) dτ

(b)
=

∫ ∞

−∞
x(τ)h(t − τ) dτ = h ∗ x,

where (a) follows from linearity; and (b) from shift invariance and the definition of
the impulse response, defining the convolution.

Definition 4.7 (Convolution) The convolution between functions h and x is
defined as

(Hx)(t) = (h ∗ x)(t) =

∫ ∞

−∞
x(τ)h(t − τ) dτ =

∫ ∞

−∞
x(t− τ)h(τ) dτ, (4.31)

where H is called the convolution operator associated with h.

Properties The convolution (4.31) satisfies the following properties:

(i) Connection to the inner product:

(h ∗ x)(t) =

∫ ∞

−∞
x(τ)h(t − τ) dτ = 〈x(τ), h∗(t− τ)〉τ . (4.32a)

(ii) Commutativity:
h ∗ x = x ∗ h. (4.32b)

(iii) Associativity:
g ∗ (h ∗ x) = g ∗ h ∗ x = (g ∗ h) ∗ x. (4.32c)

81Since we are mostly interested in equalities in the L2 sense, we neglect what happens exactly
at points of discontinuity of x. When x has a countable number of points of discontinuity, we can
assign an arbitrary value (such as zero) to x at those points of discontinuity without changing the
integrals in (4.31).
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(iv) Deterministic autocorrelation:

a(τ) =

∫ ∞

−∞
x(t)x∗(t− τ) dt = x(t) ∗t x∗(−t). (4.32d)

(v) Shifting: For any τ ∈ R,

x(t) ∗t δ(t− τ) = x(t− τ). (4.32e)

These properties have discrete-time counterparts in (3.62) and are explored further
in Solved exercise 4.2. Note that properties (i)–(iv) above depend on the integrals –
whether written explicitly or implicitly – being well defined. We will not dwell on
these technicalities; Appendix 3.A.3, though focused only on discrete time, has a
related discussion.

Filters As in Chapter 3, the impulse response of a system is often called a filter
and convolution with the impulse response is called filtering.

Stability Similarly to the absolute summability encountered in Chapter 3, BIBO
stability of a continuous-time system is equivalent to the absolute integrability of
its impulse response. The proof is similar to that for the discrete-time case (see
Theorem 3.8) and is left for Exercise 4.2.

Theorem 4.8 (BIBO stability) An LSI system is BIBO-stable if and only if
its impulse response is absolutely integrable.

If the input to a BIBO-stable system is in Lp(R), the output is in Lp(R) as well.
This is a continuous-time analogue to Solved exercise 3.2, and can also be proven
using Hölder’s inequality.

Smoothing One key feature of many convolution operators is their smoothing
effect. For example, when the impulse response has a nonzero mean (zeroth moment,
see (4.60a)), the convolution will compute a local average, as we now show.

Example 4.2 (Local smoothing by convolution) Choose the box func-
tion of width t0, (4.8a), as the impulse response h, and a piecewise-constant
function over integer intervals,

x(t) = xn, for t ∈ [n, n+ 1), n ∈ Z,

as the input (for some sequence xn). The convolution y = h ∗ x is continuous for
any t0 > 0. For example, the output with t0 = 1 is

y(t) = xn +

(
t− n− 1

2

)
(xn+1 − xn), for t ∈ [n+ 1

2 , n+ 3
2 ], n ∈ Z,

which is piecewise-linear and continuous. Thus, thanks to a smoothing impulse
response, a discontinuous function x is transformed into a C0 function y.
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Adjoint Like in discrete time, the adjoint of a convolution operator is another
convolution operator, where the filter is time-reversed and conjugated: If H is
the convolution operator associated with the filter h, then its adjoint G is the
convolution operator associated with the filter g(t) = h∗(−t). Formal verification
of this fact is left for Exercise 4.3.

Circular convolution

We now consider what happens with our second class of functions, those that are
of finite length and circularly extended.

Linear convolution with circularly extended signal Given a bounded periodic
function x as in (4.14) and a filter with impulse response h in L1(R), we can compute
the convolution as usual,

y(t) = (h ∗ x)(t) =

∫ ∞

−∞
x(τ)h(t − τ) dτ =

∫ ∞

−∞
h(τ)x(t − τ) dτ. (4.33)

Since x is T -periodic, y is T -periodic as well,

y(t+ T ) =

∫ ∞

−∞
h(τ)x(t + T − τ) dτ (a)

=

∫ ∞

−∞
h(τ)x(t − τ) dτ = y(t),

where (a) follows from the periodicity of x.
Let us now define a periodized version of h, with period T , as

hT (t) =
∑

n∈Z

h(t− nT ), (4.34)

where the sum converges for each t because h ∈ L1(R). We now want to show how
we can express the convolution (4.33) in terms of what we will define as a circular
convolution:

(h ∗ x)(t) =

∫ ∞

−∞
h(τ)x(t − τ) dτ (a)

=
∑

n∈Z

∫ nT+T/2

nT−T/2

h(τ)x(t − τ) dτ

(b)
=
∑

n∈Z

∫ T/2

−T/2

h(τ ′ + nT )x(t− τ ′ − nT ) dτ ′

(c)
=
∑

n∈Z

∫ T/2

−T/2

h(τ + nT )x(t− τ) dτ

(d)
=

∫ T/2

−T/2

∑

n∈Z

h(τ + nT )

︸ ︷︷ ︸
hT (τ)

x(t− τ) dτ

=

∫ T/2

−T/2

hT (τ)x(t − τ) dτ = (hT ⊛ x)(t), (4.35)
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4.4 Fourier transform 359

where (a) follows from splitting the real line into length-T segments; (b) from the
change of variable τ ′ = τ − nT ; (c) from the periodicity of x and the change of
variable τ = τ ′; and (d) from (2.209). The expression above tends to be more
convenient as it involves only one period of both x and the periodized version hT
of the impulse response h.

Definition of the circular convolution In computing the convolution of a periodic
function x with an impulse response h ∈ L1(R), we implicitly defined the circular
convolution of a T -periodic function x and a T -periodic impulse response h.

Definition 4.9 (Circular convolution) The circular convolution between
T -periodic functions h and x is defined as

(Hx)(t) = (h⊛x)(t) =

∫ T/2

−T/2

x(τ)h(t−τ) dτ =

∫ T/2

−T/2

x(t−τ)h(τ) dτ, (4.36)

where H is called the circular convolution operator associated with h.

The result of the circular convolution is again T -periodic. While circular convolution
is a separate concept from linear convolution, we have just seen that the two are
related when one function in a linear convolution is periodic and the other is not.
We made the connection by periodizing the aperiodic function.

4.4 Fourier transform

As discussed in Section 3.4, the ubiquity of the Fourier transform is mostly due
to the fact that complex exponentials are eigenfunctions of LSI systems (convo-
lution operators). As in discrete time, this leads to the convolution property – an
equivalence between convolving functions and multiplying Fourier transforms of the
functions. This is also interpreted as diagonalization of convolution operators by
the Fourier transform.

4.4.1 Definition of the Fourier transform

Eigenfunctions of the convolution operator LSI systems have all unit-modulus
complex exponential functions as eigenfunctions. As in discrete time, this follows
from the convolution representation of LSI systems (4.31) and a simple computation.

Consider a complex exponential function

v(t) = ejωt, t ∈ R, (4.37)

where ω is any real number. The quantity ω is called the angular frequency; it is
measured in radians per second. With ω = 2πf , the quantity f is called frequency;
it is is measured in hertz, or the number of cycles per second. The function v
is bounded since |v(t)| = 1 for all t ∈ R. If the impulse response h is in L1(R),
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360 Functions and continuous-time systems

according to Theorem 4.8, the output h ∗ v is bounded as well. Along with being
bounded, h ∗ v takes a particular form:

(Hv)(t) = (h ∗ v)(t) =

∫ ∞

−∞
v(t− τ)h(τ) dτ =

∫ ∞

−∞
ejω(t−τ)h(τ) dτ

=

∫ ∞

−∞
h(τ)e−jωτ dτ

︸ ︷︷ ︸
λω

ejωt
︸︷︷︸
v(t)

. (4.38)

This shows that applying the convolution operator H to the complex exponential
function v gives a scalar multiple of v; in other words, v is an eigenfunction of H
with the corresponding eigenvalue λω . We denote this eigenvalue by H(ω) using
the frequency response of the system, which is defined formally in (4.79a). We can
thus rewrite (4.38) as

Hv = h ∗ v = H(ω) v. (4.39)

Fourier transform We are now ready to define the Fourier transform, which amounts
to projecting onto the subspaces generated by each of the eigenfunctions.

Definition 4.10 (Fourier transform) The Fourier transform of a function
x is

X(ω) =

∫ ∞

−∞
x(t)e−jωt dt, ω ∈ R. (4.40a)

It exists when (4.40a) is defined and is finite for all ω ∈ R; we then call it the
spectrum of x. The inverse Fourier transform of X is

x(t) =
1

2π

∫ ∞

−∞
X(ω)ejωt dω, t ∈ R. (4.40b)

It exists when (4.40b) is defined and is finite for all t ∈ R. When the Fourier
transform and inverse Fourier transform exist, we denote the Fourier transform
pair as

x(t)
FT←→ X(ω).

Note that the integral in (4.40a) is formally equivalent to an L2(R) inner product,
although the function ejωt has no decay and thus is not in L2(R). We now discuss
limitations on the inputs and corresponding interpretations of the Fourier transform.
Since the transform (4.40a) and inverse transform (4.40b) differ only by a constant
factor and reversal of time, the technical conditions on their existence are identical.

4.4.2 Existence and inversion of the Fourier transform

We will use the Fourier transform as an analysis tool without getting bogged down
in technicalities. First, we work toward a basic understanding of how certain re-
strictions are needed for statements to be mathematically rigorous. Integration has
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Figure 4.4 (a) The box function (4.8a) for t0 = 1. (b) Its Fourier transform.

more technical subtleties than summation; accordingly there are more subtleties in
the interpretation of the Fourier transform than there are in that of the DTFT, and
we leave more of the details to the advanced texts listed in the Further reading.

Similarly to the development in Section 3.4.2, the existence of the Fourier
transform is immediate for functions in L1(R), but it is L2(R) that allows the use of
all the tools of Hilbert space theory; thus, we could conservatively restrict attention
exclusively to functions in L1(R) ∩ L2(R).82 At the other extreme, certain Fourier
transform expressions arise even when no rigorous sense of existence of the Fourier
transform applies, and we treat these as useful to develop intuition rather than as
mathematical statements.

Functions in L1(R) If x is in L1(R), then the integral in (4.40a) is defined and
finite for all ω ∈ R.83 Moreover, the Fourier transformX is bounded and continuous
(see Solved exercise 4.3). We illustrate these facts through two examples.

Example 4.3 (Fourier transform of the box function) Let x be the
box function from (4.8a). It is in L1(R), so there is no question of whether its
Fourier transform exists. The Fourier transform of x is

X(ω) =
1√
t0

∫ t0/2

−t0/2

e−jωt dt = − 1

j
√
t0ω

e−jωt
∣∣∣
t0/2

−t0/2

=
ejt0ω/2 − e−jt0ω/2

jω
√
t0

=
√
t0 sinc

(
1

2
t0ω

)
. (4.41)

The function and its Fourier transform for t0 = 1 are shown in Figure 4.4.
As is guaranteed by x being in L1(R), the Fourier transform X is bounded

and continuous. In this case, X is in L2(R) but not in L1(R).
Using (3.9c), we see that the Fourier transform of the box function is zero

82Recall from (2.41) that ℓ1(Z) ⊂ ℓ2(Z), so ℓ1(Z) ∩ ℓ2(Z) = ℓ1(Z), but no analogous inclusion
holds for L1(R) and L2(R).

83Formally, this is because Lebesgue integrability of |x(t)| implies the Lebesgue integrability of
x(t)ejωt for every ω ∈ R.
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at all nonzero integer multiples of ω = 2π/t0,

X

(
2π

t0
k

)
=
√
t0δk, k ∈ Z. (4.42)

Example 4.4 (Fourier transform of the triangle function) Let x be
the triangle function,

x(t) =

{
1− |t|, for |t| < 1;

0, otherwise.
(4.43)

Its Fourier transform is

X(ω) =

∫ 0

−1

(1 + t)e−jωt dt+

∫ 1

0

(1− t)e−jωt dt. (4.44a)

Pulling the constant terms together gives
∫ 1

−1

e−jωt dt = − 1

jω
e−jωt

∣∣1
−1

=
ejω − e−jω

jω
. (4.44b)

The remaining part of the second integral in (4.44a) is

∫ 1

0

−te−jωt dt
(a)
=

1

ω2

∫ −jω

0

ueu du
(b)
=

1

ω2
(u− 1)eu

∣∣∣
−jω

0

=
e−jω

jω
− e−jω

ω2
+

1

ω2
, (4.44c)

where (a) follows from the change of variable u = −jωt; and (b) from the fact
that a primitive of ueu is (u− 1)eu.84 By similar arguments, the remaining part
of the first integral in (4.44a) is

∫ 0

−1

te−jωt dt = −e
jω

jω
− ejω

ω2
+

1

ω2
. (4.44d)

Summing (4.44b)–(4.44d) completes the computation of X(ω) in (4.44a),

X(ω) =
1

ω2
(2− ejω − e−jω) =

(
ejω/2 − e−jω/2

jω

)2
= sinc2

(
1

2
ω

)
. (4.45)

The triangle function and its Fourier transform are shown in Figure 4.5.
As is guaranteed by x being in L1(R), the Fourier transform X is bounded

and continuous. In this case, X is in both L1(R) and L2(R).
The triangle function (4.43) is the convolution of two box functions from

(4.8a) with t0 = 1. Its Fourier transform (4.45) is the square of the Fourier
transform of such a box function from (4.41). This is a preview of the convolution
property (4.62): the Fourier transform of a convolution is the product of the
Fourier transforms.

84A function x(t) is called a primitive of y(t) when x′(t) = y(t). In this context, a synonym for
primitive is antiderivative. We will often denote a primitive function with a superscript (1), as in
y(1) for the primitive of y.
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Figure 4.5 (a) The triangle function (4.43). (b) Its Fourier transform.

The box function (Example 4.3) illustrates an issue that does not arise with the
triangle function (Example 4.4): a function x in L1(R) can have a Fourier transform
X that is not in L1(R); thus, inversion by evaluation of (4.40b) is not guaranteed
to work. This is part of what is alleviated with the extension of (4.40) to apply to
any function in L2(R).

Functions in L2(R) If x is in L2(R), the Fourier transform integral (4.40a) might
or might not be defined for every ω ∈ R. The extension of the Fourier transform
and its inverse from L1(R) to L2(R) is technically nontrivial; see the Further reading
for texts with thorough discussions of this topic.85

Without understanding the technical details, one can still appreciate the ex-
tremely useful end result: The Fourier transform gives, for any x in L2(R), a function
X that is itself in L2(R). The inverse Fourier transform can be defined similarly
for any X in L2(R), and it does indeed provide an inversion, so x can be recovered
from X .

Knowing that the Fourier transform can be extended rigorously to all of L2(R),
we can put the technicalities aside. We can determine Fourier transform pairs by
evaluating either the transform integral (4.40a) or the inverse transform integral
(4.40b) – if either is tractable. This strategy will not cover every x ∈ L2(R), but
closed-form integration is often a matter of luck. We illustrate this through the
following example.

Example 4.5 (Fourier transform of the sinc function) Let

x(t) =

√
ω0

2π
sinc

(
1

2
ω0t

)
. (4.46)

As in its discrete-time counterpart in Table 3.5, the factor
√
ω0/(2π) is present

to make x(t) have unit L2 norm. Since x is in L2(R), it has a Fourier transform,
but, since x is not in L1(R), we cannot necessarily find the Fourier transform by

85A typical route is to use the existence of the Fourier transform on L1(R) ∩ L2(R) along with
the density of L1(R) ∩ L2(R) in L2(R) to define the Fourier transform as the limit of a sequence
of Fourier transforms of functions that converge to x.
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Figure 4.6 (a) The sinc function (4.46) for ω0 = 2π. (b) Its Fourier transform.

evaluating the integral (4.40a). We can avoid having to deal with a potentially
difficult integral by simply recognizing from Example 4.3 that the sinc function
and the box function are associated by the Fourier transform. Specifically, we
can easily apply the inverse Fourier transform integral (4.40b) to

X(ω) =

{√
2π/ω0, for |ω| ≤ 1

2ω0;
0, otherwise

(4.47)

to confirm that (4.46) and (4.47) form a Fourier transform pair. The function
and its Fourier transform for ω0 = 2π are shown in Figure 4.6.

Inversion When x in L1(R) has a Fourier transform X that is itself in L1(R), the
transform is inverted by (4.40b); see the Further reading. Specifically, this means
that if applying the inverse Fourier transform to X yields x̂, then

x̂(t) = x(t) for all t ∈ R. (4.48)

Since X ∈ L1(R) implies that x and x̂ are both continuous, it is perhaps not
surprising that a pointwise match can be achieved.

The extension of the Fourier transform to L2(R) uses sequences of functions
converging under the L2 norm. The meaning of the inversion is thus changed ac-
cordingly. Let x be in L2(R). It has a Fourier transform X (which is automatically
in L2(R)), which in turn has an inverse Fourier transform x̂ (which is also automat-
ically in L2(R)). The inverse relationship guarantees

‖x− x̂‖ = 0, (4.49)

but (4.48) does not necessarily hold.

Using the Fourier transform without existence The Fourier transform is still
a useful tool even in some cases where neither its L1(R) nor its L2(R) definition
applies. These are cases where an expression for the Fourier transform involving a
Dirac delta function makes sense because evaluating the inverse Fourier transform
integral gives the desired result, or vice versa. As with other uses of the Dirac delta
function, we must be cautious.
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4.4 Fourier transform 365

Example 4.6 (Fourier transform of a constant function) Let
x(t) = 1 for all t ∈ R. This function belongs to neither L1(R) nor L2(R), so
our previous discussions of the existence of the Fourier transform do not apply.
In fact, there is no value of ω for which the Fourier transform integral (4.40a)
is defined and finite. However, there is a dependence on ω: for ω = 0, (4.40a)
diverges to ∞; for other values of ω, it is tempting (but not mathematically
correct) to assign the value of zero to the integral because the real and imaginary
parts of the integrand oscillate evenly between positive and negative values.

Despite the lack of existence of the Fourier transform, the expression

X(ω) = 2πδ(ω) (4.50)

proves useful. Substituting this into the inverse Fourier transform (4.40b) recov-
ers the function with which we started, x(t) = 1, for all t ∈ R.

Similar reasoning gives the Fourier transform pairs

ejω0t FT←→ 2πδ(ω − ω0), (4.51)

for any ω0 ∈ R, and

δ(t)
FT←→ 1. (4.52)

4.4.3 Properties of the Fourier transform

Basic properties

We list here basic properties of the Fourier transform; Table 4.1 summarizes these,
together with symmetries as well as a few standard transform pairs. Of course, all
the expressions must be well defined for these properties to hold.

Linearity The Fourier transform operator F is a linear operator, or

αx(t) + βy(t)
FT←→ αX(ω) + βY (ω). (4.53)

Shift in time The Fourier transform pair corresponding to a shift in time by t0 is

x(t− t0) FT←→ e−jωt0X(ω). (4.54)

Shift in frequency The Fourier transform pair corresponding to a shift in fre-
quency by ω0 is

ejω0tx(t)
FT←→ X(ω − ω0). (4.55)

A shift in frequency is often referred to as modulation.
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366 Functions and continuous-time systems

FT properties Time domain FT domain

Basic properties

Linearity αx(t) + βy(t) αX(ω) + βY (ω)

Shift in time x(t− t0) e−jωt0X(ω)

Shift in frequency ejω0tx(t) X(ω − ω0)

Scaling in time and frequency x(αt) (1/α)X(ω/α)

Time reversal x(−t) X(−ω)
Differentiation in time dnx(t)/dtn (jω)nX(ω)

Differentiation in frequency (−jt)nx(t) dnX(ω)/dωn

Integration in time

∫ t

−∞
x(τ) dτ X(ω)/jω, X(0) = 0

Moments mk =

∫ ∞

−∞
tkx(t) dt = (j)k

dkX(ω)

dωk

∣∣∣∣
ω=0

Convolution in time (h ∗ x)(t) H(ω)X(ω)

Convolution in frequency h(t) x(t)
1

2π
(H ∗X)(ω)

Deterministic autocorrelation a(t) =

∫ ∞

−∞
x(τ)x∗(τ − t) dτ A(ω) = |X(ω)|2

Deterministic crosscorrelation c(t) =

∫ ∞

−∞
x(τ) y∗(τ − t) dτ C(ω) = X(ω)Y ∗(ω)

Parseval equality ‖x‖2 =

∫ ∞

−∞
|x(t)|2 dt = 1

2π

∫ ∞

−∞
|X(ω)|2 dω =

1

2π
‖X‖2

Related functions

Conjugate x∗(t) X∗(−ω)
Conjugate, time-reversed x∗(−t) X∗(ω)

Real part ℜ(x(t)) (X(ω) +X∗(−ω))/2
Imaginary part ℑ(x(t)) (X(ω) −X∗(−ω))/(2j)
Conjugate-symmetric part (x(t) + x∗(−t))/2 ℜ(X(ω))

Conjugate-antisymmetric part (x(t) − x∗(−t))/(2j) ℑ(X(ω))

Symmetries for real x

X conjugate symmetric X(ω) = X∗(−ω)
Real part of X even ℜ(X(ω)) = ℜ(X(−ω))
Imaginary part of X odd ℑ(X(ω)) = −ℑ(X(−ω))
Magnitude of X even |X(ω)| = |X(−ω)|
Phase of X odd argX(ω) = −argX(−ω)

Common transform pairs

Dirac delta function δ(t) 1

Shifted Dirac delta function δ(t − t0) e−jω0t

Dirac comb
∑

n∈Z

δ(t − nT ) (2π/T )
∑

k∈Z

δ(ω − (2π/T )k)

Constant function 1 2πδ(ω)

Exponential function e−α|t| (2α)/(ω2 + α2)

Gaussian function e−αt2
√
π/αe−ω2/α

Sinc function
(ideal lowpass filter)

√
ω0

2π
sinc( 1

2
ω0t)

{√
2π/ω0, |ω| ≤ 1

2
ω0;

0, otherwise.

Box function

{
1/
√
t0, |t| ≤ 1

2
t0;

0, otherwise.

√
t0 sinc(

1
2
t0ω)

Triangle function

{
1− |t|, |t| < 1;

0, otherwise
sinc2( 1

2
ω)

Table 4.1 Properties of the Fourier transform.
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4.4 Fourier transform 367

Scaling in time and frequency The Fourier transform pair corresponding to scal-
ing in time by α is scaling in frequency by 1/α:

x(αt)
FT←→ 1

α
X
(ω
α

)
. (4.56a)

This is another of the key properties of the Fourier transform, where a stretch
in time corresponds to a compaction in frequency, and vice versa. We often use
normalized rescaling, namely, for α > 0,

√
αx(αt)

FT←→ 1√
α
X
(ω
α

)
, (4.56b)

which conserves the L2 norm of x (and thus of X), since

‖√αx(αt)‖2 =

∫ ∞

−∞
α|x(αt)|2 dt (a)

= α

∫ ∞

−∞
|x(τ)|2 dτ

α
= ‖x‖2, (4.56c)

where (a) follows from the change of variable τ = αt.

Time reversal The Fourier transform pair corresponding to time reversal x(−t) is

x(−t) FT←→ X(−ω). (4.57)

For a real x(t), the Fourier transform of the time-reversed version x(−t) is X∗(ω).

Differentiation in time The Fourier transform pair corresponding to differentia-
tion in time is

dnx(t)

dtn
FT←→ (jω)nX(ω), (4.58)

assuming that the derivatives exist and are bounded, or equivalently, assuming that
ωnX(ω) is absolutely integrable.

Differentiation in frequency The Fourier transform pair corresponding to differ-
entiation in frequency is

(−jt)nx(t) FT←→ dnX(ω)

dωn
. (4.59a)

This is obtained by multiple applications of

∫ ∞

−∞
tx(t)e−jωt dt = j

d

dω

[∫ ∞

−∞
x(t)e−jωt dt

]
= j

dX(ω)

dω
, (4.59b)

assuming that tkx(t) is integrable for k = 0, 1, . . . , n and using

j
de−jωt

dω
= te−jωt.

This result is dual to differentiation in time above.
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368 Functions and continuous-time systems

Moments Computing the kth moment using the Fourier transform results in

mk =

∫ ∞

−∞
tkx(t) dt = (j)k

dkX(ω)

dωk

∣∣∣∣
ω=0

, k ∈ N, (4.60a)

as a direct application of (4.59a). The first two moments are

m0 =

∫ ∞

−∞
x(t) dt =

∫ ∞

−∞
x(t)e−jωt dt

∣∣∣∣
ω=0

= X(0), (4.60b)

m1 =

∫ ∞

−∞
tx(t) dt =

∫ ∞

−∞
tx(t)e−jωt dt

∣∣∣∣
ω=0

= j
dX(ω)

dω

∣∣∣∣
ω=0

. (4.60c)

Integration The Fourier transform pair corresponding to the integral of a function
with zero mean (m0 = X(0) = 0) is

∫ t

−∞
x(τ) dτ

FT←→ 1

jω
X(ω). (4.61)

Convolution in time The Fourier transform pair corresponding to convolution in
time is

(h ∗ x)(t) FT←→ H(ω)X(ω). (4.62)

Thus, as with the DTFT and DFT in Chapter 3, convolution in the time domain
corresponds to multiplication in the Fourier domain.

For a direct algebraic proof, assume that both h and x are in L1(R). Then,
h ∗ x is also in L1(R), as noted following Theorem 4.8. The spectrum Y (ω) of the
output function y = h ∗ x can be written as

Y (ω)
(a)
=

∫ ∞

−∞
y(t)e−jωt dt

(b)
=

∫ ∞

−∞

(∫ ∞

−∞
x(τ)h(t − τ) dτ

)
e−jωt dt

=

∫ ∞

−∞

∫ ∞

−∞
x(τ)e−jωτh(t− τ)e−jω(t−τ) dτ dt

(c)
=

∫ ∞

−∞
x(τ)e−jωτ dτ

∫ ∞

−∞
h(τ ′)e−jωτ ′

dτ ′
(d)
= X(ω)H(ω),

where (a) follows from the definition of the Fourier transform; (b) from the definition
of convolution; (c) from interchanging the order of integration, which is an allowed
operation since absolute integrability is implied by h ∗ x being well defined, and
change of variable τ ′ = t− τ ; and (d) from the definition of the Fourier transform.

This key result is a direct consequence of the eigenfunction property of com-
plex exponential functions v from (4.38): when x is written as a combination of
spectral components, each spectral component is simply scaled by the correspond-
ing eigenvalue of the convolution operator; thus, using the Fourier transform has
diagonalized the convolution operator. While this is slightly more subtle than the
case in discrete time because we have not been expressing convolution operators
using matrices, the concept is unchanged.
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4.4 Fourier transform 369

Example 4.7 (Differentiation and convolution) Suppose that h ∗ x is
differentiable. Using (4.58) with n = 1 and (4.62),

d

dt
(h ∗ x)(t) FT←→ jωH(ω)X(ω).

Since the jω factor can be associated either with X(ω) or with H(ω), upon using
(4.58) with n = 1 again, we see that (h ∗ x)′ can be written in either of the
following two ways:

(h ∗ x)′ = h ∗ x′ = h′ ∗ x. (4.63)

Similarly, by writing

H(ω)X(ω) =

(
1

jω
H(ω)

)
(jωX(ω)) = (jωH(ω))

(
1

jω
X(ω)

)

and using (4.58) with n = 1, (4.61), and (4.62), we find

h ∗ x = h(1) ∗ x′ = h′ ∗ x(1), (4.64)

where

h(1)(t) =

∫ t

−∞
h(τ) dτ and x(1)(t) =

∫ t

−∞
x(τ) dτ

are primitives of h and x. Justifying (4.64) with (4.61) requires H(0) = 0 or
X(0) = 0, but it can be justified under looser conditions using integration by
parts (see Exercise 4.4). A pictorial example is shown in Figure 4.7.

Convolution in frequency The Fourier transform pair corresponding to convolu-
tion in frequency is

h(t)x(t)
FT←→ 1

2π
(H ∗X)(ω). (4.65)

The convolution in frequency property (4.65) is dual to the convolution in time
property (4.62).

Deterministic autocorrelation The Fourier transform pair corresponding to the
deterministic autocorrelation of a function x is

a(t) =

∫ ∞

−∞
x(τ)x∗(τ − t) dτ FT←→ A(ω) = |X(ω)|2 (4.66)

and satisfies

A(ω) = A∗(ω), (4.67a)

A(ω) ≥ 0. (4.67b)

To verify (4.66), express the deterministic autocorrelation a as the convolution of
x and its conjugated and time-reversed version as in (4.32d), x(t) ∗ x∗(−t). We
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(a) h. (b) x. (c) h ∗ x.
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(h′ ∗ x(1))(t)

(g) h′. (h) x(1). (i) h′ ∗ x(1).

Figure 4.7 Computation of convolution through the equivalent of convolving primitive
and derivative instead.

know from Table 4.1 that the Fourier transform of x∗(−t) is X∗(ω). Then, using
the convolution property (4.62), we obtain (4.66). For a real x,

A(ω) = |X(ω)|2 = A(−ω), (4.67c)

since X(−ω) = X∗(ω).
The quantity A(ω) is called the energy spectral density (this is the determin-

istic counterpart of the power spectral density for WSS continuous-time stochastic
processes defined by (4.140) in Section 4.6.3). The energy is the normalized integral
of the energy spectral density,

E =
1

2π

∫ ∞

−∞
A(ω) dω =

1

2π

∫ ∞

−∞
|X(ω)|2 dω =

∫ ∞

−∞
|x(t)|2 dt = a0. (4.68)

Mimicking the relationship between the energy spectral density for deterministic
functions and the power spectral density for WSS stochastic processes, (4.68) is
the deterministic counterpart of the power for WSS continuous-time stochastic pro-
cesses (4.141) that will be introduced in Section 4.6.3.
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4.4 Fourier transform 371

Deterministic crosscorrelation The Fourier transform pair corresponding to the
deterministic crosscorrelation of functions x and y is

c(t) =

∫ ∞

−∞
x(τ) y∗(τ − t) dτ FT←→ Cx,y(ω) = X(ω)Y ∗(ω) (4.69)

and satisfies

Cx,y(ω) = C∗
y,x(ω). (4.70a)

For real x and y,

Cx,y(ω) = X(ω)Y (−ω) = Cy,x(−ω). (4.70b)

Parseval equality The Fourier transform is a unitary linear transformation on
L2(R), up to a 2π scaling factor. It satisfies Parseval equalities

‖x‖2 =
1

2π
‖X‖2 (4.71a)

and

〈x, y〉 =
1

2π
〈X, Y 〉, (4.71b)

where X and Y are the Fourier transforms of x and y. A proof for x and y in
L1(R) ∩ L2(R) is elementary (see Exercise 4.5), and the extension to the rest of
L2(R) also holds.

Adjoint The adjoint of the Fourier transform, F ∗ : L2(R)→ L2(R), is determined
uniquely by

〈Fx, y〉 = 〈x, F ∗y〉 for every x, y ∈ L2(R).

Since (4.71b) shows that F/
√
2π is a unitary operator, by Theorem 2.23,

(
1√
2π
F

)∗
=

(
1√
2π
F

)−1

=
√
2π F−1.

Thus,

F ∗ = 2πF−1, (4.72)

with F−1 given by (4.40b).

Transform pairs

Rather than develop an exhaustive list of Fourier transform pairs, we highlight a
few that are routinely used. Table 4.1 summarizes these pairs (along with some
others).
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Cambridge University Press (ISBN 110703860X) v1.1 [May 2014] [free version] Comments to book-errata@FourierAndWavelets.org



372 Functions and continuous-time systems

Dirac delta function We saw earlier that the Fourier transform pair

1
FT←→ 2πδ(ω) (4.73)

is justified by evaluating the inverse Fourier transform integral, and similarly

δ(t)
FT←→ 1 (4.74)

is justified by applying the Fourier transform integral. These, along with the various
properties derived previously, enable the computation of many Fourier transforms,
including the transforms of certain trigonometric functions.

Box function From Example 4.3, the Fourier transform of the box function (4.8a)
is a sinc function,

x(t) =

{
1/
√
t0, for |t| ≤ 1

2 t0;
0, otherwise

FT←→ X(ω) =
√
t0 sinc

(
1
2 t0ω

)
. (4.75)

Sinc function From Example 4.5, the Fourier transform of a sinc function is a box
function,

x(t) =

√
ω0

2π
sinc

(
1
2ω0t

) FT←→ X(ω) =

{√
2π/ω0, for |ω| ≤ 1

2ω0;
0, otherwise.

(4.76)

The scaling of the sinc was chosen so that the time-domain function has unit norm.
Because of the prominent role of box and sinc functions, the transform pairs (4.75)
and (4.76), together with their counterparts for sequences as well as for periodic
functions, are included in Table 4.5 at the end of this chapter.

Heaviside function The Heaviside function was defined in (4.5). Its Fourier trans-
form pair is

u(t) =

{
1, for t ≥ 0;
0, otherwise

FT←→ U(ω) = πδ(ω) +
1

jω
, (4.77)

the derivation of which is beyond the scope of this book.

Gaussian function The Fourier transform of a Gaussian function in time is a
Gaussian function in frequency (see Figure 4.8),

g(t) = γe−αt2 FT←→ G(ω) = γ

√
π

α
e−ω2/(4α), (4.78)

where α and γ are positive real constants. That this is a Fourier transform pair can
be proven in various ways. One way is to first observe that e−αt2 is the solution of
the differential equation

dx(t)

dt
+ 2αtx(t) = 0.

Then, taking the Fourier transform and using (4.58) and (4.59b) leads to an equiv-
alent differential equation in the Fourier domain which, when solved, yields (4.78)
(see Exercise 4.6).
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γ
√

π/α
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√
α 1/

√
α t

g(t)

γ
√

π/α

γ

−2
√
α 2

√
α

ω

G(ω)

(a) (b)

Figure 4.8 (a) The Gaussian function (4.9a) with µ = 0. (b) Its Fourier transform.
(Illustrated for α = 1.)

4.4.4 Frequency response of filters

Like in discrete time, the Fourier transform of a function is called its spectrum, and
the Fourier transform of a filter (impulse response of an LSI system) h is called the
frequency response:

H(ω) =

∫ ∞

−∞
h(t)e−jωt dt, ω ∈ R. (4.79a)

The inverse Fourier transform of the frequency response recovers the impulse re-
sponse,

h(t) =
1

2π

∫ ∞

−∞
H(ω)ejωt dω, t ∈ R. (4.79b)

We often write the magnitude and phase of the frequency response separately:

H(ω) = |H(ω)|ej arg(H(ω)),

where the magnitude response |H(ω)| is a real, nonnegative function, and the phase
response arg(H(ω)) is a real function between −π and π. The terms zero phase,
linear phase, and allpass have the same meanings as in Section 3.4.4.

Ideal filters The frequency response of a filter is typically used to design a filter
with specific properties, where we want to let certain frequencies pass – the passband,
while blocking others – the stopband. An ideal filter is a filter whose magnitude
response takes a single positive value in its passband. We limit attention to real-
valued impulse responses (so the magnitude response is an even function) and real-
valued frequency responses (so the impulse response is an even function, and hence
noncausal).

An ideal lowpass filter passes frequencies below some cutoff frequency 1
2ω0 and

blocks the others; its passband is thus the interval [− 1
2ω0,

1
2ω0], and the frequency

response is a box function. The frequency response and impulse response of an ideal

Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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lowpass filter were derived in Example 4.5 to be

H(ω) =

{√
2π/ω0, for |ω| ≤ 1

2ω0;
0, otherwise,

(4.80a)

h(t) =

√
ω0

2π
sinc

(
1

2
ω0t

)
. (4.80b)

As earlier, the amplitude has been chosen so that ‖h‖ = 1. The impulse response
and frequency response are shown in Figures 4.9(a) and (b) for ω0 = π.

An ideal bandpass filter passes frequencies with absolute value between 1
2ω0

and 1
2ω1 and blocks the others; its passband is thus the union of intervals

[− 1
2ω1, − 1

2ω0] ∪ [ 12ω0,
1
2ω1]. By the Parseval equality, to have ‖h‖ = 1 we require

‖H‖ = 2π, so we set

H(ω) =

{√
2π/(ω1 − ω0), for |ω| ∈ [ 12ω0,

1
2ω1];

0, otherwise.
(4.81a)

An easy way to derive the impulse response is to recognize the frequency response as
a difference between two scaled box functions. Using linearity of the inverse Fourier
transform, this yields the impulse response

h(t) =
1√

2π(ω1 − ω0)

(
ω1 sinc

(
1

2
ω1t

)
− ω0 sinc

(
1

2
ω0t

))
. (4.81b)

The impulse response and frequency response are shown in Figures 4.9(c) and (d)
for ω0 = π and ω1 = 2π.

An ideal highpass filter passes frequencies above some cutoff frequency 1
2ω1 and

blocks the others; its stopband is thus the interval [− 1
2ω1,

1
2ω1]. Since the frequency

response takes some nonzero value on the unbounded support of (−∞, − 1
2ω1] ∪

[ 12ω1, ∞), the L2 norm of H diverges to infinity. There is no way to choose an
amplitude that gives an impulse response with unit norm, so let us choose a unit
passband gain:

H(ω) =

{
1, for |ω| ≥ 1

2ω1;
0, otherwise.

(4.82a)

The inverse Fourier transform integral is not defined for this H , but by recognizing
it as a constant minus a box function, we can associate with it the following impulse
response:

h(t) = δ(t)− ω1

2π
sinc

(
1

2
ω1t

)
. (4.82b)

The impulse response and frequency response are shown in Figures 4.9(e) and (f)
for ω1 = 2π.

4.4.5 Regularity and spectral decay

We discussed earlier a distinction between the box function from Example 4.3 and
the triangle function from Example 4.4: the triangle function has a spectrum X(ω)
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Ideal lowpass filter
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(a) Impulse response. (b) Magnitude response.

Ideal bandpass filter
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(c) Impulse response. (d) Magnitude response.

Ideal highpass filter
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(e) Impulse response. (f) Magnitude response.

Figure 4.9 Impulse responses and magnitude responses of ideal filters. The magnitude
responses are even functions; only positive frequencies are shown.

that decays fast enough as |ω| → ∞ for it to be in L1(R), while the box function
does not. This reflects the time-domain distinction that the triangle function is
continuous, while the box function is not. Spectral decay is related to smoothness
or regularity more generally, and characterizing regularity is an important analytical
use of the Fourier transform.

Cq regularity The Fourier transform facilitates the characterization of functions
with q continuous derivatives, that is, those functions belonging to Cq spaces (see
Section 2.2.4). As mentioned in Section 4.4.2, if x is in L1(R), then its Fourier
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376 Functions and continuous-time systems

transform X is bounded and continuous (see Solved exercise 4.3). Since the Fourier
transform and inverse Fourier transform are nearly identical, if X is in L1(R),
then its inverse Fourier transform x is bounded and continuous. If |X(ω)| decays
faster than 1/|ω| for large |ω|, then X ∈ L1(R) is guaranteed, so x is bounded and
continuous.

More precisely, if

|X(ω)| ≤ γ

1 + |ω|1+ε
, for all ω ∈ R, (4.83a)

for some positive constants γ and ε, then |X(ω)| is integrable, or X ∈ L1(R).
Therefore, the inverse Fourier transform x is bounded and continuous, or x ∈ C0.
We can easily extend this argument (see Exercise 4.8) to show that if

|X(ω)| ≤ γ

1 + |ω|q+1+ε
, for all ω ∈ R, (4.83b)

for some nonnegative integer q and positive constants γ and ε, then x ∈ Cq. Con-
versely, the Fourier transform of any x in Cq is bounded by

|X(ω)| ≤ γ

1 + |ω|q+1
, for all ω ∈ R, (4.83c)

for some positive constant γ. Taking q = 0, the Fourier transform of any continuous
function is bounded by

|X(ω)| ≤ γ

1 + |ω| , for all ω ∈ R, (4.83d)

for some positive constant γ. The ε difference between (4.83b) and (4.83c) comes
from the fact that if |X(ω)| decays as 1/(1 + |ω|q+1), then it can happen that the
qth derivative exists but is discontinuous, as we show now.

Example 4.8 (Decay and smoothness)

(i) Unit-width box function: Let x be the box function in (4.8a) with t0 = 1.
From (4.41), its spectrum is X(ω) = sinc(12ω). To bound the magnitude
of the spectrum from above in the form of (4.83), we need to use the
boundedness of the sinc function for small |ω| and the decay of the sinc
function for large |ω|. For |ω| ≥ 2, the spectrum satisfies

|X(ω)| =
∣∣sinc

(
1
2ω
)∣∣ =

∣∣∣∣
sin 1

2ω
1
2ω

∣∣∣∣
(a)

≤ 1

| 12ω|
(b)

≤ 3

1 + |ω| , (4.84a)

where (a) follows from the fact that |sin 1
2ω| ≤ 1 for all ω; and (b) is an

elementary consequence of |ω| > 2. For |ω| < 2,

3

1 + |ω| >
3

1 + 2
= 1

(a)

≥
∣∣sinc

(
1
2ω
)∣∣ = |X(ω)|, (4.84b)
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4.4 Fourier transform 377

where (a) follows from the fact that |sinc(12ω)| ≤ 1 for all ω. Thus, com-
bining (4.84a) and (4.84b),

|X(ω)| ≤ γ

1 + |ω| , for all ω ∈ R,

holds for γ = 3. While it is not important to find the smallest γ in this
bound, we do want to know whether we could increase the exponent of |ω|
in the denominator. We cannot: There are no positive constants γ and ε
such that

|X(ω)| ≤ γ

1 + |ω|1+ε
, for all ω ∈ R. (4.85)

To show this, fix any positive γ and ε, and we will find ω such that (4.85)
is violated. The upper envelope of |X(ω)| connects the relative maxima,
which occur when 1

2ω is an odd multiple of 1
2π. This upper envelope is

|2/ω| since we are picking the values of ω such that |sin 1
2ω| = 1. For the

upper envelope to violate (4.85), we want

2

|ω| >
γ

1 + |ω|1+ε
,

which does indeed happen when |ω| is large. Specifically, when 1
2ω is an

odd multiple of 1
2π and |ω| > (12γ)

1/ε,

γ

1 + |ω|1+ε
<

γ

|ω| · |ω|ε <
γ

|ω| · (12γ)
=

2

|ω| = |X(ω)|.

Since we cannot apply (4.83b), we cannot conclude from the spectrum
whether x is continuous. Of course, we know it is not.

(ii) Triangle function: By arguments similar to those given above for the box
function, the spectrum of the triangle function given in (4.45) satisfies

|X(ω)| ≤ γ

1 + |ω|2 , for all ω ∈ R,

for some positive constant γ, but there are no positive constants γ and ε
such that

|X(ω)| ≤ γ

1 + |ω|2+ε
, for all ω ∈ R.

Therefore, we can apply (4.83b) with q = 0 (but not with any larger q) and
conclude from the spectrum that x is continuous (and not more). Actually,
x is almost continuously differentiable because there are only three points
where the derivative does not exist.

(iii) Let
x(t) = e−|t|. (4.86)

This function is very smooth (infinitely differentiable) except at a single
point; due to the lack of differentiability at t = 0, it is thus merely a C0
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378 Functions and continuous-time systems

function. Its Fourier transform is

X(ω) =

∫ ∞

−∞
e−|t|e−jωt dt =

∫ 0

−∞
e(1−jω)t dt+

∫ ∞

0

e−(1+jω)t dt

=
1

1− jω +
1

1 + jω
=

2

1 + ω2
.

The spectral decay is precisely as in (4.83c) with q = 1 but unable to satisfy
(4.83b) for q = 1 and any positive ε. Thus, like for the triangle function,
the spectrum allows us to conclude that x is a C0 function.

These examples illustrate the power of the Fourier transform in characterizing
regularity of functions; however, they all suffer from local properties (isolated
points where the function is not continuous or not differentiable) determining
the spectral decay. Wavelet tools allow one to perform local characterizations;
see the Further reading.

Lipschitz regularity The Cq classes are defined for nonnegative integer values of q.
Lipschitz regularity provides a generalization akin to differentiability of fractional
order. It can be defined pointwise, over a subset of the domain, or globally (over the
entire domain). The global property has a Fourier-domain characterization. Like
for differentiability, wavelet tools again allow one to perform local characterizations;
see the Further reading.

Definition 4.11 (Lipschitz regularity) Let α be in [0, 1). A function x is
said to be pointwise Lipschitz of order α at t0 when

|x(t)− x(t0)| ≤ c |t− t0|α, for all t ∈ R, (4.87)

for some constant c. A function x is said to be uniformly Lipschitz of order α
over I ⊆ R when it satisfies (4.87) for all t0 ∈ I with a constant c that does not
depend on t0.

The Lipschitz order is also called the Lipschitz exponent or Hölder exponent. Set-
ting α = 0 in (4.87) shows that being uniformly Lipschitz of order 0 over R is
equivalent to being bounded. Setting α = 1 in (4.87) gives a condition that implies
differentiability at t0. Higher-order characterization for r = n + α, where n ∈ N

and α ∈ [0, 1), can be obtained from this differentiability: x is Lipschitz of order r
when the nth derivative of x is Lipschitz of order α.

Uniform Lipschitz regularity of order r > n over R, with n a positive inte-
ger, implies that a function is n times continuously differentiable. Differentiability
almost everywhere is captured by the Lipschitz order being just shy of the corre-
sponding integer; for example, the triangle function (4.43) and function (4.86) are
uniformly Lipschitz of order 1− ε over R for any positive ε.
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4.4 Fourier transform 379

Lipschitz regularity is manifested in the Fourier domain similarly to (4.83b).
A function x is bounded and uniformly Lipschitz α over R when

∫ ∞

−∞
|X(ω)|(1 + |ω|α) dω < ∞, (4.88)

providing a global characterization of regularity (see Exercise 4.9).

4.4.6 Laplace transform

In the previous chapter, we introduced the z-transform, which extends the DTFT
to sequences for which the DTFT might not exist. Similarly, we now introduce the
Laplace transform, which extends the Fourier transform to functions for which the
Fourier transform might not exist. The z-transform and Laplace transform both
replace unit-modulus complex exponentials with general complex exponentials.

Definition 4.12 (Laplace transform) The Laplace transform of a function
x is

X(s) =

∫ ∞

−∞
x(t)e−st dt, s ∈ C. (4.89)

It exists when the integral in (4.89) is defined and finite for some values of s;
these values of s are called the region of convergence (ROC). When the Laplace
transform exists, we denote the Laplace transform pair as

x(t)
LT←→ X(s),

where the ROC is part of the specification of X(s).

When s = jω with ω real, the Laplace transform is simply the Fourier transform;
when s = σ+ jω with σ and ω real, the Laplace transform is the Fourier transform
of xσ(t) = x(t)e−σt, or

X(σ + jω) =

∫ ∞

−∞
x(t)e−σt

︸ ︷︷ ︸
xσ(t)

e−jωt dt. (4.90)

Therefore, convergence of the Laplace transform depends solely on the exponent σ,
and the ROC of the integral (4.89) consists of vertical strips. In particular, for σ
such that x(t)e−σt is absolutely integrable, the Laplace transform is a bounded and
continuous function of s. Just as for the z-transform, the Laplace transform and its
associated ROC define the time-domain function. The Laplace transform satisfies
a number of properties which follow directly from their Fourier counterparts; a few
are summarized in Table 4.2. We now illustrate the necessity of associating an ROC
to a Laplace transform of a function.
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380 Functions and continuous-time systems

LT properties Time domain LT domain ROC

Linearity αx(t) + βy(t) αX(s) + βY (s) ⊃ ROCx ∩ ROCy

Shift in time x(t− t0) e−st0X(s) ROCx

Shift in s es0tx(t) X(s− s0) ROCx + s0

Scaling in time x(αt) (1/α)X(s/α) αROCx

Convolution in time (h ∗ x)(t) H(s)X(s) ⊃ ROCh ∩ROCx

Table 4.2 Selected properties of the Laplace transform.

Example 4.9 (Laplace transform of the Heaviside function) Let x1
be the Heaviside function defined in (4.5). Its Fourier transform does not exist
in a strict sense but can be expressed using a Dirac delta function as in (4.77).
Its Laplace transform

X1(s) =

∫ ∞

−∞
x1(t)e

−st dt =

∫ ∞

0

e−st dt

is well defined for σ > 0, yielding

x1(t)
LT←→ X1(s) =

1

s
; ROC = {s | ℜ(s) > 0}.

Let x2 be the negated and time-reversed Heaviside function, x2(t) = −x1(−t).
Its Laplace transform also exists and is also 1/s, but with a different ROC,

x2(t)
LT←→ X2(s) =

1

s
; ROC = {s | ℜ(s) < 0}.

This example shows two important points: a function for which the Fourier trans-
form does not exist can have a well-defined Laplace transform; and a Laplace trans-
form must have an associated ROC to uniquely specify a time-domain function.

4.5 Fourier series

Periodic functions arise in many settings, including through circular extension of a
function defined on a finite interval. Series expansions of periodic functions in terms
of Fourier coefficients are of great mathematical and scientific interest; questions of
convergence occupied mathematicians for a long time after Fourier’s original work,
inspiring some of the major advances in functional analysis. Moreover, the Fourier
series is the dual of the discrete-time Fourier transform seen in the previous chapter,
and thus, its study is central to discrete-time signal processing as well.

Our treatment of the Fourier series will be brief; most of its properties are
similar to those of the Fourier transform and the DFT. We follow a similar path
to that used before: we start by defining an appropriate convolution for periodic
functions, and the Fourier series emerges naturally from its eigenfunctions. We then
define the Fourier series formally and proceed to discuss a few of its properties,
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4.5 Fourier series 381

including the duality with the DTFT. A key commonality with the DFT – not
shared with the DTFT and Fourier transform – is that the Fourier series gives a
countable basis for a Hilbert space. We develop this, specifically the completeness
of the Fourier series basis.

4.5.1 Definition of the Fourier series

Eigenfunctions of the circular convolution operator The Fourier series arises
from identifying the eigenfunctions of the circular convolution operator defined in
(4.36). Like with all the other convolution operators we have studied, the eigen-
functions are of unit-modulus complex exponential form, and now we should expect
the eigenfunctions to be periodic with period T . Thus, the eigenfunctions will be
of the following form (compare with (4.37) for the Fourier transform and to (3.160)
for the DFT):

v(t) = ej(2π/T )kt, t ∈ R, (4.91)

where k ∈ Z is called the discrete frequency. It represents the multiple of the
fundamental frequency ω0 = 2π/T (expressed in radians per second). Unlike for the
Fourier transform, however, there are countably many eigenfunctions.

To verify that v is an eigenfunction of the circular convolution operator H
from (4.36) is a simple computation:

(Hv)(t) = (h⊛ v)(t) =

∫ T/2

−T/2

v(t− τ)h(τ) dτ =

∫ T/2

−T/2

ej(2π/T )k(t−τ)h(τ) dτ

=

∫ T/2

−T/2

h(τ)e−j(2π/T )kτ dτ

︸ ︷︷ ︸
λk

ej(2π/T )kt
︸ ︷︷ ︸

v(t)

. (4.92)

This shows that v is an eigenfunction of H with the corresponding eigenvalue λk.
We denote this eigenvalue by Hk using the frequency response of the system, which
is defined formally in (4.132a). We can thus rewrite (4.92) as

Hej(2π/T )kt = h⊛ ej(2π/T )kt = Hke
j(2π/T )kt. (4.93)

Fourier series We are now ready to define the Fourier series, which amounts to
projecting onto the subspaces generated by each of the eigenfunctions.

Definition 4.13 (Fourier series) The Fourier series coefficient sequence of a
periodic function x with period T is

Xk =
1

T

∫ T/2

−T/2

x(t)e−j(2π/T )kt dt, k ∈ Z. (4.94a)

It exists when (4.94a) is defined and finite for all k ∈ Z; we then call it the
spectrum of x. The Fourier series reconstruction from X is

x(t) =
∑

k∈Z

Xke
j(2π/T )kt, t ∈ [− 1

2T,
1
2T ). (4.94b)
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382 Functions and continuous-time systems

When the Fourier series coefficient sequence exists and the reconstruction con-
verges, we denote the Fourier series pair as

x(t)
FS←→ Xk.

The integral in (4.94a) is the L2([− 1
2T,

1
2T )) inner product 〈x, v〉, and we will

see shortly that by varying k over the integers we have an orthonormal basis for
L2([− 1

2T,
1
2T )). Before considering the existence of the Fourier series coefficients

and convergence of the reconstruction, we present two formal equivalences.

Relation of the Fourier series coefficients to the Fourier transform For a func-
tion that is identically zero outside of [− 1

2T,
1
2T ), the integral in (4.94a) is the same

as the Fourier transform integral (4.40a) for frequency ω = (2π/T )k. In particu-
lar, an arbitrary T -periodic function x can be restricted to [− 1

2T,
1
2T ) by defining

x̃ = 1[−T/2,T/2) x. It is then easy to verify (see Solved exercise 4.4) that

Xk =
1

T
X̃

(
2π

T
k

)
, k ∈ Z, (4.95)

where X̃ is the Fourier transform of x̃; in other words, the Fourier series coefficients
of a periodic function are scaled samples of the Fourier transform of the same
function restricted to one period.

For a nonzero T -periodic function, the Fourier transform integral (4.40a) does
not converge absolutely, so the Fourier transform does not exist in the strict sense
developed in Section 4.4.2. We will see in Section 4.5.3 how the Fourier series
coefficients lead to a Fourier transform expression that is a sum of weighted Dirac
delta functions.

Duality of the Fourier series and the DTFT Consider the Fourier series coefficient
expression (4.94a) for period T = 2π:

Xk =
1

2π

∫ π

−π

x(t)e−jkt dt, k ∈ Z. (4.96)

We can recognize this as the inverse DTFT in (3.80b). In other words, the inverse
DTFT expresses the sequence xn as the Fourier series coefficients of a 2π-periodic
function X(ejω). Conversely, a periodic function x(t) can be seen as the DTFT of
the Fourier series coefficient sequence Xk. Table 4.4 on page 401 summarizes this
duality.

Real Fourier series For a real-valued periodic function, the real Fourier series
gives an expansion with respect to sine and cosine functions with real coefficients.
Exercise 4.10 explores the connection between the real Fourier series and (4.94b).
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4.5 Fourier series 383

4.5.2 Existence and convergence of the Fourier series

Since the integral (4.94a) defining the Fourier series is over a finite interval, the exis-
tence of the Fourier series coefficients is usually perfectly clear. For example, when
x is bounded, the integral is defined and finite for every k ∈ Z. Furthermore, con-
tinuity implies boundedness, so any continuous periodic function will have Fourier
series coefficients.

While there is little subtlety in the existence of the Fourier series coefficients
of x, understanding the sense in which (4.94b) recovers x requires some care. Some-
times, exact (pointwise) recovery can be guaranteed, but we are generally satisfied
with convergence in the L2 norm. This convergence follows from establishing the
complex exponential sequences in (4.94b) as an orthogonal basis for L2([− 1

2T,
1
2T )).

Some of this discussion should be reminiscent of Section 3.4.2 because of the duality
between the DTFT and Fourier series.

Spectrum in ℓ1(Z) Let the T -periodic function x have spectrum X ∈ ℓ1(Z). Then,
(4.94b) converges absolutely for every t since

∑

k∈Z

∣∣Xke
j(2π/T )kt

∣∣ =
∑

k∈Z

|Xk|
∣∣ej(2π/T )kt

∣∣ =
∑

k∈Z

|Xk| = ‖X‖1 < ∞.

Moreover, the series (4.94b) converges to a continuous function x̂(t).86 When x is
continuous and X ∈ ℓ1(Z),

x(t) = x̂(t), for all t ∈ R; (4.97)

this follows from ℓ1(Z) ⊂ ℓ2(Z) and the convergence in L2([− 1
2T,

1
2T )) norm that

we will show shortly for X ∈ ℓ2(Z).87

Fourier series as an orthonormal basis expansion The expression (4.94a) is an
inner product Xk = 〈x, ϕk〉, where ϕk(t) = (1/T )ej(2π/T )kt. The set {ϕk}k∈Z is a
basis for L2([− 1

2T,
1
2T )) with dual basis {ϕ̃k}k∈Z, where ϕ̃ = ej(2π/T )kt. Thus, the

Fourier series is a biorthogonal basis expansion as in Theorem 2.44. However, since
ϕk and ϕ̃k differ solely by a constant factor, a simple rescaling allows us to see the
Fourier series as an orthonormal basis expansion. The benefits of orthonormality
include successive approximation and simpler and more useful Parseval equalities
(see Section 2.5.2).

Theorem 4.14 (Orthonormal basis from Fourier series) The set
{ϕk}k∈Z with

ϕk(t) =
1√
T
ej(2π/T )kt, t ∈ [− 1

2T,
1
2T ), (4.98)

forms an orthonormal basis for L2([− 1
2T,

1
2T )).

86See Footnote 50 on page 218.
87Knowing x is continuous is not enough to imply that X ∈ ℓ1(Z) and thus (4.97). However, x

being continuously differentiable does imply (4.97).
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384 Functions and continuous-time systems

Proof. It is easy to see that Φ = {ϕk}k∈Z is an orthonormal set: by separate elementary
computations for k = ℓ and k 6= ℓ,

〈ϕk, ϕℓ〉 =
1

T

∫ T/2

−T/2

ej(2π/T )(k−ℓ)t dt = δk−ℓ. (4.99)

It remains to show that Φ is a basis for L2([− 1
2
T, 1

2
T )), which requires that any

x ∈ L2([− 1
2
T, 1

2
T )) is in span(Φ). Let

αk = 〈x, ϕk〉 =
1√
T

∫ T/2

−T/2

x(t)e−j(2π/T )kt dt, k ∈ Z, (4.100)

and let x̂N be a (2N + 1)-term approximation of x:

x̂N (t) =
1√
T

N∑

k=−N

αke
j(2π/T )kt. (4.101)

By showing

lim
N→∞

‖x− x̂N‖2 = lim
N→∞

∫ T/2

−T/2

|x(t)− x̂N(t)|2 dt = 0 (4.102)

we establish x ∈ span(Φ) and hence the completeness of Φ as a basis for L2([− 1
2
T, 1

2
T )).

Proving (4.102) for continuous functions is left for Exercise 4.11. The final desired
result is then obtained by extending to general L2(R) functions by the argument that
continuous functions are dense in L2(R).

Spectrum in ℓ2(Z) Up to scaling by the constant
√
T , the Fourier series is an

orthonormal basis expansion. The orthonormality leads to geometrically intuitive
properties using Hilbert space tools. We summarize a few key results that follow
from orthonormality in the following theorem.

Theorem 4.15 (Fourier series on L2([− 1
2T,

1
2T ))) Let x ∈ L2([− 1

2T,
1
2T ))

have Fourier series coefficients X = Fx. Then, the following hold:

(i) L2 inversion: Let x̂ be the Fourier series reconstruction from X . Then

‖x− x̂‖ = 0 (4.103)

using the L2([− 1
2T,

1
2T )) norm.

(ii) Norm conservation: The linear operator
√
TF : L2([− 1

2T,
1
2T )) → ℓ2(Z) is

unitary. This yields the Parseval equalities

‖x‖2 =

∫ T/2

−T/2

|x(t)|2 dt = T
∑

k∈Z

|Xk|2, (4.104a)

〈x, y〉 =

∫ T/2

−T/2

x(t)y∗(t) dt = T
∑

k∈Z

XkY
∗
k , (4.104b)

where the T -periodic function y has Fourier series coefficients Y .
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Cambridge University Press (ISBN 110703860X) v1.1 [May 2014] [free version] Comments to book-errata@FourierAndWavelets.org
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(iii) Least-squares approximation: The function

x̂N (t) =

N∑

k=−N

Xke
j(2π/T )kt (4.105)

is the least-squares approximation of x on the subspace spanned by
{ϕk(t)}Nk=−N .

These results follow from results on orthonormal basis expansion, Theorem 2.39;
Parseval equalities, Theorem 2.40; and orthogonal projection onto a subspace, The-
orem 2.41.

4.5.3 Properties of the Fourier series

Basic properties

We list here basic properties of the Fourier series; Table 4.3 summarizes these,
together with symmetries as well as a few standard Fourier series pairs. Of course,
all the expressions must be well defined for these properties to hold.

Linearity The Fourier series expansion operator F is a linear operator, or

αx(t) + βy(t)
FS←→ αXk + βYk. (4.106)

Shift in time The Fourier series pair corresponding to a shift in time by t0 is

x(t− t0) FS←→ e−j(2π/T )kt0Xk. (4.107)

Shift in frequency The Fourier series pair corresponding to a shift in frequency
by k0 is

ej(2π/T )k0tx(t)
FS←→ Xk−k0 . (4.108)

As in Chapter 3, a shift in frequency is called modulation.

Time reversal The Fourier series pair corresponding to time reversal x(−t) is

x(−t) FS←→ X−k. (4.109)

Differentiation The Fourier series pair corresponding to differentiation in time is

dnx(t)

dtn
FS←→

(
j
2π

T
k

)n
Xk, (4.110)
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386 Functions and continuous-time systems

FS properties Time domain FS domain

Basic properties

Linearity αx(t) + βy(t) αXk + βYk
Shift in time x(t− t0) e−j(2π/T )kt0Xk

Shift in frequency ej(2π/T )k0tx(t) X(k − k0)
Time reversal x(−t) X−k

Differentiation dnx(t)/dtn (j2πk/T )nXk

Integration

∫ t

−T/2
x(τ) dτ (T/(j2πk))Xk, X0 = 0

Circular convolution in time (h ⊛ x)(t) THkXk

Convolution in frequency h(t) x(t) (H ∗X)k

Circular deterministic
autocorrelation

a(t) =

∫ T/2

−T/2
x(τ)x∗(τ−t) dτ Ak = T |Xk|2

Circular deterministic
crosscorrelation

c(t) =

∫ T/2

−T/2
x(τ) y∗(τ−t) dτ Ck = TXkY

∗
k

Parseval equality ‖x‖2 =

∫ T/2

−T/2
|x(t)|2 dt = T

∑

k∈Z

|Xk|2 = T ‖X‖2

Related functions

Conjugate x∗(t) X∗
−k

Conjugate, time-reversed x∗(−t) X∗
k

Real part ℜ(x(t)) (Xk +X∗
−k)/2

Imaginary part ℑ(x(t)) (Xk −X∗
−k)/(2j)

Conjugate-symmetric part (x(t) + x∗(−t))/2 ℜ(Xk)

Conjugate-antisymmetric part (x(t) − x∗(−t))/(2j) ℑ(Xk)

Symmetries for real x

X conjugate symmetric Xk = X∗
−k

Real part of X even ℜ(Xk) = ℜ(X−k)

Imaginary part of X odd ℑ(Xk) = −ℑ(X−k)

Magnitude of X even |Xk| = |X−k|
Phase of X odd argXk = −argX−k

Common transform pairs

Dirac comb
∑

n∈Z

δ(t − nT ) 1/T

Periodic sinc function
(ideal lowpass filter)

√
k0

T

sinc(πk0t/T )

sinc(πt/T )

{
1/
√
k0T , |k| ≤ 1

2
(k0−1);

0, otherwise

Box function
(one period)

{
1/
√
t0, |t| ≤ 1

2
t0;

0, 1
2
t0 < |t| ≤ 1

2
T

√
t0

T
sinc(πkt0/T )

Square wave
(one period with T = 1)

{
−1, t ∈ [− 1

2
, 0);

1, t ∈ [0, 1
2
)

{
−2j/(πk), k odd;

0, k even

Triangle wave
(one period with T = 1)

1
2
− |t|, |t| ≤ 1

2






1/4, k = 0;

1/(πk)2, k odd;

0, k 6= 0 even

Sawtooth wave
(one period with T = 1)

2t, |t| ≤ 1
2

{
0, k = 0;

j(−1)k/(πk), k 6= 0

Table 4.3 Properties of the Fourier series.
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4.5 Fourier series 387

assuming that the indicated nth derivative exists. This can be derived for n = 1 by
computing the Fourier series coefficient of x′ at discrete frequency k as follows:

∫ T/2

−T/2

x′(t)e−j(2π/T )kt dt

(a)
= x(t)e−j(2π/T )kt

∣∣∣
T/2

−T/2
−
∫ T/2

−T/2

x(t)

(
−j 2π

T
k

)
e−j(2π/T )kt dt

(b)
= j

2π

T
k

∫ T/2

−T/2

x(t)e−j(2π/T )kt dt
(c)
=

(
j
2π

T
k

)
Xk,

where (a) follows from integration by parts; (b) from x(− 1
2T ) = x(12T ); and (c)

from the Fourier series integral, (4.94a). Repeating for higher-order derivatives
gives (4.110).

An alternative derivation is to start with the Fourier series reconstruction

x(t) =
∑

k∈Z

Xke
j(2π/T )kt

and differentiate term-by-term,

x′(t) =
∑

k∈Z

(
j
2π

T
k

)
Xke

j(2π/T )kt. (4.111)

The coefficient of ej(2π/T )kt is the Fourier series coefficient of the derivative at
discrete frequency k, as we wanted to show.

Integration The Fourier series pair corresponding to the integral of a periodic
function with zero mean (X0 = 0) is

∫ t

−T/2

x(τ) dτ
FS←→ T

j2πk
Xk, for k 6= 0, (4.112)

where the Fourier series coefficient for discrete frequency k = 0 must be computed
separately. This can be derived similarly to (4.110). Exercise 4.12 develops this for
real Fourier series.

Circular convolution in time The Fourier series pair corresponding to the circular
convolution of T -periodic functions is

(h⊛ x)(t)
FS←→ THkXk. (4.113)

Thus, as we have seen many times, convolution in the time domain corresponds
to multiplication in the Fourier domain. Proof of (4.113) is left for Exercise 4.13,
which also establishes an analogous property for linear convolution of a periodic
function x and an aperiodic filter h.
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Figure 4.10 (a) The square wave (4.117). (b) Magnitude response of its Fourier series
coefficients.

Convolution in frequency The Fourier series pair corresponding to convolution in
frequency is

h(t)x(t)
FS←→ (H ∗X)k. (4.114)

The convolution in frequency property (4.114) is dual to the convolution in time
property (4.113).

Circular deterministic autocorrelation The Fourier series pair corresponding to
the circular deterministic autocorrelation of a T -periodic function x is

a(t) =

∫ T/2

−T/2

x(τ)x∗(τ − t) dτ FS←→ Ak = T |Xk|2. (4.115)

Circular deterministic crosscorrelation The Fourier series pair corresponding to
the circular deterministic crosscorrelation of T -periodic functions x and y is

c(t) =

∫ T/2

−T/2

x(τ)y∗(τ − t) dτ FS←→ Ck = TXkY
∗
k . (4.116)

Transform pairs

We derive Fourier series pairs of a few simple periodic functions to illustrate some
of the properties seen above. Table 4.3 summarizes these pairs (along with some
additional ones).

Square wave Let x be a square wave of period T = 1, with one period given by

x(t) =

{
−1, for t ∈ [− 1

2 , 0);
1, for t ∈ [0, 1

2 );
(4.117)

it is shown in Figure 4.10(a). This function is real and odd; thus, we expect to find
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Figure 4.11 (a) The triangle wave (4.119). (b) Magnitude response of its Fourier series
coefficients.

that its Fourier series coefficients are purely imaginary (see Table 4.3). Indeed,

X0 =

∫ 1/2

−1/2

x(t) dt = 0, (4.118a)

and, for nonzero k,

Xk = −
∫ 0

−1/2

e−j2πkt dt+

∫ 1/2

0

e−j2πkt dt

=
1

j2πk
(1− ejπk)− 1

j2πk
(ejπk − 1)

=
1

jπk

(
1− (−1)k

)
=

{
−2j/(πk), for k odd;

0, for k even.
(4.118b)

Figure 4.10(b) shows the magnitude response of Fourier series coefficients. Thus,

x(t) =
2

π

∑

ℓ∈Z

−j
2ℓ+ 1

ej2π(2ℓ+1)t

=
2

π

∞∑

ℓ=0

−j
2ℓ+ 1

(
ej2π(2ℓ+1)t − e−j2π(2ℓ+1)t

)

=
4

π

∞∑

ℓ=0

1

2ℓ+ 1
sin(2π(2ℓ+ 1)t).

Triangle wave Let y be a triangle wave of period T = 1, with one period given by

y(t) =
1

2
− |t|, for t ∈ [− 1

2 ,
1
2 ); (4.119)

it is shown in Figure 4.11(a). Since

y(t) =

∫ t

−1/2

x(τ) dτ, for t ∈ [− 1
2 ,

1
2 ),
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390 Functions and continuous-time systems

with x from (4.117), we can use the integral property (4.112) to find

Yk =

{
1/(πk)2, for k odd;

0, for k nonzero and even.
(4.120a)

A separate computation gives

Y0 =

∫ 1/2

−1/2

y(t) dt =
1

4
. (4.120b)

Figure 4.11(b) shows the magnitude response of Fourier series coefficients. Exer-
cise 4.14 explores three alternatives for computing this Fourier series.

Dirac comb The Dirac comb or picket-fence function (with spacing T ) is a sum
of Dirac delta functions at uniformly spaced shifts nT for all n ∈ Z,

sT (t) =
∑

n∈Z

δ(t− nT ). (4.121)

We can find its Fourier series coefficients by directly evaluating (4.94a):

ST,k =
1

T

∫ T/2

−T/2

∑

n∈Z

δ(t− nT ) e−j(2π/T )kt dt

(a)
=

1

T

∫ T/2

−T/2

δ(t) e−j(2π/T )kt dt
(b)
=

1

T
, k ∈ Z, (4.122)

where (a) follows from only the n = 0 term of the sum affecting the integrand on
(− 1

2T,
1
2T ); and (b) from the sifting property of the Dirac delta function, (3.293).

Using these coefficients in the Fourier series reconstruction (4.94b) gives

sT (t) =
1

T

∑

k∈Z

ej(2π/T )kt. (4.123)

The series in (4.123) is problematic because it does not converge absolutely for any
value of t.88 Putting aside this concern and combining (4.121) and (4.123) gives

1

T

∑

k∈Z

ej(2π/T )kt =
∑

n∈Z

δ(t− nT ). (4.124)

While (4.124) cannot be justified using only elementary notions of convergence, it
can guide us to other useful expressions. For example, if x is continuous at all points
{nT }n∈Z, then

1

T

∑

k∈Z

∫ ∞

−∞
x(t)ej(2π/T )kt dt

(a)
=
∑

n∈Z

∫ ∞

−∞
x(t)δ(t − nT ) dt (b)

=
∑

n∈Z

x(nT ),

assuming the sums converge absolutely, where (a) follows from (4.124); and (b)
from the sifting property of the Dirac delta function, (3.293). We return to (4.124)
shortly in deriving the Poisson sum formula.

88Recall from Appendix 2.A.2 that a doubly infinite series is said to converge when it converges
absolutely.
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4.5 Fourier series 391

Fourier transform of periodic functions

As noted earlier, the Fourier transform of a nonzero periodic function does not exist
in the elementary sense since the integral (4.40a) does not exist for any value of
ω. However, through the use of Dirac combs and Fourier series, we will arrive at a
Fourier transform expression involving Dirac delta functions as well as the elegant
and useful Poisson sum formula.

Let x be a T -periodic function, and let x̃ be the restriction of x to [− 1
2T,

1
2T ),

x̃(t) = 1[−T/2,T/2) x(t), t ∈ R.

When the Fourier transform of x̃ exists, the Fourier series of x exists as well; they
are related through (4.95). While the Fourier transform of x does not exist (except
in the trivial case of x = 0), we can find a useful expression for it using Dirac delta
functions (with all the usual cautions and caveats).

Using the Dirac comb, we can write

x(t) = (sT ∗ x̃)(t), (4.125a)

where the equality holds for all t ∈ R at which x is continuous. (This can be
checked by noting that – through linearity and the shifting property of convolution,
(4.32e) – the Dirac delta component δ(t−nT ) in sT is responsible for the period of
x on [(n− 1

2 )T, (n+ 1
2 )T ).) Assuming that we may apply the convolution theorem

(4.62) to (4.125a), we have

X(ω) = ST (ω) X̃(ω), ω ∈ R. (4.125b)

We thus require an expression for the Fourier transform of the Dirac comb.
Using the shift in time property from Table 4.1 and linearity, we can write the

Fourier transform of the Dirac comb as

ST (ω) =
∑

n∈Z

e−jωnT . (4.126)

The Fourier transform ST in (4.126) does not strictly make sense because it does
not converge absolutely for any value of ω; this should come as no surprise since sT
in (4.121) is not really a function. Nevertheless, this leads to a useful expression
for ST . By changing variables in (4.124) and using properties of the Dirac delta
function (see Exercise 4.16), ST can be expressed as a scaled Dirac comb with
spacing 2π/T ,

ST (ω) =
∑

n∈Z

e−jωnT =
2π

T

∑

k∈Z

δ

(
ω − 2π

T
k

)
=

2π

T
s2π/T (ω). (4.127)

Substituting (4.127) into (4.125b) yields

X(ω) =
2π

T

∑

k∈Z

X̃

(
2π

T
k

)
δ

(
ω − 2π

T
k

)
(4.128a)
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392 Functions and continuous-time systems

by using the sampling property of the Dirac delta function, (3.294).89 By com-
parison with (4.95), we may write this Fourier transform using the Fourier series
coefficients of x,

X(ω) = 2π
∑

k∈Z

Xkδ

(
ω − 2π

T
k

)
. (4.128b)

In other words, the Fourier transform of a T -periodic function is a weighted Dirac
comb with spacing 2π/T and weights given by the Fourier series coefficients of the
function scaled by 2π.

Recall that in (4.125a) we used convolution with a Dirac comb with spacing T
to periodically extend a function with support limited to [− 1

2T,
1
2T ) to obtain a T -

periodic function. Actually, even if we had not started with a function with support
limited to [− 1

2T,
1
2T ), we still would have obtained a T -periodic function, provided

that the convolution converges. This gives the Poisson sum formula, summarized
in the following theorem.

Theorem 4.16 (Poisson sum formula) Let sT be the Dirac comb defined in
(4.121), and let x be a function with decay sufficient for the periodization

(sT ∗ x)(t) =
∑

n∈Z

x(t− nT ) (4.129a)

to converge absolutely for all t. Then

∑

n∈Z

x(t− nT ) =
1

T

∑

k∈Z

X

(
2π

T
k

)
ej(2π/T )kt, (4.129b)

where X is the Fourier transform of x, which is assumed to be continuous at
{2πk/T }k∈Z. Upon specializing to T = 1 and t = 0,

∑

n∈Z

x(n) =
∑

k∈Z

X(2πk). (4.129c)

Proof. Let xT = sT ∗ x. Following the derivation of (4.128a),

XT (ω) =
2π

T

∑

k∈Z

X

(
2π

T
k

)
δ

(
ω − 2π

T
k

)
. (4.130)

89Use of the sampling property requires continuity of X̃ at {2πk/T}k∈Z. This continuity follows
from the finite support of x̃.
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Taking the inverse Fourier transform of (4.130), we get

xT (t) =
1

2π

∫ ∞

−∞
XT (ω)e

jωt dω =
1

T

∫ ∞

−∞

∑

k∈Z

X

(
2π

T
k

)
δ

(
ω − 2π

T
k

)
ejωt dω

=
1

T

∑

k∈Z

X

(
2π

T
k

)∫ ∞

−∞
δ

(
ω − 2π

T
k

)
ejωt dω

(a)
=

1

T

∑

k∈Z

X

(
2π

T
k

)
ej(2π/T )kt,

where (a) follows from the sampling property of the Dirac delta function, (3.294). We
could arrive at the same result by performing the inverse Fourier transform term-by-
term in (4.130).

The Poisson sum formula has many applications; in signal processing, it is used in
the proof of the sampling theorem (see Chapter 5), since the process of sampling
can be described using multiplication of an input signal by a Dirac comb.

Regularity and spectral decay

Smoothness of a periodic function and decay of its Fourier series coefficients are
related. A discontinuous periodic function such as the square wave has Fourier
series coefficients decaying only as O(1/k) (see (4.118)), while a continuous periodic
function such as the triangle wave leads to an O(1/k2) decay (see (4.120)). This
is analogous to the difference in decays of Fourier transforms for the corresponding
aperiodic functions in Examples 4.8(i) and (ii).

More generally, one can relate the Fourier series coefficients of a periodic
function with the Fourier transform of one period of the function using (4.95) and
thus obtain regularity characterizations from those in Section 4.4.5. For example,
(4.83) gives a characterization of Cq regularity. Suppose that the restricted version
x̃ = 1[−T/2,T/2) x of x ∈ L2([− 1

2T,
1
2T )) has the Fourier transform satisfying

|X̃(ω)| ≤ γ

1 + |ω|q+1+ε
for all ω ∈ R, (4.131a)

for some nonnegative integer q and positive constants γ and ε. Then, x̃ ∈ Cq

by (4.84b), and this can be extended to show that x has q continuous derivatives
everywhere (see Exercise 4.18). A major difficulty with this approach, however, is
that the restriction to [− 1

2T,
1
2T ) will usually create discontinuities.

A condition similar to (4.131a) but directly on the Fourier series (rather than
on the Fourier transform of the restriction),

|Xk| ≤
γ

1 + |k|q+1+ε
for all k ∈ Z, (4.131b)

for some nonnegative integer q and positive constants γ and ε, also implies that x
has q continuous derivatives (see Exercise 4.19). Conversely, if the periodic function
x has q continuous derivatives, then its Fourier series coefficients satisfy

|Xk| ≤
γ

1 + |k|q+1
for all k ∈ Z, (4.131c)
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for some positive constant γ.

4.5.4 Frequency response of filters

The Fourier series coefficient sequence of a T -periodic filter h specifying a circular
convolution operator is called its frequency response:

Hk =
1

T

∫ T/2

−T/2

h(t)e−j(2π/T )kt dt, k ∈ Z. (4.132a)

The Fourier series reconstruction recovers the filter,

h(t) =
∑

k∈Z

Hke
j(2π/T )kt, t ∈ R. (4.132b)

We can again denote the magnitude and phase as

Hk = |Hk|ej arg(Hk),

where the magnitude response |Hk| is a real, nonnegative sequence and the phase
response arg(Hk) is a real sequence between −π and π.

Recall from Section 4.3.3 that circular convolution with T -periodic h arises
from LSI processing when the system input is T -periodic. In this case, h represents
the periodized version of the system impulse response, as in (4.34).

Diagonalization of the circular convolution operator Let H be the circular con-
volution operator associated with a T -periodic filter h. The frequency response of
h gives a diagonal form for the operator H . This is a restatement of the Fourier
series pair corresponding to circular convolution in time, (4.113), and we have made
similar statements for the DTFT, DFT, and Fourier transform based on transform
pairs (3.96), (3.171), and (4.62). Like for the DFT but unlike for the DTFT and
Fourier transform, the diagonalization is literal because the transform is associated
with a countable basis for our space.

Let x and y = Hx be in L2([− 1
2T,

1
2T )), and let X and Y be their Fourier

series coefficient sequences. Then

Yk = HkXk, k ∈ Z,

by the circular convolution in time property, (4.113). Thus, the matrix representa-
tion Γ of the linear operator H using the Fourier series basis from (4.98) both for
the domain and for the codomain is the infinite diagonal matrix

Γ = diag(. . . , H−1, H0, H1, . . .).

We illustrate this diagonalization in Figure 4.12.
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H1×
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Fourier
series
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y

Figure 4.12 Diagonalization property of the Fourier series. The circular convolution
operation y = Hx = h⊛ x is implemented by pointwise multiplication of the spectrum of
x by the frequency response of h.

4.6 Stochastic processes and systems

We now consider functions and continuous-time systems in the presence of uncer-
tainty. Like in Chapter 3, we use probability theory to model uncertainty through
random functions while considering only systems that act deterministically on these
random functions.

This section follows the structure of the chapter in its entirety: We start
with continuous-time stochastic processes (random functions), followed by the effect
of systems (almost exclusively LSI systems) on stochastic processes in the time
domain, and finally the application of Fourier-domain analysis. This section is brief
in comparison with Section 3.8; in particular, we do not develop optimal estimation
because modern systems do not implement estimation in continuous time.

4.6.1 Stochastic processes

A continuous-time stochastic process is an uncountably infinite collection of jointly
distributed random variables {x(t)}t∈R. For example, the sound pressure sensed by
a microphone could be modeled as a stochastic process.

We use the following notations for moments and related quantities defined on
stochastic processes:

mean µx(t) E[ x(t) ]

variance var(x(t)) E
[
|x(t)− µx(t)|2

]

standard deviation σx(t)
√
var(x(t))

autocorrelation ax(t, τ) E[ x(t) x∗(t− τ) ]
crosscorrelation cx,y(t, τ) E[ x(t) y∗(t− τ) ]

(4.133)

Like in discrete time, these are referred to as second-order statistics. The variance
can be computed from the autocorrelation and mean through

σ2
x(t) = ax(t, 0)− |µx(t)|2, t ∈ R. (4.134)
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The autocorrelation and crosscorrelation satisfy the symmetries

ax(t, τ) = a∗x(t− τ,−τ), t, τ ∈ R, (4.135a)

and
cy,x(t, τ) = c∗x,y(t− τ,−τ), t, τ ∈ R. (4.135b)

Stationarity Since collections of random variables are defined through joint distri-
butions of finite subsets of the random variables, the definition of stationarity differs
between discrete time and continuous time only in the notation for the process.

Definition 4.17 (Stationary process) A continuous-time stochastic process
x is called stationary when, for any finite set of time indices {t0, t1, . . . , tL} ⊂ R

and any time shift τ ∈ R, the joint distributions of

(x(t0), x(t1), . . . , x(tL)) and (x(t0 + τ), x(t1 + τ), . . . , x(tL + τ))

are identical.

Stationarity is a highly restrictive condition. Most of the time, we will assume the
weaker condition of wide-sense stationarity, which depends only on second-order
statistics.

Definition 4.18 (Wide-sense stationary process) A continuous-time sto-
chastic process x is called wide-sense stationary (WSS) when its mean function
µx(t) is a constant,

µx(t) = E[ x(t) ] = µx, t ∈ R, (4.136a)

and its autocorrelation depends only on the time difference τ ,

ax(t, τ) = E[ x(t) x∗(t− τ) ] = ax(τ), t, τ ∈ R. (4.136b)

Stochastic processes x and y are called jointly WSS when each is WSS and their
crosscorrelation depends only on the time difference τ ,

cx,y(t, τ) = E[ x(t) y∗(t− τ) ] = cx,y(τ), t, τ ∈ R. (4.136c)

With wide-sense stationarity, (4.134) and (4.135a) simplify to

σ2
x(t) = ax(0)− |µx|2 = σ2

x, t ∈ R,

and
ax(τ) = a∗x(−τ), τ ∈ Z.

With joint wide-sense stationarity, (4.135b) simplifies to the conjugate symmetry

cy,x(τ) = c∗x,y(−τ), τ ∈ R.
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4.6 Stochastic processes and systems 397

White noise A white noise90 process x is a WSS stochastic process whose mean
is zero and whose elements are uncorrelated,

µx(t) = 0; ax(t) = σ2
xδ(t). (4.137)

Like in discrete time, the random variables in a white noise process are not always
independent.

While comparing (3.235) and (4.137) reveals a close analogy between discrete-
and continuous-time white noise, it also suggests that continuous-time white noise
is a more subtle concept. The meaning of the Kronecker delta sequence is straight-
forward, while, as we have said before, the Dirac delta function is a convenient
abstraction that makes sense when part of an integrand. Analogously, the concept
of discrete-time white noise is straightforward, while continuous-time white noise
makes sense after suitable filtering; see the Further reading.

To illustrate the distinction, note that a discrete-time white noise model is
perfectly plausible; for example, using fair coin flips to generate a sequence of −1
and 1 values gives a white noise process. However, it is not plausible for any real
physical process to generate uncorrelated x(t0) and x(t1) even when |t0 − t1| is
arbitrarily small. This mismatch from physical reality appears in its mathematical
representation as well: one cannot define a continuous-time process that is white
and has nonzero, finite variance. The presence of the Dirac delta function in ax(t)
in (4.137) reflects the fact that the variance of a continuous-time white noise process
is undefined. As we will see below – and analogously to the discrete-time case –
LSI filtering of a WSS process has the effect of altering the autocorrelation and
crosscorrelations by convolutions, and the presence of the Dirac delta function in
(4.137) does not pose a difficulty in such convolutions.

Gaussian processes The distribution of a Gaussian process – a stochastic pro-
cess consisting of jointly Gaussian random variables – is completely specified by its
second-order statistics. Since jointly Gaussian random variables are uncorrelated
if and only if they are independent, a white Gaussian process would be i.i.d. if it
were to exist. As described above, while a white Gaussian process cannot exist
physically or mathematically, it can be a convenient mathematical abstraction. For
example, noise with a flat spectrum over a bandwidth much greater than the effec-
tive bandwidth of a system can be treated as white without causing mathematical
difficulties.

4.6.2 Systems

Consider a BIBO-stable LSI system described by its impulse response h with WSS
input process x, as depicted in Figure 4.13. What can we say about the output
y? It is given by the convolution (4.31), and we will demonstrate that it is a WSS
process by deriving formulas for its second-order statistics.

90As in Chapter 3, the Fourier transform of the autocorrelation of white noise is a constant,
mimicking the spectrum of white light; thus the term white noise.
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x h y

Figure 4.13 An LSI system with WSS input.

We start with the mean,

µy(t) = E[ y(t) ]
(a)
= E

[∫ ∞

−∞
x(τ)h(t − τ) dτ

]
(b)
=

∫ ∞

−∞
E[ x(τ) ] h(t− τ) dτ

(c)
=

∫ ∞

−∞
µx(τ)h(t − τ) dτ

(d)
=

∫ ∞

−∞
µxh(t− τ) dτ

= µx

∫ ∞

−∞
h(t− τ) dτ (e)

= µxH(0) = µy, (4.138a)

where (a) follows from (4.31); (b) from the linearity of the expectation; (c) from the
definition of the mean function; (d) from x being WSS, (4.136a); and (e) from the
frequency response of the LSI system (which exists because the system is BIBO-
stable). The final equality emphasizes that the mean of the output is a constant,
which is independent of t. The autocorrelation is

ay(t, τ) = E[ y(t) y∗(t− τ) ]
(a)
= E

[∫ ∞

−∞
x(t− q)h(q) dq

∫ ∞

−∞
x∗(t− τ − r)h∗(r) dr

]

(b)
=

∫ ∞

−∞

∫ ∞

−∞
h(q)h∗(r) E[ x(t− q) x∗(t− τ − r) ] dr dq

(c)
=

∫ ∞

−∞

∫ ∞

−∞
h(q)h∗(r) ax(t− q, τ − (q − r)) dr dq

(d)
=

∫ ∞

−∞

∫ ∞

−∞
h(q)h∗(r) ax(τ − (q − r)) dr dq

(e)
=

∫ ∞

−∞

(∫ ∞

−∞
h(q)h∗(q − p) dq

)
ax(τ − p) dp

(f)
=

∫ ∞

−∞
ah(p) ax(τ − p) dp = ay(τ), (4.138b)

where (a) follows from (4.31); (b) from the linearity of the expectation; (c) from
the definition of the autocorrelation; (d) from x being WSS, (4.136b); (e) from the
change of variable p = q − r; and (f) from the definition of deterministic autocor-
relation (4.10). The final step emphasizes the lack of dependence of ay(t, τ) on t.
Combined with the lack of dependence of µy(t) on t, we see that, when the input x
is WSS, the output y is WSS as well. We also see that the autocorrelation of the
output is the convolution of the autocorrelation of the input and the deterministic
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autocorrelation of the impulse response of the system,

ay = ah ∗ ax. (4.138c)

Computing the crosscorrelation between the input and the output shows that
they are jointly WSS:

cx,y(t, τ) = E[ x(t) y∗(t− τ) ]
(a)
= E

[
x(t)

∫ ∞

−∞
h∗(r) x∗(t− τ − r) dr

]

= E

[∫ ∞

−∞
h∗(r) x(t) x∗(t− (τ + r)) dr

]

(b)
=

∫ ∞

−∞
h∗(r) E[ x(t) x∗(t− (τ + r)) ] dr

(c)
=

∫ ∞

−∞
h∗(r) ax(t, τ + r) dr

(d)
=

∫ ∞

−∞
h∗(r) ax(τ + r) dr = cx,y(τ), (4.139a)

where (a) follows from (4.31); (b) from the linearity of the expectation; (c) from the
definition of the autocorrelation; and (d) from x being WSS, (4.136b). The final
step emphasizes the lack of dependence of cx,y(t, τ) on t. This crosscorrelation can
also be written as the convolution between ax and the time-reversed and conjugated
impulse response,

cx,y = h∗(−τ) ∗τ ax(τ). (4.139b)

Similarly,

cy,x = h ∗ ax. (4.139c)

We will use these expressions shortly to make some important observations in the
Fourier domain.

4.6.3 Fourier transform

Like for deterministic functions, we can use Fourier techniques to gain insight into
the behavior of continuous-time stochastic processes and systems. While we cannot
take a Fourier transform of a stochastic process, we make assessments based on
averages (moments), such as taking the Fourier transform of the autocorrelation.

Power spectral density Let x be a WSS stochastic process. The Fourier transform
of its autocorrelation (4.136b) (which we assume to have sufficient decay for it to
be absolutely or square integrable) is

Ax(ω) =

∫ ∞

−∞
ax(t) e

−jωt dt =

∫ ∞

−∞
E[ x(t) x∗(t− τ) ] e−jωt dt. (4.140)
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400 Functions and continuous-time systems

This is called the power spectral density, the counterpart of the energy spectral
density for deterministic functions in (4.10). The power spectral density exists
if and only if x is WSS, which is a consequence of the Wiener–Khinchin theorem.
When x is real, the power spectral density is nonnegative and thus admits a spectral
factorization

Ax(ω) = U(ω)U∗(ω),

where U(ω) is its (nonunique) spectral root. The normalized integral of the power
spectral density,

Px =
1

2π

∫ ∞

−∞
Ax(ω) dω = ax(0) = E

[
|x(t)|2

]
, (4.141)

is the power, the counterpart of the energy for deterministic functions in (4.68).

White noise Using (4.137) and Table 4.1, we see that the power spectral density
of white noise is a constant:

A(ω) = σ2
x. (4.142)

As noted earlier, its variance, or power, is infinite.

Effect of filtering Consider an LSI system with impulse response h, WSS input x,
andWSS output y, as depicted in Figure 4.13. Using (4.138c) for the autocorrelation
of y, the power spectral density of the output is given by

Ay(ω) = Ah(ω)Ax(ω) = |H(ω)|2Ax(ω), (4.143)

where Ah(ω) = |H(ω)|2 is the Fourier transform of the deterministic autocorrelation
of h, according to Table 4.1. The quantity

Py = E
[
y2(t)

]
=

1

2π

∫ ∞

−∞
Ay(ω) dω, =

1

2π

∫ ∞

−∞
|H(ω)|2Ax(ω) dω = ay(0)

is the output power. Similarly to (4.143), using (4.139b) and (4.139c), we can express
the cross spectral density between the input and the output as

Cx,y(ω) = H∗(ω)Ax(ω), (4.144a)

Cy,x(ω) = H(ω)Ax(ω). (4.144b)
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Chapter at a glance

We have now seen all the versions of the Fourier transform and series that will be used
in what follows; they are summarized in Table 4.4 and Figure 4.14. These variants of the
Fourier transform differ depending on the underlying space of sequences or functions.

Transform Forward/inverse Duality/periodicity

Fourier
transform

X(ω) =

∫ ∞

−∞
x(t) e−jωt dt

x(t) =
1

2π

∫ ∞

−∞
X(ω) ejωt dω

Fourier
series

Xk =
1

T

∫ T/2

−T/2
x(t) e−j(2π/T )kt dt

x(t) =
∑

k∈Z

Xke
j(2π/T )kt

Dual with DTFT

x(t+ T ) = x(t)

Discrete-time
Fourier transform

X(ejω) =
∑

n∈Z

xne
−jωn

xn =
1

2π

∫ π

−π
X(ejω) ejωn dω

Dual with Fourier series

X(ej(ω+2π)) = X(ejω)

Discrete
Fourier transform

Xk =

N−1∑

n=0

xne
−j(2π/N)kn

xn =
1

N

N−1∑

k=0

Xke
j(2π/N)kn

Table 4.4 Various forms of Fourier transforms seen in this chapter and Chapter 3.
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Figure 4.14 Various forms of Fourier transforms seen in this chapter and Chapter 3.
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402 Functions and continuous-time systems

In both this chapter and the previous one, box and sinc functions played a prominent role;
for easy reference, they are summarized in Table 4.5.

Functions on the real line FT

x(t), t ∈ R, ‖x‖ = 1 X(ω), ω ∈ R, ‖X‖ =
√
2π

Box

{
1/
√
t0, |t| ≤ 1

2
t0;

0, otherwise

√
t0 sinc

(
1
2
t0ω
)

Sinc

√
ω0

2π
sinc

(
1
2
ω0t
)

{√
2π/ω0, |ω| ≤ 1

2
ω0;

0, otherwise

Periodic functions FS

x(t), t ∈ [− 1
2
T, 1

2
T ), ‖x‖ = 1 Xk , k ∈ Z, ‖X‖ = 1/

√
T

Box

{
1/
√
t0, |t| ≤ 1

2
t0;

0, otherwise

√
t0

T
sinc(πkt0/T )

Sinc

√
k0

T

sinc(πk0t/T )

sinc(πt/T )

{
1/
√
k0T , |k| ≤ 1

2
(k0 − 1);

0, otherwise

Infinite-length sequences DTFT

xn, n ∈ Z, ‖x‖ = 1 X(ejω), ω ∈ [−π, π), ‖X‖ =
√
2π

Box
(n0 odd)

{
1/
√
n0, |n| ≤ 1

2
(n0 − 1);

0, otherwise

√
n0

sinc
(
1
2
n0ω

)

sinc
(
1
2
ω
)

Sinc

√
ω0

2π
sinc

(
1
2
ω0n

)
{√

2π/ω0, |ω| ≤ 1
2
ω0;

0, otherwise

Finite-length sequences DFT

xn, n ∈ {0, 1, . . . , N − 1}, ‖x‖ = 1 Xk , k ∈ {0, 1, . . . , N − 1}, ‖X‖ =
√
N

Box
(n0 odd)

{
1/
√
n0, |n−N/2| ≥ 1

2
(n0 − 1);

0, otherwise

√
n0

sinc(πn0k/N)

sinc(πk/N)

Sinc

√
k0

N

sinc(πnk0/N)

sinc(πn/N)

{√
N/k0, |k −N/2| ≥ 1

2
(k0 − 1);

0, otherwise

Table 4.5 Unit-norm box and sinc functions/sequences seen in this chapter and Chapter 3.
The box function/sequence is often used as a window, while the sinc function/sequence is
the impulse response of an ideal lowpass filter. For the DTFT, ω0 = 2π/N leads to an
ideal Nth-band lowpass filter, while ω0 = π leads to an ideal half-band lowpass filter. In
the DFT, the inequalities appear reversed to account for circularity modulo N .
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Historical remarks

Jean Baptiste Joseph Fourier (1768–1830), was a French
mathematician and physicist, who proposed his famous Fourier
series while working on the equations for heat flow. His inter-
ests were varied, his biography unusual. He followed Napoleon to
Egypt and spent a few years in Cairo, even contributing a few pa-
pers to the Egyptian Institute that Napoleon founded. He served
as a permanent secretary of the French Academy of Science. In
1822, he published Théorie analytique de la chaleur, in which he
claimed that any function can be decomposed into a sum of sines
and cosines; while we know that this is only partially true, it
took mathematicians a long time to tighten the result. Lagrange
and Dirichlet both worked on it, with Dirichlet first formulating conditions under which a
Fourier series exists.

Josiah Willard Gibbs (1839–1903) was an American mathe-

matician, physicist, and chemist known for many significant con-

tributions (among others as the inventor of vector analysis, in-

dependently of Heaviside). He was also the one to remark upon

the unusual way the Fourier series behaves at a discontinuity;

the Fourier series overshoots significantly, though in a controlled

manner. Moreover, we can get into trouble by trying to dif-

ferentiate the Fourier series. In 1926, Andrey Nikolaevich

Kolmogorov (1903–1987) proved that there exists a function,

which is periodic and locally Lebesgue integrable, with a Fourier

series that is divergent at all points. While this seemed to be an-

other strike against Fourier series, Lennart Carleson (1928–),

a Swedish mathematician, showed in 1966 that every periodic, lo-

cally square-integrable function has a Fourier series that converges almost everywhere.

Further reading

Fourier analysis of signals and systems Mallat’s book [66] on wavelets and signal
processing is similar in outlook and scope to this text (together with the companion vol-
ume [57]), but more mathematical in style. It includes details on the inversion of the
Fourier transform on L1(R) and extension of the Fourier transform to L2(R). The book
by Brémaud [11] is a clean, self-contained text aimed at signal processing researchers. The
text by Bracewell [10] is a classic; the material is written with engineering in mind, with
plenty of intuition. The book by Papoulis [77] is another classic engineering text. More on
the Dirac delta function can be found in another text by Papoulis [73] and in signals and
systems book by Siebert [91]. Finally, the text by Folland [30] has been written from a
physicist’s point of view and offers an excellent treatment of partial differential equations.

Stochastic processes and systems Additional material on stochastics can be found

in the book by Porat [80]. The subtlety of continuous-time white noise is discussed in the

stochastic process book of Gallager [32].
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Cambridge University Press (ISBN 110703860X) v1.1 [May 2014] [free version] Comments to book-errata@FourierAndWavelets.org



Chapter 5

Sampling and
interpolation

“An experiment is a question which science poses to nature,
and a measurement is the recording of nature’s answer.”

— Max Planck
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Exercises 504

The previous two chapters dealt with discrete-time signals (sequences indexed by
integers) and continuous-time signals (functions of a real variable). The primary
purpose of the present chapter is to link these two worlds. This is done through
sampling, which produces a sequence from a function, and interpolation, which
produces a function from a sequence. The ability to sample a function, manipulate
the resulting sequence with a discrete-time system, and then interpolate to produce
a function is the foundation of digital signal processing. Conversely, the ability to
interpolate a sequence to create a function, manipulate the resulting function with
a continuous-time system, and then sample to produce a sequence is the foundation
of digital communications. These processes, illustrated in Figure 5.1, conceptually
position this chapter as a bridge between Chapters 3 and 4.
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x(t) Sampling
yn

DT processing
wn

Interpolation v(t)

(a) Digital signal processing.

xn Interpolation
y(t)

CT processing
v(t)

Sampling x̂n

(b) Digital communications.

Figure 5.1 Sampling and interpolation in signal processing and communications. (a)
Digital signal processing: sampling produces a discrete-time signal (sequence) from a
continuous-time signal (function), which is then processed with a discrete-time system
and interpolated. (b) Digital communications: interpolation produces a continuous-time
signal (function) from a discrete-time signal (sequence), which is then processed with a
continuous-time system and finally sampled.

Given a function, one can associate a sequence with it by simply taking samples
(evaluating or measuring the function) uniformly in time. Classical sampling theory
places a bandwidth restriction on the function so that the samples are a faithful
representation of the function. This leads to the concept of the Nyquist rate, a
minimum rate of sampling at which changes in the function are captured by these
samples. We will develop this result in detail, but we will also see it as a special
case of a more general theory involving shift-invariant subspaces.

Our approach treats any decrease in dimension via a linear operator as sam-
pling and, conversely, any increase in dimension via a linear operator as interpola-
tion. These are thus intimately tied to basis expansions and subspaces: sampling
followed by interpolation projects to a subspace, while interpolation alone embeds
information within a subspace of a higher-dimensional space. These concepts are
important for sequences and finite-dimensional vectors as well as for functions, so
our development follows a progression from finite-dimensional spaces to ℓ2(Z) and
to L2(R).

5.1 Introduction

In Chapters 3 and 4, we saw a pair of bijections between sequences and functions:

discrete-time signal
DTFT←→ periodic Fourier-domain function,

periodic continuous-time signal
FS←→ discrete Fourier-domain sequence.

The first associates a periodic function, the discrete-time Fourier transform X(ejω),
ω ∈ R, with a discrete-time signal xn, n ∈ Z, and the second associates a sequence,
the Fourier series coefficients Xk, k ∈ Z, with a periodic continuous-time signal
x(t), t ∈ R. While these are important connections, they are different in spirit
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t

Figure 5.2 A piecewise-constant function that is constant over unit-length intervals
[n, n+ 1), n ∈ Z.

from sampling and interpolation, both of which operate within the time domain.
Typically, sampling and interpolation mean the following:

discrete-time signal
interpolation

⇄
sampling

continuous-time signal.

They can equally well mean

lower-rate discrete-time signal
interpolation

⇄
sampling

higher-rate discrete-time signal,

and, since the mathematical analogies are so strong, we expand the terms somewhat
to include also

shorter finite-length vector
interpolation

⇄
sampling

longer finite-length vector.

In this section, we first capture many main themes of the chapter for cases
with orthonormal vectors through a representative example that expands upon Ex-
amples 2.17(i) and 2.18(iii). We then use examples in R2 to introduce the additional
issues that arise from using nonorthogonal vectors in sampling and interpolation.

Subspace of functions Consider the set S of piecewise-constant functions that are
constant over unit-length intervals such that

x(t) = x(n) for all t ∈ [n, n+ 1), n ∈ Z. (5.1)

One such function is shown in Figure 5.2. The set S is a closed subspace, and it
is called shift-invariant with respect to integer shifts because, for any x in S and
any integer k, the function x(t − k) also belongs to S. Because of (5.1), functions
in S are in one-to-one correspondence with sequences. If g = 1[0,1) – the indicator
function of the unit interval – the set {g(t− k)}k∈Z is an orthonormal basis for S.

Instead of unit-length intervals, we could consider intervals of any positive
length T . Then, S becomes the space of piecewise-constant functions that are
constant over intervals [kT, (k+1)T ), and {(1/

√
T )g(t/T−k)}k∈Z is an orthonormal
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Figure 5.3 Approximation by nearest piecewise-constant functions for different T .

basis for this new S. Adjusting T changes how closely an arbitrary function is
approximated by the nearest function in S (see Figure 5.3); with smaller T , the
error in approximating by the nearest function in S becomes smaller. Finding
such nearest approximations through sampling and interpolation is a focus of this
chapter.

Sampling Suppose that we want to measure a continuous-time signal x to obtain a
sequence of real numbers y describing x. While the device we employ might be able
to take a measurement of x at a single point in time t, this measurement would be
sensitive to noise. Instead, it is both more technologically feasible and more robust
to measure an integral. One way to do this is

yn =

∫ n+1

n

x(t) dt
(a)
=

∫ ∞

−∞
x(t) g∗(t− n) dt

= 〈x(t), g(t− n)〉t
(b)
= (Φ∗x)n, (5.2)

for each n ∈ Z, where (a) follows from g = 1[0,1);
91 and (b) introduces Φ∗ to denote

the basis analysis operator associated with {g(t − n)}n∈Z. From the connection
between inner products and convolutions, (4.32a), the sample in (5.2) can be seen
as evaluating the convolution of x(t) and g∗(−t) at t = n:

yn =

∫ ∞

−∞
x(t) g∗(t− n) dt =

(
g∗(−t) ∗t x(t)

)∣∣
t=n

. (5.3)

In other words, this sampling operator is implemented using filtering by g∗(−t) and
recording the result at integer time instants. The sampling operator Φ∗ can thus be
represented as in Figure 5.4(a), with a switch that closes at times that are integer
multiples of T . Since square integrability of x implies the square summability of y
(see Example 2.17(i)), Φ∗ is a mapping from L2(R) to ℓ2(Z).

Interpolation Interpolation generates a function x̂ from a sequence y. One way to
do this is to form

x̂(t) =
∑

n∈Z

yng(t− n) = (Φy)(t), (5.4)

91Since the indicator function 1[0,1) is real, the conjugation has no effect. It is included for
consistency with the general case developed later.
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x(t) g∗(−t) T yn

Φ∗

yn
T

g(t) x̂(t)

Φ

(a) Sampling. (b) Interpolation.

Figure 5.4 Representations of sampling and interpolation operators. (a) Sampling as in
(5.2) is equivalent to filtering by g∗(−t) and recording the result at time instants that are
integer multiples of T , as in (5.3) when T = 1. (b) Interpolation as in (5.4) is equivalent
to forming a weighted Dirac comb followed by filtering by g(t), as in (5.5) when T = 1.

where Φ denotes the basis synthesis operator associated with {g(t − n)}n∈Z. The
function x̂ in (5.4) could be produced by filtering a weighted Dirac comb

∑

n∈Z

ynδ(t− n)

with g,

x̂(t) =

(
∑

n∈Z

ynδ(t− n)
)
∗t g(t). (5.5)

The interpolation operator Φ is illustrated in Figure 5.4(b). Since x̂ is constant
on intervals [n, n + 1), n ∈ Z, a calculation similar to Example 2.17(i) shows that
square summability of y implies the square integrability of x̂; thus, Φ is a mapping
from ℓ2(Z) to L2(R). From Section 2.5.1 and Examples 2.17(i) and 2.18(iii), we
know that the interpolation operator is the adjoint of the sampling operator; thus
our choice to call it Φ.

Interpolation followed by sampling: Sequence recovery Figure 5.5(a) depicts
interpolation followed by sampling. Because of the specific choice of sampling
and interpolation operators, we have that Φ∗Φ = I; in other words, any sequence
y ∈ ℓ2(Z) is recovered perfectly when the interpolated function computed through
(5.4) is used in the sampling formula (5.2),

Φ∗Φy = y, for y ∈ ℓ2(Z). (5.6)

Another choice for sampling or interpolation would not necessarily have led to
perfect recovery, as we discuss later in this chapter.

Sampling followed by interpolation: Function recovery Figure 5.5(b) depicts
sampling followed by interpolation. Because of the specific choice of sampling and
interpolation operators, when a function x belongs to S, it is recovered perfectly
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yn
T

g(t)
x̂(t)

g∗(−t) T
ŷn

(a) Interpolation followed by sampling.

x(t) g∗(−t) T
yn

T
g(t) x̂(t)

(b) Sampling followed by interpolation.

Figure 5.5 Combinations of sampling and interpolation. (a) With interpolation as in
(5.4) followed by sampling as in (5.2), Φ∗Φ = I recovers the input sequence perfectly for
any y ∈ ℓ2(Z); that is, ŷ = y. (b) Sampling as in (5.2) followed by interpolation as in
(5.4), ΦΦ∗, recovers the input function perfectly when x ∈ S; that is, x̂ = x.

when the samples computed through (5.2) are used in the interpolation formula
(5.4),

ΦΦ∗x = x, for x ∈ S ⊂ L2(R). (5.7)

Unlike for interpolation followed by sampling, here we needed to impose a
restriction on the input function to guarantee perfect recovery. Both the sequence
and the function recovery properties depend on having a proper match between
sampling and interpolation operators, as we will discuss later in this chapter.

If the function were not in S, sampling followed by interpolation, P = ΦΦ∗,
would not act as the identity on it, and we would obtain merely an approximation.
Finding the closest function in S (where distance is measured with the L2 norm) is
simple because of Hilbert-space geometry. We find that

P 2 = ΦΦ∗ΦΦ∗ (a)
= ΦΦ∗ = P, (5.8a)

P ∗ = (ΦΦ∗)∗ = ΦΦ∗ = P, (5.8b)

where (a) follows from Φ∗Φ = I. In other words, P is idempotent and self-adjoint;
that is, P is an orthogonal projection operator. The projection theorem (Theo-
rem 2.26) then states that, given an arbitrary x ∈ L2(R), sampling followed by
interpolation results in x̂ = ΦΦ∗x, the least-squares approximation of x in S, that
is, the best approximation under the L2 norm (see Figure 5.6).

Another way to verify the least-squares approximation property is to note
that the set {g(t − k)}k∈Z is an orthonormal basis for S and that (5.4) is an or-
thonormal basis expansion formula. Thus, the approximation property follows from
Theorem 2.41. Finally, one can explicitly verify that computing the average of a
function over an interval minimizes the L2 norm of the error of a piecewise-constant
approximation to the function (see Solved exercise 5.1).

For any fixed T > 0, there are functions x ∈ L2(R) that differ appreciably
from the closest function x̂T that is piecewise-constant over intervals [kT, (k+1)T ).
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(a) Approximation of x by x̂ ∈ S. (b) Abstract view.

Figure 5.6 Least-squares approximation of an arbitrary function x (dashed line) by
a piecewise-constant approximation x̂ ∈ S (solid line). (a) Example function and its
piecewise-constant approximation. (b) Conceptual depiction of orthogonal projection.

However, considering all T > 0, these piecewise-constant functions are dense in
L2(R), and the approximation error between x̂T and x goes to zero as T → 0. The
rate at which this error goes to zero is an important parameter; it indicates the
approximation power of the sampling and interpolation scheme (see Exercise 5.1).

Sampling and interpolation with nonorthogonal vectors in R2 In the discussion
so far, we have had sampling and interpolation operators that are adjoints of each
other, making their composition (in either order) a self-adjoint operator. This does
not have to be the case, and throughout this chapter we will see instances of general
sampling and interpolation operators Φ̃∗ and Φ, where we need not have Φ̃ = Φ.

The significance of the sampling and interpolation operators being an adjoint
pair is closely related to whether the associated bases are orthonormal. To get a feel
for this and a preview of the subspaces that arise in understanding sampling, we
now look into the simple setting of vectors in R2. Here we call any linear operator
R2 → R a sampling operator and any linear operator R → R2 an interpolation
operator. While in this setting there is no filtering as defined in Chapters 3 and 4 –
contrasting with what we have discussed thus far in this section – it maintains the
essential features of sampling and interpolation: sampling involves a reduction of
dimension, and interpolation embeds in a higher-dimensional space. We start with
an orthogonal case and follow it with a nonorthogonal one, allowing for a comparison
of the two.

(i) Consider first the sampling and interpolation operators to be

Φ∗ =
1√
2

[
1 1

]
, Φ =

1√
2

[
1
1

]
. (5.9a)

The sampling operator Φ∗ returns one sample that is the average of the two
components of the input vector, scaled by

√
2. The interpolation operator

creates a vector out of a single scalar sample by duplicating the sample, now
with the scaling factor of 1/

√
2. The null space of the sampling operator is
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Cambridge University Press (ISBN 110703860X) v1.1 [May 2014] [free version] Comments to book-errata@FourierAndWavelets.org



418 Sampling and interpolation

−3 −2 −1 1 2 3

1

2

3 SS⊥ x

x̂

Figure 5.7 Least-squares approximation of x =
[
3
2

5
2

]⊤
via the orthogonal projection

operator (5.10).

the orthogonal complement of the range of the interpolation operator,

S = R(Φ) =

{
α

[
1
1

] ∣∣∣∣ α ∈ C

}
, (5.9b)

S⊥ = N (Φ∗) =

{
α

[
−1
1

] ∣∣∣∣ α ∈ C

}
. (5.9c)

Clearly, interpolation followed by sampling leads to identity,

Φ∗Φ = 1.

What is more interesting is that sampling followed by interpolation, P = ΦΦ∗,
is the orthogonal projection operator onto S,

P =
1

2

[
1 1
1 1

]
, P 2 = P, P ∗ = P. (5.10)

For any x ∈ R2, x̂ = Px is the least-squares approximation of x in S. In par-
ticular, x̂ = x when x ∈ S; otherwise, x̂ is the approximation in S that satisfies
x − x̂ ∈ S⊥. Figure 5.7 illustrates these spaces as well as the approximation

for x =
[
3
2

5
2

]⊤
.

(ii) We keep the interpolation operator from (5.9a) and choose the sampling op-
erator to be

Φ̃∗ =
1

2
√
2

[
1 3

]
. (5.11a)

The null space of the sampling operator and its orthogonal complement are

S̃⊥ = N (Φ̃∗) =

{
α

[
−3
1

] ∣∣∣∣ α ∈ C

}
, (5.11b)

S̃ =

{
α

[
1
3

] ∣∣∣∣ α ∈ C

}
. (5.11c)

Note that the latter, S̃, is no longer the same as the range of the interpolation
operator, S. Again, interpolation followed by sampling leads to identity,

Φ̃∗Φ = 1.
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Figure 5.8 Approximation of x =
[
3
2

5
2

]⊤
via the projection operator (5.12).

However, sampling followed by interpolation, P = ΦΦ̃∗, is no longer an orthog-
onal projection operator, though it is still a projection operator with range
S,

P =
1

4

[
1 3
1 3

]
, P 2 = P, P ∗ 6= P. (5.12)

In particular, x̂ = x when x ∈ S; otherwise, x̂ is the approximation in S that
satisfies x − x̂ ∈ S̃⊥ (but x − x̂ ∈ S⊥ is not satisfied). Figure 5.8 illustrates

these spaces as well as the approximation for x =
[
3
2

5
2

]⊤
.

(iii) We still keep the interpolation operator from (5.9a) the same and choose the
sampling operator to be

Φ̃∗ =
1

2
√
2

[
1 2

]
. (5.13a)

The null space of the sampling operator and its orthogonal complement are

S̃⊥ = N (Φ̃∗) =

{
α

[
−2
1

] ∣∣∣∣ α ∈ C

}
,

S̃ =

{
α

[
1
2

] ∣∣∣∣ α ∈ C

}
.

This time, interpolation followed by sampling is not an identity on C,

Φ̃∗Φ 6= 1.

Sampling followed by interpolation, P = ΦΦ̃∗, is no longer even a projection
operator,

P =
1

4

[
1 2
1 2

]
, P 2 =

3

16

[
1 2
1 2

]
6= P. (5.14)

The range of P is S, and since P is not a projection operator, applying it a
second time gives some P 2x in S that is different from Px. In this example,

P k =
1

4

(
3

4

)k−1 [
1 2
1 2

]
,
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Figure 5.9 Operator (5.14) that is not a projection applied to x =
[
3
2

5
2

]⊤
. Triangles

denote P 2x, P 3x, and P 4x in descending order.

so P kx → 0 as k increases. Figure 5.9 illustrates this effect92 both for x =[
3
2

5
2

]⊤
and for the spaces involved.

Chapter outline

The bulk of this chapter, Sections 5.2–5.5, follows a progression through the Hilbert
spaces developed in Chapters 2–4. In each case, we consider analysis and synthesis
first with orthonormal vectors and then with nonorthogonal ones. Section 5.2 devel-
ops sampling and interpolation from the perspective of linear operators (matrices) in
finite-dimensional spaces. Section 5.3 does the same for infinite-length sequences,
with a restriction to LSI and LPSV operators. This restriction is important for
practical implementations, and it enables the use of techniques from Chapter 3,
including the DTFT. Section 5.4 progresses to functions on the real line, making
use of the Fourier transform and other concepts from Chapter 4. The use of LSI
filtering naturally leads to the sampling theory for shift-invariant subspaces, and
the celebrated sampling theorem for bandlimited functions is presented both with
a classical justification and as an instance of the general theory for shift-invariant
subspaces. Section 5.5 develops sampling for periodic functions, making use of the
Fourier series expansion, and finally, Section 5.6 concludes with a discussion of
computational aspects.

5.2 Finite-dimensional vectors

As illustrated in Section 5.1, sampling and interpolation normally refer to operations
applied to functions and sequences. In this chapter, we emphasize a geometric
view of sampling and interpolation together with an investigation of the subspaces
(range, null space) associated with sampling and interpolation operators. To set

92Here, the points move along S closer to the origin because the operator has eigenvalues smaller
than 1 in absolute value. Choosing a different scaling in (5.13a), for example, 1

2
instead of 1/(2

√
2),

would make the points move along S to infinity. Note that a scaling of 1/
√
5 would make P

idempotent, and thus a projection operator again, albeit still not an orthogonal one.
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x0

x1

x2

x3

x4
...

xM−1

x ∈ CM

y0

y1

y2
...

yN−1

y ∈ CN

y0

y1

y2
...

yN−1

y ∈ CN

x̂0

x̂1

x̂2

x̂3

x̂4
...

x̂M−1

x̂ ∈ CM

(a) Sampling. (b) Interpolation.

Figure 5.10 Sampling (CM → CN ) and interpolation (CN → CM ); M > N .

the stage for this view, we first look at sampling and interpolation operators in
finite dimensions. Here we refer to any decrease in dimension as sampling and any
increase in dimension as interpolation; sampling will take M values and produce
N < M values, while interpolation will take N values and produce M > N values.
These are depicted in Figure 5.10.

5.2.1 Sampling and interpolation with orthonormal vectors

Sampling Sampling is a linear operator from CM to CN , M > N , so it can be
represented by an N×M matrix Φ∗. For a given input vector x ∈ CM , the sampling
output is a vector y ∈ CN ,

y =




〈x, ϕ0〉
〈x, ϕ1〉

...
〈x, ϕN−1〉




︸ ︷︷ ︸
N×1

=




ϕ∗
0

ϕ∗
1
...

ϕ∗
N−1




︸ ︷︷ ︸
N×M




x0
x1

...

xM−1




︸ ︷︷ ︸
M×1

= Φ∗x. (5.15)

In the above matrix, ϕ∗
k is the kth row of Φ∗.

We first assume that {ϕk}N−1
k=0 is an orthonormal set,

〈ϕn, ϕk〉 = δn−k ⇔ Φ∗Φ = I, (5.16)

and thus Φ∗ has rank N , the largest possible for an N ×M matrix with N < M
(that is, of full rank). Then, the sampling operator has an (M−N)-dimensional null
space, N (Φ∗); the set {ϕk}N−1

k=0 spans its orthogonal complement, S = N (Φ∗)⊥ =

span({ϕk}N−1
k=0 ). When a vector x ∈ CM is sampled, its component in the null space
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Cambridge University Press (ISBN 110703860X) v1.1 [May 2014] [free version] Comments to book-errata@FourierAndWavelets.org



422 Sampling and interpolation

S⊥ has no effect on the output y and is thus completely lost; its component in S is
captured by Φ∗x. We illustrate this with an example.

Example 5.1 (Sampling in C4) Define a sampling operator from C4 to C3 by

Φ∗ =
1

2



1 1 1 1
1 −1 1 −1
1 1 −1 −1


 . (5.17a)

The null space of Φ∗ is

S⊥ = N (Φ∗) =




α




1
−1
−1
1




∣∣∣∣∣∣∣∣
α ∈ C




, (5.17b)

and its orthogonal complement is the span of the transposes of the rows of Φ∗,

S = N (Φ∗)⊥ =




α0




1
1
1
1


+ α1




1
−1
1
−1


+ α2




1
1
−1
−1




∣∣∣∣∣∣∣∣
α0, α1, α2 ∈ C




. (5.17c)

An arbitrary vector x ∈ C4 has an orthogonal decomposition x = xS +xS⊥

with xS ∈ S and xS⊥ ∈ S⊥. The component xS⊥ cannot be recovered from Φ∗x.
For example,

Φ∗




1 + α
1− α
1− α
1 + α


 = Φ∗







1
1
1
1




︸︷︷︸
∈S

+α




1
−1
−1
1




︸ ︷︷ ︸
∈S⊥


 = Φ∗




1
1
1
1


+ αΦ∗




1
−1
−1
1




︸ ︷︷ ︸
=0

=



2
0
0


 ,

showing that infinitely many choices of x in C4 result in the same value of Φ∗x.

Interpolation Interpolation is a linear operator from CN to CM , N < M , so it can
be represented by an M ×N matrix; we first choose that matrix to be the adjoint
of the sampling operator, Φ, as we have done in the introductory example. For a
given input vector y ∈ CN , the interpolation output is a vector x̂ ∈ CM ,

x̂ =
[
ϕ0 ϕ1 · · · ϕN−1

]
︸ ︷︷ ︸

M×N




y0
y1
...

yN−1




︸ ︷︷ ︸
N×1

= Φy =
N−1∑

k=0

ykϕk. (5.18)

In the above matrix, ϕk is the kth column of Φ.

Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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We continue to assume that {ϕk}N−1
k=0 is an orthonormal set. As was true for

Φ∗, Φ has full rank, N . Thus, the interpolation operator has an N -dimensional
range S, which is a proper subspace of CM and is given by S = span({ϕk}N−1

k=0 ).
This subspace is, of course, the same as the orthogonal complement of the null space
of the sampling operator, as we have seen earlier.

Example 5.2 (Interpolation to C4) Continuing the previous example, the
interpolation operator associated with the sampling operator in (5.17a) is

Φ =
1

2




1 1 1
1 −1 1
1 1 −1
1 −1 −1


 . (5.19)

The range of this operator is S (the same as the orthogonal complement of the
null space of the sampling operator in (5.17c)).

Interpolation followed by sampling Interpolation followed by sampling is de-
scribed by Φ∗Φ, which maps from the smaller space, CN , to itself. Since by as-
sumption (5.16) holds, Φ∗Φy = y for all y ∈ CN , so any input is perfectly recovered.
Equation (5.16) also shows that the condition for perfect recovery is the same as
the set of vectors {ϕk}N−1

k=0 being orthonormal, as in (2.92). This set of vectors is
not a basis for CM (it has too few vectors); instead, it is an orthonormal basis for
the N -dimensional subspace S that it spans.

Sampling followed by interpolation Sampling followed by interpolation is de-
scribed by P = ΦΦ∗. While this operator has CM both as its domain and as its
codomain, it cannot act as identity on all inputs because there is an intermediate
representation with only N numbers, where N < M . It can be an identity operator
on at most an N -dimensional subspace of CM , depending on whether (5.16) holds.

When (5.16) does hold, P is idempotent by (5.8a); since the sampling and
interpolation operators are adjoints, P is self-adjoint by (5.8b). Thus, P is an or-
thogonal projection operator. Then, by Theorem 2.26, Px is the best approximation
of x in S, where S is the range of P ; if x ∈ S, sampling followed by interpolation
will perfectly recover x.

Theorem 5.1 (Recovery for vectors, orthogonal) Let N,M ∈ Z+ with
N < M , let the sampling operator Φ∗ : CM → CN be given in (5.15), and let
the interpolation operator Φ : CN → CM be given in (5.18). Denote the result of
sampling followed by interpolation applied to x ∈ CM by x̂ = Px = ΦΦ∗x.

If orthonormality (5.16) is satisfied, then P is the orthogonal projection
operator with range S = R(Φ) and x̂ is the best approximation of x in S,

x̂ = argmin
xS∈S

‖x− xS‖, x− x̂ ⊥ S;

in particular, x̂ = x when x ∈ S.
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424 Sampling and interpolation

We now illustrate the above result by building upon Examples 5.1 and 5.2.

Example 5.3 (Sampling followed by interpolation in C4) Let Φ be
given by (5.19), which has range S in (5.17c). Consider first any x ∈ S. It can
be written as

x = α0ϕ0 + α1ϕ1 + α2ϕ2

for some α0, α1, α2 ∈ C. Then, the output from sampling followed by interpola-
tion is

x̂ = Px = ΦΦ∗x
(a)
= ΦΦ∗(α0ϕ0 + α1ϕ1 + α2ϕ2)

(b)
=



1

4




3 1 1 −1
1 3 −1 1
1 −1 3 1
−1 1 1 3







1

2


α0




1
1
1
1


+ α1




1
−1
1
−1


+ α2




1
1
−1
−1







=
1

2


α0




1
1
1
1


+ α1




1
−1
1
−1


+ α2




1
1
−1
−1





 = x,

where (a) follows from substituting for x; and (b) from computing ΦΦ∗ from
(5.19) and substituting for ϕ0, ϕ1, and ϕ2. Note that the matrix–vector product
is simple because ϕ0, ϕ1, and ϕ2 are eigenvectors of P associated with eigen-
value 1.

Consider next a particular x /∈ S, x =
[
2 0 0 2

]⊤
from Example 5.1.

Applying P = ΦΦ∗ to x leads to

x̂ = Px = ΦΦ∗x =
1

4




3 1 1 −1
1 3 −1 1
1 −1 3 1
−1 1 1 3







2
0
0
2


 =




1
1
1
1


 ,

which clearly belongs to S since it is twice the first basis vector ϕ0. It is also the
vector in S that is closest to x, since the difference between x and x̂ is orthogonal
to S,

x− x̂ =




2
0
0
2


−




1
1
1
1


 =




1
−1
−1
1


 ⊥ S.

As we saw in Chapter 3, finite-dimensional vectors can be seen as finite-length
sequences. In that case, we know that the DFT will be an appropriate Fourier
transform when these sequences are circularly extended (or viewed as periodic se-
quences). We could then define bandlimited subspaces of CM similarly to what we
will do in the following sections for sequences and functions. Exercise 5.2 explores
sampling and interpolation in such subspaces.
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5.2.2 Sampling and interpolation with nonorthogonal vectors

We now expand our sets of sampling and interpolation operators to be built from
nonorthogonal vectors. As in our discussion of orthonormal and biorthogonal pairs
of bases, nonorthogonal vectors make the geometry more complicated; the sampling
and interpolation operators are no longer adjoints of each other, and the relevant
spaces we discussed earlier – the range of the interpolation operator and the or-
thogonal complement of the null space of the sampling operator – are no longer the
same.

Sampling Again, sampling is represented by an N ×M matrix as in (5.15), but
this time with rows that are not necessarily orthogonal. We call the kth row ϕ̃∗

k

and the corresponding sampling matrix Φ̃∗. Thus, for a given input vector x ∈ CM ,
the sampling output is a vector y ∈ CN ,

y =




〈x, ϕ̃0〉
〈x, ϕ̃1〉

...
〈x, ϕ̃N−1〉




︸ ︷︷ ︸
N×1

=




ϕ̃∗
0

ϕ̃∗
1
...

ϕ̃∗
N−1




︸ ︷︷ ︸
N×M




x0
x1

...

xM−1




︸ ︷︷ ︸
M×1

= Φ̃∗x. (5.20)

We again assume Φ̃∗ to have full rank, N . Thus, the sampling operator has an
(M − N)-dimensional null space, N (Φ̃∗); the set {ϕ̃k}N−1

k=0 spans its orthogonal

complement, S̃ = N (Φ̃∗)⊥ = span({ϕ̃k}N−1
k=0 ). When a vector x ∈ CM is sampled,

its component in the null space S̃⊥ is completely lost; its component in S̃ is captured
by Φ̃∗x.

Example 5.4 (Sampling in C4) Define sampling of x ∈ C4 to obtain three
samples y ∈ C3 as giving the midpoints of neighboring pairs of samples. For
k ∈ {0, 1, 2}, the sample yk is the average of xk and xk+1, so the sampling
operator can be written as

Φ̃∗ =
1

2



1 1 0 0
0 1 1 0
0 0 1 1


 . (5.21a)

The null space of Φ̃∗ is

S̃⊥ = N (Φ̃∗) =




β




−1
1
−1
1




∣∣∣∣∣∣∣∣
β ∈ C




, (5.21b)
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and its orthogonal complement is

S̃ = N (Φ̃∗)⊥ =




β0




1
1
0
0


+ β1




0
1
1
0


+ β2




0
0
1
1




∣∣∣∣∣∣∣∣
β0, β1, β2 ∈ C




. (5.21c)

Interpolation Again, interpolation is represented by an M × N matrix Φ, as in
(5.18), but this time it is not the adjoint of the sampling operator Φ̃∗. For a given
input vector y ∈ CN , the interpolation output is a vector x̂ ∈ CM ; it will lie in the
subspace

S = R(Φ) =

{
N−1∑

k=0

αkϕk

∣∣∣∣∣ α ∈ CN

}
. (5.22)

When the interpolation operator is specially chosen so that

Φ = Φ̃(Φ̃∗Φ̃)−1, (5.23)

that is, it is the pseudoinverse of Φ̃∗, then S = S̃, because

S = R(Φ) (a)
= R(Φ̃(Φ̃∗Φ̃)−1)

(b)
= R(Φ̃) (c)

= N (Φ̃∗)⊥
(d)
= S̃, (5.24)

where (a) follows from (5.23); (b) from R(AB) = R(A) when B is invertible; (c)

from (2.53a); and (d) from the definition of S̃. Though the interpolation operator
in (5.23) has other distinguishing properties that we will develop shortly, we do not
assume the use of this particular interpolation operator in all cases.

Example 5.5 (Interpolation to C4) One possible interpolation operator

from C3 to C4 is the pseudoinverse of Φ̃∗ in (5.21a),

Φ1 =
1

2




3 −2 1
1 2 −1
−1 2 1
1 −2 3


 . (5.25a)

The range of Φ1 is

S =




α0




3
1
−1
1


+ α1




−2
2
2
−2


+ α2




1
−1
1
3




∣∣∣∣∣∣∣∣
α0, α1, α2 ∈ C




. (5.25b)

To demonstrate that S̃ in (5.21c) and S in (5.25b) are the same, we can write

each vector generating S as a linear combination of the vectors generating S̃. For
example, 



3
1
−1
1


 = 3




1
1
0
0


− 2




0
1
1
0


+




0
0
1
1


 ,

and similarly for the others.
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Interpolation followed by sampling Interpolation followed by sampling is de-
scribed by Φ̃∗Φ, which maps from the smaller space, CN , to itself. From the dimen-
sions of the operators, it is possible to have Φ̃∗Φy = y for all y ∈ CN ; this happens
when Φ is a right inverse of Φ̃∗,

Φ̃∗Φ = I ⇔ 〈ϕn, ϕ̃k〉 = δn−k. (5.26)

The sampling and interpolation operators are then called consistent. Choosing the
pseudoinverse in (5.23) for Φ satisfies (5.26); since M > N , there exist infinitely
many other right inverses that lead to consistency. Equation (5.26) also shows that
the condition for perfect recovery is the same as the sets of vectors {ϕk}N−1

k=0 and

{ϕ̃k}N−1
k=0 being biorthogonal, as in (2.111). These sets of vectors are not bases for

CM (there are too few vectors); instead, they are bases for the N -dimensional sub-

spaces S and S̃ that they span, respectively. Note that, while they are biorthogonal
sets, they are not a biorthogonal pair of bases unless S = S̃.

Example 5.6 (Interpolation followed by sampling in C4) The interpo-
lation operator

Φ2 =




2 −1 0
0 1 0
0 1 0
0 −1 2


 (5.27)

is a right inverse of the sampling operator in (5.21a),

Φ̃∗Φ2 =


1

2



1 1 0 0
0 1 1 0
0 0 1 1









2 −1 0
0 1 0
0 1 0
0 −1 2


 = I.

Thus, Φ2 and Φ̃∗ are consistent. Infinitely many other interpolation operators
are consistent with Φ̃∗; one of these is Φ1 in (5.25a), which is a right inverse of

Φ̃∗ by construction. Interpolation with Φ1 or Φ2 followed by sampling with Φ̃∗

results in perfect recovery.

Sampling followed by interpolation Sampling followed by interpolation is de-
scribed by P = ΦΦ̃∗. Like in the orthogonal case, this cannot be an identity
operator on CM because there is an intermediate representation with only N num-
bers, with N < M . When the sampling and interpolation operators are consistent
as in (5.26), then

P 2 = (ΦΦ̃∗)(ΦΦ̃∗) = Φ(Φ̃∗Φ)Φ̃∗ (a)
= ΦIΦ̃∗ = ΦΦ̃∗ = P, (5.28)

where (a) follows from consistency. In other words, the idempotency of P is guaran-
teed by consistency; consistency thus implies that P is a projection operator, albeit
not necessarily an orthogonal one.93 Figure 5.11 shows what happens in that case:
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S

S̃

·

•
x̂

•x

Figure 5.11 Subspaces defined in sampling and interpolation. S̃ represents what can be
measured; it is the orthogonal complement of the null space of the sampling operator Φ̃∗.
S represents what can be produced; it is the range of the interpolation operator Φ. When
sampling and interpolation are consistent, ΦΦ̃∗ is a projection and x− x̂ is orthogonal to
S̃. When, furthermore, S = S̃, the projection becomes an orthogonal projection and the
sampling and interpolation are ideally matched.

P projects onto S, but the projection is not orthogonal. The approximation error
x− x̂ is orthogonal to S̃ but not to S.

It turns out that for P to be self-adjoint as well, Φ must be chosen to be the
pseudoinverse of Φ̃∗, (5.23); in this case,

P ∗ = (ΦΦ̃∗)∗
(a)
= (Φ̃(Φ̃∗Φ̃)−1Φ̃∗)∗ = Φ̃((Φ̃∗Φ̃)−1)∗Φ̃∗

= Φ̃(Φ̃∗Φ̃)−1Φ̃∗ (b)
= ΦΦ̃∗ = P,

where (a) and (b) follow from (5.23). When Φ is the pseudoinverse of Φ̃∗, the

subspaces S and S̃ are the same, as shown in (5.24). When we have consistency

combined with S = S̃, the sampling and interpolation operators are called ideally
matched. In other words, when sampling and interpolation operators are ideally
matched, P = ΦΦ̃∗ is an orthogonal projection operator, and, by Theorem 2.26,
x̂ = Px is the best approximation of x in S.

The previous discussion can be summarized as follows (see also Figure 5.11):

Theorem 5.2 (Recovery for vectors, nonorthogonal) Let N,M ∈ Z+

with N < M , let the sampling operator Φ̃∗ : CM → CN be given in (5.20), and
let the interpolation operator Φ : CN → CM be given in (5.18). Denote the result

of sampling followed by interpolation applied to x ∈ CM by x̂ = Px = ΦΦ̃∗x.
If consistency (5.26) is satisfied, then P is a projection operator with range

S = R(Φ) and x− x̂ ⊥ S̃ = N (Φ̃∗)⊥; in particular, x̂ = x when x ∈ S.
93Recall the distinction between a projection and an orthogonal projection from Definition 2.27.
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If, additionally, ideal matching (5.23) is satisfied, then S = S̃, P is the
orthogonal projection operator with range S, and x̂ is the best approximation of
x in S,

x̂ = argmin
xS∈S

‖x− xS‖, x− x̂ ⊥ S.

Example 5.7 (Sampling followed by interpolation in C4) Recall Φ̃∗

from (5.21a), Φ1 from (5.25a), and Φ2 from (5.27). As shown in Example 5.6,

pairs (Φ̃∗,Φ1) and (Φ̃∗,Φ2) both satisfy consistency condition (5.26). However,

only (Φ̃∗,Φ1) is an ideally matched pair, since Φ1 is the pseudoinverse of Φ̃∗.
Thus, using Theorem 5.2, both P1 = Φ1Φ̃

∗ and P2 = Φ2Φ̃
∗ are projection oper-

ators, but only P1 is an orthogonal projection operator.
To demonstrate these facts, compute

P1 = Φ1Φ̃
∗ =



1

2




3 −2 1
1 2 −1
−1 2 1
1 −2 3








1

2



1 1 0 0
0 1 1 0
0 0 1 1






=
1

4




3 1 −1 1
1 3 1 −1
−1 1 3 1
1 −1 1 3


 ,

P2 = Φ2Φ̃
∗ =




2 −1 0
0 1 0
0 1 0
0 −1 2





1

2



1 1 0 0
0 1 1 0
0 0 1 1






=
1

2




2 1 −1 0
0 1 1 0
0 1 1 0
0 −1 1 2


 .

While both P1 and P2 are idempotent, only P1 is self-adjoint as well. Projection
operators P1 and P2 have the same null space, which was identified in Example 5.4
as being the one in (5.21b).

5.3 Sequences

The previous section gave us a firm grasp of the operator view of sampling and
interpolation through the finite-dimensional (matrix) case. In the present section
and in Sections 5.4 and 5.5, we move to other spaces developed in Chapters 3 and 4,
with domains associated with discrete and continuous time. In these developments,
we restrict the sampling and interpolation operators to those implemented with LSI
filtering and emphasize the cases in which they are ideally matched.
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xn g∗−n N

Φ∗

yn yn N gn x̂n

Φ

(a) Sampling. (b) Interpolation.

Figure 5.12 Sampling and interpolation in ℓ2(Z) with orthonormal sequences.

5.3.1 Sampling and interpolation with orthonormal sequences

Paralleling the development for finite-dimensional vectors, we start with the case
when the sampling and interpolation operators are defined using orthonormal se-
quences. We also impose a relationship between filters through time reversal and
conjugation to create an adjoint pair of operators. Together, these make sampling
and interpolation equivalent to analysis and synthesis with the orthonormal basis
{ϕk}k∈Z for a subspace S ⊂ ℓ2(Z).

Shift-invariant subspaces of sequences We start by introducing a class of sub-
spaces of ℓ2(Z) that will play a prominent role in the material that follows.

Definition 5.3 (Shift-invariant subspace of ℓ2(Z)) A subspace S ⊂ ℓ2(Z)
is a shift-invariant subspace with respect to a shift L ∈ Z+ when xn ∈ S implies
that xn−kL ∈ S for every integer k. In addition, s ∈ ℓ2(Z) is called a generator of
S when S = span({sn−kL}k∈Z).

For example, for any particular filter, the outputs of upsampling by 2 followed by
filtering, (3.206), form a shift-invariant subspace with respect to any positive integer
multiple of 2. The same will be true for the interpolation operators we define shortly.

Sampling We refer to the operation depicted in Figure 5.12(a), involving filtering
with g∗−n and downsampling by integer N > 1, as sampling of the sequence xn
with rate 1/N and prefilter g∗−n, and we denote it by y = Φ∗x. Even though this
operation results in infinitely many samples, it involves a dimensionality reduction
because there is only one output sample per N input samples. We have seen this
combination for N = 2 in Section 3.7.4 and an expression for its output in (3.203).

Generalizing (3.203) to an arbitrary N , for any time index k ∈ Z, the output
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of sampling is

yk
(a)
= (Φ∗x)k

(b)
=

(
g∗−n ∗n xn

)∣∣
n=kN

=

(
∑

m∈Z

xmg
∗
m−n

)∣∣∣∣∣
n=kN

=
∑

m∈Z

xmg
∗
m−kN = 〈xm, gm−kN 〉m

(c)
= 〈x, ϕk〉, (5.29)

where (a) follows from denoting the operator in Figure 5.12(a) by Φ∗; (b) from
composing filtering by g∗−n with downsampling by N ; and (c) from defining the
sequence ϕk to be g shifted by kN ,

ϕk,n = gn−kN , n ∈ Z. (5.30)

The final expression in (5.29) shows that calling the sampling operator Φ∗ is consis-
tent with the previous use of Φ∗ as the analysis operator associated with {ϕk}k∈Z;
see (2.91). The operation in (5.29) is a discrete-time counterpart to (5.2) and (5.3).
As before, we first assume {ϕk}k∈Z to be an orthonormal set,

〈ϕk, ϕℓ〉 = δk−ℓ ⇔ 〈gn−kN , gn−ℓN〉n = δk−ℓ. (5.31)

Since the output at time k is 〈x, ϕk〉, the sampling operator Φ∗ produces the
inner products with all the sequences in {ϕk}k∈Z. This operator can be written as
an infinite matrix with rows equal to g∗n and its shifts by integer multiples of N (see
(3.202) forN = 2). Again, the sampling operator has a nontrivial null space,N (Φ∗);
the set {ϕk}k∈Z spans its orthogonal complement, S = N (Φ∗)⊥ = span({ϕk}k∈Z).
The subspaces S and S⊥ = N (Φ∗) are closed and shift-invariant with respect to
shift N . We establish the shift invariance explicitly for S⊥; for S, it is more natural
to establish the shift invariance after introducing the interpolation operator. A
sequence x is in S⊥ when

〈x, ϕk〉 = 0, for all k ∈ Z. (5.32a)

Let x′ be a shifted version of x,

x′n = xn−ℓN , n ∈ Z, (5.32b)

for some fixed ℓ ∈ Z. Then, for any k ∈ Z,

〈x′, ϕk〉
(a)
= 〈xn−ℓN , ϕk,n〉n

(b)
= 〈xn−ℓN , gn−kN 〉n

(c)
=
∑

n∈Z

xn−ℓNg
∗
n−kN

(d)
=

∑

m∈Z

xmg
∗
m−(k−ℓ)N

(e)
= 〈xm, gm−(k−ℓ)N 〉m

(f)
= 〈x, ϕk−ℓ〉

(g)
= 0,

where (a) follows from (5.32b); (b) and (f) from (5.30); (c) and (e) from the def-
inition of the ℓ2(Z) inner product; (d) from the change of variable m = n − ℓN ;
and (g) from (5.32a). This shows that x′ is also in S⊥, so S⊥ is a shift-invariant
subspace with respect to shift N .

When a sequence x ∈ ℓ2(Z) is sampled, its component in the null space S⊥

has no effect on the output y and is thus completely lost; its component in S is
captured by Φ∗x. We illustrate this with an example.

Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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Example 5.8 (Sampling in ℓ2(Z)) Define a sampling operator on ℓ2(Z) with
N = 2 and the prefilter g∗−n,

1√
2

[
. . . 0 1 1 0 0 . . .

]⊤
. (5.33)

Then, from (3.202), the output is




...
y0
y1
...




=
1√
2




...
...

...
...

· · · 1 1 0 0 · · ·
· · · 0 0 1 1 · · ·

...
...

...
...







...
x0
x1
x2
x3
...




= Φ∗x. (5.34a)

For every two input samples x2k and x2k+1, we get one output sample
yk = (x2k + x2k+1)/

√
2. The rows of matrix Φ∗ clearly form an orthonormal set,

since the nonzero entries do not overlap, and the rows have unit norm. The null
space of Φ∗ is

S⊥ = N (Φ∗) = {x ∈ ℓ2(Z) | x2k = −x2k+1 for all k ∈ Z}

=





· · ·+ α−1




...
0
1
−1
0
0
0
0
0
...




+ α0




...
0
0
0

1
−1
0
0
0
...




+ α1




...
0
0
0

0
0
1
−1
0
...




+ · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α ∈ ℓ2(Z)





,

and its orthogonal complement is the span of the transposes of the rows of Φ∗,

S = N (Φ∗)⊥ = {x ∈ ℓ2(Z) | x2k = x2k+1 for all k ∈ Z}

=





· · ·+ α−1




...
0
1
1

0
0
0
0
0
...




+ α0




...
0
0
0

1
1
0
0
0
...




+ α1




...
0
0
0

0
0
1
1
0
...




+ · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α ∈ ℓ2(Z)





. (5.34b)
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Any x ∈ ℓ2(Z) has an orthogonal decomposition x = xS + xS⊥ with xS ∈ S and
xS⊥ ∈ S⊥. The component xS⊥ cannot be recovered from Φ∗x.

Interpolation We refer to the operation depicted in Figure 5.12(b), involving up-
sampling by integer N > 1 and filtering with g, as interpolation of the sequence
y with spacing N and postfilter g, and we denote it by x̂ = Φy. We have seen
this combination for N = 2 in Section 3.7.4 and an expression for its output in
(3.206). As developed in (3.212) for N = 2, but true also for any N > 1, choosing a
prefilter and a postfilter that are related through time-reversed conjugation makes
the sampling and interpolation operators adjoints of each other. This justifies our
convention of calling one Φ∗ and the other Φ in this case.

Upon generalizing (3.206) to an arbitrary N , for any time n ∈ Z, the output
of interpolation is

x̂n
(a)
= (Φy)n

(b)
=
∑

k∈Z

ykgn−kN
(c)
=

(
∑

k∈Z

ykϕk

)

n
, (5.35)

where (a) follows from denoting the operator in Figure 5.12(b) by Φ; (b) from
composing upsampling by N with filtering by g; and (c) from (5.30). This shows
that calling the interpolation operator Φ is consistent with the previous use of Φ as
the synthesis operator associated with {ϕk}k∈Z; see (2.90). The operation in (5.35)
is a discrete-time counterpart to (5.4); a counterpart to (5.5) is

x̂n =

(
∑

k∈Z

ykδn−kN

)
∗n gn.

The interpolation operator Φ can be written as an infinite matrix with columns
equal to g and its shifts by integer multiples of N (see (3.205) for N = 2). Denot-
ing the range of Φ by S as before, this subspace is the same as the orthogonal
complement of the null space of the sampling operator, as we saw earlier.

Subspace S is a shift-invariant subspace with respect to shift N with generator
g. Specifically, x̂ ∈ S means that

x̂ =
∑

k∈Z

αkϕk (5.36a)

for some coefficient sequence α ∈ ℓ2(Z). If x̂′ is a shifted version of x̂,

x̂′n = x̂n−ℓN , n ∈ Z, (5.36b)

for some fixed ℓ ∈ Z, then

x̂′n
(a)
=
∑

k∈Z

αkϕk,n−ℓN
(b)
=
∑

k∈Z

αkgn−ℓN−kN

(c)
=
∑

k∈Z

αkϕk+ℓ,n
(d)
=

∑

m∈Z

αm−ℓϕm,n, (5.36c)
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where (a) follows from (5.36a) and (5.36b); (b) and (c) from (5.30); and (d) from
the change of variable m = k + ℓ. Thus, x̂′ ∈ S; shifting x̂ by ℓN has shifted the
coefficient sequence α by ℓ.

Example 5.9 (Interpolation to ℓ2(Z)) Continuing Example 5.8, time rever-
sal and conjugation of (5.33) give

g =
1√
2

[
. . . 0 0 1 1 0 . . .

]⊤
.

The output of interpolation with N = 2 and postfilter g is




...

x̂0
x̂1
x̂2
x̂3
...




=
1√
2




...
...

· · · 1 0 · · ·
· · · 1 0 · · ·
· · · 0 1 · · ·
· · · 0 1 · · ·

...
...







...
y0
y1
...




= Φy. (5.37)

For every input sample yk, we get two output samples x2k = x2k+1 = yk/
√
2.

The range of this operator is S (the same as the orthogonal complement of the
null space of the sampling operator in (5.34b)).

Interpolation followed by sampling Interpolation followed by sampling is de-
scribed by Φ∗Φ as in Figure 5.13(a). Using explicit expressions involving the sam-
pling prefilter and interpolation postfilter, for any time k ∈ Z, we have

ŷk
(a)
=
∑

n∈Z

g∗n−kN x̂n
(b)
=
∑

n∈Z

g∗n−kN

∑

ℓ∈Z

yℓgn−ℓN
(c)
=
∑

ℓ∈Z

yℓ
∑

n∈Z

g∗n−kNgn−ℓN

(d)
=
∑

ℓ∈Z

yℓδk−ℓ = yk, (5.38)

where (a) follows from using (5.29) for sampling; (b) from using (5.35) for interpo-
lation; (c) from interchanging the summations; and (d) from the orthonormality of
{gn−kN}k∈Z in (5.31). Thus,

Φ∗Φ = I. (5.39)

This shows that the condition for perfect recovery in interpolation followed by sam-
pling is the same as the set of sequences {gn−kN}k∈Z being orthonormal, as in
(5.31).

Using {ϕk}k∈Z in place of {gn−Nk}k∈Z, the identity expressed in (5.39) is
precisely the property (2.101) established for analysis and synthesis operators as-
sociated with orthonormal bases. Here, {ϕk}k∈Z is an orthonormal basis for the
subspace S of ℓ2(Z). We will thus exploit the more abstract view to avoid tedious
computations.
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yn N gn
x̂n

g∗−n N ŷn

(a) Interpolation followed by sampling.

xn g∗−n N
yn

N gn x̂n

(b) Sampling followed by interpolation.

Figure 5.13 Sampling and interpolation in ℓ2(Z) with orthonormal sequences.

Sampling followed by interpolation Sampling followed by interpolation is de-
scribed by P = ΦΦ∗ as in Figure 5.13(b). We know this does not perfectly recover x
in general, since sampling loses the component of x in the null space of the sampling
operator, S⊥.

As we saw for finite-dimensional vectors, given our choice of sampling and
interpolation operators to satisfy (5.39), P is an orthogonal projection operator;
see (5.8). This immediately gives the following analogue to Theorems 2.41 and 5.1:

Theorem 5.4 (Recovery for sequences, orthogonal) Let N ∈ Z with
N > 1, let the sampling operator Φ∗ : ℓ2(Z)→ ℓ2(Z) be given by

(Φ∗x)k =
∑

m∈Z

xmg
∗
m−kN , k ∈ Z, (5.40a)

and let the interpolation operator Φ : ℓ2(Z)→ ℓ2(Z) be given by

(Φy)n =
∑

k∈Z

ykgn−kN , n ∈ Z. (5.40b)

As depicted in Figure 5.13(b), denote the result of sampling followed by interpo-
lation applied to x ∈ ℓ2(Z) by x̂ = Px = ΦΦ∗x.

If the filter g satisfies orthogonality with shifts by multiples of N , (5.31),
then P is the orthogonal projection operator with range S = R(Φ) and x̂ is the
best approximation of x in S,

x̂ = argmin
xS∈S

‖x− xS‖, x− x̂ ⊥ S;

in particular, x̂ = x when x ∈ S.
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Example 5.10 (Sampling followed by interpolation in ℓ2(Z)) Consid-
er first applying the sampling operator from Example 5.8 and then the inter-
polation operator from Example 5.9. According to Theorem 5.4, this should
implement an orthogonal projection onto subspace S specified in (5.34b). Let us
find the resulting sequences for an x ∈ S and an x 6∈ S.

Consider first any x ∈ S, a sequence with x2k = x2k+1 for all k ∈ Z,

x =
[
. . . x−2 x−2 x0 x0 x2 x2 . . .

]⊤
.

Using (5.34a), the result of sampling is

y =
[
. . .

√
2x−2

√
2x0

√
2x2

√
2 x4 . . .

]⊤
.

Then, using (5.37), the result of interpolation is x̂ = x, that is, perfect recovery
of x.

Consider next a particular x /∈ S,

x =
[
. . . 0 2 0 0 2 0 . . .

]⊤
.

Using (5.34a), the result of sampling is

y =
[
. . . 0

√
2
√
2 0 . . .

]⊤
.

Then, using (5.37), the result of interpolation is

x̂ =
[
. . . 0 1 1 1 1 0 . . .

]⊤
,

which clearly belongs to S. It is also the sequence in S closest to x, since the
difference between x and x̂ is orthogonal to S,

x− x̂ =
[
. . . 0 1 −1 −1 1 0 . . .

]⊤
⊥ S.

Example 5.11 (Best approximation by ramps) Let g be the filter shown in
Figure 5.14(a). Since g has support {0, 1, . . . , 7}, it is orthogonal to its shifts
by integer multiples of 8. The filter has also been chosen to be of unit norm,
so it satisfies (5.31) with N = 8. According to Theorem 5.4, the system in
Figure 5.13(b) with N = 8 performs the orthogonal projection to a shift-invariant
subspace S.

The limited support of g makes the shifted versions {gn−8k}k∈Z have dis-
joint supports. Thus, the subspace S is easy to visualize: every sequence in S
looks like a ramp starting at zero on every block of the form {8k, 8k+1, . . . , 8k+
7}. Figures 5.14(b)–(d) show an arbitrary input x, the resulting samples y, and
the interpolated samples x̂. Notice that x̂ fits the description of the sequences in
S and it is the closest such sequence to x.
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(a) Interpolation postfilter g. (b) Input sequence x.
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(c) Sample sequence y. (d) Interpolated samples x̂.

Figure 5.14 Projection to a shift-invariant subspace by sampling followed by interpola-
tion (N = 8).

5.3.2 Sampling and interpolation for bandlimited sequences

An important special case of sampling and interpolation of sequences arises from
sequences with limited support in the DTFT domain. We study this both as an
instance of the theory developed in Section 5.3.1 and more directly using DTFT
tools developed in Section 3.4.

Subspaces of bandlimited sequences Shift-invariant subspaces of particular im-
portance in signal processing are the subspaces of bandlimited sequences. To define
such subspaces, we first need to define the bandwidth of a sequence.

Definition 5.5 (Bandwidth of sequence) A sequence x is called bandlimited
when there exists ω0 ∈ [0, 2π) such that its discrete-time Fourier transform X
satisfies

X(ejω) = 0 for all ω with |ω| ∈ (12ω0, π].

The smallest such ω0 is called the bandwidth of x. A sequence that is not band-
limited is called a full-band sequence.

The bandwidth of x is the width of the smallest zero-centered interval that contains
the support of X(ejω); the factor of 2 between the bandwidth ω0 and the highest
frequency 1

2ω0 is introduced by counting positive and negative frequencies. This
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Figure 5.15 Sequences and their respective DTFTs with various bandwidths.

definition is inspired by the even symmetry of the magnitude of the DTFT of a real
sequence; alternate definitions might not count positive and negative frequencies or
might not require the interval to be centered at zero. Figure 5.15 illustrates that
decreasing bandwidth corresponds to slower variation, or increasing smoothness, of
a sequence.

If sequences x and y both have bandwidth ω0, then by the linearity of the
DTFT we are assured that x+ y has bandwidth of at most ω0. Thus, bandlimited
sequences form subspaces. These subspaces are closed.

Definition 5.6 (Subspace of bandlimited sequences) The set of sequences
in ℓ2(Z) with bandwidth of at most ω0 is a closed subspace denoted
BL[− 1

2ω0,
1
2ω0].

A subspace of bandlimited sequences is shift-invariant for any shift L ∈ Z+. To see
the shift invariance, take x ∈ BL[− 1

2ω0,
1
2ω0]. Then, (3.89) states that

xn−kL
DTFT←→ e−jωkLX(ejω). (5.41)

The DTFT is multiplied by a complex exponential, not changing where its magni-
tude is nonzero and hence not changing the bandwidth of the shifted sequence.

Projection to bandlimited subspaces Since a subspace of bandlimited sequences
is also a shift-invariant subspace, the techniques developed in Section 5.3.1 sug-
gest a way to recover a bandlimited sequence from samples or compute the best
approximation of a full-band sequence in a bandlimited subspace.
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Fix integer N > 1 and let

gn =
1√
N

sinc
(πn
N

)
, n ∈ Z

DTFT←→ G(ejω) =

{√
N, |ω| ≤ π/N ;
0, otherwise,

(5.42)
where the DTFT pair can be found in Table 3.5. Using (5.41), it is clear that g and
its shifts are in BL[−π/N, π/N ], and the stronger statement that g is a generator
with shift N of BL[−π/N, π/N ] is also true. We can easily check that g satisfies
(5.31),

〈gn−kN , gn−ℓN〉n
(a)
=

1

2π
〈e−jωkNG(ejω), e−jωℓNG(ejω)〉ω

(b)
=

1

2π

∫ π

−π

e−jω(k−ℓ)N |G(ejω)|2 dω

(c)
=

N

2π

∫ π/N

−π/N

e−jω(k−ℓ)N dω
(d)
= δk−ℓ,

where (a) follows from the generalized Parseval equality for the DTFT, (3.108);
(b) from the definition of the L2([−π, π)) inner product; (c) from substituting the
DTFT of g; and (d) from evaluating the integral (separately for k = ℓ and k 6= ℓ).
Thus, we get the following as a corollary to Theorem 5.4:

Theorem 5.7 (Projection to bandlimited subspace) Let N ∈ Z+, and let
the system in Figure 5.13(b) have filter g from (5.42). Then

x̂n =
1√
N

∑

k∈Z

yk sinc
( π
N

(n− kN)
)
, n ∈ Z, (5.43a)

with

yk =
1√
N

∑

n∈Z

xn sinc
( π
N

(n− kN)
)
, k ∈ Z, (5.43b)

is the best approximation of x in BL[−π/N, π/N ],

x̂ = argmin
xBL∈BL[−π/N,π/N ]

‖x− xBL‖, x− x̂ ⊥ BL[−π/N, π/N ]. (5.43c)

In particular, x̂ = x when x ∈ BL[−π/N, π/N ].

In general, the effect of orthogonal projection to BL[−π/N, π/N ] is a simple trun-
cation of the spectrum of x to [−π/N, π/N ],

X̂(ejω) =

{
X(ejω), for |ω| ≤ π/N ;

0, otherwise.

Exercise 5.4 explores bandlimited spaces with rational sampling rate changes.
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xn
√
N N

yn
N

vn
gn x̂n

Figure 5.16 Sampling and interpolation in ℓ2(Z) with no sampling prefilter. (The scalar
multiplication by

√
N could be incorporated into the interpolation postfilter g.)

Sampling without a prefilter followed by interpolation When the input to the
system in Figure 5.13(b) is in BL[−π/N, π/N ] and the filter g is given by (5.42), the
sampling prefilter simply scales the input by

√
N . For these inputs, the system is

equivalent to the one in Figure 5.16. This simpler system is worth further study – for
both bandlimited and full-band inputs – because it is essentially a system without
a sampling prefilter, and in practice there is often no opportunity to include a
sampling prefilter.

The effect of downsampling followed by upsampling was studied in
Section 3.7.3. Using (3.201) and the scaling by

√
N , we can write

V (ejω) =
1√
N

N−1∑

k=0

X(ej(ω−2πk/N)), (5.44)

so

X̂(ejω) =
1√
N

N−1∑

k=0

G(ejω)X(ej(ω−2πk/N)). (5.45)

Using G(ejω) from (5.42), it is clear that X̂ = X (equivalently, x̂ = x) when x
has bandwidth of at most 2π/N . This discussion yields the sampling theorem for
sequences.

Theorem 5.8 (Sampling theorem for sequences) Let N ∈ Z+. If the se-
quence x is in BL[−π/N, π/N ],

xn =
∑

k∈Z

xkN sinc
( π
N

(n− kN)
)
, n ∈ Z. (5.46)

Equation (5.45) also allows us to understand more: exactly what happens when x
has bandwidth greater than 2π/N , and the additional flexibility in g that comes
from x having bandwidth less than 2π/N .

Aliasing A component in x at a frequency ω ∈ [−π, π) appears in the sum (5.44)
at frequencies {ω − 2πk/N}N−1

k=0 . Modulo 2π, exactly one of these frequencies lies
in [−π/N, π/N); we denote that frequency by ω̃, as illustrated in Figure 5.17. The
pointwise multiplication by G(ejω) in (5.45) causes only components at frequencies
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N ω − 4π

N ω − 2π
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ω ω + 2π
N ω + 4π

N

(a) No aliasing.

−π π−π/N π/N

ω̃

ω − 10π
N

ω − 8π
N

ω − 6π
N

ω − 4π
N

ω − 2π
N

ω

(b) Aliasing.

Figure 5.17 Replication of frequency ω and determination of the aliasing frequency ω̃.
A frequency component in x at ω yields components in the sum (5.44) at N frequencies
{ω − 2πk/N}N−1

k=0 , reduced modulo 2π. The frequency in [−π/N, π/N) is ω̃. Aliasing is
present when ω̃ 6= ω, which occurs when ω 6∈ [−π/N, π/N). (Illustrated for N = 6.)

in [−π/N, π/N) to pass, so the component of x at frequency ω affects x̂ at frequency
ω̃ (and only at this frequency). A component of x at frequency ω affecting the
output at frequency ω̃ 6= ω is called aliasing.94 When x has bandwidth ω0 with
ω0 ≥ 2π/N , aliasing is present, as illustrated in Figure 5.18. The sampling rate
1/N must exceed ω0/(2π) to avoid aliasing.

The k 6= 0 terms in (5.44) are called spectral replicas, and aliasing is the
overlap of a spectral replica with the contribution from the k = 0 base spectrum
term. When there is such overlap, no LSI filtering applied to v can recover every
x ∈ BL[− 1

2ω0,
1
2ω0]. Avoiding aliasing is the motivation for the sampling prefilter;

with that, we remove the components outside BL[−π/N, π/N ] so that they cannot
create aliasing. We will discuss aliasing in more detail in Section 5.4.2.

Oversampling Thus far, there has been no flexibility in the choice of the inter-
polation postfilter g. Suppose that x has bandwidth ω0 with ω0 < 2π/N . Then,
spectral replicas do not overlap with the base spectrum in (5.44). The gap between
1
2ω0 and π/N allows perfect recovery of any x ∈ BL[− 1

2ω0,
1
2ω0] without necessarily

choosing g as in (5.42). From (5.45), the requirement on G(ejω) for perfect recovery
is

G(ejω) =

{√
N, for |ω| ≤ 1

2ω0;
0, for |ω| ∈ [2π/N − 1

2ω0, π].

94An alias is an assumed name or role, and here the frequency ω̃ is assuming the role of ω.
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-2Π�N 2Π�N
ω

X(ejω)

-2Π�N 2Π�N
ω

X(ejω)

-2Π�N 2Π�N
ω

V (ejω), X̂(ejω)

-2Π�N 2Π�N
ω

V (ejω), X̂(ejω)

(a) No aliasing. (b) Aliasing.

Figure 5.18 Downsampling by N followed by upsampling by N of x ∈ BL[− 1
2
ω0,

1
2
ω0] as

in Figure 5.16. The top panels show the spectrum of the input x; the bottom panels show
the spectra of the upsampled signal v (solid line) and of the subsequently lowpass-filtered
signal x̂ (dashed line). (a) When ω0 ≤ 2π/N , spectral replicas do not overlap with the base
spectrum; x can be recovered by lowpass filtering by g. (b) When ω0 > 2π/N , spectral
replicas overlap with the base spectrum; x cannot be recovered without additional prior
knowledge beyond its bandwidth. (Illustrated for N = 4.)

The flexibility in the transition band of |ω| ∈ (12ω0, 2π/N− 1
2ω0) is essential in being

able to approximate the desired interpolation postfilter response with a realizable
filter.

5.3.3 Sampling and interpolation with nonorthogonal sequences

We now expand the sets of filters that we use in sampling and interpolation. We
no longer require the interpolation postfilter and its shifts to be an orthonormal
set, nor do we require the sampling prefilter to be the time-reversed and conjugated
version of the interpolation postfilter. These make the geometry more complicated:
the sampling and interpolation operators are no longer adjoints of each other, and
the shift-invariant subspaces we discussed earlier – the range of the interpolation op-
erator and the orthogonal complement of the null space of the sampling operator –
are no longer the same. The sampling and interpolation operators are equivalent to
analysis with basis {ϕ̃k}k∈Z and synthesis with basis {ϕk}k∈Z. Under the consis-
tency condition, these bases are biorthogonal sets; under the additional condition of
the operators being ideally matched, these bases are a dual basis pair for the same
subspace of ℓ2(Z).
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Cambridge University Press (ISBN 110703860X) v1.1 [May 2014] [free version] Comments to book-errata@FourierAndWavelets.org



5.3 Sequences 443

Sampling We now refer to the operation depicted in Figure 5.19(a), involving
filtering with g̃ and downsampling by integer N > 1, as sampling of the sequence
x with rate 1/N and prefilter g̃, and we denote it by y = Φ̃∗x. In contrast to
Section 5.3.1, we do not make an assumption of orthonormality.

Similarly to (5.29), for any time index k ∈ Z, the output of sampling is

yk = (Φ̃∗x)k = (g̃ ∗ x)kN =
∑

m∈Z

xmg̃kN−m = 〈xm, g̃∗kN−m〉m
(a)
= 〈x, ϕ̃k〉,

(5.47)
where in (a) we have defined the sequence ϕ̃k to be the time-reversed and conjugated
version of g̃, shifted by kN ,

ϕ̃k,n = g̃∗kN−n, n ∈ Z. (5.48)

Since the output at time k is 〈x, ϕ̃k〉, the sampling operator Φ̃∗ produces the inner
products with all the sequences in {ϕ̃k}k∈Z. This operator is again an infinite
matrix, now with rows equal to g̃−n and its shifts by integer multiples of N (see

(3.202) for N = 2). The null space of Φ̃∗ is a closed, shift-invariant subspace, as

shown in Section 5.3.1; its orthogonal complement is denoted S̃.

Example 5.12 (Sampling in ℓ2(Z)) Define a sampling operator on ℓ2(Z) with
N = 2 and the prefilter

g̃ =
1

8

[
. . . 0 −1 2 6 2 −1 0 . . .

]⊤
. (5.49)

Then, from (3.202), the output is




...
y0
y1
...




=
1

8




...
...

...
...

...
...

...

· · · −1 2 6 2 −1 0 0 · · ·
· · · 0 0 −1 2 6 2 −1 · · ·

...
...

...
...

...
...

...







...
x−2

x−1

x0
x1
x2
x3
x4
...




= Φ̃∗x.

(5.50a)

In contrast to Example 5.8, the matrix Φ̃∗ does not have orthogonal rows, and
N (Φ̃∗) does not have an obvious form. From the horizontal symmetry of Φ̃∗, we
can guess that N (Φ̃∗) contains some vector of the form

[
. . . 0 0 a b c b a . . .

]⊤
.

Note that the center of symmetry of this sequence is at n = 1; if the symmetry
were about n = 0, the shifts of the sequence by ±4 could not be orthogonal to
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xn g̃n N

Φ̃∗

yn yn N gn x̂n

Φ

(a) Sampling. (b) Interpolation.

Figure 5.19 Sampling and interpolation in ℓ2(Z) with nonorthogonal sequences.

g̃. Solving a simple system of linear equations yields

s =
[
. . . 0 0 −1 −2 6 −2 −1 . . .

]⊤
∈ N (Φ̃∗). (5.50b)

Thus N (Φ̃∗) is the shift-invariant subspace with respect to shift 2 with generator

s. Its orthogonal complement S̃ = N (Φ̃∗)⊥ is the shift-invariant subspace with
respect to shift 2 with generator g̃∗−n (which in this case happens to be the same
as g̃n because it is real and symmetric).

Interpolation Again, we refer to the operation depicted in Figure 5.19(b), involv-
ing upsampling by integerN > 1 and filtering with g, as interpolation of the sequence
y with spacing N and postfilter g, and we denote it by x̂ = Φy. This is unchanged
from Figure 5.12(b) in Section 5.3.1, and (5.35) again holds. We denote the range
of Φ by S as before, and it is a closed, shift-invariant subspace with respect to shift
N with generator g.

In contrast to Section 5.3.1, the interpolation operator Φ is not necessarily
the adjoint of the sampling operator Φ̃∗, and S does not necessarily equal S̃. When
the interpolation operator is specially chosen so that it satisfies (5.23), that is, it

is the pseudoinverse of Φ̃∗, then S = S̃, by the same arguments as in (5.24). The

pseudoinverse in (5.23) requires Φ̃∗Φ̃ to be invertible; this is guaranteed if {ϕ̃k}k∈Z is

a Riesz basis for S̃ since Φ̃∗Φ̃ is the Gram matrix of {ϕ̃k}k∈Z (recall that the Riesz
basis condition implies the invertibility of the Gram matrix, see the footnote on
page 94). For the rest of this section, we will assume that {ϕ̃k}k∈Z is a Riesz basis.
Finding a pseudoinverse is not an easy task when dealing with infinite-dimensional
spaces; Example 5.13 provides an illustration.

Interpolation followed by sampling Interpolation followed by sampling is de-
scribed by Φ̃∗Φ as in Figure 5.20(a). Analogously to (5.38),

ŷk =
∑

n∈Z

g̃kN−nx̂n =
∑

n∈Z

g̃kN−n

∑

ℓ∈Z

yℓgn−ℓN =
∑

ℓ∈Z

yℓ
∑

n∈Z

g̃kN−ngn−ℓN ,

so Φ̃∗Φy = y for all y ∈ ℓ2(Z) if and only if

〈gn−ℓN , g̃
∗
kN−n〉n = δℓ−k. (5.51)
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yn N gn
x̂n

g̃n N ŷn

(a) Interpolation followed by sampling.

xn g̃n N
yn

N gn x̂n

(b) Sampling followed by interpolation.

Figure 5.20 Sampling and interpolation in ℓ2(Z) with nonorthogonal sequences.

Because of (5.30) and (5.48), this is equivalent to a counterpart for (5.31) and (5.39),

Φ̃∗Φ = I ⇔ 〈ϕℓ, ϕ̃k〉 = δℓ−k. (5.52)

The sampling and interpolation operators are then called consistent. Choosing the
pseudoinverse in (5.23) for Φ would satisfy (5.52); there exist infinitely many other

right inverses of Φ̃∗ that one could also use. Equation (5.52) also shows that the
condition for perfect recovery is the same as the sets of sequences {ϕk}k∈Z and
{ϕ̃k}k∈Z being biorthogonal, as in (2.111). These sets of sequences are not bases for

ℓ2(Z); instead, they are bases for the subspaces S and S̃ that they span, respectively.

They are a biorthogonal pair of bases when S = S̃.

Example 5.13 (Interpolation followed by sampling in ℓ2(Z)) We
would like to find an interpolation operator that is consistent with the sampling
operator from Example 5.12. Inspired by the symmetry of g̃ from (5.49) and
attempting to find the shortest suitable interpolation postfilter, assume that g is
of the following form:

g =
[
. . . 0 a b a 0 . . .

]⊤
.

To satisfy (5.51), we get the following system of equations:

2a+ 3b = 4, 2a− b = 0,

which has the solution a = 1
2 and b = 1, so

g =
[
. . . 0 1

2 1 1
2 0 . . .

]⊤
. (5.53)

Finding sampling and interpolation operators that are pseudoinverses of
each other can be somewhat difficult. Consider the interpolation operator Φ asso-
ciated with spacing N = 2 and the postfilter (5.53) above. Evaluating Φ(Φ∗Φ)−1

is not straightforward because the matrices involved are infinite. One can find a
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446 Sampling and interpolation

system of equations to solve for the entries of g̃ by imposing span({gn−2k}k∈Z) =
span({g̃∗2k−n}k∈Z) and 〈gn−2k, g̃

∗
2ℓ−n〉n = δk−ℓ. This results in a symmetric and

infinitely supported g̃ given partially by

g̃ =
1√
2

[
. . . 1

√
2− 1 2

√
2− 3 7− 5

√
2 . . .

]⊤
, (5.54)

where finding the precise form of g̃ is left for Exercise 5.6.

Sampling followed by interpolation Sampling followed by interpolation is de-
scribed by P = ΦΦ̃∗ as in Figure 5.20(b). When the sampling and interpolation
operators are consistent as in (5.52), P is idempotent by the computation in (5.28).
It projects onto S, but the projection is not necessarily orthogonal. The approxima-
tion error x− x̂ is orthogonal to S̃ but not to S (recall Figure 5.11 for a conceptual
picture).

Again, for P to be self-adjoint too, Φ must be chosen to be the pseudoinverse
of Φ̃∗, (5.23); we then have that the sampling and interpolation operators are ideally

matched, and the subspaces S and S̃ are identical. In other words, when the sam-
pling and interpolation operators are ideally matched, P = ΦΦ̃∗ is an orthogonal
projection operator, and, by Theorem 2.26, x̂ = Px is the best approximation of x
in S.

The previous discussion can be summarized by the following analogue to The-
orem 5.2.

Theorem 5.9 (Recovery for sequences, nonorthogonal) Let N ∈ Z

with N > 1, let the sampling operator Φ̃∗ : ℓ2(Z)→ ℓ2(Z) be given by

(Φ̃∗x)k =
∑

m∈Z

xmg̃kN−m, k ∈ Z, (5.55a)

and let the interpolation operation Φ : ℓ2(Z)→ ℓ2(Z) be given by

(Φy)n =
∑

k∈Z

ykgn−kN , n ∈ Z. (5.55b)

As depicted in Figure 5.20(b), denote the result of sampling followed by interpo-

lation applied to x ∈ ℓ2(Z) by x̂ = Px = ΦΦ̃∗.
If the sampling prefilter g̃ and interpolation postfilter g satisfy consistency

condition (5.51), then P is a projection operator with range S = R(Φ) and x−x̂ ⊥
S̃ = N (Φ̃∗)⊥; in particular, x̂ = x when x ∈ S.

If, additionally, ideal matching (5.23) is satisfied, then S = S̃, P is the
orthogonal projection operator with range S, and x̂ is the best approximation of
x in S,

x̂ = argmin
xS∈S

‖x− xS‖, x− x̂ ⊥ S.
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Example 5.14 (Sampling followed by interpolation in ℓ2(Z)) As
shown in Example 5.13, the interpolation operator with N = 2 and postfilter g
in (5.53) is consistent with sampling operators with N = 2 and prefilters g̃ given
in (5.49) and (5.54). Thus, with either of these sampling operators, sampling
followed by interpolation implements a projection onto S = R(Φ). In one case
(with g̃ from (5.54)), the projection is orthogonal; in the other (with g̃ from
(5.49)), the projection is oblique.

The shift-invariant subspace S in this example has a useful form. Any x̂ ∈ S
can be written as x̂n =

∑
k∈Z

αkgn−2k for some α ∈ ℓ2(Z). For any even time
index, we have

x̂2n =
∑

k∈Z

αkg2n−2k
(a)
=
∑

k∈Z

αkδn−k = αn, (5.56a)

where (a) follows from (5.53). Then, for any odd time index, we have

x̂2n+1 =
∑

k∈Z

αkg2(n−k)+1
(a)
=
∑

k∈Z

αk
1

2
(δn−k + δn−k+1)

=
1

2
(αn + αn+1)

(b)
=

1

2
(x̂2n + x̂2n+2), (5.56b)

where (a) follows from (5.53); and (b) from (5.56a). So, for any x̂ ∈ S, each
odd-indexed entry is the average of the neighboring even-indexed entries.

For the input sequence in Figure 5.21(a), Figures 5.21(b) and (d) illustrate
the orthogonal and oblique projections to S obtained with the two combinations
of sampling and interpolation described above. The interpolated sequences are
nearly equal; this is reinforced by comparing the difference sequences in Fig-
ures 5.21(c) and (d) and explained by the small difference between the sampling
prefilters in (5.49) and (5.54). Thus, in this case, using the shortest symmetric
g̃ that is consistent with g results in little increase in approximation error as
compared with the ideal orthogonal projection.

There are also interpolation prefilters very different from (5.54) that are
consistent with g. For example,

g̃ =
[
. . . 0 3

2 −1 1
2 0 . . .

]⊤
(5.57)

is consistent with g. For the same input sequence as before, Figure 5.21(f) shows
the result of sampling followed by interpolation using this g̃ and g. As shown in
Figure 5.21(g), the approximation error is now much larger than before.

5.4 Functions

In this section, we study sampling and interpolation operators that map between
continuous time, L2(R), and discrete time, ℓ2(Z). As before, we restrict the sam-
pling and interpolation operators to those implemented with LSI filtering and em-
phasize the cases in which they are ideally matched. Our development closely
parallels the discrete-time case in the previous section.
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(b) Interpolated samples x̂1. (c) Difference x− x̂1. ‖x− x̂1‖ ≈ 0.0888.
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(d) Interpolated samples x̂2. (e) Difference x− x̂2. ‖x− x̂2‖ ≈ 0.0902.
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(f) Interpolated samples x̂3. (g) Difference x− x̂3. ‖x− x̂3‖ ≈ 0.2012.

Figure 5.21 Comparison of orthogonal and oblique projections to the same shift-invariant
space S. For any sequence in S, each odd-indexed entry is the average of the neighboring
even-indexed entries. Orthogonal projection to S gives x̂1. Oblique projection with sam-
pling prefilter (5.49) and interpolation postfilter (5.53) gives x̂2. Oblique projection with
sampling prefilter (5.57) and interpolation postfilter (5.53) gives x̂3.
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5.4.1 Sampling and interpolation with orthonormal functions

In Section 5.1, we introduced sampling and interpolation operators and their combi-
nations, operating on the shift-invariant space of piecewise-constant functions that
are constant on unit-length intervals [n, n+ 1), n ∈ Z. This was an example where
perfect recovery after sampling and interpolation was guaranteed by the specific
choice of operators as well as the function subspace. We now generalize this discus-
sion to any sampling interval T and other shift-invariant subspaces.

Like in Section 5.3.1 for sequences, we impose orthonormality of a filter and
its shifts to have an orthonormal basis {ϕk}k∈Z for a shift-invariant subspace S. We
also impose a relationship between filters through time reversal and conjugation to
create an adjoint pair of operators. Together, these make sampling and interpola-
tion equivalent to analysis and synthesis with the orthonormal basis {ϕk}k∈Z for
S ⊂ L2(R).

Shift-invariant subspaces of functions We start by introducing a class of sub-
spaces of L2(R) that will play a prominent role in the material that follows.

Definition 5.10 (Shift-invariant subspace of L2(R)) A subspace
S ⊂ L2(R) is a shift-invariant subspace with respect to a shift T ∈ R+ when
x(t) ∈ S implies that x(t− kT ) ∈ S for every integer k. In addition, s ∈ L2(R) is
called a generator of S when S = span({s(t− kT )}k∈Z).

For example, the outputs of the interpolation operator in (5.4) form a shift-invariant
subspace with respect to integer shifts. The same will be true for the interpolation
operators we define shortly.

Sampling We refer to the operation depicted in Figure 5.4(a), involving filtering
with g∗(−t) and recording the result at time instants t = nT , n ∈ Z, as sampling of
the function x(t) with rate 1/T and prefilter g∗(−t), and we denote it by y = Φ∗x.
Through this operation, we move from the larger space L2(R) into the smaller one
ℓ2(Z).

Similarly to the development in (5.2) and (5.3), for any time index k ∈ Z, the
output of sampling is

yk
(a)
= (Φ∗x)k

(b)
=

(
g∗(−t) ∗t x(t)

)∣∣
t=kT

=

(∫ ∞

−∞
x(τ) g∗(τ − t) dτ

)∣∣∣∣
t=kT

=

∫ ∞

−∞
x(τ) g∗(τ − kT ) dτ = 〈x(τ), g(τ − kT )〉τ

(c)
= 〈x, ϕk〉, (5.58)

where (a) follows from denoting the operator in Figure 5.4(a) by Φ∗; (b) from
composing filtering by g∗(−t) with recording the result at time kT ; and (c) from
defining the function ϕk to be g shifted by kT ,

ϕk(t) = g(t− kT ), t ∈ R. (5.59)
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450 Sampling and interpolation

The final expression in (5.58) shows that calling the sampling operator Φ∗ is consis-
tent with the previous use of Φ∗ as the analysis operator associated with {ϕk}k∈Z;
see (2.91). As before, we first assume {ϕk}k∈Z to be an orthonormal set,

〈ϕn, ϕk〉 = δn−k ⇔ 〈g(t− nT ), g(t− kT )〉t = δn−k. (5.60)

Since the output at discrete time k is 〈x, ϕk〉, the sampling operator Φ∗ gives
the inner products with all the functions in {ϕk}k∈Z. We cannot write the sampling
operator Φ∗ as an infinite matrix because the domain of Φ∗ is functions (instead of
sequences). However, we will continue to see a strong similarity to the development
in Section 5.3.1 for sequences. As before, the sampling operator has a nontrivial null
space, N (Φ∗); the set {ϕk}k∈Z spans its orthogonal complement, S = N (Φ∗)⊥ =
span({ϕk}k∈Z). The subspaces S and S⊥ are closed and shift-invariant with respect
to a shift T (see Solved exercise 5.3).

When a function x ∈ L2(R) is sampled, its component in the null space S⊥ has
no effect on the output y and is thus completely lost; its component in S is captured
by Φ∗x. Section 5.1 illustrated this with T = 1 and g = 1[0,1), the indicator function
of the unit interval.

Interpolation We refer to the operation depicted in Figure 5.4(b), involving weight-
ing a Dirac comb sT , (4.121), and filtering with g, as interpolation of the sequence
y with spacing T and postfilter g, and we denote it by x̂ = Φy.

Generalizing (5.5) for an arbitrary T , for any continuous time t ∈ R, the
output of interpolation is

x̂(t)
(a)
= (Φy)(t)

(b)
= g(t) ∗

∑

k∈Z

ykδ(t− kT )
(c)
=
∑

k∈Z

yk (g(t) ∗ δ(t− kT ))

(d)
=
∑

k∈Z

ykg(t− kT )
(e)
=

(
∑

k∈Z

ykϕk

)
(t), (5.61)

where (a) follows from denoting the operator in Figure 5.4(b) by Φ; (b) from com-
posing the generation of a weighted Dirac comb with filtering by g; (c) from the
linearity of convolution; (d) from the shifting property of the Dirac delta function,
(4.32e); and (e) from (5.59). This shows that calling the interpolation operator Φ
is consistent with the previous use of Φ as the synthesis operator associated with
{ϕk}k∈Z; see (2.90).

We cannot write the interpolation operator Φ as an infinite matrix because the
codomain of Φ is functions (instead of sequences). Denoting the range of Φ by S as
before, this subspace is the same as the orthogonal complement of the null space of
the sampling operator, as we have seen earlier. Section 5.1 illustrated interpolation
with T = 1 and g = 1[0,1).

Choosing a prefilter and a postfilter that are related through time-reversed
conjugation makes the sampling and interpolation operators adjoints of each other:
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for any x ∈ L2(R) and y ∈ ℓ2(Z),

〈Φ∗x, y〉ℓ2
(a)
=

〈∫ ∞

−∞
x(τ) g∗(τ − nT ) dτ, yn

〉

n

(b)
=
∑

n∈Z

y∗n

∫ ∞

−∞
x(τ) g∗(τ − nT ) dτ

(c)
=

∫ ∞

−∞
x(τ)

∑

n∈Z

y∗ng
∗(τ − nT ) dτ (d)

= 〈x, Φy〉L2 , (5.62)

where (a) follows from (5.58); (b) from the definition of the ℓ2 inner product; (c)
from interchanging the order of summation and integration; and (d) from the def-
inition of the L2 inner product and (5.61). This again justifies our convention of
calling one Φ∗ and the other Φ.

Interpolation followed by sampling Interpolation followed by sampling is de-
scribed by Φ∗Φ as in Figure 5.5(a). Using explicit expressions involving the sampling
prefilter and interpolation postfilter, for any discrete time n ∈ Z, we have

ŷn
(a)
=

∫ ∞

−∞
x̂(τ) g∗(τ − nT ) dτ (b)

=

∫ ∞

−∞

(
∑

k∈Z

ykg(τ − kT )
)
g∗(τ − nT ) dτ

(c)
=
∑

k∈Z

yk

∫ ∞

−∞
g(τ − kT ) g∗(τ − nT ) dτ (d)

=
∑

k∈Z

ykδn−k = yn, (5.63)

where (a) follows from using (5.58) for sampling; (b) from using (5.61) for inter-
polation; (c) from the interchange of summation and integration; and (d) from our
assumption, (5.60), that {g(t− kT )}k∈Z is an orthonormal set. Thus, sequence y is
perfectly recovered from samples of its interpolated version, and

Φ∗Φ = I. (5.64)

This shows that the condition for perfect recovery is the same as the set of func-
tions {g(t − kT )}k∈Z being orthonormal, as in (2.92). The close parallel between
(5.38) and (5.63) is because both are examples of the property (2.101) for analysis
and synthesis operators associated with orthonormal bases. Section 5.1 illustrated
interpolation followed by sampling with T = 1 and g = 1[0,1).

Sampling followed by interpolation Sampling followed by interpolation is de-
scribed by P = ΦΦ∗ as in Figure 5.5(b). We know this does not perfectly recover x
in general, since sampling loses the component of x in the null space of the sampling
operator, S⊥.

As we have now seen twice – for finite-dimensional vectors and for sequences –
our choice of sampling and interpolation operators to satisfy (5.64) implies that P
is an orthogonal projection operator; see (5.8). Thus, we have another analogue to
Theorems 2.41, 5.1, and 5.4:
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452 Sampling and interpolation

Theorem 5.11 (Recovery for functions, orthogonal) Let T ∈ R+, the
sampling operation Φ∗ : L2(R)→ ℓ2(Z) be given by

(Φ∗x)k =

∫ ∞

−∞
x(τ) g∗(τ − kT ) dτ, k ∈ Z, (5.65a)

and let the interpolation operation Φ : ℓ2(Z)→ L2(R) be given by

(Φy)(t) =
∑

k∈Z

ykg(t− kT ), t ∈ R. (5.65b)

As depicted in Figure 5.5(b), denote the result of sampling followed by interpola-
tion applied to x ∈ L2(R) by x̂ = Px = ΦΦ∗x.

If the filter g satisfies orthogonality with shifts by multiples of T , (5.60),
then P is the orthogonal projection operator with range S = R(Φ) and x̂ is the
best approximation of x in S:

x̂ = argmin
xS∈S

‖x− xS‖, x− x̂ ⊥ S;

in particular, x̂ = x when x ∈ S.

Section 5.1 illustrated sampling followed by interpolation with T = 1, g = 1[0,1),
and x ∈ S.

5.4.2 Sampling and interpolation for bandlimited functions

We now consider the most important special case of sampling theory: the sampling
of functions with finitely supported Fourier transforms. We study this as a special
case of the theory developed in Section 5.4.1 and more directly using the Fourier
transform tools developed in Section 4.4.

Subspaces of bandlimited functions Shift-invariant subspaces of particular im-
portance in signal processing are the subspaces of bandlimited functions. To define
such subspaces, we first need to define the bandwidth of a function.

Definition 5.12 (Bandwidth of function) A function x is called bandlim-
ited when there exists ω0 ∈ [0,∞) such that its Fourier transform X satisfies

X(ω) = 0 for all ω with |ω| ∈ (12ω0, ∞). (5.66)

The smallest such ω0 is called the bandwidth of x. A function that is not band-
limited is called a full-band function or a function of infinite bandwidth.
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Figure 5.22 Functions and their respective Fourier transforms with various bandwidths.

Like for sequences, the bandwidth of x is the width of the smallest zero-centered
interval that contains the support of X(ω). This definition is inspired by the even
symmetry of the magnitude of the Fourier transform of a real function; alternate
definitions might not count positive and negative frequencies or might not require
the interval to be centered at zero. Figure 5.22 illustrates that bandlimited functions
are all infinitely differentiable, and decreasing bandwidth corresponds to slower
variation.

If functions x and y both have bandwidth ω0, then by linearity of the Fourier
transform we are assured that x+y has bandwidth of at most ω0. Thus, bandlimited
functions form subspaces. These subspaces are closed.

Definition 5.13 (Subspace of bandlimited functions) The set of func-
tions in L2(R) with bandwidth of at most ω0 is a closed subspace denoted
BL[− 1

2ω0,
1
2ω0].

A subspace of bandlimited functions is shift-invariant for any shift T ∈ R+. To see
the shift invariance, take x ∈ BL[− 1

2ω0,
1
2ω0]. Then, (4.54) states that

x(t− kT ) FT←→ e−jωkTX(ω). (5.67)

The Fourier transform is multiplied by a complex exponential, not changing where
its magnitude is nonzero and hence not changing the bandwidth of the shifted
function.
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454 Sampling and interpolation

Projection to bandlimited subspaces Since a subspace of bandlimited functions
is also a shift-invariant subspace, the techniques developed in Section 5.4.1 sug-
gest a way to recover a bandlimited sequence from samples or compute the best
approximation of a full-band function in a bandlimited subspace.

Fix T ∈ R+ and let

g(t) =
1√
T

sinc

(
πt

T

)
, t ∈ R

FT←→ G(ω) =

{√
T , |ω| ≤ π/T ;
0, otherwise,

(5.68)
where the Fourier transform pair can be found in Table 4.1. Using (5.67), it is clear
that g and its shifts are in BL[−π/T, π/T ], and the stronger statement that g is a
generator with shift T of BL[−π/T, π/T ] is also true. We can easily check that g
satisfies (5.60):

〈g(t− nT ), g(t− kT )〉t
(a)
=

1

2π
〈e−jωnTG(ω), e−jωkTG(ω)〉ω

(b)
=

1

2π

∫ ∞

−∞
e−jω(n−k)T |G(ω)|2 dω

(c)
=

T

2π

∫ π/T

−π/T

e−jω(n−k)T dω
(d)
= δn−k,

where (a) follows from the generalized Parseval equality for the Fourier transform,
(4.71b); (b) from the definition of the L2(R) inner product; (c) from substituting
the Fourier transform of g; and (d) from evaluating the integral (separately for
n = k and n 6= k). Thus, we get the following as a corollary to Theorem 5.11:

Theorem 5.14 (Projection to bandlimited subspace) Let T ∈ R+, and
let the system in Figure 5.5(b) have filter g from (5.68). Then

x̂(t) =
1√
T

∑

k∈Z

yk sinc
( π
T
(t− kT )

)
, t ∈ R, (5.69a)

with

yk =
1√
T

∫ ∞

−∞
x(τ) sinc

( π
T
(τ − kT )

)
dτ, k ∈ Z, (5.69b)

is the best approximation of x in BL[−π/T, π/T ],

x̂ = argmin
xBL∈BL[−π/T, π/T ]

‖x− xBL‖, x− x̂ ⊥ BL[−π/T, π/T ]. (5.69c)

In particular, x̂ = x when x ∈ BL[−π/T, π/T ].

The effect of orthogonal projection to BL[−π/T, π/T ] is a simple truncation of the
spectrum of x to [−π/T, π/T ],

X̂(ω) =

{
X(ω), for |ω| ≤ π/T ;

0, otherwise.
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x(t)
√
T

w(t) T
yn

T

v(t)
g(t) x̂(t)

Figure 5.23 Sampling and interpolation in L2(R) with no sampling prefilter. (The
scalar multiplication by

√
T could be incorporated into the interpolation postfilter.)

Sampling without a prefilter followed by interpolation When the input to the
system in Figure 5.5(b) is in BL[−π/T, π/T ] and the filter g is given in (5.68), the
sampling prefilter simply scales the input by

√
T . For these inputs, the system is

equivalent to the one in Figure 5.23. Analogously to Figure 5.16 for sequences, this
simpler system is worth further study – for both bandlimited and full-band inputs –
because it is essentially a system without a sampling prefilter, and often sampling is
done without a prefilter. Before including any filtering (the scaling by

√
T and the

interpolation postfilter g), we relate v to w in the Fourier domain; we also relate v
to y in the Fourier domain and thus obtain a relationship between y and w in the
Fourier domain as a byproduct.

To relate v to w in the Fourier domain, first note that the weights of the Dirac
delta components of v are the values of the sample sequence y, and these values are
obtained by recording w at times that are integer multiples of T ; that is,

v(t) =
∑

n∈Z

ynδ(t− nT ) =
∑

n∈Z

w(nT )δ(t− nT ). (5.70)

By the sampling property of the Dirac delta function, (3.294), we have

v(t) = sT (t)w(t), t ∈ R,

where we have used the Dirac comb95

sT (t) =
∑

n∈Z

δ(t− nT ) FT←→ ST (ω) =
2π

T

∑

k∈Z

δ

(
ω − 2π

T
k

)
(5.71)

and continuity of w at {nT }n∈Z (which follows from w being bandlimited). Now
the Fourier transform of v is given by

V (ω)
(a)
=

1

2π
(ST ∗W )(ω)

(b)
=

1

2π

2π

T

(
∑

k∈Z

δ

(
ω − 2π

T
k

))
∗W (ω)

(c)
=

1

T

∑

k∈Z

W

(
ω − 2π

T
k

)
, (5.72)

where (a) follows from expressing multiplication in time as convolution in frequency,
(4.65); (b) from using (5.71) for ST ; and (c) from the shifting property of the Dirac

95The Dirac comb is defined in (4.121), and its Fourier transform is given in (4.127).
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456 Sampling and interpolation

delta function, (4.32e). We will use this key expression to understand the overall
operation of the system in Figure 5.23, including the possibility of aliasing and the
use of an interpolation postfilter other than (5.68).

The Fourier-domain relations of v and w to y are also useful. The Fourier
transform of the weighted Dirac comb v has a simple relationship with the DTFT
of the sample sequence y,

V (ω)
(a)
=

∫ ∞

−∞
v(t) e−jωt dt

(b)
=

∫ ∞

−∞

∑

n∈Z

ynδ(t− nT ) e−jωt dt

(c)
=
∑

n∈Z

yn

∫ ∞

−∞
δ(t− nT ) e−jωt dt

(d)
=
∑

n∈Z

yne
−jωnT

(e)
= Y (ejωT ), (5.73a)

where (a) follows from the definition of the Fourier transform; (b) from the definition
of v in (5.70); (c) from the interchange of integration and summation; (d) from the
sifting property of the Dirac delta function, (3.293); and (e) from the definition of
the DTFT. We may equivalently write

Y (ejω) = V
(ω
T

)
, ω ∈ R. (5.73b)

These equations show that V (ω) and Y (ejω) are related by dilation or contraction.
In particular, V (ω) must be 2π/T -periodic. By combining (5.73b) and (5.72), we
can also relate the DTFT of the sample sequence y to the Fourier transform of the
scaled input function w through

Y (ejω) =
1

T

∑

k∈Z

W

(
ω

T
− 2π

T
k

)
. (5.74)

The Fourier-domain relationships above are summarized in Table 5.1 in Section 5.5.2.

Sampling theorem We now consider the full system in Figure 5.23, including
the scaling prior to sampling and the interpolation postfilter. Suppose that x has
bandwidth of at most 2π/T . The Fourier-domain implications of this case are
illustrated in Figure 5.24(a). Using (5.72), the spectrum of v is the combination
of X(ω) and spectral replicas spaced by 2π/T , all scaled by 1/

√
T . Since the

bandwidth is less than 2π/T , the base spectrum does not overlap with any of the
spectral replicas, so x can be recovered by ideal lowpass filtering of v. Specifically,

X̂(ω) =
1√
T

∑

k∈Z

G(ω)X

(
ω − 2π

T
k

)
(5.75)

follows from (5.72) and the fact that scaling by
√
T and interpolation postfiltering

both yield pointwise multiplications in the Fourier domain. Using G(ω) from (5.68),

it is clear that X̂ = X (equivalently, x̂ = x) when x has bandwidth of at most 2π/T .
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X(ω)

-2Π�T 2Π�T
ω

X(ω)

-2Π�T 2Π�T
ω

V (ω), X̂(ω)

-2Π�T 2Π�T
ω

V (ω), X̂(ω)

(a) No aliasing. (b) Aliasing.

Figure 5.24 Spectra corresponding to sampling with no prefilter as shown in Figure 5.23.
The top panels show the spectrum of the input x ∈ BL[− 1

2
ω0,

1
2
ω0]; the bottom panels

show the spectra of the weighted Dirac comb v (solid line) and of the subsequently lowpass-
filtered signal x̂ (dashed line). (a) When ω0 ≤ 2π/T , spectral replicas do not overlap with
the base spectrum; x can be recovered by lowpass filtering by g. (b) When ω0 > 2π/T ,
spectral replicas overlap with the base spectrum; x cannot be recovered without additional
prior knowledge beyond its bandwidth. (Illustrated for T = 4.)

This discussion yields one of the cornerstone results in signal processing, the
sampling theorem for functions, which is analogous to Theorem 5.8.96

Theorem 5.15 (Sampling theorem) Let T ∈ R+. If the function x is in
BL[−π/T , π/T ],

x(t) =
∑

n∈Z

x(nT ) sinc
( π
T
(t− nT )

)
, t ∈ R. (5.76)

The sampling theorem gives a sufficient condition for reconstruction of a function
from its samples by constructively demonstrating recovery of any function in L2(R)
with bandwidth of at most 2π/T from samples at rate 1/T Hz or sampling frequency
ωs = 2π/T rad/s. The bandwidth of a function is called its Nyquist rate because of
this sufficient condition.97

96The sampling theorem was formulated and proved by a number of scientists and could bear
all their names: Kotelnikov, Raabe, Shannon, Someya, Whittaker, and others; see the Historical
remarks for more details.

97Not to be confused with the Nyquist rate, π/T is called the Nyquist frequency or folding
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(a) X(ω). (b) ωs = 2π (T = 1).
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(c) x(t). (d) Terms in sampling expansion.

Figure 5.25 Illustration of the sampling theorem. (a) The Fourier-domain function
X, supported on [− 1

2
ω0,

1
2
ω0] = [−π, π]. (b) Spectrum of the weighted Dirac comb v

(solid line) and the ideal lowpass filter (dashed line) used to extract the base spectrum
[− 1

2
ωs,

1
2
ωs] = [−π, π]. (c) The time-domain function x. (d) The original function x

(dashed line) reconstructed using sinc interpolators (solid lines).

Example 5.15 (Nyquist sampling the sinc-squared function) LetX be
the triangle function shown in Figure 5.25(a). Since X(ω) = 0 for all ω with
|ω| > π, Theorem 5.15 applies with T = 1 to show that its inverse Fourier trans-
form x can be recovered by interpolation using (5.76). Figure 5.25(b) illustrates
why the recovery succeeds: the spectral replicas in V (ω) do not overlap with the
base spectrum, and the ideal lowpass filter g has the correct cutoff frequency to
preserve the base spectrum and remove the replicas. Since the sampling is at the
Nyquist rate, any increase in T would create overlap between spectral replicas
and the base spectrum, as in the next example.

By Example 4.4 and duality, the time-domain function x is some scaled
and dilated sinc function squared. Specifically, because of the scaling by 2π in
(4.65), we would like to find the box function that convolved with itself gives
2πX for X given in Figure 5.25(a). That box function is centered, with width π
and amplitude

√
2 – precisely the box function in (4.47) with ω0 = π. Squaring

frequency. It is half the sampling frequency – a property of the sampling system rather than of
its input. It is the frequency at which contributions from the k = 0 and k = 1 terms in (5.72)
or (5.75) meet symmetrically. As shown in Figure 5.24, symmetry of V (ω) around π/T evokes
folding of the spectrum.
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ω

V (ω)

(a) ωs =
3
2
π (T = 4

3
). (b) ωs = π (T = 2).

Figure 5.26 Undersampled versions of the triangle spectrum from Figure 5.25(a).
Dashed lines represent shifted versions X(ω − (2π/T )k), k ∈ Z, and solid lines their sum
scaled by 1/

√
T to yield V (ω). (a) Spectrum of the undersampled function with sampling

frequency ωs =
3
2
π. (b) Spectrum of the undersampled function with sampling frequency

ωs = π.

the corresponding time-domain function in (4.46) gives

x(t) =
1

2
sinc2

(
1

2
πt

)
, (5.77)

as shown in Figure 5.25(c). The sampling expansion (5.76) shows that x(t) can
be written as a linear combination of {sinc(π(t− n))}n∈Z,

x(t) =
∑

n∈Z

x(n) sinc(π(t− n)) =
∑

n∈Z

1

2
sinc2

(
1

2
πn

)
sinc(π(t− n)).

Individual terms are shown with solid lines in Figure 5.25(d), combining to give
the dashed line for x. A curious fact about this example is that every term takes
positive and negative values, but the sum is nonnegative for all t.

Example 5.16 (Undersampling the sinc-squared function) Let
x(t) = 1

2 sinc
2(12πt) as in the previous example. With sampling frequency equal

to the Nyquist rate of x, ωs = 2π, the triangular base spectrum and spectral
replicas meet each other with no overlap as in Figure 5.25(b).

If we undersample (use smaller ωs or, equivalently, larger T ), the spectral
replicas will start to overlap with the base spectrum. The dashed lines in Fig-
ure 5.26(a) show a small amount of overlap from sampling at three quarters of
the Nyquist rate, and Figure 5.26(b) shows more overlap from slower sampling
(half of the Nyquist rate). Here, we can easily interpret the sum of the base
spectrum and replicas because they are real. Take ωs = π (that is, T = 2) as in
Figure 5.26(b). In the Fourier domain, the triangles sum up to a constant, yield-
ing V (ω) = 1/

√
2 for all ω ∈ R. From (5.73), we conclude that Y (ejω) = 1/

√
2

for all ω ∈ [−π, π] as well. Thus, the sample sequence is yn = (1/
√
2)δn, which

is consistent with evaluating
√
Tx(t) at even integers.

The Nyquist rate is necessary for recovery of a function in L2(R) from samples
when the bandwidth is the only thing known about the function a priori. One
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Figure 5.27 Bandpass sampling. (a) Original spectrum X(ω) in passbands 2π ≤ |ω| ≤
3π. (b) Spectrum Xs(ω) of the sampled function with sampling frequency ωs = 2π filtered
with an ideal bandpass filter G(ω).

common way to know more than just the bandwidth is for the support of the
Fourier transform to be given and not centered at zero. The Nyquist rate is then
not necessary for recovery, as shown in the following example.

Example 5.17 (Bandpass sampling) Let x ∈ L2(R) be a function with
Fourier transform supported on [−3π, −2π] ∪ [2π, 3π]. One such Fourier trans-
form is

X(ω) =

{
3− |ω|/π, for |ω| ∈ [2π, 3π];

0, otherwise,
(5.78)

as shown in Figure 5.27(a). Since the maximum frequency is 3π, the bandwidth
and the Nyquist rate are 6π, and one might think that a sampling frequency of
ωs = 6π is required for recovery of x from samples. A lower sampling frequency
is sufficient when we choose the interpolation postfilter differently than in (5.68).
Using the notation from Figure 5.23, sampling with ωs = 2π (so T = 1) gives
the spectrum V (ω) in (5.72). The spectral replicas (k 6= 0) do not overlap with
the base spectrum (k = 0), but unlike what we have seen thus far, the base
spectrum is not at the lowest frequencies. This is depicted in Figure 5.27(b) for
the example input in Figure 5.27(a). By choosing the interpolation postfilter
to be a bandpass filter with support |ω| ∈ [2π, 3π], we recover any x with the
specified spectral support.

Exercise 5.9 explores bandpass sampling further, showing an orthonormal basis
interpretation, a modulation-based solution, and generalizations. The main idea is
that, for bandpass functions with the Fourier-domain support on two symmetric
intervals of length 1

2ω0 each, a sampling frequency of ωs = ω0 is sufficient. When
only the Fourier-domain support is known and it comprises more intervals, having
a sampling rate at least as large as the measure of the support is necessary, but it
might be sufficient only when nonuniform sampling is allowed; for more details, see
the Further reading.

Aliasing Figure 5.24(b) shows the effect of a spectral replica overlapping with the
base spectrum, which makes it impossible to recover the input function x by any LSI
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filtering. As discussed for sequences in Section 5.3.2, confusion of frequencies caused
by spectral replicas contributing to the reconstructed function is called aliasing.

Example 5.18 (Aliasing of complex exponentials) Let x(t) = ej(π/T )t

and x̃(t) = e−j(π/T )t. Then, x and x̃ are indistinguishable from samples taken
with period T : For any integer n,

x(nT ) = ej(π/T )nT = ejπn = (−1)n = e−jπn = e−j(π/T )nT = x̃(nT ).

Thus, frequencies of π/T and −π/T are inevitably confused with each other
in the absence of more prior knowledge. At first glance this is a boundary
case of Theorem 5.15, but actually x and x̃ are not in L2(R) and hence not
in BL[−π/T, π/T ] ⊂ L2(R).

Example 5.19 (Aliasing of sinusoids) Let x(t) = cos(12ω0t), where ω0 is the
frequency in rad/s, and let ωs = 2π/T be the sampling frequency. In the Fourier
domain,

cos
(
1
2ω0t

)
=

ej(ω0/2)t + e−j(ω0/2)t

2

FT←→ π
(
δ
(
ω − 1

2ω0

)
+ δ
(
ω + 1

2ω0

))
.

(5.79)
The weighted Dirac comb obtained from samples taken with period T is

∑

n∈Z

cos
(
1
2ω0nT

)
δ(t− nT )

FT←→ π
∑

k∈Z

(
δ
(
ω − kωs − 1

2ω0

)
+ δ
(
ω − kωs +

1
2ω0

))
.

For any ℓ ∈ Z, the Fourier-domain expression is unchanged when 1
2ω0 is replaced

with ℓωs ± 1
2ω0. Thus, the sampled functions are also left unchanged. We can

easily verify this in the time domain:

cos
((
ℓωs +

1
2ω0

)
nT
) (a)

= cos
(
2πℓn+ 1

2ω0nT
) (b)

= cos
(
1
2ω0nT

)
,

cos
((
ℓωs − 1

2ω0

)
nT
) (c)

= cos
(
2πℓn− 1

2ω0nT
) (d)

= cos
(
− 1

2ω0nT
)

(e)
= cos

(
1
2ω0nT

)
,

where (a) and (c) follow from ωsT = 2π; (b) and (d) from cosine being a 2π-
periodic function; and (e) from cosine being an even function. See Figure 5.28
for an example.

The aliases that come from shifts by integer multiples of the sampling fre-
quency ωs are clear from the spectral replication in (5.72) or (5.75). The aliases
that involve negation of the signal frequency 1

2ω0 are due to the even symmetry
of the magnitude of the Fourier transform of a real function. If x(t) were replaced
by x(t) = cos(12ω0t+θ) with nonzero phase θ, the aliases at frequencies ℓωs− 1

2ω0

would have phase −θ. These are often the most important aliases, as in the fol-
lowing scenario. Suppose that a real function x has a component at frequency
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(a) Time-domain functions. (b) Frequency spectra.

Figure 5.28 Illustration of aliasing. Sampling of three cosine functions produces the
same samples. The three functions are cos( 1

2
ω0t) (black) and cos((ωs± 1

2
ω0)t) (darker and

lighter gray), with ω0 = π and sampling frequency ωs = 2π, or T = 1.

1
2ωs+ε, slightly larger than 1

2ωs, and any higher-frequency components are much
weaker. All frequency components outside of the baseband interval [− 1

2ωs,
1
2ωs]

will have aliases in the baseband, but the strongest are at ±(12ωs − ε). This
emphasizes the importance of folding around the folding frequency of 1

2ωs, as
shown in Figure 5.24.

Aliasing effects create some optical illusions. For example, in old Western movies,
shot at 24 frames/s, the spokes of wagon wheels sometimes seem to be turning
backwards (see Exercise 5.10).

Continuous-time processing using discrete-time operators The broad techno-
logical impact of sampling arises primarily from our ability to perform cheap and
accurate digital processing. We present one example of how continuous-time pro-
cessing of a function is emulated through computations performed on samples of
the function.

Theorem 5.16 (CT convolution implemented using DT processing)
Let T ∈ R+ and x ∈ BL[−π/T, π/T ]. The continuous-time convolution y = h ∗ x
can be computed using the system in Figure 5.29, where the interpolation
postfilter g is the lowpass filter (5.68) and the discrete-time LSI filter h̃ is given
by

h̃n =
〈
h(t), sinc

( π
T
(t− nT )

)〉
t
, n ∈ Z. (5.80a)

The discrete-time filter input is

x̃n =
√
Tx(nT ), n ∈ Z, (5.80b)

and the system output in terms of the discrete-time filter output ỹ = h̃ ∗ x̃ is

y(t) =
√
T
∑

n∈Z

ỹn sinc
( π
T
(t− nT )

)
, t ∈ R. (5.80c)
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x(t)
√
T

w(t) T x̃n
h̃n

ỹn
T

v(t)
g(t) y(t)

Figure 5.29 Continuous-time convolution implemented using discrete-time convolution
of sequences of samples.

Proof. It is easiest to prove this in the Fourier domain. We want to show that

Y (ω) = H(ω)X(ω)

can be obtained by interpolating the result of a discrete-time convolution. Since x
belongs to BL[−π/T, π/T ], the frequency response H(ω) matters only on this support.

Let us first incorporate the effect of filtering by an arbitrary h̃ on Y (ω). Using

(5.74) to relate X̃(ejω) to W (ω),

Ỹ (ejω) = H̃(ejω)X̃(ejω) = H̃(ejω)
1√
T

∑

k∈Z

X

(
ω

T
− 2π

T
k

)
. (5.81)

Now using (5.73a) to relate V (ω) to Ỹ (ejω),

Y (ω) = G(ω)V (ω) = G(ω)H̃(ejωT )
1√
T

∑

k∈Z

X

(
ω − 2π

T
k

)
. (5.82)

Since x ∈ BL[−π/T, π/T ] and the support of G(ω) is [−π/T, π/T ], the k 6= 0 terms in
(5.82) make no contribution, so

Y (ω) =
1√
T
G(ω)H̃(ejωT )X(ω). (5.83)

This shows that the overall system is LSI; the only assumption for this conclusion is
x ∈ BL[−π/T, π/T ].

The equation defining h̃, (5.80a), shows that h̃ is obtained by sampling h with
rate 1/T and prefilter

√
Tg(t). Thus, we can apply (5.74) again to obtain

H̃(ejω) =
1

T

∑

k∈Z

√
TG

(
ω

T
− 2π

T
k

)
H

(
ω

T
− 2π

T
k

)
. (5.84)

Substituting (5.84) into (5.83) gives

Y (ω) =
1√
T
G(ω)

[
1

T

∑

k∈Z

√
TG

(
ω − 2π

T
k

)
H

(
ω − 2π

T
k

)]
X(ω)

=
1

T

∑

k∈Z

G(ω)G

(
ω − 2π

T
k

)
H

(
ω − 2π

T
k

)
X(ω)

(a)
=

1

T
G2(ω)H(ω)X(ω),

where in (a) all k 6= 0 terms are discarded because the support of G is [−π/T, π/T ].
This is precisely the desired result because (1/T )G2(ω) = 1 on the support of X(ω).

While we showed the result for convolution, other continuous-time signal processing
algorithms having a bandlimited result can also be implemented in discrete time;
see Exercise 5.11.
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464 Sampling and interpolation

Approximations to ideal filters In all our developments, we used ideal filters, both
as sampling prefilters (to obtain perfectly bandlimited functions) and as interpo-
lation postfilters (to perfectly interpolate bandlimited functions). However, ideal
filters cannot be implemented because of their doubly infinite support; moreover,
they have slow decay in the time domain, of the order 1/t, so they are difficult to
approximate by truncation. The solution is to use filters that are smoother in the
frequency domain than the ideal filters. While such filters are more realistic, for
bandlimited subspaces either they will lead to approximate reconstruction of the
input function after sampling and interpolation or they will require oversampling.

Example 5.20 (Approximations to ideal filters) Let g be a lowpass filter
with the following frequency response:

G(ω) =





1, for |ω| ∈ [0, 1
2ω0);

1− (|ω| − 1
2ω0)/α, for |ω| ∈ [ 12ω0,

1
2ω0 + α);

0, for |ω| ∈ [ 12ω0 + α, ∞),
(5.85a)

for some α ∈ R+, as in Figure 5.30(a). One way to obtain such a filter is
to convolve two ideal filters in frequency, one with a cutoff frequency of 1

2ω0

and gain 1, and the other with a cutoff frequency of α and gain 1/(2α), where
α ≪ ω0. Thus, in time, the corresponding impulse response is the product of
two sinc functions,

g(t) =
ω0

4π2
sinc

(
1
2ω0t

)
sinc(αt). (5.85b)

As opposed to the impulse response of an ideal filter, this impulse response decays
faster, as 1/t2, but uses more bandwidth, since the length of the support of G is
ω0 + 2α.

If X is bandlimited to [− 1
2ω0,

1
2ω0], then, according to (5.72) and Fig-

ure 5.23, sampling and reconstruction using G as a postfilter yields

X̂(ω) = G(ω)
1√
T

∑

k∈Z

X(ω − kωs). (5.86)

If we sample with ωs = ω0, then, according to (5.86), the replicas of X will
repeat at integer multiples of ω0, and the larger support of G will catch the
tails of the replicas centered at ±ω0 (see Figure 5.30(b)). We solve the problem
by oversampling with ωs = ω0 + α, leading to perfect reconstruction. This
oversampling by a factor of (ω0 + α)/ω0 = 1 + α/ω0 is the minimum needed to
ensure perfect reconstruction for any bandlimited x.

As the example shows, having an interpolation filter that is smooth in fre-
quency has a cost, since only an ideal filter allows critical sampling (sampling at
the Nyquist rate) together with perfect reconstruction. In practice, most functions
of interest have spectra that decay toward their band limits; thus, the effect of an
imperfect reconstruction near the boundary (Figure 5.30(c)) is usually not severe.
Solved exercise 5.4 explores this topic further.

We now describe a practical application of the concepts discussed so far:
speech processing in mobile phones.
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1

ω
1
2ω0

1
2ω0 + α

|G(ω)|

1

ω
1
2ω0 ω0−ω0

|G(ω)|, |V (ω)|

1

ω
1
2ω0 ω0 + α−ω0 − α

|G(ω)|, |V (ω)|

(a) Filter. (b) Critical sampling. (c) Oversampling.

Figure 5.30 Sampling and reconstruction of x bandlimited to [− 1
2
ω0,

1
2
ω0] with nonideal

filters. (a) Filter G with continuous spectrum obtained from convolving two ideal filters
of bandwidths ω0 and 2α. With ωs = ω0, replicas of X appear at integer multiples of ω0,
causing G to catch the tails of the replicas centered at ±ω0. (c) With ωs = ω0+α, replicas
of X appear at integer multiples of ω0 + α, allowing G to extract X perfectly.

Example 5.21 (Speech processing in mobile phones) The bandlimited as-
sumption used in speech and audio processing is based on the fact that humans
cannot hear frequencies above 20 kHz. Thus, music for compact disks is sampled
at 44 kHz, with a lowpass filter having a passband from −20 kHz to 20 kHz
and a transition band of 2 kHz. For speech, in telephone applications where
bandwidth has always been at a premium, a passband from 0.3 to 3.4 kHz is
sufficient for good quality. A sampling frequency of fs = 8 kHz is used, or
T = 2π/ωs = 0.125 ms as a sampling period. The continuous-time prefilters and
postfilters have a passband of up to 3.4 kHz, followed by a smooth transition to
very high attenuation for frequencies above 4 kHz. For the sake of this example,
we assume that these continuous-time filters have frequency responses like G in
(5.85a), with 1

2ω0 = 2π ·3.4 = 6.8π krad/s and α = 1.2π krad/s. In the remainder
of this example (including the figures), all angular frequencies of continuous-time
filters are expressed in krad/s (that is, 103 rad/s).

We want to illustrate the process of implementing continuous-time filtering
of speech in the discrete domain as an application of Theorem 5.16. Assume
that we want to filter speech from its full spectrum of 4 kHz to half of that,
2 kHz, using a continuous-time filter H(ω) implemented in discrete time as in
Figure 5.29. Normalizing the frequency axis so that ωs = 16π krad/s in the
Fourier transform corresponds to 2π in the DTFT is equivalent to designing a
lowpass filter H̃(ejω) with cutoff at 1

2π. The concessions that must be made to
have an implementable discrete-time filter include the following:

(i) Instead of perfect stopband attenuation, we allow a stopband gain of 10−1.

(ii) Instead of a sharp (discontinuous) drop off at the cutoff frequency, we allow
a transition band from 3

8π to 5
8π.

This leads to a discrete-time filter h̃ with specifications in the frequency domain
of

H̃(ejω) =

{
1.0, for |ω| ≤ 3

8π;
0.1, for 5

8π ≤ |ω| < π,
(5.87)
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(a) Discrete-time (b) Continuous-time (c) Equivalent continuous-

filter. pre/postfilter. time filter.

Figure 5.31 Filters involved in continuous- and discrete-time implementation of filtering
in Figure 5.29. The transition band in the discrete-time filter is one of many possible ones.
The continuous-time pre/postfilter is shown as an idealized conceptual plot. The sampling
period is T = 0.125 ms, or the sampling frequency is ωs = 16π krad/s; the frequency axes
in (b) and (c) are in krad/s.

the band 3
8π ≤ |ω| ≤ 5

8π being a transition band where the filter is unspecified;
this filter, with one possible transition band, is depicted in Figure 5.31(a).

Before this discrete-time filter is applied, we need to sample the signal.
This is done using a continuous-time lowpass filter G with cutoff at 4 kHz, or
8π krad/s, an example of which is shown in Figure 5.31(b). This filter has a
transition from its passband to a perfect, infinite attenuation beyond the cut off
frequency, which is an idealization.

Finally, the interpolation postfilter G removes the spectral replicas. There-
fore, the overall effect in the continuous-time frequency domain is to multiply by
H̃(ejω), rescaled as H̃(ejωT ), and the square of G, since g is applied both as a
prefilter and as a postfilter,

H(ω) =

{
H̃(ejωT )G2(ω), for |ω| ≤ 8π · 103;

0, for |ω| > 8π · 103.

The key in this process is the rescaling of the frequency axis, which maps the
[−π, π] interval of the DTFT to the [− 1

2ω0,
1
2ω0] interval of the Fourier transform.

Note that the scale factor from input to output, while mathematically specified
by factors such as 1/T in (5.72) and gains in continuous-time and discrete-time
filters, depends on implementation issues such as continuous-time amplifiers and
continuous-to-discrete and discrete-to-continuous converter scaling factors.

Let us now consider what happens to an actual continuous-time signal x
with a spectrum depicted in Figure 5.32(a) and given by

X(ω) = e−2|ω|/ω0 ; (5.88)

thus X(0) = 1 and X(± 1
2ω0) = 1/e. This spectrum is chosen for illustration only

and does not correspond to actual speech. Before sampling, we prefilter with G
from (5.85a), depicted in Figure 5.31(b); the result of this operation is shown in
Figure 5.32(b). We can now sample the resulting signal yielding a discrete-time

Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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(a) Input spectrum. (b) Prefiltering. (c) Sampling.

Π

1

ω

|Ỹ (ejω)| = |H̃(ejω)X̃(ejω)|

|H̃(ejω)|

|X̃(ejω)|

8 Π

1

ω

|Y (ω)|

|G(ω)|

(d) Discrete-time filtering. (e) Output spectrum.

Figure 5.32 Discrete-time implementation of continuous-time filtering, shown in the
spectral domain. Filtering the input spectrum X in the continuous-time domain with
a continuous-time filter H from Figure 5.31(c) yields the output Y . The same can be
achieved by prefiltering with a continuous-time filter G from Figure 5.31(b), sampling,

filtering with a discrete-time filter H̃ from Figure 5.31(a), and interpolating using the
postfilter G. The solid black lines are signals at each point in the system from Figure 5.29,
the dashed black lines indicate the spectrum to be filtered, and the dashed gray lines
indicate the corresponding filters; the frequency axes in (a), (b), and (e) are in krad/s.

signal with DTFT X̃ depicted in Figure 5.32(c). The effect of filtering in the
discrete-time domain is shown in Figure 5.32(d). Finally, the output spectrum
is as in Figure 5.32(e). What should be clear is that, because of filters not being
ideal, we are only roughly approximating an ideal, lowpass filter with cutoff at
2 kHz (4π krad/s).

Multichannel sampling The classical sampling result in Theorem 5.15 has many
extensions and generalizations. An important example for practical data acquisition
is to reconstruct a function from samples measured in multiple parallel channels.
We develop this for the two-channel system in Figure 5.33.

Assume that the input to the system x is in BL[−π/T, π/T ]; this means that it
can be reconstructed perfectly from samples with period T , using the interpolation
postfilter g in (5.68). Since we have access to two sampled filter outputs, it is
intuitive that, under certain conditions on the filters g̃0 and g̃1, sampling the two
channels with sampling period 2T would be a sufficient representation of x. Indeed,
one way to do this is to choose g̃0 to be the sinc filter used in the standard single-
channel system, g̃0(t) = g(t), and g̃1 to be the same with an advance of T , g̃1(t) =
g(t+T ). Then, the sequences y0 and y1 are the even- and odd-indexed samples of the
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x(t) g̃0(t)
2T

y0,n
2T

v0(t)
g0(t) + x̂(t)

g̃1(t)
2T

y1,n
2T

v1(t)
g1(t)

Figure 5.33 Two-channel sampling and interpolation system. The sampling operator
consists of two branches with filtering and sampling in parallel, producing two sampled
outputs.

classical system, respectively. Reconstruction is thus possible and is achieved with
the standard interpolation postfilters; specifically, g0(t) = g(t) and g1(t) = g(t−T ).
Our goal is to find other solutions, allowing changes to the reconstruction processing
if necessary.

To develop general conditions, write the spectra of the weighted Dirac combs
v0 and v1 in terms of G̃0(ω), G̃1(ω), and X(ω),

Vi(ω)
(a)
=

1

2T

∑

k∈Z

G̃i

(
ω +

π

T
k
)
X
(
ω +

π

T
k
)
, i = 0, 1,

where (a) follows from (5.72), with sampling period 2T . Since Vi(ω) is periodic
with period π/T , we can consider only one interval [0, π/T ]. Moreover, since X(ω)
is bandlimited to [−π/T, π/T ], only two spectral components overlap on [0, π/T ],

V0(ω) =
1

2T

(
G̃0(ω)X(ω) + G̃0(ω − π/T )X(ω − π/T )

)
,

V1(ω) =
1

2T

(
G̃1(ω)X(ω) + G̃1(ω − π/T )X(ω − π/T )

)
.

In matrix notation, for ω ∈ [0, π/T ],

[
V0(ω)
V1(ω)

]
=

1

2T

[
G̃0(ω) G̃0(ω − π/T )
G̃1(ω) G̃1(ω − π/T )

][
X(ω)
X(ω − π/T )

]
= G̃(ω)

[
X(ω)
X(ω − π/T )

]
,

(5.89)

where we have introduced the matrix G̃(ω). As long as G̃(ω) is nonsingular on the
interval [0, π/T ], we can recover X(ω) on [−π/T, π/T ]. The key is that, since x is
bandlimited, undersampling it by a factor of 2 results in only one spectral replica
overlapping with the base spectrum, and having two versions of the spectrum in
(5.89) allows us to separate these spectra when the matrix G̃(ω) is invertible. We
illustrate this in the next two examples.

Example 5.22 (Periodic nonuniform sampling) Consider the two-channel
system in Figure 5.33 with input x ∈ BL[−π, π] and T = 1. Let the sampling
prefilters be the identity filter and a delay of τ ∈ (0, 2),

G̃0(ω) = 1, G̃1(ω) = e−jωτ .
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By substitution into (5.89), the spectra of the weighted Dirac combs produced
from the samples are given by

[
V0(ω)
V1(ω)

]
=

1

2

[
1 1

e−jωτ e−j(ω−π)τ

] [
X(ω)
X(ω − π)

]
.

Since τ ∈ (0, 2) implies that det(G̃(ω)) = 1
4e

−jωτ (ejπτ − 1) 6= 0, G̃(ω) is invert-
ible. Thus, x can be recovered from the sample sequences y0 and y1. However,
inversion of G̃(ω) becomes arbitrarily ill conditioned as τ approaches 0 or 2. This
comes as no surprise, since, for either no delay (τ = 0) or delay equal to the sam-
pling period (τ = 2), the samples in the two channels are the same, and a single
channel is not adequate for recovering the input.

As a sanity check, choose τ = 1, which leads to the usual sampling of x(t) at
t ∈ Z, with even-indexed samples in channel 0 and odd-indexed ones in channel
1. Then, [

V0(ω)
V1(ω)

]
=

1

2

[
1 1

e−jω −e−jω

] [
X(ω)
X(ω − π)

]
.

The matrix G̃(ω) is not only invertible but also well conditioned for inversion
since its columns are orthogonal.

Example 5.23 (Sampling a function and its derivative) Again consider
the two-channel system in Figure 5.33 with input x ∈ BL[−π, π] and T = 1.

This time let the sampling prefilters be the identity filter G̃0(ω) = 1 and the

derivative filter G̃1(ω) = jω. The spectra of the weighted Dirac combs produced
from the samples are given by

[
V0(ω)
V1(ω)

]
=

1

2

[
1 1
jω j(ω − π)

] [
X(ω)
X(ω − π)

]
.

The determinant of the above matrix, det(G̃(ω)) = − 1
4jπ, is a nonzero constant,

making the system invertible and showing that one can reconstruct a bandlimited
function from twice undersampled versions of the function and its derivative.

The two-channel case in Figure 5.33 can be readily extended to N channels.

Theorem 5.17 (Multichannel sampling) Let ω0 ∈ R+ and
x ∈ BL[− 1

2ω0,
1
2ω0], and let T ∈ (0, 2π/ω0]. Consider an N -channel system with

filters g̃i, i = 0, 1, . . . , N − 1, followed by uniform sampling with period NT . A
necessary and sufficient condition for recovery of x is that the matrix

G̃(ω) =




G̃0(ω) G̃0

(
ω + 2π

NT

)
· · · G̃0

(
ω + 2π(N−1)

NT

)

G̃1(ω) G̃1

(
ω + 2π

NT

)
· · · G̃1

(
ω + 2π(N−1)

NT

)

...
...

. . .
...

G̃N−1(ω) G̃N−1

(
ω + 2π

NT

)
· · · G̃N−1

(
ω + 2π(N−1)

NT

)




(5.90)

be nonsingular for ω ∈ [0, 2π/(NT )].
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470 Sampling and interpolation

The proof is a direct extension of what we saw for two channels; see the Further
reading. Exercise 5.12 explores some ramifications of this result, in particular for
periodic nonuniform sampling and derivatives.

Bandlimited continuous-time stochastic processes The sampling theorem ex-
tends from individual bandlimited functions to bandlimited stochastic processes.
The concept of bandwidth does not apply directly to a WSS stochastic process be-
cause, with probability 1, the Fourier transform of a realization does not converge.
Instead, the bandwidth of the stochastic process is defined to be the bandwidth of
the autocorrelation function of the process. The main conclusion remains the same:
a sampling frequency ωs exceeding the process bandwidth is sufficient for recovering
the process.

Sampling results for stochastic processes are mathematically more sophisti-
cated than the results we have developed so far. We thus state results but omit
technical justifications; see the Further reading for details and pointers.

Theorem 5.18 (Sampling for continuous-time stochastic processes)
Let ω0 ∈ R+, and let x be a WSS continuous-time stochastic process with auto-
correlation function ax ∈ BL[− 1

2ω0,
1
2ω0]. For any T ∈ (0, 2π/ω0],

x(t) =
∑

k∈Z

x(nT ) sinc
( π
T
(t− nT )

)
for all t ∈ R, (5.91)

in the mean-square sense, meaning that

lim
N→∞

E



∣∣∣∣∣x(t)−

N∑

k=−N

x(nT ) sinc
( π
T
(t− nT )

)∣∣∣∣∣

2

 = 0 for all t ∈ R.

Convergence in the mean-square sense implies also convergence in probability. For
any T ∈ (0, 2π/ω0), (5.91) holds almost surely.

5.4.3 Sampling and interpolation with nonorthogonal functions

We now expand the set of filters that we use in sampling and interpolation. We no
longer require the interpolation postfilter and its shifts to be an orthonormal set,
nor do we require the sampling prefilter to be the time-reversed and conjugated ver-
sion of the interpolation postfilter. These changes are precisely as in Section 5.3.3
for sequences, and they have the same effect on the geometry: the sampling and
interpolation operators are no longer adjoints of each other, and the range of the
interpolation operator and the orthogonal complement of the null space of the sam-
pling operator are no longer the same. We will again find that the sampling and
interpolation operators are equivalent to analysis with basis {ϕ̃k}k∈Z and synthesis
with basis {ϕk}k∈Z. Under the consistency condition, these bases are biorthogonal
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Φ̃∗
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g(t) x̂(t)

Φ

(a) Sampling. (b) Interpolation.

Figure 5.34 Sampling and interpolation in L2(R) with nonorthogonal functions.

sets; under the additional condition of the operators being ideally matched, these
bases are a dual basis pair for the same subspace of L2(R).

Sampling We now refer to the operation depicted in Figure 5.34(a), involving
filtering with g̃ and recording the result at time instants t = nT , n ∈ Z, as sampling
of the function x with rate 1/T and prefilter g̃, and we denote it by y = Φ̃∗x. In
contrast to Section 5.4.1, we do not make an assumption of orthonormality.

Similarly to (5.58), for any time index k ∈ Z, the output of sampling is

yk = (Φ̃∗x)k =

∫ ∞

−∞
x(τ) g̃(kT−τ) dτ = 〈x(τ), g̃∗(kT−τ)〉τ

(a)
= 〈x, ϕ̃k〉, (5.92)

where in (a) we have defined the function ϕ̃k to be the time-reversed and conjugated
version of g̃, shifted by kT ,

ϕ̃k(t) = g̃∗(kT − t), t ∈ R. (5.93)

Since the output at time k is 〈x, ϕ̃k〉, the sampling operator Φ̃∗ gives the inner

products with all the functions in {ϕ̃k}k∈Z. As before, its null space, S̃
⊥ = N (Φ̃∗),

and the orthogonal complement of the null space, S̃ = N (Φ̃∗)⊥ = span({ϕ̃k}k∈Z),
are closed, shift-invariant subspaces.

Interpolation Again, we refer to the operation depicted in Figure 5.34(b), involv-
ing weighting a Dirac comb sT , (4.121), and filtering with g, as interpolation of the
sequence y with spacing T and postfilter g, and we denote it by x̂ = Φy. This is
unchanged from Figure 5.4(b), and (5.61) again holds. We denote the range of Φ
by S as before, and it is a closed, shift-invariant subspace with respect to shift T
with generator g.

In contrast to Section 5.4.1, the interpolation operator Φ is not necessarily
the adjoint of the sampling operator Φ̃∗, and S does not necessarily equal S̃. When
the interpolation operator is specially chosen so that it satisfies (5.23), that is,

it is the pseudoinverse of Φ̃∗, then S = S̃, by the same arguments as in (5.24).

The pseudoinverse in (5.23) requires Φ̃∗Φ̃ to be invertible; as for sequences, this

is guaranteed if {ϕ̃k}k∈Z is a Riesz basis for S̃ since Φ̃∗Φ̃ is the Gram matrix of
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Cambridge University Press (ISBN 110703860X) v1.1 [May 2014] [free version] Comments to book-errata@FourierAndWavelets.org



472 Sampling and interpolation

{ϕ̃k}k∈Z (recall that the Riesz basis condition implies the invertibility of the Gram
matrix, see the footnote on page 94). For the rest of the section, we will assume
that {ϕ̃k}k∈Z is a Riesz basis. As mentioned before, finding a pseudoinverse is not
always an easy task when dealing with infinite-dimensional spaces; Example 5.26
provides an illustration.

Example 5.24 (Interpolation in L2(R)) Choose T = 1 and the postfilter

g(t) =

{
1− |t|, for |t| < 1;

0, otherwise.
(5.94)

The range of the interpolation operator, S = span({g(t − k)}k∈Z), is a shift-
invariant subspace with respect to integer shifts. Each element of S is a con-
tinuous, piecewise-linear function with changes of derivative at a subset of the
integers.

Interpolation followed by sampling Interpolation followed by sampling is de-
scribed by Φ̃∗Φ, as in Figure 5.35(a). Analogously to (5.63),

ŷn =

∫ ∞

−∞
x̂(t) g̃(nT − t) dt =

∫ ∞

−∞

(
∑

k∈Z

ykg(t− kT )
)
g̃(nT − t) dt

=
∑

k∈Z

yk

∫ ∞

−∞
g(t− kT ) g̃(nT − t) dt,

so Φ̃∗Φy = y for all y ∈ ℓ2(Z) if and only if

〈g(t− kT ), g̃∗(nT − t)〉t = δk−n. (5.95)

Because of (5.59) and (5.93), this is equivalent to a counterpart for (5.60) and (5.64),

Φ̃∗Φ = I ⇔ 〈ϕk, ϕ̃n〉 = δk−n. (5.96)

The sampling and interpolation operators are then called consistent. Choosing the
pseudoinverse in (5.23) for Φ would satisfy (5.96); there exist infinitely many other

right inverses of Φ̃∗ one could also use. Equation (5.96) also shows that the condition
for perfect recovery is the same as the sets of functions {ϕk}k∈Z and {ϕ̃k}k∈Z being
biorthogonal, as in (2.111). These sets of functions are not bases for L2(R); instead,
they are bases for the subspaces S and S̃ that they span, respectively. They are a
biorthogonal pair of bases when S = S̃.

Example 5.25 (Interpolation followed by sampling in L2(R)) We
would like to find a sampling operator that is consistent with the interpolation
operator from Example 5.24. There exist many choices of g̃ to satisfy (5.95)
with T = 1. It simplifies the problem greatly to assume a short support for g̃
because many of the inner products in (5.95) become zero, as desired, by virtue
of the lack of overlap of g̃ with shifted versions of g. For example, fix the support
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(a) Interpolation followed by sampling.
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(b) Sampling followed by interpolation.

Figure 5.35 Sampling and interpolation in L2(R) with nonorthogonal functions.

of g̃ to be [− 1
2 ,

1
2 ] so that (5.95) is satisfied for |n − k| > 1 solely from lack of

overlap. With the restricted support of g̃, we get three constraints from (5.95),
corresponding to n− k ∈ {−1, 0, 1}. Upon further constraining g̃ to be an even
function, the constraints for n − k = ±1 will be the same, and many possible
parameterizations of g̃ with two parameters will yield a solution.

Assume g̃ to be of the following form:

g̃(t) =

{
a(b− |t|), for |t| < 1

2 ;
0, otherwise.

(5.97)

We thus get the following system of equations from (5.95):

1 = 〈g(t), g̃∗(−t)〉t =

∫ 1/2

−1/2

(1− |t|)a(b − |t|) dt =
1

12
a(9b− 2),

0 = 〈g(t), g̃∗(1− t)〉t =

∫ 1

1/2

(1− t)a(b− (1 − t)) dt =
1

24
a(3b− 1),

which has the solution a = 12, b = 1
3 , or

g̃(t) =

{
4− 12|t|, for |t| < 1

2 ;
0, otherwise.

(5.98)

The arbitrariness of (5.97) suggests that many other choices of g̃ will also yield
consistent sampling and interpolation, even with the given arbitrary limitation
of the support of g̃.

The functions g from (5.94) and g̃ from (5.98) are plotted in Figures 5.36(a)
and (b). With their integer shifts, these functions span different spaces; that

is, S 6= S̃. The functions in S are continuous and might have a change of
derivative at each integer. The functions in S̃ are generally discontinuous at the
integers and will have changes of derivative at all odd multiples of 1

2 . In fact,

functions in S̃ always look like saw blades; Figure 5.36(c) shows the example of
x(t) = g̃∗(1− t) + g̃∗(−t) + g̃∗(−1− t).
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(a) Interpolation postfilter. (b) Sampling prefilter. (c) x ∈ S̃.

Figure 5.36 Consistent sampling and interpolation for functions. (a) Interpolation post-
filter g from (5.94). (b) Sampling prefilter g̃ from (5.98), resulting in consistent sampling

and interpolation operators. (c) A function x(t) = g̃∗(1 − t) + g̃∗(−t) + g̃∗(−1 − t) in S̃
using g̃ from (b).

Sampling followed by interpolation Sampling followed by interpolation is de-
scribed by P = ΦΦ̃∗, as in Figure 5.35(b). When the sampling and interpolation
operators are consistent as in (5.96), P is idempotent by the computation in (5.28).
It projects onto S, but the projection is not necessarily orthogonal. The approxima-
tion error x− x̂ is orthogonal to S̃ but not to S (recall Figure 5.11 for a conceptual
picture).

Again, for P to be self-adjoint as well, Φ must be chosen to be the pseu-
doinverse of Φ̃∗, (5.23); the sampling and interpolation operators are then ideally

matched, and subspaces S and S̃ are identical. In other words, when the sampling
and interpolation operators are ideally matched, P = ΦΦ̃∗ is an orthogonal projec-
tion operator, and, by Theorem 2.26, x̂ = Px is the best approximation of x in S.

The previous discussion can be summarized by the following analogue to The-
orems 5.2 and 5.9.

Theorem 5.19 (Recovery for functions, nonorthogonal) Let T ∈ R+,

let the sampling operation Φ̃∗ : L2(R)→ ℓ2(Z) be given by

(Φ̃∗x)k =

∫ ∞

−∞
x(τ) g̃(kT − τ) dτ, k ∈ Z, (5.99a)

and let the interpolation operation Φ : ℓ2(Z)→ L2(R) be given by

(Φy)(t) =
∑

k∈Z

ykg(t− kT ), t ∈ R. (5.99b)

As depicted in Figure 5.35(b), denote the result of sampling followed by interpo-

lation applied to x ∈ L2(R) by x̂ = Px = ΦΦ̃∗x.
If the sampling prefilter g̃ and interpolation postfilter g satisfy consistency

condition (5.95), then P is a projection operator with range S = R(Φ) and x−x̂ ⊥
S̃ = N (Φ̃∗)⊥; in particular, x̂ = x when x ∈ S.
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If, additionally, ideal matching (5.23) is satisfied, then S = S̃, P is the
orthogonal projection operator with range S, and x̂ is the best approximation of
x in S,

x̂ = argmin
xS∈S

‖x− xS‖, x− x̂ ⊥ S.

Example 5.26 (Sampling followed by interpolation in L2(R)) As
shown in Example 5.25, sampling with rate 1 and prefilter g̃ given in (5.98)
is consistent with interpolation with spacing 1 and postfilter g given in (5.94).

Thus, P = ΦΦ̃∗ for the associated sampling and interpolation operators is a
projection operator. It is an oblique projection operator because S̃ 6= S.

For P to be an orthogonal projection operator, the operators Φ and Φ̃∗

must be ideally matched, that is, S̃ = S. For this, we cannot make arbitrary
choices as in Example 5.25; in fact, g̃ is then uniquely determined.

The key to finding g̃ such that S̃ = S is to choose g̃ so that ϕ̃0 is in S.
Then, since S is a shift-invariant subspace, every ϕ̃k, k ∈ Z, will be in S. Thus,
let

g̃(t) =
∑

ℓ∈Z

αℓg
∗(−t− ℓT ) (5.100)

for some sequence α ∈ ℓ2(Z) to be determined, since ϕ̃0 is the time-reversed and
conjugated version of g̃. Now the requirement of consistency can be written as

δk
(a)
= 〈g(t− kT ), g̃∗(−t)〉t

(b)
=

〈
g(t− kT ),

∑

ℓ∈Z

α∗
ℓg(t− ℓT )

〉

t

(c)
=
∑

ℓ∈Z

αℓ〈g(t− kT ), g(t− ℓT )〉t
(d)
=
∑

ℓ∈Z

αℓaℓ−k, (5.101)

where (a) follows from the consistency condition (5.95) with n = 0; (b) from
(5.100); (c) from the conjugate linearity in the second argument of the inner
product; and (d) from defining an autocorrelation sequence

am = 〈g(t), g(t−m)〉, m ∈ Z, (5.102)

which is the deterministic autocorrelation of g evaluated at the integers. To
find the sequence α, we recognize the final expression of (5.101) as the convo-
lution between sequence α and the time-reversed version of sequence a. In the
z-transform domain, we can rephrase (5.101) as

α(z)A(z−1) = 1. (5.103)
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For g from (5.94), A(z) = 1
6 (z + 4 + z−1), and thus

α(z) =
1

A(z−1)
=

6

z−1 + 4 + z

=
6z−1

(1− (
√
3− 2)z−1)(1 − (

√
3− 2)−1z−1)

=
√
3

(
1

1− (
√
3− 2)z−1

− 1

1− (
√
3− 2)−1z−1

)
. (5.104)

Three different ROCs are possible: inside the pole of the smaller magnitude,
between the two poles, and outside the pole of the larger magnitude. To have a
stable sequence, we choose the ROC to contain the unit circle, that is, ROC =
{z | |

√
3 − 2| < |z| < |

√
3 − 2|−1}. From Table 3.6, the first summand then

corresponds to a right-sided geometric sequence (
√
3−2)nun and the second to a

left-sided geometric sequence −(
√
3− 2)−nu−n−1. By combining the two, we get

that the rational z-transform from (5.104) corresponds to the two-sided sequence

αn =
√
3
((√

3− 2
)n
un +

(√
3− 2

)−n
u−n−1

)

=
√
3
(√

3− 2
)|n|

, n ∈ Z, (5.105)

from which g̃ follows according to (5.100); see Figure 5.37(b). We have thus

proven that S̃ ⊆ S (since g̃ is a linear combination of time-reversed and shifted

versions of g∗). The opposite is true as well, namely S ⊆ S̃, since g is a linear
combination of three time-reversed and shifted versions of g̃∗. To see that, take
the Fourier transform of (5.100):

G̃(ω) =

∫ ∞

−∞
g̃(t) e−jωt dt

(a)
=

∫ ∞

−∞

∑

ℓ∈Z

αℓg
∗(−t− ℓT ) e−jωt dt

(b)
=

∫ ∞

−∞

∑

ℓ∈Z

αℓg
∗(τ) ejω(τ+ℓT ) dτ =

(
∑

ℓ∈Z

αℓe
jωℓT

) (∫ ∞

−∞
g∗(τ) ejωτ dτ

)

=

(
∑

ℓ∈Z

αℓe
jωℓT

) (∫ ∞

−∞
g(τ) e−jωτ dτ

)∗
(c)
= α(e−jωT )G∗(ω),

where (a) follows from (5.100); (b) from the change of variable τ = −t− ℓT ; and
(c) from recognizing the first factor as the DTFT of the sequence α evaluated at
−ωT and the second factor as the conjugate of the Fourier transform of g. We
can thus express G(ω) as

G(ω) =
G̃∗(ω)

α∗(e−jωT )

(a)
= G̃∗(ω)A∗(ejωT ) = G̃∗(ω)

1

6

(
e−jωT + 4 + ejωT

)
,

where (a) follows from (5.103). Then, from Table 4.1, we get the time-domain
expression as

g(t) =
1

6
(g̃∗(−t+ T ) + 4g̃∗(−t) + g̃∗(−t− T )).
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(a) Interpolation postfilter g. (b) Sampling prefilter g̃.

Figure 5.37 Ideally matched sampling and interpolation for functions. (a) Interpolation
postfilter g(t) from (5.94). (b) Sampling prefilter g̃(t) from (5.100) with coefficients as in
(5.105), resulting in orthogonal projection.

The interpolation postfilter g from Figure 5.37(a) produces a piecewise-
linear interpolation of the sampled version of x. Having found g̃ in Figure 5.37(b)
such that the sampling and interpolation operators are ideally matched means
that P = ΦΦ̃∗ is an orthogonal projection operator, which further means that x̂ =
Px is the best piecewise-linear approximation of x. This example is generalized
by the elementary B-splines and their canonical duals, as developed in Section 6.3.

5.5 Periodic functions

Sections 5.2–5.4 introduced analogous theories of sampling and interpolation, first
for finite-dimensional vectors, then for sequences in ℓ2(Z), and finally for functions
in L2(R). The final vectors of interest are the T -periodic functions with a square-
integrable period. We call the space of such functions L2([− 1

2T,
1
2T )), with the

T -periodicity implicit.
As we have seen in Chapter 4, the (linear) convolution between a bounded,

periodic input function and an absolutely integrable impulse response converges
and equals the circular convolution between the input function and the periodized
version of the impulse response (see (4.35)). We will express filtering using cir-
cular convolution exclusively, but parallel expressions could be written with linear
convolution. Fewer results are developed here than in the previous sections since
most key variations (sequences vs. functions, orthonormal, bandlimited) have been
explored.

5.5.1 Sampling and interpolation with orthonormal periodic
functions

Paralleling the previous developments, we start with the case when sampling and
interpolation operators are defined using functions that are orthonormal with their
shifts. We also again impose a relationship between filters through time reversal and
conjugation to create an adjoint pair of operators. Together these make sampling
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and interpolation equivalent to analysis and synthesis with an orthonormal basis
for a subspace S ⊂ L2([− 1

2T,
1
2T )).

Shift-invariant subspaces of periodic functions As before, we start by introducing
shift-invariant subspaces of L2([− 1

2T,
1
2T )).

Definition 5.20 (Shift-invariant subspace of L2([− 1
2T,

1
2T ))) A sub-

space S ⊂ L2([− 1
2T,

1
2T )) is a shift-invariant subspace with respect to a shift

τ ∈ (0, T ] when x(t) ∈ S implies that x(t−kτ) ∈ S for every integer k. In addition,
s ∈ L2([− 1

2T,
1
2T )) is called a generator of S when S = span({s(t− kτ)}k∈Z).

We will largely restrict our attention to shifts such that T/τ is an integer. Suppose
that T/τ = N ∈ Z+. Then, for any T -periodic function s and any integer m, we
have

s(t− (k +Nm)τ)
(a)
= s(t− kτ −mT ) (b)

= s(t− kτ),
where (a) follows from T = Nτ ; and (b) from the T -periodicity of s. Therefore

span({s(t− kτ)}k∈Z) = span({s(t− kτ)}N−1
k=0 ),

so the shift-invariant subspace generated by s has finite dimension N . By restricting
attention to shifts τ such that T/τ is an integer, we are effectively only omitting
the cases where T/τ is irrational; see Exercise 5.14.

Sampling We refer to the operation depicted in Figure 5.38(a), involving circular
convolution with T -periodic function g∗(−t) and recording the result at t = nTs,
n = 0, 1, . . . , N − 1, as sampling of the T -periodic function x(t) with rate 1/Ts and
prefilter g∗(−t), and we denote it by y = Φ∗x. We will restrict our attention to cases
where N = T/Ts is an integer. Since the result of the circular convolution is T -
periodic, sampling results in an N -periodic sequence. Thus, through this sampling
operation we move from the larger space L2([− 1

2T,
1
2T )) into the smaller one CN .

The output of sampling is

yk
(a)
= (Φ∗x)k

(b)
=

(
g∗(−t)⊛t x(t)

)∣∣
t=kTs

=

(∫ T/2

−T/2

x(τ) g∗(τ − t) dτ
)∣∣∣∣∣

t=kTs

=

∫ T/2

−T/2

x(τ) g∗(τ − kTs) dτ = 〈x(τ), g(τ − kTs)〉τ
(c)
= 〈x, ϕk〉, (5.106)

where (a) follows from denoting the operator in Figure 5.38(a) by Φ∗; (b) from
composing circular convolution by g∗(−t) with recording the result at time kTs;
and (c) from defining the T -periodic function ϕk to be g shifted by kTs,

ϕk(t) = g(t− kTs), t ∈ R, (5.107)
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x(t) g∗(−t) Ts yn

Φ∗

yn Ts
g(t) x̂(t)

Φ

(a) Sampling. (b) Interpolation.

Figure 5.38 Sampling and interpolation in L2([− 1
2
T, 1

2
T )) with orthonormal periodic

functions. This figure introduces the rounded box symbol for circular convolution to
distinguish it from ordinary (linear) convolution.

and we are using the L2([− 1
2T,

1
2T )) inner product. The final expression in (5.106)

shows that calling the sampling operator Φ∗ is consistent with the previous use of
Φ∗ as the analysis operator associated with {ϕk}k∈Z; see (2.91). We develop only
the case where {ϕk}N−1

k=0 is an orthonormal set,

〈ϕn, ϕk〉 = δn−k ⇔ 〈g(t− nTs), g(t− kTs)〉t = δn−k. (5.108)

As before, the sampling operator Φ∗ gives the inner products with all the
functions in {ϕk}N−1

k=0 . It has a nontrivial null space, S⊥ = N (Φ∗); the set {ϕk}N−1
k=0

spans its orthogonal complement, S = N (Φ∗)⊥ = span({ϕk}N−1
k=0 ). The subspaces

S and S⊥ are closed and shift-invariant with respect to shift Ts. When a function
x ∈ L2([− 1

2T,
1
2T )) is sampled, its component in the null space S⊥ has no effect on

the output y and is thus completely lost; its component in S is captured by Φ∗x.

Interpolation Let T ∈ R+ and Ts = T/N for some N ∈ Z+, and let y be an
N -periodic sequence. Then, we refer to the operation depicted in Figure 5.38(b),
involving weighting a Dirac comb sTs , (4.121), and circular convolution with a T -
periodic function g, as interpolation of the N -periodic sequence y with spacing Ts
and postfilter g, and we denote it by x̂ = Φy. Since y is N -periodic, we can associate
it with a vector in CN by extracting one period, so this interpolation operation maps
from CN to L2([− 1

2T,
1
2T )).

The output of interpolation is

x̂(t)
(a)
= (Φy)(t)

(b)
= g(t)⊛

∑

k∈Z

ykδ(t− kTs)

(c)
= g(t)⊛

N−1∑

k=0

yk
∑

m∈Z

δ(t− kTs −mT )

(d)
=

N−1∑

k=0

yk

(
g(t)⊛

∑

m∈Z

δ(t− kTs −mT )
)

(e)
=

N−1∑

k=0

ykg(t− kTs)
(f)
=

(
N−1∑

k=0

ykϕk

)
(t), (5.109)
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yn Ts
g(t)

x̂(t)
g∗(−t) Ts ŷn

(a) Interpolation followed by sampling.

x(t) g∗(−t) Ts
yn

Ts
g(t) x̂(t)

(b) Sampling followed by interpolation.

Figure 5.39 Sampling and interpolation in L2([− 1
2
T, 1

2
T )) with orthonormal periodic

functions.

where (a) follows from denoting the operator in Figure 5.38(b) by Φ; (b) from
composing the generation of a weighted Dirac comb with circular convolution by
g; (c) from the N -periodicity of y and NTs = T ; (d) from the linearity of circular
convolution; (e) from the shifting property of the Dirac delta function, (4.32e),
extended to periodic convolution; and (f) from (5.107). This shows that calling the
interpolation operator Φ is consistent with the previous use of Φ as the synthesis
operator associated with {ϕk}k∈Z; see (2.90).

Denoting the range of Φ by S as before, this subspace is the same as the
orthogonal complement of the null space of the sampling operator, as we have seen
earlier. Because of how we chose a prefilter and a postfilter that are related through
time-reversed conjugation, the sampling and interpolation operators are adjoints of
each other; the proof mimics (5.62) and is left for Exercise 5.15.

Interpolation followed by sampling Interpolation followed by sampling is de-
scribed by Φ∗Φ as in Figure 5.39(a). By a computation analogous to (5.63), Φ∗Φ = I
on N -periodic input sequences, provided that Ts = T/N . The set {ϕk}N−1

k=0 is an
orthonormal basis for its span, and perfect recovery is again an example of the
property (2.101) for analysis and synthesis operators associated with orthonormal
bases.

Sampling followed by interpolation Sampling followed by interpolation is de-
scribed by P = ΦΦ∗ as in Figure 5.39(b). We know that this does not perfectly
recover x in general, since sampling loses the component of x in the null space of the
sampling operator, S⊥. As for finite-dimensional vectors, sequences, and aperiodic
functions in previous sections, our choice of sampling and interpolation operators
to satisfy Φ∗Φ = I implies that P is an orthogonal projection operator; see (5.8).
Thus, we have another analogue to Theorems 2.41, 5.1, 5.4, and 5.11.
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Theorem 5.21 (Recovery for periodic functions, orthogonal) Let
T ∈ R+, N ∈ Z+, and Ts = T/N , let the sampling operation
Φ∗ : L2([− 1

2T,
1
2T ))→ CN be given by

(Φ∗x)k =

∫ T/2

−T/2

x(τ) g∗(τ − kTs) dτ, k ∈ {0, 1, . . . , N − 1}, (5.110a)

and let the interpolation operation Φ : CN → L2([− 1
2T,

1
2T )) be given by

(Φy)(t) =
N−1∑

k=0

ykg(t− kTs), t ∈ R. (5.110b)

As depicted in Figure 5.39(b), denote the result of sampling followed by interpola-
tion applied to x ∈ L2([− 1

2T,
1
2T )) by x̂ = Px = ΦΦ∗x. If the T -periodic filter g

satisfies orthogonality with shifts by multiples of Ts, (5.108), then P is the orthog-
onal projection operator with range S = R(Φ) and x̂ is the best approximation
of x in S,

x̂ = argmin
xS∈S

‖x− xS‖, x− x̂ ⊥ S;

in particular, x̂ = x when x ∈ S.

5.5.2 Sampling and interpolation for bandlimited periodic
functions

We now consider sampling and interpolation of bandlimited periodic functions, both
as an instance of the theory developed in Section 5.5.1 and more directly using
Fourier series tools developed in Section 4.5.

Subspaces of bandlimited periodic functions As we have seen for sequences and
aperiodic functions, shift-invariant subspaces of particular importance in signal pro-
cessing are the subspaces of bandlimited periodic functions. To define such sub-
spaces, we first need to define the bandwidth of a periodic function.

Definition 5.22 (Bandwidth of periodic function) A periodic function x
is called bandlimited when there exists k0 ∈ N such that its Fourier series coeffi-
cient sequence X satisfies

Xk = 0 for all k with |k| > 1
2 (k0 − 1). (5.111)

The smallest such k0 is called the bandwidth of x. A periodic function that is not
bandlimited is called a full-band periodic function.
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482 Sampling and interpolation

Except for x = 0 having bandwidth k0 = 0, the bandwidth is always odd. Like the
previous definitions of bandwidth, this definition is inspired by the even symmetry
of the magnitude of the Fourier series coefficient sequence of a real periodic function
(see Table 4.3).

If periodic functions x and y both have bandwidth k0, then by linearity of
the Fourier series we are assured that x + y has bandwidth of at most k0. Thus,
bandlimited periodic functions form subspaces. These subspaces are closed.

Definition 5.23 (Subspace of bandlimited periodic functions) The set
of functions in L2([− 1

2T,
1
2T )) with bandwidth of at most k0 is a closed subspace

denoted BL{− 1
2 (k0 − 1), . . . , 1

2 (k0 − 1)}.

A subspace of bandlimited periodic functions is shift-invariant for any shift
τ ∈ [0, T ). To see the shift invariance, take x ∈ BL{− 1

2 (k0 − 1), . . . , 1
2 (k0 − 1)}.

Then, from (4.107),

x(t− nτ) FS←→ e−j(2π/T )knτXk. (5.112)

The Fourier series coefficient sequence is multiplied by a complex exponential, not
changing where its magnitude is nonzero and hence not changing the bandwidth of
the shifted function.

Dirichlet kernel The most important feature of the sinc function is that its Fourier
transform is a centered box function; this leads to its use in Section 5.4.2. The
Dirichlet kernel98 gives a counterpart for periodic functions.

Theorem 5.24 (Dirichlet kernel) Let K ∈ N and T ∈ R+. The Dirichlet
kernel of order K and period T , defined as

d(t) =

K∑

k=−K

ej(2π/T )kt, t ∈ R, (5.113)

satisfies the following properties:

98Kernel has many meanings in mathematics. Here, it is used in the sense of an integral kernel
that defines an integral transform as in (5.116b).
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5.5 Periodic functions 483

(i) It can be expressed as

d(t) = 1 + 2

K∑

ℓ=1

cos

(
2πℓ

T
t

)
, for t ∈ R, (5.114a)

=





sin((2K + 1)πt/T )

sin(πt/T )
, for t/T /∈ Z;

2K + 1, for t/T ∈ Z,

(5.114b)

=





(2K + 1)
sinc((2K + 1)πt/T )

sinc(πt/T )
, for t/T /∈ Z;

2K + 1, for t/T ∈ Z.

(5.114c)

(ii) Its Fourier series coefficient sequence is

Dk = 1{−K,...,K} =

{
1, for k = −K, −K + 1, . . . , K;
0, otherwise.

(5.115)

(iii) Let y be the T -periodic function obtained by truncating the Fourier series
of the T -periodic function x through

Yk = 1{−K,...,K}Xk =

{
Xk, for k = −K, −K + 1, . . . , K;
0, otherwise.

(5.116a)

Then

y =
1

T
d⊛ x. (5.116b)

(iv) Let {τℓ}2Kℓ=0 ⊂ [0, T ) be a set of 2K+1 distinct numbers. Then, {d(t−τℓ)}2Kℓ=0

is a basis for BL{−K, . . . , K} ⊂ L2([− 1
2T,

1
2T )).

(v) An orthonormal basis for BL{−K, . . . , K} ⊂ L2([− 1
2T,

1
2T )) is

{
1√

T (2K + 1)
d

(
t− T

2K + 1
ℓ

)}2K

ℓ=0

. (5.117)

The theorem is proven in Solved exercise 5.5.

Projection to bandlimited subspaces Since a subspace of periodic bandlimited
functions is also a shift-invariant subspace, the techniques developed in Section 5.5.1
suggest a way to recover a bandlimited periodic function from samples or compute
the best approximation of a full-band periodic function in a bandlimited subspace.
To use Theorem 5.21, we need a T -periodic function g that satisfies (5.108) and,
with its shifts by Ts with T/Ts = N ∈ Z+, generates a subspace of bandlimited
functions. An appropriately scaled Dirichlet kernel does the trick.

Fix the period T ∈ R+ and odd bandwidth k0 ∈ N. To obtain an orthonormal
basis for BL{− 1

2 (k0 − 1), . . . , 1
2 (k0 − 1)} with (5.117), we must use the Dirichlet
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(a) sinc(πt/Ts). (b) sinc(πt/T ). (c) g(t).

Figure 5.40 The interpolation postfilter g from (5.118a) is the scaled ratio of sinc
functions. The numerator, denominator, and resulting g are shown for T = 5 and Ts = 1.

kernel of order 1
2 (k0 − 1) and period T . Thus, let the interpolation postfilter be

g(t)
(a)
=

1√
Tk0

d(t)
(b)
=

1√
Tk0

(
k0

sinc(k0πt/T )

sinc(πt/T )

)

(c)
=

1√
Ts

sinc(πt/Ts)

sinc(πt/T )
, (5.118a)

where (a) follows from substitution in (5.117); (b) from (5.114c); and (c) from
simplifying using sampling period Ts = T/k0. An example of a function of this
form is shown in Figure 5.40. Applying the same scaling to (5.115) gives

Gk =

{√
Ts/T , for k = − 1

2 (T/Ts − 1), . . . , 1
2 (T/Ts − 1);

0, otherwise.
(5.118b)

Since Theorem 5.24(v) verifies that g satisfies (5.108) for Ts = T/k0, we get the
following corollary to Theorem 5.21.

Theorem 5.25 (Projection to bandlimited subspace) Let T, Ts ∈ R+,
and let the system in Figure 5.39(b) have T -periodic input x, filter g from (5.118a),
and k0 = T/Ts = 2K + 1 an odd positive integer. Then,

x̂(t) =
1√
Ts

K∑

k=−K

yk
sinc((π/Ts)(t− kTs))
sinc((π/T )(t− kTs))

, t ∈ R, (5.119a)

with

yk =
1√
Ts

∫ T/2

−T/2

x(τ)
sinc

(
π
Ts
(τ − kTs)

)

sinc
(
π
T (τ − kTs)

) dτ, k ∈ {−K, . . . , K}, (5.119b)

is the best approximation of x in BL{−K, . . . , K},
x̂ = argmin

xBL∈BL{−K, ...,K}
‖x− xBL‖, (5.119c)

x− x̂ ⊥ BL{−K, . . . , K}. (5.119d)

In particular, x̂ = x when x ∈ BL{−K, . . . , K}.
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(a) Triangle wave x. (b) Sample sequence y. (c) Bandlimited version x̂.

Figure 5.41 Sampling the 1-periodic triangle wave with Ts = 1/7 results in a 7-periodic
sample sequence. With Dirichlet kernel sampling prefilter and interpolation postfilter, the
reconstructed function is the best approximation in BL{−3, . . . , 3}.

The effect of orthogonal projection to BL{−K, . . . , K} is a simple truncation of
the spectrum of x to {−K, . . . , K},

X̂k =

{
Xk, for k ∈ {−K, . . . , K};
0, otherwise.

(5.120)

Recall that this was obtained using a different basis for BL{− 1
2 (k0 − 1), . . . ,

1
2 (k0 − 1)} in Theorem 4.15(iii).

Example 5.27 (Sampling the triangle wave) Consider 1-periodic x shown
in Figure 5.41(a). It has one period given in (4.119) and Fourier series coefficients
given in (4.120); we repeat both here for easy reference:

x(t) = 1
2 − |t|, for |t| ≤ 1

2

FS←→ Xk =





1/4, for k = 0;
0, for k 6= 0, k even;

1/(πk)2, for k odd.
(5.121)

This function is not bandlimited because Xk 6= 0 for arbitrarily large odd k. By
Theorem 5.25, the best approximation of x in BL{−3, . . . , 3} can be computed
by a sampling and interpolation system that measures seven samples per period
and uses a Dirichlet kernel as sampling prefilter and interpolation postfilter.

It is difficult to evaluate the circular convolution between x(t) and g∗(−t)
directly in the time domain using the expression (5.118a) for g. Instead, we
determine the sample sequence y and reconstruction x̂ using Fourier series. Let
w(t) = g∗(−t)⊛t x(t). Then the Fourier series coefficients of w are

Wk
(a)
= GkXk

(b)
=

1√
7
1{−3,...,3}Xk

(c)
=





1/(4
√
7), for k = 0;

1/(π2
√
7), for k = ±1;

1/(9π2
√
7), for k = ±3;
0, otherwise,

where (a) follows from the circular convolution in time property of the Fourier
series, (4.113), along with the symmetry of g and T = 1; (b) from (5.118b); and
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486 Sampling and interpolation

(c) from (5.121). Thus, using (4.94b) and (3.286),

w(t) =
1

4
√
7
+

2

π2
√
7
cos 2πt+

2

9π2
√
7
cos 6πt, t ∈ R.

Evaluating this function at integer multiples of Ts =
1
7 gives the sample sequence

yn =
1

4
√
7
+

2

π2
√
7
cos

(
2πn

7

)
+

2

9π2
√
7
cos

(
6πn

7

)
, n ∈ Z, (5.122)

which is shown in Figure 5.41(b).
We also use the Fourier series to evaluate x̂ in (5.119a),

X̂k
(a)
=

6∑

n=0

yne
−j2πkn/7Gk

(b)
=

1√
7

6∑

n=0

yne
−j2πkn/7

(c)
=

1√
7

6∑

n=0

(
1

4
√
7
+

1

π2
√
7

(
e−j2πn/7 + ej2πn/7

)

+
1

9π2
√
7

(
e−j6πn/7 + ej2πn/7

))
e−j2πkn/7

(d)
=





1/4, for k = 0;
1/(π2), for k = ±1;

1/(9π2), for k = ±3;
0, otherwise,

(5.123)

where (a) follows from the shift in time property of the Fourier series, (4.107);
(b) from (5.118b); (c) from (5.122) and (3.286); and (d) from evaluating the sum
separately for each k. Thus, the reconstructed function is

x̂(t) =
1

4
+

2

π2
cos 2πt+

2

9π2
cos 6πt, t ∈ R,

which is shown in Figure 5.41(c).
Note that we could arrive directly at (5.123) by truncation of the Fourier

series in (5.121), so this serves to show that Theorems 4.15(iii) and 5.25 are con-
sistent. Also, although it is somewhat difficult to see in Figure 5.41(b), the sample
sequence y is not within a scalar multiple of evaluating x at integer multiples of
1
7 ; the sampling prefilter is needed to get the best bandlimited approximation
from a linear interpolation of samples.

Sampling without a prefilter followed by interpolation When the input to the
system in Figure 5.39(b) is in BL{− 1

2 (k0 − 1), . . . , 1
2 (k0 − 1)} with k0 = T/Ts

and the filter g is given in (5.118a), the sampling prefilter simply scales the input
by
√
Ts; this follows from (5.118b) and the factor of T in the circular convolution

in time property of the Fourier series, (4.113). For these inputs, the system is
equivalent to the one in Figure 5.42. Analogously to Figure 5.16 for sequences and
Figure 5.23 for aperiodic functions, this simpler system is worth further study – for
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x(t)
√
Ts

w(t) Ts
yn

Ts

v(t)
g(t) x̂(t)

Figure 5.42 Sampling and interpolation in L2([− 1
2
T, 1

2
T )) with no sampling prefilter.

(The scalar multiplication by
√
Ts could be incorporated into the interpolation postfilter.)

both bandlimited and full-band inputs – because it is essentially a system without a
sampling prefilter, and often sampling is done without a prefilter. Before including
any filtering (the scaling by

√
Ts and the interpolation postfilter g), we relate v to w

in the Fourier domain; we also relate v to y and thus obtain a relationship between
y and w as a byproduct.

We assume that N = T/Ts is an integer. To relate v to w in the Fourier
domain, first note that the weights of the Dirac delta components of v are the
values of w recorded at times that are integer multiples of Ts; that is,

v(t) =
∑

n∈Z

w(nTs)δ(t− nTs).

By the sampling property of the Dirac delta function, (3.294), we have

v(t) = sTs(t)w(t), t ∈ R,

where we have used the Dirac comb with spacing Ts

sTs(t) =
∑

n∈Z

δ(t− nTs) FS←→ STs,k =
1

Ts

∑

n∈Z

δk−Nn. (5.124)

This Fourier series pair treats sTs as T -periodic, and its proof is left for Exercise 5.16.
Now the Fourier series of v is given by

Vk
(a)
= (STs ∗W )k

(b)
=

(
1

Ts

∑

n∈Z

δk−Nn

)
∗k Wk

(c)
=

1

Ts

∑

n∈Z

Wk−Nn, (5.125)

where (a) follows from expressing multiplication in time as convolution in frequency,
(4.114); (b) from using (5.124) for STs ; and (c) from the shifting property of the
Kronecker delta sequence, (3.62e). We will use this key expression to understand
the overall operation of the system in Figure 5.42.

The Fourier-domain relations of v and w to y are also useful. The Fourier
series of the weighted Dirac comb v has a simple relationship with the DFT of the
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sample sequence y,

Vk
(a)
=

1

T

∫ T−ǫ

−ǫ

v(t) e−j(2π/T )kt dt
(b)
=

1

T

∫ T−ǫ

−ǫ

∑

n∈Z

ynδ(t− nTs) e−j(2π/T )kt dt

(c)
=

1

T

N−1∑

n=0

yn

∫ T−ǫ

−ǫ

δ(t− nTs) e−j(2π/T )kt dt
(d)
=

1

T

N−1∑

n=0

yne
−j(2π/T )knTs

(e)
=

1

T
Yk, (5.126)

where (a) follows from the definition of the Fourier series; (b) from the definition
of v; (c) from the interchange of integration and summation, with only Dirac delta
functions centered within the interval of integration retained; (d) from the sifting
property of the Dirac delta function, (3.293); and (e) from the definition of the
length-N DFT and T/Ts = N .

By combining (5.125) and (5.126), we can also relate the DFT of the sample
sequence y to the Fourier series of the scaled input function w,

Yk =
T

Ts

∑

n∈Z

Wk−Nn. (5.127)

This is illustrated in Figure 5.43. Table 5.1 summarizes these Fourier-domain rela-
tionships along with those derived for sampling aperiodic functions in Section 5.4.2.

We now consider the full system in Figure 5.42, including the scaling prior
to sampling and the interpolation postfilter, for a T -periodic input x that is not
necessarily bandlimited. Using (5.125), the spectrum of v is the combination of Xk

and spectral replicas spaced by N ; combining the 1/Ts factor in (5.125) with the√
Ts factor relating X and W gives

Vk =
1√
Ts

∑

n∈Z

Xk−Nn.

Incorporating the filtering by g – and not forgetting the factor of T in (4.113) –
gives

X̂k =
T√
Ts
Gk

∑

n∈Z

Xk−Nn.

The Gk factor cancels the T/
√
Ts factor and restricts

∑
n∈Z

Xk−Nn to
{ 12 (T/Ts − 1), . . . , 1

2 (T/Ts − 1)}. Thus, the input x is recovered if and only if
its spectral support is contained in { 12 (T/Ts − 1), . . . , 1

2 (T/Ts − 1)}, since this
condition ensures that the restriction does not discard any of the base spectrum
and no spectral replicas interfere with the base spectrum.

This discussion yields the following sampling theorem for periodic functions,
which is analogous to Theorems 5.8 and 5.15.
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Figure 5.43 Illustration of the Fourier-domain relationships between periodic function
w and periodic sequence y in Figure 5.42. (a) A bandlimited periodic function w ∈
BL{−2, . . . , 2} with period T = 1. (b) Its Fourier series coefficients W . (c) The sampled
version of w with Ts = T/5 = 1

5
. (d) Its length-5 DFT Y .

Theorem 5.26 (Sampling theorem for periodic functions) Let
T, Ts ∈ R+ such that T/Ts = 2K +1 is an odd integer. If the T -periodic function
x is in BL{−K, . . . , K},

x(t) =

K∑

n=−K

x(nTs)
sinc

(
π
Ts
(t− nTs)

)

sinc
(
π
T (t− nTs)

) , t ∈ R. (5.128)

The Dirichlet kernel plays exactly the interpolating role of the sinc filter in Theo-
rem 5.15: looking only at times that are integer multiples of the sampling period,
t = kTs, the ratio of sincs gives δn−k; in between these times, the interpolation is
smooth.

5.6 Computational aspects

This chapter includes some methods that are computational and others that are
merely conceptual (or implementable only with an analog computer). Sampling
and interpolation of finite-dimensional vectors is straightforward, involving only
matrix multiplications. Sampling and interpolation of sequences involves filtering
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Time domain Fourier domain

Functions on R

w(t)
T

yn
T

v(t)

w(t)
FT←→ W (ω)

yn = w(nT )
DTFT←→ Y (ejω) =

∑
n∈Z

w(nT ) e−jωn

v(t) =
∑

n∈Z
w(nT ) δ(t − nT ) FT←→ V (ω) =

∑
n∈Z

w(nT ) e−jωnT

V (ω) = 1
T

∑
k∈Z

W
(
ω − 2π

T
k
)

Y (ejω) = V
(
ω
T

)
= 1

T

∑
k∈Z

W
(
ω
T
− 2π

T
k
)

sT (t) =
∑

n∈Z
δ(t − nT ) FT←→ ST (ω) = 2π

T

∑
k∈Z

δ
(
ω − 2π

T
k
)

Periodic functions with period T

w(t)
Ts

yn
Ts

v(t)

w(t)
FS←→ Wk

yn = w(nTs)
DFT←→ Yk =

∑N−1
n=0 w(nTs) e

−j(2π/N)kn

v(t) =
∑

n∈Z
w(nTs) δ(t − nTs) FS←→ Vk = 1

T

∑N−1
n=0 w(nTs) e

−j(2π/N)kn

Vk = 1
Ts

∑
n∈Z

Wk−Nn

Yk = TVk = T
Ts

∑
n∈Z

Wk−Nn

sTs (t) =
∑

n∈Z
δ(t − nTs) FS←→ STs,k = 1

Ts

∑
n∈Z

δk−Nn

Table 5.1 Summary of the Fourier-domain sampling relationships. For the periodic case,
the period T and sampling period Ts must be such that N = T/Ts is an odd integer.

and multirate operations; the polyphase methods of Section 3.9.3 can be critical
to achieving computationally efficient implementations. Sampling and interpola-
tion of functions also involves filtering, but this filtering is inherently analog – not
implementable with a digital computer.

For sequences, we have made no distinction between implementable and unim-
plementable filters. Infinite support necessitates recursive computation or trunca-
tion. Recursive computation is usually done in only one direction (forward in time)
and for systems with rational transfer functions. Importantly, this excludes the
ideal lowpass filters at the heart of Section 5.3.2. The approximation of these filters
is discussed in Chapter 6.

This section presents a set of methods for reconstruction that apply when, in
addition to samples, one is given constraints expressed as membership in one or
more convex sets.
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S2
S1x

S1

C1

x

C1 C2

x

(a) C = S1 ∩ S2. (b) C = C1 ∩ S1. (c) C = C1 ∩ C2.

Figure 5.44 Iterative solution of finding the nearest vector in a convex set using POCS.
By iteratively projecting to the closest vector, a solution belonging to the intersection is
found. (a) The convex sets are affine subspaces; the intersection is a single vector. (b)
Intersection of a general convex set and an affine subspace; there are many vectors in the
intersection. (c) Intersection of two general convex sets; there are many vectors in the
intersection.

5.6.1 Projection onto convex sets

Given a vector in a Hilbert space, the closest vector to it in a closed subspace S is
unique and given by the orthogonal projection onto S (see Theorem 2.26). More
generally, given a vector in a Hilbert space, the closest vector to it in a closed convex
set C is unique. Finding that vector is not always straightforward. A method called
projection onto convex sets (POCS) or alternating projections applies to cases where
C is the intersection of two convex sets upon which one can easily project.

Instead of trying to find the nearest vector that satisfies both set membership
constraints directly, one satisfies the constraints alternately; because of convexity
of the sets, the procedure is guaranteed to converge to a vector that belongs to
the intersection of the convex sets, irrespective of whether C contains one vector or
many (see Figure 5.44).

POCS-type algorithms are often used in problems involving bandlimited sig-
nals that have to satisfy some other convex constraint. They are used because they
are simple and can be easily applied to large problems. POCS can be extended to
the intersection of more than two convex sets, yielding sequential or cyclic projec-
tion algorithms. Actually, any closed convex set can be characterized by a set of
half-space constraints, but infinitely many constraints might be needed.

Papoulis–Gerchberg algorithm Consider the reconstruction of a partially observed
periodic function that is known to be bandlimited. Let x ∈ BL{− 1

2 (k0 − 1), . . . ,
1
2 (k0 − 1)} be a 1-periodic function, and suppose it is observed over only a part of
one period. For example,

y(t) =

{
x(t), for t ∈ [0, α] ∪ [β, 1);

0, for t ∈ (α, β),
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BL{− 1
2 (k0 − 1), . . . , 1

2 (k0 − 1)}

x̂(t) = y(t)
t ∈ (α, β)

x

y

Figure 5.45 Conceptual illustration of the Papoulis–Gerchberg algorithm to reconstruct
a bandlimited periodic function from observation of only one partial period.

with 0 < α < β < 1, is observed. Then, the information known about x is mem-
bership in two closed convex sets:

(i) S1 = BL{− 1
2 (k0−1), . . . , 1

2 (k0−1)} is a closed subspace (see Definition 5.23);
and

(ii) S2 = {x ∈ L2([0, 1)) | x(t) = y(t) for t ∈ [0, α] ∪ [β, 1)} is a closed affine
subspace.

To reconstruct x, we seek the function in C = S1 ∩ S2 that is closest to y.
The Papoulis–Gerchberg algorithm alternates between finding the nearest

function in S1 and the nearest function in S2, each through a simple enforcement
of equality constraints:

(i) x̂ ∈ S1 is achieved by setting X̂k = 0 for k 6∈ {− 1
2 (k0 − 1), . . . , 1

2 (k0 − 1)},
leaving X̂k unchanged otherwise, as in (5.120); and

(ii) x̂ ∈ S2 is achieved by setting x̂(t) = y(t) for t ∈ [0, α]∪ [β, 1) and leaving x̂(t)
unchanged otherwise.

Figure 5.45 illustrates the procedure conceptually, and Figure 5.46 shows computed
results. In the example, the Fourier series of x is supported only on {−10, . . . , 10},
and observations on the interval (α, β) = (0.19, 0.39) are missing. Reconstructions
and errors for 20 and 10 000 iterations are shown. Note the slow convergence at the
boundary of the observation interval in Figure 5.46(b).

Inpainting The same algorithm can be used for images, to recover a part of an
image that is missing. This is called inpainting.

Let x be an N ×N -size image, and assume that its two-dimensional DFT X
is bandlimited to k0,1 × k0,2 lowpass coefficients. A region of the image is missing,
so the observation y has M < N2 pixels matching x, with the rest equal to zero.
As long as M ≥ k0,1k0,2 holds, the image x is uniquely determined (though find-
ing it can be an ill-conditioned problem). This is because the bandlimitedness is
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(c) Residual error norm. (d) Error after 20 and 10 000 iterations.

Figure 5.46 Papoulis–Gerchberg algorithm results for reconstructing a bandlimited 1-
periodic function despite observations missing on the interval (0.19, 0.39). The dashed line
shows where observations are missing and the gray/black lines show the (b) reconstruction
x̂(i) and (d) error e(i) = x− x̂(i) after 20 and 10 000 iterations.

N2 − k0,1k0,2 constraints and the observed pixel values are M additional linearly
independent constraints, so in total we have at least N2 constraints.

The Papoulis–Gerchberg algorithm alternates between enforcing two convex
constraints as before:

(i) bandlimit x̂ by truncating the DFT; and

(ii) set x̂n1,n2 = yn1,n2 for those (n1, n2) for which yn1,n2 = xn1,n2 ; for the missing
values, leave x̂n1,n2 as it is.

Conceptually, the situation is again as in Figure 5.45. We show an example in
Figure 5.47. The original image shown in Figure 5.47(a) has half-band DFT. It
is observed with N2/10 pixels missing in stripes, as shown in Figure 5.47(b). The
Papoulis–Gerchberg algorithm was used on every column of the image, with the
result after 1000 iterations shown in Figure 5.47(c). Ultimately, the reconstruction
will be perfect. In this case, the inpainting looks like magic, since it completely
recovers the missing stripes.

Analysis The Papoulis–Gerchberg algorithm will converge to a unique solution
when specific conditions are satisfied. For example, for a unique solution that is
independent of the starting point, the number of unknowns (the number of miss-
ing time-domain observations) should be at most the number of equations (known
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494 Sampling and interpolation

(a) Bandlimited image. (b) Partial observation. (c) Reconstructed image.

Figure 5.47 Papoulis–Gerchberg algorithm for inpainting. The original image shown in
(a), known to have a bandlimited DFT, is only partially observed as shown in (b). The
reconstruction after 1000 iterations is shown in (c); after 2000 iterations, the reconstruction
(not shown) is visually indistinguishable from the original.

frequency components, usually set to zero). The speed of convergence depends on
more than these counts.

Let x ∈ CN be a discrete-time signal with DFT X ∈ CN . Partition x and X
as

x =



x0
x1
x2



} s
} q
}N − s− q

and X =



X0

X1

X2



} 1

2N − k
} 2k + 1
} 1

2N − k − 1
,

with dimensions as marked. With the above partitioning, X can be written as



X0

X1

X2


 =



F00 F01 F02

F10 F11 F12

F20 F21 F22





x0
x1
x2


 .

The discrete version of the Papoulis–Gerchberg algorithm solves the following prob-
lem: assuming that x0 and x2 are given (these are time-domain observations) and
X0 and X2 are known (these are often zero), find x1 and X1. Note that for the
algorithm to converge to a unique solution we need q ≤ N − 2k − 1.

Denote the estimates of the missing parts at iteration n by x̂
(n)
1 and X̂

(n)
1 .

Then, the next iteration will produce

X̂(n+1) =
[
F10 F11 F11

]


x0

x̂
(n)
1

x2


 ,

x̂(n+1) =
1

N

[
F ∗
01 F ∗

11 F ∗
21

]


X0

X̂
(n+1)
1

X2


 .
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Define Q = F11F
∗
11/N and P = F ∗

11F11/N ; then, the updates are

X̂
(n+1)
1 = (I −Q)X1 +QX̂

(n)
1 ,

x̂
(n+1)
1 = (I − P )x1 + P x̂

(n)
1 ,

where we have used that F10x0+F12x2 = X1−F11x1 and (1/N)(F ∗
01X0+F

∗
21X2) =

x1 − (1/N)F ∗
11X1. With the initial condition X̂

(0)
1 = 0,

X̂
(n)
1 = (I −Qn)X1. (5.129)

From (5.129), we see that the convergence depends on the operator norm of the
matrix Q (its largest eigenvalue). For example, if one chooses N = 32, s = 7, q = 15
and k = 6, the largest eigenvalue of Q is 0.999 999 998, causing the algorithm to
converge very slowly.
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496 Sampling and interpolation

Chapter at a glance

We now summarize the main concepts we have seen in this chapter. They all revolve around
sampling, interpolation, and their combinations, between a larger space and a smaller
space. In Section 5.2, the larger space is the space of vectors CM , while the smaller space
is CN , with N < M ; in Section 5.3, the larger space is the space of sequences ℓ2(Z) and the
smaller space is its subspace; in Section 5.4, the larger space is the space of functions L2(R)
and the smaller space is the space of sequences ℓ2(Z); and in Section 5.5, the larger space
is the space of T -periodic functions L2([− 1

2
T, 1

2
T )) and the smaller space is the space of

N-periodic sequences, which is equivalent to CN . By cascading interpolation followed by
sampling, or sampling followed by interpolation, we are able to move from one space to the
other and back. It is the match between sampling and interpolation that will determine
the type of recovery possible in each case. These concepts were illustrated in a simple
example in Figures 5.7–5.9.

Sampling and interpolation with orthonormal vectors/sequences/functions
• The sampling operator Φ∗ takes an input x from a larger space and maps it into an
output y in a smaller space. We assume orthonormality, that is, Φ∗Φ = I . We denote by
S the orthogonal complement of the null space of Φ∗,

S = N (Φ∗)⊥.

Inputs x ∈ N (Φ∗) are mapped to 0, while inputs x ∈ S can be recovered exactly. For
inputs x /∈ S, the component in N (Φ∗) is lost due to sampling, while the rest is preserved
through Φ∗x.

Input space Input Output Output space

CM x y CN

ℓ2(Z) xn yn Subset of ℓ2(Z)

L2(R) x(t) yn ℓ2(Z)

L2([− 1
2
T, 1

2
T )) x(t) yn CN

Table 5.2 Sampling, y = Φ∗x.

• The interpolation operator Φ takes an input y from a smaller space and maps it into an
output x̂ in a larger space. We denote by S the range of the interpolation operator Φ.

Input space Input Output Output space S = R(Φ)

CN y x̂ S ⊂ CM

ℓ2(Z) yn x̂n S ⊂ ℓ2(Z)
ℓ2(Z) yn x̂(t) S ⊂ L2(R)

CN yn x̂(t) S ⊂ L2([− 1
2
T, 1

2
T ))

Table 5.3 Interpolation, x̂ = Φy.

• Interpolation followed by sampling leads to perfect recovery because of the assumption
of orthonormality.
• Sampling followed by interpolation will recover the input perfectly only when x ∈ S.
Because of the choice of sampling and interpolation operators, P = ΦΦ∗ is an orthogonal
projection operator.
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Input Output Reconstruction Property

Interpolation followed by sampling (y = Φ∗Φy)

y y Perfect Φ∗Φ = I

Sampling followed by interpolation (x̂ = ΦΦ∗x)

x ∈ S x Perfect ΦΦ∗ = I for x ∈ S
x /∈ S x̂ Best approximation in S ΦΦ∗ is the orthogonal projection onto S

Table 5.4 Sampling and interpolation for the orthonormal case.

Sampling and interpolation with nonorthogonal vectors/sequences/functions
• The sampling operator Φ̃∗ takes an input x from a larger space and maps it into an
output y in a smaller space. We denote by S̃ the orthogonal complement of the null space
of Φ̃∗,

S̃ = N (Φ̃∗)⊥.

Inputs x ∈ N (Φ̃∗) are mapped to 0, while inputs x ∈ S̃ can be recovered exactly. For

inputs x /∈ S̃, the component in N (Φ̃∗) is lost due to sampling, while the rest is preserved

through Φ̃∗x.
• The interpolation operator Φ takes an input y from a smaller space and maps it into an
output x̂ in a larger space, as in the orthonormal case. We denote by S the range of the
interpolation operator Φ,

S = R(Φ).
• Interpolation followed by sampling, Φ̃∗Φ, will not always be identity; when it is, interpo-
lation and sampling are called consistent, and the input is perfectly recovered.
• Sampling followed by interpolation will recover the input perfectly only with consis-
tency and x ∈ S. When the interpolation operator is the pseudoinverse of the sampling
one, Φ = Φ̃(Φ̃∗Φ̃)−1, sampling and interpolation are consistent and furthermore ideally

matched. When sampling and interpolation are ideally matched, P = ΦΦ̃∗ is an orthogo-
nal projection operator. When they are consistent but not ideally matched, P is an oblique
projection operator.

Input Output Reconstruction Property

Interpolation followed by sampling (ŷ = Φ̃∗Φy)

y y Perfect Consistent Φ̃∗Φ = I

y ŷ Not perfect Φ̃∗Φ 6= I

Sampling followed by interpolation (x̂ = ΦΦ̃∗x)

x ∈ S x Perfect Consistent Φ̃∗Φ = I

x /∈ S x̂ Projection to S Consistent Φ̃∗Φ = I

x /∈ S x̂ Orthogonal projection to S Ideally matched Φ = Φ̃(Φ̃∗Φ̃)−1

Table 5.5 Sampling and interpolation for the general (nonorthonormal) case.
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Cambridge University Press (ISBN 110703860X) v1.1 [May 2014] [free version] Comments to book-errata@FourierAndWavelets.org



498 Sampling and interpolation

Historical remarks

The sampling theorem for bandlimited functions has an interesting
history. Long before computers, functions were tabulated for sets of
points in the domain, raising the question of interpolation between
these points. Exact recovery of bandlimited functions by sinc inter-
polation was first shown by Edmund T. Whittaker (1873–1956),
a British mathematician, in 1915. Harry Nyquist (1889–1976),
a Swedish electrical engineer working at Bell Labs, was interested in
signaling over bandlimited channels and formulated the celebrated
criterion bearing his name in 1928: sampling at twice the maximum
frequency uniquely specifies a bandlimited function. In the Russian
literature, Vladimir A. Kotelnikov (1908–2005), an information

theorist working in the Soviet Union, proved the sampling theorem independently in 1933.
John M. Whittaker (1905–1984), son of the initial contributor, added further results to
the interpolation theory on which his father had worked. Meanwhile, Herbert P. Raabe
(1909–2004), a German electrical engineer, wrote a dissertation in 1939 stating and
proving sampling results for bandlimited functions. In 1949, Isao Someya (1915–2007)
in Japan also proved the sampling theorem. In signal processing and communications,
Claude E. Shannon (1916–2001) (pictured), an American mathematician and engi-
neer, is most often connected to the sampling theorem, which frequently bears his name.
In 1948, in his landmark treatise A Mathematical Theory of Communication, Shannon for-
mulated the sampling theorem as the first step in digital communications, stating “this is
a fact which is common knowledge in the communication art” [89]. Shannon is considered
the father of information theory, which laid the foundation for digital communications and
source compression, and ultimately, the information society as we know it.

1915

E. Whittaker
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1935
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1938

Raabe

1946

Gabor

1948
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1949
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Further reading

Deterministic sampling results Many books cover sampling theory and its applica-
tions in signal processing and communications, for example, [67]. We also recommend
the review papers by Jerri [49] and by Unser [103]; the latter develops sampling in shift-
invariant subspaces. In [76], Papoulis introduced multichannel sampling and provided a
result equivalent to Theorem 5.17. Nonuniform sampling in its general form is more dif-
ficult; briefly, the sampling density has to be at least the Nyquist rate, and the set of
sample times cannot be too unevenly spread (for example, it should have no accumulation
points). Vetterli, Marziliano, and Blu [108] introduced an alternate sampling theory that
does not require finite bandwidth or shift invariance with a fixed shift T as in Defini-
tion 5.10. Rather, the sampling rate for exact reconstruction of a function is related to
its rate of innovation, which is defined as the function’s number of degrees of freedom per
unit time; an overview can be found in [8].

Sampling stochastic processes For stationary bandlimited processes, Theorem 5.18
combines results of Balakrishnan [2] and Belyaev [4]; Lloyd [61] produced the earliest
results with almost sure convergence. Note that ax ∈ BL[− 1

2
ω0,

1
2
ω0] implies that ax ∈

L2(R), which excludes the existence of Dirac delta components from the power spectrum.
Convergence in the mean-square sense can be proven even with Dirac delta components in
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the power spectrum, provided that the power spectrum is continuous at ± 1
2
ω0. We have

been guided by the historical review of Draščić [26] and also recommend [53,80,109].

Iterative reconstruction algorithms The alternating projection algorithm was intro-

duced and analyzed by Cheney and Goldstein [13]; Papoulis [75] and Gerchberg [33] pop-

ularized it for reconstruction of bandlimited signals. For its convergence behavior when

applied to discrete signals, see [50].
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Chapter 6

Approximation and
compression

“Far better an approximate answer to the right question,
which is often vague, than an exact answer to the wrong
question, which can always be made precise.”

— John Tukey

Contents

6.1 Introduction 508

6.2 Approximation of functions on finite intervals by
polynomials 513

6.3 Approximation of functions by splines 537

6.4 Approximation of functions and sequences by series
truncation 560

6.5 Compression 576

6.6 Computational aspects 591

Chapter at a glance 597

Historical remarks 598

Further reading 599

Exercises with solutions 601

Exercises 607

In previous chapters, we saw how to write a sequence or a function as an expansion
with a basis (Chapters 2–4) or using sampling and interpolation (Chapter 5). Often,
however, we do not have the luxury of representing the sequence or function exactly,
necessitating the development of approximate representations.

Truncation methods are used when an exact series expansion of a function or
sequence requires too many coefficients. For example, truncating a Fourier series
representation results in a bandlimited approximation of a periodic function. Digital
storage or transmission of a function or sequence requires both truncation and that
all quantities take values in countable sets.

507
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508 Approximation and compression

Approximation theory deals with the choice of expansion coefficients to keep;
compression theory deals with approximating those coefficients. Some methods are
familiar from calculus, such as approximation via Taylor series, while others are
likely unfamiliar, such as nonlinear approximation with bases. We review a collec-
tion of approaches with a clear message: there is no one-size-fits-all technique. Each
case requires a careful analysis and a well-engineered solution. A good solution can
have high impact, as demonstrated by the billions of cameras, mobile phones, and
computers using the MP3 format to represent music, the JPEG format to represent
images, and the MPEG format to represent videos; see the Further reading.

6.1 Introduction

There are many motivations for forming an approximation of a function.

(i) The function might not be known everywhere, but rather only at some specific
points. We may then form an approximation of the function by interpolating
between those points. Examples of interpolation on the entire real line were
developed in Section 5.4.

(ii) A series expansion of the function might have infinitely many terms. We
may then form an approximation with a finite number of terms to reduce the
computational complexity, storage, and communication requirements. Exam-
ples of infinite series expansions are the Fourier series expansions of periodic
functions in Section 4.5 and the sampling expansions in Chapter 5.

(iii) Regardless of the first two motivations, digital computation, storage, and com-
munication require real numbers to be approximated by numbers from count-
able sets. When this discretization is coarse, it has a significant impact on the
approximation quality as well.

To make these points concrete, we provide several approximations of a simple ex-
ample function. One example is not enough to reveal the relative strengths and
weaknesses of the various methods; these will become more apparent from other
examples provided throughout the chapter.

Function to be approximated Suppose that x is a piecewise-constant function
defined on the unit interval [0, 1]. Assume the number of constant pieces N to be
known, while the points of discontinuity {tn}N−1

n=1 ⊂ (0, 1) and the values of the
function on each piece {αn}N−1

n=0 ⊂ R are unknown. An example function for N = 3
is shown in Figure 6.1. Such a function is called parametric since, given N , the
2N − 1 parameters {tn}N−1

n=1 and {αn}N−1
n=0 specify x.

Least-squares polynomial approximation First, we try fitting x with a polynomial
of degree K. We should not expect too much, since the function x is discontinuous,
while polynomials are smooth. Least-squares approximation pK is achieved by
orthogonal projection to the subspace of polynomials of degree K, as shown in
Figure 6.2 for K = 0, 1, 2.
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Figure 6.1 Piecewise-constant function on [0, 1] with N = 3 pieces, points of disconti-
nuity {t1, t2} = { 15 , 4

7
}, and values {α0, α1, α2} = {1, 4, 3} on the pieces.
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(a) K = 0. (b) K = 1. (c) K = 2.

Figure 6.2 Least-squares polynomial approximations pK (solid lines) of x from Figure 6.1
(dashed lines) using polynomials of degree K.

Lagrange interpolation: Matching points Instead of using orthogonal projection
to a subspace of polynomials, we can try polynomial interpolation where the value
of the function is exactly matched at specific points – called nodes ; this is Lagrange
interpolation. An advantage is that the function need not be known everywhere,
but only at the nodes, which must be distinct. Figure 6.3 shows the result of
approximating the function in Figure 6.1 with one, two, and three nodes. The
results are not entirely satisfactory, unsurprisingly so, since polynomials are smooth,
unlike the function we are trying to match.

Taylor series expansion: Matching derivatives When an analytical expression of
the function to be approximated is available and derivatives exist up to some order,
we can match the function and its derivatives using the Taylor series at a point
of interest. The advantage is that the representation is exact at that point, while
it gradually worsens when moving away. In some sense, one can think of Taylor
series as function extrapolation, as opposed to the Lagrange method, which is an
interpolation method. Since the function x from Figure 6.1 is piecewise-constant,
Taylor series expansions are not interesting to plot.

Other polynomial approximation methods A mixture of Lagrange interpolation
and Taylor extrapolation is a hybrid method called Hermite interpolation, which
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(a) K = 0. Node: 0. (b) K = 1. Nodes: 0, 1
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Figure 6.3 Polynomial approximations pK (solid lines) of x from Figure 6.1 (dashed
lines) using polynomials of degree K determined by Lagrange interpolation with K + 1
evenly spaced nodes.

matches both points and derivatives. While orthogonal projection to a polynomial
space minimizes the L2 norm of the approximation error, Lagrange, Taylor, and
Hermite methods do not minimize a particular norm. Minimizing the maximum
error leads to minimax polynomial approximation and Chebyshev polynomials.

Approximation of functions by splines A spline is a piecewise-polynomial function
of degree K that has continuous derivatives up to order K − 1. We consider in
particular splines that are uniform, meaning that their pieces are of equal length;
uniform splines generate a shift-invariant subspace and are closely related to regular
sampling. Functions in spline spaces are another example (besides bandlimited
functions) where discrete-time processing implements continuous-time processing
in a precise way, and we will show this specifically for derivatives and integrals.

Consider approximating the function in Figure 6.1 using uniform, degree-0
splines. This seems like a good idea because both a degree-0 spline and the function
we want to approximate are piecewise-constant. The spline is constant over intervals
of length 1/N when the interval [0, 1] is split into N pieces of equal length. In
Figure 6.4, we show least-squares approximations using 3, 6, and 9 pieces. As the
number of pieces N increases, the approximation improves, although, in general,
even for a function that is piecewise-constant, there is no value of N such that the
function is exactly represented with a uniform, degree-0 spline.99

Linear approximation in Fourier bases Since we are considering a function on
an interval, it is natural to look at the Fourier series representation. We already
know that the Gibbs phenomenon will lead to poor convergence at discontinuities.
Figure 6.5 shows Fourier series approximations using the K lowest-frequency100

terms, with K = 3, K = 9, and K = 15. Since the Fourier series is an orthonor-
mal system, we obtain a least-squares approximation by simple truncation; the

99The function in Figure 6.1 is represented exactly when N is any integer multiple of 35; exact
representation for certain values of N occurs because the points of discontinuity are rational.
100Low refers to low absolute value; we could call these K central frequencies, with indices in
{− 1

2
(K − 1), . . . , 1

2
(K − 1)}, for odd K.
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(a) N = 3. (b) N = 6. (c) N = 9.

Figure 6.4 Uniform spline approximations x̂N (solid lines) of x from Figure 6.1 (dashed
lines) using splines of degree 0 with knots at integer multiples of 1/N .
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Figure 6.5 Linear approximations x̂K (solid lines) of x from Figure 6.1 (dashed lines)
using the K lowest-frequency terms of the Fourier series.

trigonometric polynomials used in the Fourier series are not a good match to the
piecewise-constant function and thus convergence is slow.

The approximation we just saw is an example of linear approximation. This
is because we decided a priori that x̂ would be the orthogonal projection of x onto
a (fixed) subspace spanned by the K lowest-frequency Fourier series basis vectors,
and the approximation is thus a linear operator applied to x.

Nonlinear approximation An alternative is to choose the largest-magnitude coef-
ficients in the orthonormal basis; the set of basis vectors used now depends on the
particular x we wish to approximate. This is an adaptive subspace approximation,
because we choose the best subspace depending on the function to be approximated;
it is a nonlinear function of x because the subspace selected to approximate a sum
x+ y is generally not the same as the subspaces selected to approximate the sum-
mands x and y separately. In Figure 6.6, we show this approximation using an
orthonormal Haar wavelet basis from (1.6)–(1.7), retaining the largest coefficients
in the expansion (1.9). We explore both linear and nonlinear approximations using
orthonormal bases in what follows.
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(a) K = 3. (b) K = 9. (c) K = 15.

Figure 6.6 Nonlinear approximations qxK (solid lines) of x from Figure 6.1 (dashed lines)
using the K largest-magnitude coefficients in a Haar wavelet basis expansion.
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Figure 6.7 Linear approximations with quantized coefficients x̂q,∆ (solid gray lines) of
x from Figure 6.1 (dashed lines) using rounding to the nearest multiple of ∆ of the 15
lowest-frequency terms of the Fourier series. The linear approximation with unquantized
coefficients x̂15 from Figure 6.5 is also shown (solid lines).

Compression Finally, we turn to compression, where we need to quantize the
parameters of any representation. This means that when a representation is to be
stored on a computer or digitally transmitted, the parameters must be in countable
sets, and the number of bits used to describe the signal becomes the currency. Take
the truncated Fourier series representation with 15 terms in Figure 6.5(c). One way
to quantize the coefficients is to round to the nearest multiple of a quantization step
size ∆. Increasing ∆ reduces the number of bits needed to represent each quantized
coefficient but increases the approximation error. Figure 6.7 shows some results.

The example raises many questions that are at the heart of signal compression:
What are the best representations for compression? What are good quantization
strategies? How should one allocate bits in a representation? The answers will
depend both on the signal models and on the acceptable level of computational
complexity. A branch of information theory called rate–distortion theory establishes
some fundamental bounds in a somewhat abstract setting where complexity is not
an issue. In practical signal compression, transform coding is the most common
technique, especially in multimedia compression standards.
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6.2 Approximation of functions on finite intervals by polynomials 513

Chapter outline

The chapter follows the progression of topics in this brief introduction. Section 6.2
discusses approximation of functions on finite intervals by polynomials, starting
with the orthonormal basis given by Legendre polynomials, moving to matching
a function at specific points using Lagrange interpolation, and reviewing the clas-
sic Taylor expansion that matches a function and its derivatives at a given point.
We discuss minimax approximation, near-minimax approximation using Chebyshev
polynomials, and filter design. Section 6.3 looks into approximating functions on
the real line by splines and the shift-invariant subspaces they generate. We calculate
explicit projections on spline spaces, as well as orthogonalizations. We also calcu-
late continuous-time operators such as derivatives and integrals using the discrete
sequence of spline coefficients. Section 6.4 considers approximations in bases via
truncation of series, both with linear and with nonlinear methods. For stochastic
processes, the Karhunen–Loève transform (KLT) is derived as an optimal linear
approximation method. In Section 6.5, we present the basic components of com-
pression – entropy coding and quantization – and combine them with a linear change
of basis to yield transform coding. Section 6.6 closes with computational aspects.

6.2 Approximation of functions on finite intervals by
polynomials

The previous chapter focused on sampling and interpolation operators and both
exact and approximate representations of sequences and functions using these op-
erators. The infinite lengths encountered there made it imperative to use LSI fil-
tering in the sampling and interpolation operations; otherwise, the computations
could become prohibitively complicated. We now shift our attention to approxi-
mating a function on a finite interval using polynomials. Here, we will not have
shift-invariance properties; in fact, the behavior near the endpoints of the interval
is often quite different from the behavior near the center.

Throughout this section, we denote the set of polynomials of degree at most
K defined on the finite interval [a, b] ⊂ R as PK [a, b] (see (3.296)). We denote
the function to be approximated on [a, b] by x, the approximating polynomial in
PK [a, b] by

pK(t) =

K∑

k=0

αkt
k, t ∈ [a, b], (6.1a)

and the error between the function x and its approximation pK by

eK(t) = x(t)− pK(t), t ∈ [a, b]. (6.1b)

Minimizing the different norms of the error leads to different types of approxima-
tions, and we also consider approximations based on enforcing certain equalities –
in values and derivatives – between x and pK . These approximations have various
strengths and weaknesses.

We start in Section 6.2.1 with least-squares polynomial approximation, in
which series expansions with respect to orthogonal polynomials in general, and
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514 Approximation and compression

Legendre polynomials in particular, arise naturally. Matching approximating poly-
nomials to a given function at specific points gives Lagrange interpolation in Sec-
tion 6.2.2, matching derivatives up to a certain order at a single point gives Taylor
series expansion in Section 6.2.3, and matching both values and derivatives at spe-
cific points gives Hermite interpolation in Section 6.2.4. Minimizing the maximum
absolute error (the L∞ norm of approximation error) is first studied generally in
Section 6.2.5 and then applied to FIR filter design in Section 6.2.6.

6.2.1 Least-squares approximation

Let x be a real-valued function in L2([a, b]). An approximation x̂ that minimizes

‖x− x̂‖22 =

∫ b

a

(x(t)− x̂(t))2 dt

over some set of candidates for x̂ is called a least-squares approximation. When the
set of candidates is a closed subspace, the least-squares approximation is given by
the orthogonal projection to the subspace (see Theorem 2.26). Furthermore, when
an orthonormal basis for the subspace is available, this orthogonal projection can
be computed using Theorem 2.41.

The set PK [a, b] is a closed subspace of L2([a, b]) with dimension K+1. With
{ϕ0, ϕ1, . . . , ϕK} an orthonormal basis for PK [a, b], the least-squares approxima-
tion of x is

pK(t) =

K∑

k=0

〈x, ϕk〉ϕk(t).

This is a polynomial of degree at most K because each ϕk is a polynomial of degree
at most K.

Example 6.1 (Least-squares approximation) Let us find the least-squares
degree-1 polynomial approximation of x(t) = sin(12πt) on [0, 1]. For this, we

need an orthonormal basis for P1[0, 1]; one such basis is {1,
√
3(2t− 1)}.101 The

least-squares approximation is

p1(t) =
〈
sin
(
1
2πt
)
, 1
〉
· 1 +

〈
sin
(
1
2πt
)
,
√
3(2t− 1)

〉√
3(2t− 1)

=
2

π
+

2
√
3(4 − π)
π2

√
3(2t− 1) =

12(4− π)
π2

t+
8(π − 3)

π2
.

This approximation is illustrated in Figure 6.8.

The method above uses an orthonormal basis for PK [a, b]. Such an orthonormal
basis is not unique. However, if one seeks a single sequence of vectors {ϕ0, ϕ1, . . .}
such that, for every K ∈ N,

{ϕ0, ϕ1, . . . , ϕK} is an orthonormal basis for PK [a, b],

101This particular basis comes from applying the Gram–Schmidt procedure to (1, t).
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Figure 6.8 Least-squares approximation p1 (solid line) of x(t) = sin( 1
2
πt) (dashed line)

on [0, 1] among polynomials of degree K = 1.

the solution is unique up to multiplications by ±1 and is obtained by using the
Gram–Schmidt procedure on {1, t, t2, . . .}. This construction creates an orthonor-
mal basis for PK [a, b] that is the union of an orthonormal basis for PK−1[a, b] and
a degree-K polynomial ϕK . With this nested sequence of bases, the least-squares
approximations satisfy the recursion

pK = pK−1 + 〈x, ϕK〉ϕK , (6.2)

which is a special case of the successive approximation property (2.108).

Legendre polynomials The Legendre polynomials,

Lk(t) =
1

2kk!

dk

dtk
(t2 − 1)k, k ∈ N, (6.3)

are orthogonal on [−1, 1]. The first few are shown in Figure 6.9 and are listed below:

L0(t) = 1, L3(t) = 1
2 (5t

3 − 3t),

L1(t) = t, L4(t) = 1
8 (35t

4 − 30t2 + 3),

L2(t) = 1
2 (3t

2 − 1), L5(t) = 1
8 (63t

5 − 70t3 + 15t).

Legendre polynomials are orthogonal but not orthonormal; an orthonormal set can
be obtained by dividing each polynomial by its norm ‖Lk‖2 =

√
2/(2k + 1). The

first few in normalized form are

L̄0(t) = 1√
2
, L̄3(t) =

√
7

2
√
2
(5t3 − 3t),

L̄1(t) =
√
3√
2
t, L̄4(t) = 3

8
√
2
(35t4 − 30t2 + 3),

L̄2(t) =
√
5

2
√
2
(3t2 − 1), L̄5(t) =

√
11

8
√
2
(63t5 − 70t3 + 15t).

Once we have the Legendre polynomials, changing the interval of interest does
not require a tedious application of the Gram–Schmidt procedure as we have done
in Solved exercise 2.5. Instead, polynomials that are orthogonal with respect to
the L2 inner product on [a, b] can be found by shifting and scaling the Legendre
polynomials; see Exercise 6.1.

Example 6.2 (Approximation with Legendre polynomials) Let

x1(t) = t sin 5t. (6.4)
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Figure 6.9 The first six Legendre polynomials {Lk}5k=0 (solid lines, from darkest to
lightest); these are orthogonal on the interval [−1, 1].
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(a) Approximations. (b) Errors.

Figure 6.10 Least-squares approximations pK and approximation errors eK , K =
0, 1, 2, 3 (solid lines, from darkest to lightest), of x1 in (6.4) on [0, 1] (dashed line) using
an orthogonal polynomial basis of degree K. The curves are labeled by the polynomial
degree.

To form least-squares polynomial approximations on [0, 1], we need orthogonal
polynomials in L2([0, 1]); we can obtain these by shifting and scaling the Legen-
dre polynomials. The first few, in normalized form, are

ϕ0(t) = 1, ϕ2(t) =
√
5(6t2 − 6t+ 1),

ϕ1(t) =
√
3(2t− 1), ϕ3(t) =

√
7(20t3 − 30t2 + 12t− 1).

(The first two of these polynomials were used in Example 6.1.) The best constant
approximation is p0 = 〈x, ϕ0〉ϕ0, and higher-degree least-squares approximations
can be found through (6.2). The least-squares approximations up to degree 3 are

p0(t) ≈ −0.10, p2(t) ≈ −0.11 + 2.42t− 3.59t2,
p1(t) ≈ 0.49− 1.17t, p3(t) ≈ −0.20 + 3.56t− 6.43t2 + 1.90t3.

The resulting approximations and errors are shown in Figure 6.10.

Other orthogonal polynomials While Legendre polynomials and their shifted ver-
sions solve our least-squares approximation problems, changing the inner product
to

〈x, y〉 =

∫ b

a

x(t) y(t)W (t) dt,
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Family Weight Interval Degree-k polynomial

Expression Recursion

Legendre 1 [−1, 1] 1

2kk!

dk

dtk
(t2 − 1)k

2k − 1

k
tLk−1(t) −

k − 1

k
Lk−2(t)

Chebyshev
1√

1− t2
[−1, 1] cos(k arccos t) 2tTk−1(t) − Tk−2(t)

Laguerre e−t [0,∞)
et

k!

dk

dtk
(e−ttk)

2k − 1− t
k

Lk−1(t) −
k − 1

k
Lk−2(t)

Hermite e−t2 (−∞,∞) a−3k/2k!tk 2tHk−1(t) − 2(k − 1)Hk−2(t)

·
⌊k/2⌋∑

ℓ=0

(−2t2/a)−ℓ

ℓ!(k − 2ℓ)!

Table 6.1 Families of orthogonal polynomials.

where W (t) is a nonnegative weight function, changes the orthogonality relation-
ships among the polynomials. One of the ramifications is that applying the Gram–
Schmidt procedure to the ordered monomials {1, t, t2, . . .} yields a different set of
polynomials. Also, if the weight function has adequate decay, inner products be-
tween polynomials on [a, ∞) or (−∞, ∞) can be finite, so we need not consider
only finite intervals. Table 6.1 gives families of orthogonal polynomials that arise
from a few choices of weight functions and intervals of orthogonality.

Orthogonal polynomials have many applications in approximation theory and
numerical analysis; Exercises 6.2 and 6.3 explore some of their properties. We will
consider Chebyshev polynomials in Section 6.2.5 because they play an important
role in L∞ approximation.

6.2.2 Lagrange interpolation: Matching points

In many situations in which we desire a polynomial approximation of a function
on an interval, we cannot use inner products of the function with a set of basis
functions because we might not know the function on the entire interval, or we
might not want to compute the required integrals.102 However, if we know the
values of the function at certain points in the interval, we can find the polynomial
that matches the function at these points. We now look at when such matching
exists, when it is unique, and how to bound the approximation error.

From (6.1a), a polynomial of degree K has K + 1 parameters and is thus
determined by K + 1 independent and consistent constraints. Let us look carefully
at whether specifying pK at K + 1 points provides suitable constraints.

Fix a set of K +1 distinct nodes {tk}Kk=0 ⊂ [a, b], and assume that the values
of the function x at the nodes, yk = x(tk), k = 0, 1, . . . , K, are known. Requiring
pK to match x at the nodes gives a system of K + 1 linear equations with K + 1

102The difficulty of computing integrals is one common reason for forming a polynomial approx-
imation; integrating the polynomial approximant leads to numerical integration techniques such
as the trapezoidal rule and Simpson’s rule.
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unknowns, 


1 t0 t20 · · · tK0
1 t1 t21 · · · tK1
...

...
...

...
1 tK t2K · · · tKK







α0

α1

...
αK


 =




y0
y1
...
yK


 . (6.5)

The matrix in (6.5) is a square Vandermonde matrix, and, as such, it is invertible
if and only if the nodes are distinct; see (2.249). Thus, the values of x at K + 1
distinct nodes uniquely specify an interpolation polynomial of degree at most K.
As we know from Appendix 2.B, having more samples (equations) will not lead to
a solution: the range of the Vandermonde matrix will be a proper subspace and
the vector of samples will (in general) not be in that subspace. On the other hand,
having fewer samples always leaves the polynomial unspecified, as there will be
infinitely many solutions to (6.5).

Solving the system of linear equations (6.5) is one way to find an interpolating
polynomial; however, we use this only for the uniqueness argument. Knowing now
that the degree-K polynomial interpolating K + 1 distinct points {(tk, yk)}Kk=0 is
unique, any formula for a degree-K polynomial pK that satisfies the interpolation
condition pK(tk) = yk, k = 0, 1, . . . , K, gives the interpolating polynomial. One
such formula is as follows:

Definition 6.1 (Lagrange interpolating polynomial) Given K ∈ N and
values of a function x at K + 1 distinct nodes {tk}Kk=0,

pK(t) =

K∑

k=0

x(tk)

K∏

i = 0
i 6= k

t− ti
tk − ti

(6.6)

is called the Lagrange interpolating polynomial for {(tk, x(tk))}Kk=0.

The Lagrange polynomial interpolates correctly because

K∏

i = 0
i 6= k

tℓ − ti
tk − ti

=

{
1, for ℓ = k ∈ {0, 1, . . . , K};
0, for ℓ ∈ {0, 1, . . . , K} \ {k}.

The Lagrange interpolating polynomial equation is derived in Exercise 6.4.

Example 6.3 (Lagrange interpolation) Let us construct approximations
using (6.6) for two functions on [0, 1], one continuous, x1 from (6.2), and the
other not,

x2(t) =

{
t, for 0 ≤ t < 1/

√
2;

t− 1, for 1/
√
2 ≤ t < 1.

(6.7)

Let the nodes be k/K for k = 0, 1, . . . , K (although even spacing of nodes
is not a requirement). Figure 6.11 shows the functions (dashed lines) and the
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(a) x1. (b) x2.

Figure 6.11 Lagrange interpolations pK , K = 1, 2, . . . , 7 (solid lines, from darkest to
lightest), of x1 in (6.4) and x2 in (6.7) (dashed lines) using K+1 nodes evenly spaced over
[0, 1]: tk = k/K, k = 0, 1, . . . , K. The curves are labeled by the polynomial degree.

interpolating polynomials for K = 1, 2, . . . , 7 (solid lines, from darkest to light-
est). The continuous function x1 is approximated much more closely than the
discontinuous function x2.

This example suggests that, when polynomial interpolation is used, the quality
of the approximation is affected by the smoothness of the function. Indeed, for
functions that are sufficiently smooth over the range of interest (encompassing the
nodes but also wherever the approximation is to be evaluated), the pointwise error
can be bounded precisely using the following theorem:

Theorem 6.2 (Error of Lagrange interpolation) Let K ∈ N, let
{tk}Kk=0 ⊂ [a, b] be distinct, and assume that x has K + 1 continuous derivatives
on [a, b]. Then, for pK defined in (6.6) and any t ∈ [a, b], the error eK = x− pK
satisfies

eK(t) =

∏K
k=0(t− tk)
(K + 1)!

x(K+1)(ξ) (6.8a)

for some ξ between the minimum and maximum of {t, t0, t1, . . . , tK}. Thus,

|eK(t)| ≤
∏K

k=0|t− tk|
(K + 1)!

max
ξ∈[a, b]

∣∣x(K+1)(ξ)
∣∣, (6.8b)

for every t ∈ [a, b].

One immediate consequence of the theorem is that if x is a polynomial of degree K,
the interpolant pK matches everywhere. This follows from (6.8a) or (6.8b) because
x(K+1) is identically zero. Of course, this was already obvious from the uniqueness
of the interpolating polynomial. In general, the factor maxξ∈[a, b]|x(K+1)(ξ)| in the
error bound is a global smoothness measure; it affects the pointwise error bound
identically over the entire interval.
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Figure 6.12 Bases of degree-K Lagrange interpolating polynomials forK+1 nodes evenly
spaced over [0, 1]: tk = k/K, k = 0, 1, . . . , K (solid lines, from darkest to lightest).

One interesting aspect of the error bound (6.8b) is that it depends on t through

the
∏K

k=0|t− tk| factor. The error is zero at any node because of the interpolating
property, but the bound behaves differently in the neighborhoods of different nodes.
Moving away from a node by a small amount ε, that is, setting t = tk + ε, we have

K∏

k=0

|t− tk| ≈ |ε|
∏

i, i6=k

|tk − ti|.

If the nodes are evenly spaced, the error bound becomes worse more quickly around
an extremal node than around a central node (see also Figure 6.11). The poten-
tial for worse behavior at the endpoints can also be seen if we view the Lagrange
interpolation formula as a series expansion using K + 1 polynomials

ℓk,K(t) =

K∏

i = 0
i 6= k

t− ti
tk − ti

, k = 0, 1, . . . , K, (6.9)

as a basis. Each basis function depends on all of the nodes; two examples with
evenly spaced nodes are shown in Figure 6.12. These illustrate that, at node tk,
the basis function ℓk,K is 1 and the other basis functions are 0. Also, ℓk,K(t) is
not necessarily small far away from tk. This means that the sample x(tk) affects
the interpolation far from tk. In particular, Figure 6.12(b) illustrates that, unless
K is small, the basis functions become large near the ends of the approximation
interval. This is problematic for controlling the pointwise error. We will see later
that a different spacing of nodes can improve the situation substantially.

6.2.3 Taylor series expansion: Matching derivatives

In the previous section, we used the Vandermonde system (6.5) to establish that
matching K+1 sample values will uniquely specify a degree-K polynomial approx-
imation of a real-valued function in L2([a, b]). Other ways of specifying K + 1
constraints exist, one of the most familiar being the Taylor series expansion.
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Figure 6.13 Taylor series approximations pK , K = 1, 2, . . . , 5 (solid lines, from darkest
to lightest), of x1 in (6.4) on [0, 1] (dashed line) using expansion around 1

2
. The curves

are labeled by the polynomial degree.

Definition 6.3 (Taylor series expansion) Given K ∈ N and values of a
function x and its first K derivatives at t0,

pK(t) =

K∑

k=0

(t− t0)k
k!

x(k)(t0) (6.10)

is called the Taylor series expansion of x around t0.

The Taylor series expansion has the property that pK and x have equal derivatives
of order 0, 1, . . . , K at t0. (The zeroth derivative is the function itself.)

Example 6.4 (Taylor series expansion) Consider Taylor series expansions
of the functions x1 from (6.2) and x2 from (6.7) around 1

2 . Figure 6.13 shows
x1 and its expansions of degree K = 1, 2, . . . , 5. The Taylor series for x2 is not
interesting to plot because we have pK(t) = t for all degrees ≥ 1. While this is
exact for t ∈ [0, 1/

√
2], the error for t ∈ (1/

√
2, 1] is not reduced by increasing

the degree.

A Taylor series expansion has the peculiar property of getting all its informa-
tion about x from an infinitesimal interval around t0. As Example 6.4 illustrated,
this means that the approximation can differ from the original function by an arbi-
trary amount if the function is discontinuous. For functions with sufficiently many
continuous derivatives, a precise error bound is given by the following theorem:

Theorem 6.4 (Error of Taylor series expansion) Let K ∈ N, let
t0 ∈ [a, b], and assume that x has K + 1 continuous derivatives on [a, b]. Then,
for pK defined in (6.10), the error eK = x− pK satisfies

eK(t) =
(t− t0)K+1

(K + 1)!
x(K+1)(ξ) (6.11a)
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Figure 6.14 Errors of Lagrange and Taylor approximations eK , K = 0, 1, . . . , 5 (solid
lines, from darkest to lightest), of x1 in (6.4). The Lagrange interpolations are with
evenly spaced nodes (see Figure 6.11). The Taylor series expansions are around 1

2
(see

Figure 6.13). The curves are labeled by the polynomial degree.

for some ξ between t and t0. Thus,

|eK(t)| ≤ |t− t0|K+1

(K + 1)!
max
ξ∈[a, b]

∣∣x(K+1)(ξ)
∣∣, (6.11b)

for every t ∈ [a, b].

The error bounds (6.8b) and (6.11b) are very similar. Both are proportional to

1

(K + 1)!
max
ξ∈[a, b]

∣∣x(K+1)(ξ)
∣∣,

the global smoothness measure. They differ in the dependence on t, but in a way
that is consistent: If every tk in (6.8b) is replaced by t0, then the two error bounds
are identical. Lagrange interpolation depends on the nodes being distinct, so we
cannot literally make all the tk values equal. However, having K +1 nodes distinct
but closely clustered is similar to having derivatives up to order K at a single node.
This is explored further in Solved exercise 6.1. Figure 6.14 shows a comparison of
the errors for Lagrange and Taylor approximations of x1 in (6.4).

The error bounds (6.8b) and (6.11b) require greater smoothness as the polyno-
mial degree is increased. Furthermore, there exist infinitely differentiable functions
for which these bounds do not even decrease as K is increased; see Exercise 6.5.

6.2.4 Hermite interpolation: Matching points and derivatives

A natural combination of the ideas of Lagrange interpolation and Taylor series is
to determine a polynomial by fixing some number of derivatives at each of several
nodes. This is called Hermite interpolation.
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6.2 Approximation of functions on finite intervals by polynomials 523

Example 6.5 (Hermite interpolation) Suppose that we are given the val-
ues of a function x and its derivative at distinct t0 and t1:

y0 = x(t0), z0 = x′(t0), y1 = x(t1), z1 = x′(t1).

We want to confirm that fixing these four values uniquely determines a cubic
polynomial. Write the cubic polynomial and its derivative as

p3(t) = α0 + α1t+ α2t
2 + α3t

3,

p′3(t) = α1 + 2α2t+ 3α3t
2.

Then finding their values at t0 and t1 yields



1 t0 t20 t30
1 t1 t21 t31
0 1 2t0 3t20
0 1 2t1 3t21







α0

α1

α2

α3


 =




y0
y1
z0
z1


 . (6.12)

The matrix in this equation is invertible whenever t0 6= t1 because then its
determinant −(t1−t0)4 is nonzero. Thus, the polynomial is uniquely determined.

More generally, suppose that the derivatives of order 0, 1, . . . , dk are specified
at each distinct node tk for k = 0, 1, . . . , L. Since the constraints are independent,
a polynomial of degree K = (

∑L
k=0(dk + 1)) − 1 can be uniquely determined (see

Exercise 6.6).

6.2.5 Minimax polynomial approximation

The techniques we have studied thus far determine a polynomial approximation
through linear operations: Least-squares approximations – minimizing the L2 norm
of an approximation error – come through the linear operation of orthogonal pro-
jection to a subspace, and the interpolation and extrapolation methods use some
combination of samples of a function and its derivatives to determine a polynomial
approximation through the solution of a system of linear equations. We now turn
to the minimization of the maximum pointwise error – the L∞ norm of the error.
Since L∞([a, b]) is not a Hilbert space, we do not have geometric notions such as
the orthogonality of the error to the subspace of polynomials PK [a, b] to guide the
determination of the optimal approximation. We will see that the optimal polyno-
mial approximation is generally more difficult to compute, but interpolation with
specially chosen nodes is nearly optimal.

Definition 6.5 (Minimax approximation) Given x ∈ C[a,b], an approxima-
tion x̂ that minimizes

‖x− x̂‖∞ = max
t∈[a, b]

|x(t)− x̂(t)|

over some set of candidates for x̂ is called a minimax approximation.
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The following theorem shows that the set of polynomials is rich enough to
enable arbitrarily small L∞ error for any continuous function. A constructive proof
is discussed in Exercise 6.8.

Theorem 6.6 (Weierstrass approximation theorem) Let x be continuous
on [a, b] and let ε > 0. Then, there exists a polynomial p for which

|e(t)| = |x(t)− p(t)| ≤ ε for every t ∈ [a, b]. (6.13)

Denote by pK the minimax approximation among polynomials of degree at most
K, and let ep,K be the error of that approximation with L∞ norm εp,K = ‖ep,K‖∞.
The theorem states that the mere continuity of x is enough to ensure that εp,K can
be made arbitrarily small by choosing K large enough. This contrasts starkly with
the L∞ error bounds that we have seen thus far, (6.8b) for Lagrange interpolation
and (6.11b) for Taylor series expansion, which require greater smoothness as the
polynomial degree is increased.

Sometimes bounds can be unduly pessimistic even when performance is rea-
sonable, so it is useful to examine the performance more closely. With Lagrange
interpolation, the difficulty from an L∞ perspective is that the maximum errors
between pairs of neighboring nodes can differ greatly, so the L∞ error can be large
even when the function and its approximation are close over most of the approxi-
mation interval. When the nodes are evenly spaced, the maximum error tends to
be largest near the ends of the approximation interval; we observed this in Fig-
ure 6.14(a), connected also to the large peaks shown in Figure 6.12. The large
oscillations near the endpoints can be so dramatic that the L∞ error diverges as K
increases, even for a C∞ function; see Exercise 6.5. Thus, we must move beyond
interpolation with evenly spaced nodes for minimax approximation. Moreover, with
an approximating polynomial function qK , it never pays to have fewer than K + 1
points at which the error is zero. Both bounding the minimax error and computing
a minimax approximation depend on understanding what happens between these
points.

Let {tk}Kk=0 ⊂ [a, b] be K + 1 distinct points in increasing order selected to
partition [a, b] into K + 2 subintervals,

[a, b] =
K+1⋃

k=0

Ik, where Ik =





[a, t0), for k = 0;
[tk−1, tk), for k = 1, 2, . . . , K;

[tK , b], for k = K + 1.
(6.14)

(While it is natural to think of the specified points as satisfying eq,K(tk) = x(tk)−
qK(tk) = 0 for k = 0, 1, . . . , K + 1, this is not necessary for the developments that
follow.) Since the subintervals cover [a, b], the L∞ error is the maximum of the
errors on the subintervals,

εq,K = ‖eq,K‖∞ = max
k=0,1,...,K+1

sup
t∈Ik

|eq,K(t)|.
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6.2 Approximation of functions on finite intervals by polynomials 525

The following theorem shows that for a minimax approximation, the error eq,K
should oscillate in sign from one subinterval Ik to the next and the maximum
absolute value of the difference should be the same on every subinterval.

Theorem 6.7 (de la Vallée-Poussin alternation theorem) Let x be
continuous on [a , b], and let [a, b] be partitioned as in (6.14) for some K ∈ N.
Suppose that there exists a polynomial qK of degree at most K and numbers
sk ∈ Ik for k = 0, 1, . . . , K + 1, such that eq,K(sk) alternates in sign. Then

min
k=0,1,...,K+1

|eq,K(sk)| ≤ εp,K ≤ εq,K , (6.15)

where εp,K is the L∞ norm of the error of the minimax approximation among
polynomials of degree at most K.

The first of the two inequalities in (6.15) is the interesting one; the second simply
states that the minimax approximation pK is at least as good as qK .

To use the theorem, we must find an approximating polynomial qK that creates
enough alternations in the sign of the error. Then, the strongest statement is
obtained by choosing sk such that each |eq,K(sk)| is maximum on the subinterval
Ik. The main result of the theorem is that there is no way to change the polynomial
to push the error uniformly below the smallest of the local maxima of |eq,K(t)|.
Intuitively, pushing the worst (largest) of the local maxima down inevitably has
the effect of pushing the best (smallest) of the local maxima up. The next theorem
makes the stronger statement that equality of the local maxima happens if and only
if the minimax approximation has been found.

Theorem 6.8 (Chebyshev equioscillation theorem) Let x be continuous
on [a, b], and let K ∈ N. Denote by εp,K the L∞ norm of the error of the
minimax approximation among polynomials of degree at most K. The minimax
approximation pK is unique and determined by the following property: There are
at least K + 2 points {sk}K+1

k=0 satisfying

a ≤ s0 < s1 < · · · < sK+1 ≤ b

for which

x(sk)− pK(sk) = σ(−1)kεp,K , k = 0, 1, . . . , K + 1,

where σ = ±1, independently of k.

We illustrate both theorems by continuing our previous examples. The numerical
calculations of minimax approximations in the following example were performed
using the Remez algorithm; see the Further reading.
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Figure 6.15 Minimax approximations pk and approximation errors ep,K , K = 0, 1, 2, 3
(solid lines, from darkest to lightest), of x1 in (6.4) on [0, 1] (dashed line). The curves
are labeled by the polynomial degree. Horizontal grid lines in the error plot mark the
maxima and minima, highlighting that, for each degree, the minimum is the negative of
the maximum.

Example 6.6 (Minimax approximation) Consider again approximating
x1(t) = t sin 5t on [0, 1] (from (6.4)). To draw conclusions from Theorem 6.7, we
must find a qK such that the error eq,K changes sign at least K + 1 times. This
is true for the least-squares approximations computed in Example 6.2, shown
in Figure 6.10. For each degree K ∈ {0, 1, 2, 3}, the error eq,K does indeed
change sign at least K + 1 times, allowing us to choose K + 2 values sk ∈ Ik
to apply Theorem 6.7. (The error of the degree-2 approximation has one more
sign change than necessary.) By choosing {sk}K+1

k=0 to give maxima of |eq,K(t)|
in each interval, from (6.15) we get

0.46 ≤ ‖ep,0‖∞, 0.07 ≤ ‖ep,2‖∞,
0.33 ≤ ‖ep,1‖∞, 0.01 ≤ ‖ep,3‖∞.

The first four minimax polynomial approximations of x1(t) = t sin 5t and the L∞
norms of their errors are

p0(t) ≈ −0.30, ‖ep,0‖∞ ≈ 0.66,
p1(t) ≈ 0.40− 1.00t, ‖ep,1‖∞ ≈ 0.40,
p2(t) ≈ 0.09 + 1.41t− 2.62t2, ‖ep,2‖∞ ≈ 0.16,
p3(t) ≈ −0.12 + 3.22t− 6.31t2 + 2.13t3, ‖ep,3‖∞ ≈ 0.12.

The errors of these approximations ep,K are shown in Figure 6.15. The white
lines highlight that the approximation error lies between ±‖ep,K‖∞ and reaches
these boundaries at least K + 2 times, satisfying the condition of Theorem 6.8.
The intuition behind the theorem is that not reaching the ±‖ep,K‖∞ bounds
K + 2 times would waste some of the margin for error.

Computation of minimax approximations is generally difficult because the values of
the extrema of the error can depend on the polynomial coefficients in a complicated
way.
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Near-minimax approximation An alternative to finding an exact minimax ap-
proximation is to use an approximation that is simpler to compute but only nearly
minimax, such as using Lagrange interpolation with unevenly-spaced nodes chosen
based on the approximation interval but not based on the function. One methodical
way to keep the L∞ norm of the approximation error small is to choose the nodes
using roots of Chebyshev polynomials.

Theorem 6.9 (Chebyshev polynomials) The Chebyshev polynomials, defined
as the unique polynomials for which

Tk(t) = cos(k arccos t), t ∈ [−1, 1], k ∈ N, (6.16)

satisfy the following properties:

(i) Tk is a polynomial of degree k.

(ii) For any distinct k and m, Tk and Tm are orthogonal on [−1, 1] with the
weight function (1− t2)−1/2; that is,

∫ 1

−1

Tk(t)Tm(t) (1 − t2)−1/2 dt = 0. (6.17)

(iii) The recursion

Tk+1(t) = 2tTk(t)− Tk−1(t), k ∈ Z+, (6.18)

is satisfied, with T0(t) = 1 and T1(t) = t.

(iv) The roots of Tk are

tm = cos

(
m+ 1

2

k
π

)
, m = 0, 1, . . . , k − 1. (6.19a)

(v) The relative maxima and minima of Tk are at

cos
(m
k
π
)
, m = 0, 1, . . . , k. (6.19b)

(vi) For any k ∈ Z+, the leading coefficient of Tk is 2k−1.

The theorem is proven in Solved exercise 6.2.
The first few Chebyshev polynomials, plotted in Figure 6.16, are

T0(t) = 1, T3(t) = 4t3 − 3t,

T1(t) = t, T4(t) = 8t4 − 8t2 + 1,

T2(t) = 2t2 − 1, T5(t) = 16t5 − 20t3 + 5t.

From (6.16), it is clear that |Tk(t)| ≤ 1 for every t ∈ [−1, 1] and k ∈ N. While the
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Figure 6.16 The first six Chebyshev polynomials {Tk}5k=0 (solid lines, from darkest to
lightest).

Legendre polynomials also satisfy this bound, they do not cover the interval [−1, 1]
evenly; compare Figure 6.16 with Figure 6.9.

Recall our observation regarding the weakness of Lagrange interpolation with
evenly spaced nodes from an L∞ perspective: the error is large near the ends of
the interval of approximation. We can counter this by having more nodes near the
ends of the interval at the expense of having fewer near the center. Specifically, we
can minimize the maximum of the factor

∏K
k=0|t− tk| from the error bound (6.8b).

When the interval of approximation is [−1, 1], the resulting nodes are zeros of the
Chebyshev polynomial of degree K.

The factor
∏K

k=0|t− tk| is the absolute value of a polynomial of degree K +1
with leading coefficient 1. Among all polynomials with degree K + 1 and leading
coefficient 1, the scaled Chebyshev polynomial 2−KTK+1 has minimum L∞([−1, 1])
norm, which is equal to 2−K . Therefore, choosing {tk}Kk=0 to be the K +1 zeros of

TK+1 minimizes maxt∈[−1, 1]

∏K
k=0|t− tk|. The bound (6.8b) then becomes

|eq,K(t)| ≤ 1

(K + 1)!2K
max

ξ∈[−1,1]

∣∣x(K+1)(ξ)
∣∣ (6.20)

for approximation of x on [−1, 1] with a polynomial qK of degree at most K. The
L∞([−1, 1]) norm of the error can be bounded relative to the L∞([−1, 1]) norm of
the error of the minimax approximation as

εq,K ≤
(
2

π
ln(K + 1) + 2

)
εp,K , (6.21)

so it is near-minimax in a precise sense.

Example 6.7 (Approximation with Chebyshev polynomials) Let us
return to the approximation of x1(t) = t sin 5t on [0, 1] (from (6.4)). If the
interval of interest were [−1, 1], we would obtain near-minimax approximations
satisfying (6.20) and (6.21) by interpolating with the roots of TK(t) as the nodes.
The only necessary modification is to map the roots from [−1, 1] to [0, 1] with
an affine transformation. The errors of the resulting approximations are plotted
for K ∈ {0, 1, 2, 3} in Figure 6.17.

Table 6.2 summarizes the L∞ error performances of various approximations
from this and previous examples. The first five are significantly easier to compute
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Figure 6.17 Near-minimax polynomial approximations qK and approximation errors
eq,K , K = 0, 1, 2, 3 (solid lines, from darkest to lightest), of x1 in (6.4) on [0, 1] (dashed
line) using interpolation with Chebyshev nodes. The curves are labeled by the polynomial
degree.

Approximation method Polynomial degree

0 1 2 3

Least-squares approximation 0.868 0.489 0.318 0.223

Lagrange interpolation 0.963 0.785 0.346 0.197

Taylor series expansion around 1
2

1.260 1.000 1.380 1.270

Near-minimax approximation 1.260 0.637 0.298 0.144

Minimax approximation 0.661 0.402 0.149 0.124

Table 6.2 Summary of L∞ errors of approximations of x1(t) = t sin 5t on [0, 1].

than the minimax approximation. Least-squares approximation is an orthogonal
projection to the subspace of polynomials; it is optimal for L2 error by definition,
and its L∞ error is not necessarily small. A Taylor series expansion is accurate
near the point at which the function is measured (assuming that the function
is smooth), but quite poor farther away. Interpolation using uniform nodes
is improved upon by the use of Chebyshev nodes; this becomes increasingly
important as the polynomial degree is increased. Note also that (6.21) is satisfied.

6.2.6 Filter design

The design of FIR filters with linear phase (see Section 3.4.4) and a given desired
magnitude response can be posed as finding a polynomial to approximate a cer-
tain function. Therefore, filter design provides case studies for the least-squares
and minimax polynomial approximation methods of the preceding sections. It also
motivates the extension of minimax methods to weighted minimax approximation.

We consider the case of zero-phase filters, which for any length greater than
1 are noncausal but can be shifted to produce causal, linear-phase filters. Suppose
that a desired frequency response Hd is given, and it is real (zero phase) and even.
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To design an FIR filter with real coefficients and zero phase, we assume length
L = 2K + 1 and even symmetry,

hn =

{
h−n, for |n| ≤ K;

0, otherwise.
(6.22)

The frequency response of this filter is

H(ejω) =

K∑

n=−K

hne
−jωn (a)

= h0 +

K∑

n=1

hn
(
e−jωn + ejωn

)

(b)
= h0 + 2

K∑

n=1

hn cosnω,

where (a) follows from the symmetry imposed in (6.22); and (b) from (3.286).
Let us now see why the choice of coefficients {hn}Kn=0 to make the frequency

response H approximate the desired frequency response Hd is a polynomial approx-
imation problem. By Theorem 6.9(i), cosnω is a polynomial of t = cosω of degree
n. Therefore, H(ejω) is a polynomial of t of degreeK. The relation between ω and t
provides a one-to-one correspondence between ω ∈ [0, π] and t ∈ [−1, 1], and there
is no need to consider ω ∈ [−π, 0) separately because H(ejω) and Hd(ejω) are even
functions of ω. Thus, we may view our design problem as the approximation of a
function by a polynomial of degree K on [−1, 1]. While this will be useful when
applying the minimax criterion, it is of no benefit when applying the least-squares
criterion.

Least-squares approximation A simple criterion to apply is to minimize the
squared L2 norm of the frequency response approximation error,

argmin
{h0,h1,...,hK}

‖Hd(ejω)−H(ejω)‖22 = argmin
{h0,h1,...,hK}

∫ π

−π

|Hd(ejω)−H(ejω)|2 dω.

By the Parseval equality (3.107), this is equivalent to minimizing the squared ℓ2

norm of the impulse response error,

argmin
{h0,h1,...,hK}

‖hd − h‖22 = argmin
{h0,h1,...,hK}

∑

n∈Z

|hdn − hn|2. (6.23)

Since the objective function is a sum of nonnegative terms, the best we can do is
have zero contribution from each of the terms n ∈ {−K, −K + 1, . . . , K}; thus,
the minimum is attained by setting

hn = hdn, for n = −K, −K + 1, . . . , K. (6.24)

In other words, the least-squares approximation is simply the truncation of the
desired filter’s impulse response to its central 2K + 1 entries.

While the L2 norm of the approximation error is minimized, the maximum
error can remain large. In particular, if the desired frequency response is discon-
tinuous, the error will be relatively large (at least half the size of the discontinuity)
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Ideal half-band filter (6.25)
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(a) Impulse response. (b) Frequency response. (c) Frequency response error.

Nonideal half-band filter (6.26)
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(d) Impulse response. (e) Frequency response. (f) Frequency response error.

Figure 6.18 Least-squares approximations of length 15 to half-band lowpass filters (see
Example 6.8).

on at least one side of the discontinuity. Also, for an ideal lowpass filter, the Gibbs
phenomenon leads to oscillations that do not diminish in amplitude as the filter
length is increased (see Figure 3.9); this causes the error to be about 9% just above
the cutoff frequency.

Example 6.8 (Least-squares design of half-band lowpass filters)
An ideal half-band lowpass filter with unit passband gain is obtained by rescaling
(3.112) with ω0 = π,

hdn =
1

2
sinc

(
1

2
πn

)
DTFT←→ Hd(ejω) =

{
1, for ω ∈ [0, 1

2π];

0, for ω ∈ (12π, π].
(6.25)

The least-squares approximation of length 15 to this filter is obtained by trun-
cating the impulse response to n ∈ {−7, −6, . . . , 7}, as shown in Figure 6.18(a).
Figures 6.18(b) and (c) show its frequency response and the approximation error
of the frequency response; the large magnitude of the error at ω = ± 1

2π arises
from the discontinuity of Hd(ejω) at those frequencies.

Continuous-time lowpass filters with continuous frequency responses were
developed in Example 5.20. A discrete-time analogue to (5.85) for a half-band
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Cambridge University Press (ISBN 110703860X) v1.1 [May 2014] [free version] Comments to book-errata@FourierAndWavelets.org



532 Approximation and compression

lowpass filter is

hdn =
1

2
sinc

(
1

2
πn

)
sinc

(
1

16
πn

)
, n ∈ Z (6.26a)

DTFT←→ Hd(ejω) =





1, for |ω| ∈ [0, 7
16π);

(8/π)
(

9
16π − |ω|

)
, for |ω| ∈ [ 7

16π,
9
16π);

0, for |ω| ∈ [ 9
16π, π].

(6.26b)

The least-squares approximation of length 15 to this filter, its frequency response,
and the frequency response approximation error are shown in Figures 6.18(d)–(f).
Near ω = ± 1

2π, the error is much smaller than the error for the approximation
of an ideal filter in Figure 6.18(c); the errors away from ω = ± 1

2π are similar.

Minimax approximation In filter design, a minimax criterion in the Fourier do-
main is better justified than the least-squares criterion. Specifically, the minimax
criterion arises from minimizing the difference between the desired LSI system and
the designed LSI system in the sense of the operator norm introduced in Sec-
tion 2.3.3.

Theorem 6.10 (Minimax design criterion) Let Hd be a desired frequency
response and H its approximation, with corresponding impulse responses hd and
h. Define the error system E : ℓ2(Z) → ℓ2(Z) as the difference between filtering
by hd and filtering by h,

Ex = hd ∗ x− h ∗ x.
Then the operator norm of E is given by

‖E‖ = max
ω∈[−π,π]

|Hd(ejω)−H(ejω)|.

Furthermore, assuming that Hd is real and even, the zero-phase FIR filter h
satisfying (6.22) that minimizes the energy of the difference between filtering by
hd and filtering by h over unit-energy inputs is

argmin
{h0,h1,...,hK}

max
ω∈[0,π]

|Hd(ejω)−H(ejω)|. (6.27)

Proof. We leave part of the proof to Solved exercise 6.3. Let g = hd − h; this is the
impulse response of the error system. The operator norm of the error system as a
mapping from ℓ2(Z) to ℓ2(Z) is given by

‖E‖ (a)
= max

ω∈[−π,π]
|G(ejω)| (b)

= max
ω∈[−π,π]

|Hd(ejω)−H(ejω)|,

where (a) follows from Solved exercise 6.3; and (b) from the definition of g and the
linearity of the DTFT.
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When Hd and H have even symmetry (the latter following from (6.22)), the
magnitude of their difference |Hd(ejω) − H(ejω)| has even symmetry, so maximizing
over ω ∈ [−π, π] is equivalent to maximizing over ω ∈ [0, π]. The minimax design
criterion (6.27) follows.

Letting t = cosω converts the problem (6.27) into a minimax polynomial
approximation problem. When the desired frequency response Hd is continuous,
the change of variable gives a continuous function to approximate with a polynomial.
Thus, the minimax solution will satisfy the Chebyshev equioscillation theorem,
Theorem 6.8. In particular, Theorem 6.8 indicates a necessary condition for an
optimal solution, namely that there will be K + 2 points with maximum error.
However, when the desired frequency response is discontinuous, the maximum error
will inevitably be large near the discontinuity, like in the least-squares case, and
Theorem 6.8 does not apply.

The importance of continuity of Hd is illustrated by the following example.
Like in Example 6.6, the numerical calculations of minimax approximations were
performed using the Remez algorithm; see the Further reading.

Example 6.9 (Minimax design of half-band lowpass filters) Again
consider the ideal half-band lowpass filter (6.25) and the half-band lowpass fil-
ter with continuous frequency response (6.26) from Example 6.8. A length-15
minimax approximation of the ideal half-band filter is shown in Figures 6.19(a)–
(c). The maximum error in the frequency domain is 1

2 ; we could not have
expected any better because we are using a continuous function to approxi-
mate a discontinuous function with a jump of 1. In fact, aside from requiring
H(e−jπ/2) = H(ejπ/2) = 1

2 , the set of filters with L∞ error in the frequency do-
main of 1

2 is relatively unconstrained. In comparison with Figure 6.18(c), there
is barely any improvement in maximum error relative to the least-squares design;
the squared L2 error is much worse.

The length-15 minimax approximation of the half-band filter (6.26) is shown
in Figures 6.19(d)–(f). Since the desired frequency response is continuous, the
maximum error is much smaller and can be driven to zero by increasing the filter
length. This optimal design is unique and satisfies the equioscillation property
from Theorem 6.8. In comparison with Figure 6.18(f), the maximum error is
somewhat smaller than that of the least-squares design.

Weighted minimax approximation The magnitude of the frequency response Hd

of an ideal filter is constant in the filter’s passband and zero in the filter’s stopband.
Since the frequency response H of an FIR approximation h of such a filter is con-
tinuous, the error Hd(ejω)−H(ejω) will inevitably be large for frequencies near the
edges of the passband and stopband. The conventional practice is to ignore these
frequencies by using a weighted error

E(ω) = W (ω)
(
Hd(ejω)−H(ejω)

)
,

where W is a nonnegative weight function. The weight function is zero around
the discontinuities of Hd and also sets the relative importance across ω of how
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Ideal half-band filter (6.25)
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(a) Impulse response. (b) Frequency response. (c) Frequency response error.

Nonideal half-band filter (6.26)
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(d) Impulse response. (e) Frequency response. (f) Frequency response error.

Figure 6.19 Minimax approximations of length 15 to half-band lowpass filters (see
Example 6.9).

closely Hd(ejω) is approximated by H(ejω). The weighted minimax approximation
minimizes the maximum of this weighted error,

ε = max
ω∈[0,π]

|E(ω)| = max
ω∈[0,π]

∣∣W (ω)
(
Hd(ejω)−H(ejω)

)∣∣ . (6.28)

Suppose that the goal is to approximate an ideal lowpass filter with cutoff
frequency 1

2ω0 and unit gain in the passband,

Hd(ejω) =

{
1, for ω ∈ [0, 1

2ω0];

0, for ω ∈ (12ω0, π].

The weight function is typically piecewise-constant of the form

W (ω) =





1, for ω ∈ [0, 1
2ω0 − ωt];

0, for ω ∈ (12ω0 − ωt,
1
2ω0 + ωt);

γ, for ω ∈ [ 12ω0 + ωt, π],

(6.29)

for some γ ∈ R+. This establishes a passband of [0, 1
2ω0 − ωt], a stopband of

[ 12ω0 + ωt, π], and a transition band of width 2ωt in between. The constant γ
fixes the relative importance of the passband and stopband accuracy; if γ > 1 then
keeping |H(ω)−0| small in the stopband is more important than keeping |H(ω)−1|
small in the passband, and vice versa.
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As before, using t = cosω, minimization of the weighted maximum error ε
in (6.28) over the choice of symmetric filters of length 2K + 1 is equivalent to
approximation of a function by a polynomial of degree K; rather than minimize
the L∞ norm of an approximation error, we are now minimizing a weighted L∞
norm. An extension of Theorem 6.8 applies to the minimization of the weighted
maximum error. It establishes that the optimal solution is determined uniquely by
the existence of K + 2 frequencies,

0 ≤ ω0 < ω1 < · · · < ωK+1 ≤ π,

such that the weighted error at these frequencies alternates in sign,

E(ω0) = −E(ω1) = E(ω2) = −E(ω3) = · · · ,

while the absolute value of the weighted error reaches the maximum value at these
frequencies:

|E(ω0)| = |E(ω1)| = · · · = |E(ωK+1)| = ε.

This is the basis of the Parks–McClellan algorithm; see the Further reading.

Example 6.10 (Weighted minimax design of a lowpass filter) We con-
sider the design of a lowpass filter with cutoff frequency at 1

2ω0 = 1
2π. The ideal

impulse response is given in (3.112b), and we want to design symmetric FIR
approximations of length 15. The least-squares approximation and (unweighted)
minimax approximation were shown in Figures 6.18 and 6.19.

Weighted minimax approximation allows us to introduce a transition band
(12π − ωt,

1
2π + ωt). By assigning no importance (zero weight) to the error in

the transition band, the deviation from the desired response in the passband
and stopband can be reduced. This is illustrated in Figure 6.20, where we see
that weighted minimax designs (with γ = 1 in (6.29)) have reduced passband
and stopband approximation error (ripple) as the width of the transition band
is increased. Varying the relative weighting of the passband and stopband error
(γ ∈ { 13 , 1, 3} in (6.29)) with ωt =

1
8π held constant allows us to trade off these

errors, as shown in Figure 6.21.

The conventional way to specify a frequency-selective filter is through the parame-
ters illustrated in Figure 6.22. A deviation of ±δp from the ideal passband gain of
1 is allowed, along with a deviation of ±δs from the ideal stopband gain of 0. These
are applied outside of a transition band of width 2ωt centered at the nominal cutoff
frequency of 1

2ω0. A systematic way to design such a filter is to let

W (ω) =





1, for ω ∈ [0, 1
2ω0 − ωt];

0, for ω ∈ (12ω0 − ωt,
1
2ω0 + ωt);

δp/δs, for ω ∈ [ 12ω0 + ωt, π],

and solve the weighted minimax design problem. If the specifications are too strin-
gent for the selected value of K, the weighted minimax error will be greater than
δp; to design the shortest filter that meets the specifications, one can increase K
until the weighted minimax error no longer exceeds δp.
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Frequency responses
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Figure 6.20 Weighted minimax designs of a half-band lowpass filter of length 15 for var-
ious widths of the transition band. The weightings of error in the passband and stopband
are equal (γ = 1).
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Figure 6.21 Weighted minimax designs of a half-band lowpass filter of length 15 for var-
ious relative weightings of passband and stopband error. The transition band is ( 3

8
π, 5

8
π).
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ω

|Hd(ejω)|
1 + δp
1 − δp

δs
1
2ω0 − ωt

1
2ω0 + ωt π

Figure 6.22 Specification and one possible solution for the design of a lowpass filter
with cutoff frequency 1

2
ω0. The width of the transition band is 2ωt, and δp and δs are the

error margins for the passband and the stopband.

6.3 Approximation of functions by splines

In the last section, we saw several methods for finding polynomial approximations
of functions. Polynomials have the virtue of smoothness: they are infinitely dif-
ferentiable, with derivatives of order K + 1 and greater being identically zero for
polynomials of degree K. Also, as shown by the Weierstrass approximation theo-
rem, Theorem 6.6, a polynomial approximation can be made arbitrarily close to a
given continuous function over a given closed interval by choosing a high-enough
degree. While endowed with these benefits, polynomial approximation does suffer
from some drawbacks: it cannot approximate a discontinuous function well, and,
even when one is trying to approximate a continuous function, increasing the poly-
nomial degree can be problematic (see the discussion of Figure 6.12).

In this section, we develop the approximation of functions by piecewise poly-
nomials. By allowing different polynomial approximations on disjoint subintervals
of R, we are able to better approximate both continuous and discontinuous func-
tions for any given polynomial degree. Splines are distinguished among piecewise
polynomials in that they are as smooth as possible: a spline with pieces of degree
K has continuous derivatives up to order K − 1 and is differentiable up to order K
everywhere except at the piece boundaries.

The points at which the polynomial expression for a spline changes are called
knots. In general, splines can have their knots anywhere; this is emphasized by
the term free-knot spline. We will limit our attention to uniform splines, which
have their knots on a uniform grid. The vector spaces of uniform splines are dis-
cussed in Section 6.3.1, followed by the development of bases for these spaces in
Section 6.3.2. Section 6.3.3 turns this around to discuss the Strang–Fix condition,
which describes when a function and its shifts can be used to express a polynomial;
this Fourier-domain condition is closely related to error bounds for uniform spline
approximations. Uniform spline representations enable discrete-time processing of
continuous-time signals, as developed in Section 6.3.4.

Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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Figure 6.23 Examples of splines of degree 1 (black line) and 3 (gray line) interpolating
the same set of points {(tk, yk)}15k=0.

6.3.1 Splines and spline spaces

Let . . . , τ−1, τ0, τ1, . . . be a strictly increasing sequence of real numbers. A func-
tion that is a polynomial of degree K on each interval [τn, τn+1), possibly different
polynomials on different intervals, is determined by K + 1 parameters per interval.
Such a function is generally not continuous at the points {τn}n∈Z. A spline arises
from adding constraints to make this function as smooth as possible, just shy of
specifying that the function is a single polynomial on R rather than a piecewise
polynomial. Specifically, the polynomials on [τn−1, τn) and [τn, τn+1) can be re-
quired to match at τn for continuity and furthermore match in derivatives of order
1, 2, . . . , K − 1 at τn for continuity of derivatives. The K + 1 parameters per in-
terval are reduced by these K constraints to a single free parameter per interval. If
the pieces were also required to match in the Kth derivative, the two polynomial
pieces would be the same polynomial.

In our formal definition, the knot sequence can be finite or infinite. The
derivative of order zero is the function itself.

Definition 6.11 (Spline, uniform spline, and spline space) Let
τ = (τn)n∈I , τn ∈ R, be a strictly increasing sequence, where I is an ordered index
set that might be finite or countably infinite, and let K ∈ N. A function is called
a spline of degree K with knots τ when it is a polynomial of degree at most K
on each interval [τn, τn+1), n ∈ I, and its derivatives of order 0, 1, . . . , K − 1 are
continuous. The set of such splines in L2(R) is called the spline space of degree
K with knots τ and denoted SK,τ . When the knot sequence τ is evenly spaced
and doubly infinite, the spline and spline space are called uniform.

Splines of degree 1 and 3 are especially common. Spline of degree 1 is a formal
way to express that one uses straight lines to connect the dots given by values at
a sequence of knots. Splines of degree 3 are common because their continuity up
to the second derivative gives a pleasingly smooth appearance while avoiding the
oscillatory behavior of high-order polynomial interpolation. An example is shown
in Figure 6.23.
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For a fixed degree K and knot sequence τ , the spline space SK,τ is a subspace
of L2(R).103 This follows simply from a sum of polynomials of degree at most
K being a polynomial of degree at most K, on each interval [τn, τn+1), while the
linearity of differentiation maintains the continuity of derivatives. Other properties
of spline spaces are developed in Exercise 6.11.

Fitting a spline A doubly infinite spline has one degree of freedom per segment
[τn, τn+1). This is exploited in Section 6.3.2 to produce series expansions for splines
on R. Restricting a spline to a finite interval leaves extra degrees of freedom, as
illustrated in the following example.

Example 6.11 (Fitting a spline) A spline on [0, 1) of degree 2 with knots
(0, 1

2 , 1) is given by

x̂(t) =

{
a0,2t

2 + a0,1t+ a0,0, for t ∈ [0, 1
2 );

a1,2t
2 + a1,1t+ a1,0, for t ∈ [ 12 , 1).

Regardless of the function to be approximated with x̂, continuity of x̂ at 1
2 gives

the constraint

1

4
a0,2 +

1

2
a0,1 + a0,0 =

1

4
a1,2 +

1

2
a1,1 + a1,0, (6.30a)

and continuity of its derivative at 1
2 gives the constraint

a0,2 + a0,1 = a1,2 + a1,1. (6.30b)

Four additional constraints will fix x̂. We illustrate this through several approx-
imations of x1 from (6.4) and x2 from (6.7), shown in Figure 6.24.

(i) Matching the values of the function at the three knots leaves one additional
degree of freedom. This could be used, for example, to match the derivative
at 0. The resulting system of equations to solve is




1
4

1
2 1 − 1

4 − 1
2 −1

1 1 0 −1 −1 0

0 0 1 0 0 0

0 0 0 1
4

1
2 1

0 0 0 1 1 1

0 1 0 0 0 0







a0,2

a0,1

a0,0

a1,2

a1,1

a1,0




=




0

0

x(0)

x(12 )

x(1)

x′(0)




, (6.31)

where the first two rows are from (6.30), the next three rows from matching
values at the knots, and the last row from matching the derivative at 0. The
matrix in (6.31) is nonsingular; thus, any set of values x(0), x(12 ), x(1), and
x′(0) yields a unique spline approximation.

103We have defined spline spaces within L2(R), rather than more generally in CR, even though
the defining characteristics of splines are unrelated to having finite L2(R) norm. This restriction
is included here because most of the tools and techniques of the book are for Hilbert spaces.
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Figure 6.24 Spline approximations of degree 2 with knots (0, 1
2
, 1) of x1 in (6.4) and

x2 in (6.7) (dashed lines) using the two methods developed in Example 6.11 (black for
part (i) and gray for part (ii)).

(ii) Another possibility is to match values of the function at four points, two
on each piece, such as 1

6 ,
1
3 ,

2
3 , and

5
6 . The resulting system of equations to

solve is 


1
4

1
2 1 − 1

4 − 1
2 −1

1 1 0 −1 −1 0
1
36

1
6 1 0 0 0

1
9

1
3 1 0 0 0

0 0 0 4
9

2
3 1

0 0 0 25
36

5
6 1







a0,2

a0,1

a0,0

a1,2

a1,1

a1,0




=




0

0

x(16 )

x(13 )

x(23 )

x(56 )




, (6.32)

where the first two rows are from (6.30), and the last four rows are from
matching values at four points. Again, the matrix in (6.32) is nonsingular;
thus, any set of values x(16 ), x(

1
3 ), x(

2
3 ), and x(56 ) yields a unique spline

approximation.

(iii) Suppose that instead we match values of the function at four points on the
first piece, such as 0, 1

8 ,
1
4 , and

3
8 . The resulting system of equations to

solve is 


1
4

1
2 1 − 1

4 − 1
2 −1

1 1 0 −1 −1 0

0 0 1 0 0 0
1
64

1
8 1 0 0 0

1
16

1
4 1 0 0 0

9
64

3
8 1 0 0 0







a0,2

a0,1

a0,0

a1,2

a1,1

a1,0




=




0

0

x(0)

x(18 )

x(14 )

x(38 )




, (6.33)

where the first two rows are from (6.30) and the last four rows are from
matching values at four points. The matrix in (6.33) is singular; thus, a
set of values x(0), x(18 ), x(

1
4 ), and x(

3
8 ) either will not be consistent with

a spline of the desired form or will not uniquely determine the spline. For
the two functions we are considering, the samples of x1 are not consistent
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with a spline of the desired form, and the samples of x2 do not uniquely
determine a spline of the desired form.

Fixing values of the spline at the knots, as in part (i) of the example, is conventional.
Suppose that we are fitting a spline of degree K with L + 1 knots. The spline is
defined by L polynomial pieces, so there are L(K + 1) parameters to determine.
Values at the knots give L+1 constraints, and continuity of derivatives of order up
to K − 1 at the L − 1 interior knots gives (L − 1)K additional constraints. There
are L(K + 1)− (L + 1 + (L− 1)K) = K − 1 excess degrees of freedom (in part (i)
of the example above, K = 2, so there was one additional degree of freedom). The
spline is usually determined uniquely by specifying a total of K − 1 derivatives at
the first and/or last knot.

In the common case of K = 3, two constraints are needed, and these could
be obtained by specifying the first derivative at the first and last knots. Another
common method is to require the derivative of order 3 to be continuous at the
second and penultimate knots. (The degree 3 of the spline ensures continuity of
derivatives of order 0, 1, and 2.) This additional continuity requirement effectively
removes the second and penultimate knots from the knot sequence and is thus called
the not-a-knot condition. This method was used to produce the spline of degree 3
in Figure 6.23.

6.3.2 Bases for uniform spline spaces

From now on, we restrict our attention to uniform splines and uniform spline spaces,
so the knot sequence is doubly infinite. With the uniform knot spacing τn+1− τn =
T , for all n ∈ Z, the spline space SK,τ is a shift-invariant subspace with respect to
shift T . These shift-invariant subspaces have generators; that is, they have bases
that are shifts of a single function. For the remainder of this section, we consider
only T = 1. We will see how the approximation error varies with T in Section 6.3.3.

Elementary B-splines The centered unit-width box function,

β(0)(t) =

{
1, for t ∈ [− 1

2 ,
1
2 );

0, otherwise,
(6.34a)

is called the elementary B-spline of degree 0. It is a spline of degree 0 with knots
(− 1

2 ,
1
2 ). Shifts of β

(0) are called B-splines of degree 0.
The elementary B-spline of degree K is defined by repeated convolution of

β(0) with itself,

β(K) = β(K−1) ∗ β(0), K = 1, 2, . . . . (6.34b)

Shifts of β(K) are called B-splines of degree K. By a simple calculation, the ele-
mentary B-spline of degree 1 is given by

β(1)(t) =





1 + t, for t ∈ [−1, 0);
1− t, for t ∈ [0, 1);

0, otherwise,
(6.35)
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(a) Elementary B-splines. (b) Causal elementary B-splines.

Figure 6.25 Elementary B-splines of degree 0, 1, . . . , 11 (solid lines, from darkest to
lightest) and causal versions.

which is the triangle function we have seen many times. Convolving with β(0) once
again gives

β(2)(t) =





1
2 (

3
2 + t)2, for t ∈ [− 3

2 , − 1
2 );

3
4 − t2, for t ∈ [− 1

2 ,
1
2 );

1
2 (

3
2 − t)2, for t ∈ [ 12 ,

3
2 );

0, otherwise.

(6.36)

This process can be repeated to obtain any desired elementary B-spline. The first
few elementary B-splines are shown in Figure 6.25(a), and a general expression is
developed in Exercise 6.12.

Using the convolution property, (4.62), and the Fourier transform of the box
function, (4.75), the Fourier transform of the elementary B-spline of degree K is

B(K)(ω) = sincK+1

(
1

2
ω

)
. (6.37)

The elementary B-spline of degree K is a spline with knots (− 1
2 (K + 1), . . . ,

1
2 (K + 1)), the proof of which is left for Exercise 6.13. Note that, for odd K, the
knots are at integer values; for even K, the knots are offset by 1

2 from integer values.

Causal elementary B-splines For any K ∈ N, shifting β(K) by 1
2 (K + 1) gives a

spline with support in [0, K + 1] and knots (0, 1, . . . , K + 1),

β
(K)
+ (t) = β(K)

(
t− 1

2
(K + 1)

)
, t ∈ R. (6.38)

This is called the causal elementary B-spline of degree K; the first few of these are
shown in Figure 6.25(b). An equivalent definition is as follows:

β
(0)
+ (t) =

{
1, for t ∈ [0, 1);
0, otherwise,

(6.39a)

β
(K)
+ = β

(K−1)
+ ∗ β(0)

+ , K = 1, 2, . . . . (6.39b)
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B-spline bases B-splines can be used as building blocks for representing functions
in uniform spline spaces. Consider first the B-splines of degree 0. The shift by n

of β
(0)
+ is a spline of degree 0 with knots (n, n + 1). The closure of the span of

these functions for n ∈ Z gives every piecewise-constant function with points of
discontinuity in Z – in other words, the uniform spline space S0,Z. The recovery of
functions in S0,Z from samples and the approximation of functions by the closest
element of S0,Z were together the central illustration of sampling and interpolation in
Section 5.1. Specifically, in sampling followed by interpolation with spacing T = 1,

using the time-reversed β
(0)
+ as the sampling prefilter and β

(0)
+ as the interpolation

postfilter gives a system that computes the orthogonal projection onto S0,Z; see

Figure 5.5(b). This shows that β
(0)
+ is a generator of the shift-invariant subspace

S0,Z; it is the K = 0 case of the following theorem:

Theorem 6.12 (B-spline bases for uniform spline spaces) For any
K ∈ N, let β(K) be the elementary B-spline of degree K defined in (6.34) and let

β
(K)
+ be its causal version defined in (6.38). Then, the following statements hold:

(i) The causal elementary B-spline β
(K)
+ is a generator of the shift-invariant

subspace SK,Z with respect to shift 1.

(ii) span
(
{β(K)(t− k)}k∈Z

)
=

{
SK,Z, for odd K;

SK,Z+1/2, for even K.

(iii) No function with support shorter than that of β
(K)
+ is a generator of SK,Z.

We will first explain why part (i) of the theorem has already been proven for K = 1
in the previous chapter. Then, we discuss the steps of a constructive proof of
part (i) for general K. Part (ii) follows easily from part (i), and it illustrates why it
is slightly more convenient to use the causal elementary B-splines in the remainder
of the section – namely we need not distinguish between odd K and even K. We
will not prove part (iii); see the Further reading.

In part (i) of the theorem, it is clear that any linear combination of β
(K)
+ and

its integer shifts is in SK,Z, so span({β(K)
+ (t − k)}k∈Z) ⊆ SK,Z. The challenge is

to show that SK,Z ⊆ span({β(K)
+ (t − k)}k∈Z). Thus, any mechanism to find the

coefficient sequence α for the expansion

x(t) =
∑

k∈Z

αkβ
(K)
+ (t− k), t ∈ R, (6.40)

where x is an arbitrary element of SK,Z, will complete the proof. In the language of
Section 5.4.3, x in (6.40) is obtained by interpolating the sequence α with spacing

1 and postfilter β
(K)
+ . By Theorem 5.19, the existence of a function β̃

(K)
+ such that

〈
β
(K)
+ (t− k), β̃(K)

+ (t− n)
〉
t
= δk−n, k, n ∈ Z,
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(a) Causal elementary B-spline of degree 1. (b) Its canonical dual.

Figure 6.26 The causal elementary B-spline of degree 1, β
(1)
+ , and the unique function

β̃
(1)
+ such that {β(1)

+ (t − k)}k∈Z and {β̃(1)
+ (t − k)}k∈Z are a biorthogonal pair of bases for

S1,Z.

is satisfied implies that a suitable sequence α exists. Specifically, sampling using

time-reversed and conjugated β̃
(K)
+ as the prefilter and spacing 1 would then give α.

All these arguments apply with the elementary B-spline β(K) replacing its causal

version β
(K)
+ except that, for even values of K, the generated space is SK,Z+1/2

rather than SK,Z.
For the case of K = 1, recall that the elementary B-spline β(1) is the triangle

function used as an interpolation postfilter in Examples 5.24–5.26 in Section 5.4.3.
Many duals exist, including the ones in Figures 5.36(b) and 5.37(b), so, after ac-
counting for the shift by 1, part (i) of the theorem is proven for K = 1. Specifically,

let β̃(1) denote the time-reversed and conjugated version of any sampling prefilter
that is consistent with β(1) as an interpolation postfilter, as in Example 5.25. Then,
we have

x(t) =
∑

k∈Z

〈
x(t), β̃(1)(t− k)

〉
t
β(1)(t− k), t ∈ R,

for any x ∈ S1,Z, showing that {β(1)(t−k)}k∈Z is a basis for S1,Z. When, in addition,

β̃(1) ∈ S1,Z, we have that {β(1)(t− k)}k∈Z and {β̃(1)(t− k)}k∈Z are a biorthogonal

pair of bases for S1,Z. The unique function β̃(1) that gives this property is called
the canonical dual spline; it was determined in Example 5.26 and was shown in
Figure 5.37(b).

Since β
(1)
+ is β(1) shifted by 1, its canonical dual is simply β̃(1) shifted by 1; we

denote the resulting function β̃
(1)
+ . Figure 6.26 shows β

(1)
+ alongside its canonical

dual β̃
(1)
+ . These satisfy

x(t) =
∑

k∈Z

〈
x(t), β̃

(1)
+ (t− k)

〉
t
β
(1)
+ (t− k), t ∈ R,

for any x ∈ S1,Z. Furthermore, {β(1)
+ (t−k)}k∈Z and {β̃(1)

+ (t−k)}k∈Z are a biorthog-
onal pair of bases for S1,Z.

To provide a similar constructive proof for an arbitrary value of K ∈ N, we

can find β̃
(K)
+ such that {β(K)

+ (t− k)}k∈Z and {β̃(K)
+ (t− k)}k∈Z are a biorthogonal
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6.3 Approximation of functions by splines 545

pair of bases for SK,Z. To have span({β̃(K)
+ (t− k)}k∈Z) ⊆ span({β(K)

+ (t − k)}k∈Z),
let

β̃
(K)
+ (t) =

∑

m∈Z

cmβ
(K)
+ (t−m), t ∈ R, (6.41a)

for some sequence c ∈ ℓ2(Z). Biorthogonality, (2.111), requires
〈
β̃
(K)
+ (t− i), β(K)

+ (t− k)
〉
t
= δi−k for every i, k ∈ Z,

but, since the inner product depends only on i− k, it suffices to enforce only

〈
β̃
(K)
+ (t), β

(K)
+ (t− k)

〉
t
= δk for every k ∈ Z. (6.41b)

We thus require sequence c to satisfy

δk
(a)
=
〈
β̃
(K)
+ (t), β

(K)
+ (t− k)

〉
t

(b)
=

〈∑

m∈Z

cmβ
(K)
+ (t−m), β

(K)
+ (t− k)

〉

t

(c)
=

∑

m∈Z

cm
〈
β
(K)
+ (t−m), β

(K)
+ (t− k)

〉
t

(d)
=

∑

m∈Z

cmh
(K)
k−m

(e)
= c ∗ h(K), (6.42)

where (a) follows from (6.41b); (b) from (6.41a); (c) from the linearity in the first
argument of the inner product; (d) from introducing

h(K)
n = 〈β(K)

+ (t), β
(K)
+ (t− n)〉t =

∫ ∞

−∞
β
(K)
+ (t)β

(K)
+

∗
(t− n) dt, n ∈ Z, (6.43)

which is the deterministic autocorrelation of the function β
(K)
+ evaluated at the

integers; and (e) from recognizing the sum as a convolution. What remains is to
show why such a sequence c ∈ ℓ2(Z) exists.

Writing the equivalent of (6.42) in the z-transform domain gives

C(z)H(K)(z) = 1. (6.44)

We thus seek a stable sequence c with C(z) = 1/H(K)(z); such a c is obtained
by inverting the z-transform if there is a region of convergence for 1/H(K)(z) that
includes the unit circle. Since h(K) is the deterministic autocorrelation of a stable
real sequence and has a rational z-transform (see Exercise 6.15), it follows from
Theorem 3.13 that the zeros of H(K)(z) satisfy certain symmetries. As long as no
zeros of H(K)(z) are on the unit circle, there will be a zero z0 of H(K)(z) such
that {z | |z0|−1 < |z| < |z0|} is the unique valid ROC for C(z). This condition
on H(K)(z) is established in Exercise 6.15. Since c is uniquely determined, the

canonical dual β̃
(K)
+ is uniquely determined. This completes the proof.
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Orthonormal bases for uniform spline spaces Synthesizing functions using B-

splines is very convenient, since the basis functions {β(K)
+ (t − k)}k∈Z are of finite

support. However, the canonical dual splines β̃
(K)
+ are of infinite support, albeit

with fast decay (exponential decay for any fixed K). Orthonormal bases have other
convenient aspects, such as using the same functions in analysis and synthesis, and
simple computations of orthogonal projections. Orthonormal bases for uniform
spline spaces can be derived from the B-spline bases. We use degree-1 splines to
illustrate the method.

Example 6.12 (Orthonormal basis for S1,Z) We want to derive a gener-
ator for the uniform spline space S1,Z that forms an orthonormal set with its

integer shifts. Since the causal elementary B-spline of degree 1, β
(1)
+ , is a gener-

ator of this space, we can express our desired generator β
(1)
⊥ using the B-spline

basis,

β
(1)
⊥ (t) =

∑

m∈Z

dmβ
(1)
+ (t−m), (6.45)

for some sequence d ∈ ℓ2(Z). For the new generator to be orthonormal to its
integer shifts, it must satisfy

δk =
〈
β
(1)
⊥ (t), β

(1)
⊥ (t− k)

〉
t

(a)
=

〈∑

m∈Z

dmβ
(1)
+ (t−m),

∑

ℓ∈Z

dℓβ
(1)
+ (t− k − ℓ)

〉

t

(b)
=

∑

m∈Z

∑

ℓ∈Z

dmd
∗
ℓ

〈
β
(1)
+ (t−m), β

(1)
+ (t− k − ℓ)

〉
t

(c)
=

∑

m∈Z

∑

ℓ∈Z

dmd
∗
ℓh

(1)
k+ℓ−m

(d)
=

∑

m∈Z

∑

n∈Z

dmd
∗
m−nh

(1)
k−n

(e)
=
∑

n∈Z

(
∑

m∈Z

dmd
∗
m−n

)
h
(1)
k−n

(f)
=
∑

n∈Z

anh
(1)
k−n

(g)
= a ∗ h(1), (6.46)

where (a) follows from (6.45); (b) from the linearity in the first argument and
the conjugate linearity in the second argument of the inner product; (c) from
(6.43); (d) from the change of variable n = m − ℓ; (e) from interchanging sum-
mations; (f) from denoting the deterministic autocorrelation of d by a; and (g)
from recognizing the sum as a convolution. This is a constraint on the sequence
d.

Writing the equivalent of (6.46) in the z-transform domain gives

A(z)H(1)(z) = 1, (6.47)

which is nearly the same as (6.44). The distinction is that, rather than wanting
the inverse z-transform of 1/H(1)(z), we want a sequence with deterministic
autocorrelation equal to the inverse z-transform of 1/H(1)(z). Using (3.146) and
(6.47), we have

D(z)D∗(z
−1) =

1

H(1)(z)
, (6.48)
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which indicates that any appropriate spectral factor gives a sequence d through
which a desired generator of S1,Z can be determined.

It is straightforward to calculate the sampled deterministic autocorrelation

of β
(1)
+ by computing the required integrals in (6.43):

h(1)n =





2
3 , for n = 0;
1
6 , for n = ±1;
0, otherwise

=
1

6
δn+1 +

2

3
δn +

1

6
δn−1.

Substituting the z-transform of this sequence into (6.48) and factoring gives

D(z)D∗(z
−1) =

6

z + 4 + z−1
=

6(2−
√
3)(

1 + (2−
√
3)z−1

) (
1 + (2−

√
3)z
) .

Therefore, one possible factorization is

D(z) =

√
6(2−

√
3)

1 + (2−
√
3)z−1

, (6.49a)

which yields

dn =

{√
6(2−

√
3)(
√
3− 2)n, for n ≥ 0;

0, otherwise.
(6.49b)

The resulting basis function,

β
(1)
⊥ (t) =

∞∑

k=0

dmβ
(1)
+ (t−m), (6.50)

orthonormal to its integer shifts, is shown in Figure 6.27. The choice of D(z) is
not unique; for example,

D(z) =

√
6(2−

√
3)

1 + (2−
√
3)z

would lead to an anticausal sequence d, and any allpass sequence can be convolved
with d from (6.49b) to yield additional solutions.

This orthogonalization method generalizes to any degree K; a variation on it is
explored in Exercise 6.16.

One remarkable property satisfied both by β(0) and by β(1) is the interpolation
property; that is, β(0)(n) = δn and β(1)(n) = δn for any n ∈ Z. B-splines of higher
degree do not have this property; for bases for uniform spline spaces with this
property, one needs to use cardinal splines instead (see the Further reading).
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-4 -2 2 4 t

β
(1)
⊥ (t)

√
6(2 −

√
3)

Figure 6.27 A function β
(1)
⊥ that is a generator of the uniform spline space S1,Z while

also forming an orthonormal set with its integer shifts. The function is not unique in
having this property.

Best approximation Using an orthonormal basis or biorthogonal pair of bases for
a uniform spline space SK,Z, we can obtain an orthogonal projection operator from
L2(R) onto SK,Z and hence a way to find the best approximation in SK,Z of an
arbitrary function in L2(R).

Let β
(K)
⊥ be a real-valued generator of SK,Z that is orthogonal to its integer

shifts so that {β(K)
⊥ (t − k)}k∈Z is an orthonormal basis for SK,Z as in (6.50) for

K = 1. Then, analogously to Theorem 5.11, for any x ∈ L2(R), the spline function

x̂(t) =
∑

k∈Z

ykβ
(K)
⊥ (t− k), t ∈ R, (6.51a)

computed from the coefficients

yk =

∫ ∞

−∞
x(τ)β

(K)
⊥ (τ − k) dτ, k ∈ Z, (6.51b)

is the orthogonal projection of x onto SK,Z. Similarly, the set of integer shifts

{β(K)
+ (t − k)}k∈Z of the causal elementary B-spline forms a biorthogonal pair of

bases for SK,Z with the set of integer shifts {β̃(K)
+ (t− k)}k∈Z of the canonical dual

of the causal elementary B-spline. Thus, analogously to Theorem 5.19, for any
x ∈ L2(R), the spline function

x̂(t) =
∑

k∈Z

ykβ
(K)
+ (t− k), t ∈ R, (6.52a)

computed from the coefficients

yk =

∫ ∞

−∞
x(τ) β̃

(K)
+ (τ − k) dτ, k ∈ Z, (6.52b)

is the orthogonal projection of x onto SK,Z.

6.3.3 Strang–Fix condition for polynomial representation

We have seen that β(K), the elementary B-spline of degree K, is a generator of
the uniform spline space of degree K, so any uniform spline of degree K can be
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written as a linear combination of β(K) and its integer shifts. This result from
Theorem 6.12 is not obvious – indeed, it was a major breakthrough of Schoenberg
in 1969 – but it is natural since β(K) is itself a uniform spline of degree K. As
discussed below, any polynomial of degree K can be expressed using β(K); this
too is unsurprising because a polynomial is the simplest form of uniform spline –
even its derivatives of order K are continuous. A surprising fact, however, is that
some functions that look nothing like polynomials can also be used to express any
polynomial; a simple Fourier-domain test for this property is called the Strang–
Fix condition. The approximation error bound we present based on the Strang–Fix
condition thus applies more generally, but we will focus our attention on elementary
B-spline generators and uniform spline spaces.

Representing polynomials with B-splines Let pK be a polynomial of degree K.
Then, pK can be expressed as

pK(t) =
∑

k∈Z

αkβ
(K)(t− k), t ∈ R, (6.53)

for some coefficient sequence α. Except in the trivial case of pK = 0, the polynomial
pK is not in L2(R) since |pK(t)| will grow without bound for t → ±∞. Thus, the
equality in (6.53) is pointwise, and α 6∈ ℓ2(Z).104 We illustrate the existence of
an expression in the form of (6.53) for any polynomial with degree K = 2 in the
following example.

Example 6.13 (Polynomial reproduction with β(2)) Consider the ele-
mentary B-spline of degree 2 as in (6.36). To show that an arbitrary polynomial
of degree 2 can be expressed using {β(2)(t − k)}k∈Z, as in (6.53), we first find
ways to express the monomials 1, t, and t2.

(i) We start by showing that any constant function can be written as a linear
combination of {β(2)(t − k)}k∈Z. At any fixed t, at most three elements
of {β(2)(t − k)}k∈Z are nonzero, so the coefficient sequence can be any
element of ℓ∞(Z) without raising convergence issues. To obtain a constant
function, the coefficient sequence α would have to be constant. By direct
computation, we can easily verify that

∑

k∈Z

β(2)(t− k) = 1, (6.54a)

meaning that αk = 1, for all k ∈ Z, yields the monomial 1. Specifically,
since the sum is a periodic function with period 1, it suffices to verify that
β(2)(t+ 1) + β(2)(t) + β(2)(t− 1) = 1 on the interval [− 1

2 ,
1
2 ],

1

2

(
1

2
− t
)2

+

(
3

4
− t2

)
+

1

2

(
1

2
+ t

)2
= 1.

104For any t ∈ R, at most K + 1 terms of (6.53) are nonzero, so the series converges pointwise.
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(ii) Next, we show that the function t can be written as a linear combination
of {β(2)(t− k)}k∈Z using coefficient sequence αk = k, k ∈ Z,

∑

k∈Z

kβ(2)(t− k) = t. (6.54b)

To verify this, consider t ∈ [n− 1
2 , n+ 1

2 ] for some n ∈ Z. Then, the terms
in (6.54b) are nonzero only for k ∈ {n− 1, n, n + 1}, and (6.54b) reduces
to

(n− 1)
1

2

(
1

2
+ n− t

)2
+ n

(
3

4
− (t− n)2

)
+ (n+ 1)

1

2

(
1

2
− n+ t

)2
= t.

(iii) Finally, we show that the function t2 can be written as a linear combination
of {β(2)(t− k)}k∈Z using the coefficient sequence αk = k2 − 1

4 , k ∈ Z,

∑

k∈Z

(
k2 − 1

4

)
β(2)(t− k) = t2. (6.54c)

This can be verified similarly to (6.54b).

Using (6.54), an arbitrary polynomial of degree 2 can be written as a linear
combination of {β(2)(t− k)}k∈Z,

a2t
2 + a1t+ a0 =

∑

k∈Z

αkβ
(2)(t− k), (6.55)

where αk = a2(k
2 − 1

4 ) + a1k + a0.

The property (6.54a) of reproducing a constant holds for any spline degree K,

∑

k∈Z

β(K)(t− k) = 1. (6.56)

This is easy to verify in the time domain for K = 0 and K = 1, and we have just
verified it for K = 2 in the previous example. The following theorem gives a general
Fourier-domain characterization that is not only applicable to splines; through this
characterization, (6.56) holds for any value of K by using (6.37).

Theorem 6.13 (Partition of unity) Let ϕ ∈ L1(R) have Fourier transform
Φ. The periodized version of ϕ with period 1 as in (4.34) satisfies

ϕ1(t) =
∑

n∈Z

ϕ(t− n) = 1, t ∈ R, (6.57a)

if and only if
Φ(2πk) = δk, k ∈ Z. (6.57b)
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Proof. Since ϕ1 is periodic with period 1, it can be represented as a Fourier series
(4.94b),

ϕ1(t) =
∑

k∈Z

Φ1,ke
j2πkt, (6.58a)

with coefficients from (4.94a),

Φ1,k =

∫ 1/2

−1/2

ϕ1(t) e
−j2πkt dt

(a)
=

∫ 1/2

−1/2

(
∑

n∈Z

ϕ(t− n)
)
e−j2πkt dt

(b)
=
∑

n∈Z

∫ 1/2

−1/2

ϕ(t− n) e−j2πkt dt
(c)
=
∑

n∈Z

∫ 1/2−n

−1/2−n

ϕ(τ ) e−j2πk(τ+n) dτ

(d)
=
∑

n∈Z

∫ 1/2−n

−1/2−n

ϕ(τ ) e−j2πkτ dτ
(e)
=

∫ ∞

−∞
ϕ(τ ) e−j2πkτ dτ

(f)
= Φ(2πk), (6.58b)

where (a) follows from the definition of ϕ1 in (6.57a); (b) from interchanging the sum
and integral; (c) from the change of variable τ = t − n; (d) from the periodicity of
e−j2πkt; (e) from combining integrals over unit-length intervals that partition R into
a single integral over R; and (f) from recognizing the Fourier transform evaluated at
ω = 2πk. Now both implications of the theorem follow from the Fourier series pair

1
FS←→ δk

and the uniqueness of the Fourier series.

Strang–Fix condition The partition of unity is the K = 0 case of the following
theorem:

Theorem 6.14 (Polynomial reproduction (Strang–Fix)) Let K ∈ N,
and let ϕ be a function with Fourier transform Φ. If ϕ has sufficiently fast decay,

∫ ∞

−∞
(1 + |t|K) |ϕ(t)| dt < ∞, (6.59)

then the following statements are equivalent:

(i) Any polynomial pK of degree at most K can be expressed as

pK(t) =
∑

k∈Z

αkϕ(t− k), t ∈ R,

for some coefficient sequence α, where the convergence is pointwise.

(ii) The Fourier transform Φ and its first K derivatives satisfy the Strang–Fix
condition of order K + 1:

Φ(0) 6= 0, (6.60a)

Φ(k)(2πℓ) = 0, k = 1, 2, . . . , K, ℓ ∈ Z \ {0}. (6.60b)
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A proof of the theorem can be found in the book of Strang and Fix; see the Further
reading. Solved exercise 6.4 proves a special case of the theorem for when ϕ is an
interpolating function, that is, when

ϕ(n) = δn, n ∈ Z. (6.61)

In the theorem, the decay condition (6.59) is trivially satisfied by any ϕ having
finite support; for infinitely supported ϕ, however, sufficient decay might not be
satisfied.

The Fourier transform of the elementary B-spline of degree K has a Kth-
order zero at nonzero multiples of 2π since it is the product of K sinc functions (see
(6.37)). Therefore, the B-splines of degree K reproduce polynomials of degree up to
K. This argument is made in detail for K = 2 in the following example, providing
a different way of coming to the same conclusion as in Example 6.13.

Example 6.14 (Polynomial reproduction with β(2) (Strang–Fix)) The
elementary B-spline of degree 2 has the Fourier transform (from (6.37))

B(2)(ω) = sinc3
(ω
2

)
.

Let us check Condition (ii) in Theorem 6.14. Upon evaluating the Fourier trans-
form at zero, we simply have

B(2)(0) = sinc3(0) = 1 6= 0,

so (6.60a) is satisfied. For the first derivative, for any ℓ ∈ Z \ {0} we get

d

dω

(
B(2)(ω)

)∣∣∣∣
ω=2πℓ

=
d

dω
sinc3

(ω
2

)∣∣∣∣
ω=2πℓ

(a)
=

3

2
sinc2

(ω
2

) d

dω
sinc

(ω
2

)∣∣∣∣
ω=2πℓ

(b)
= 0, (6.62)

where (a) follows from the chain rule for differentiation; and (b) from sinc(πℓ) =
δℓ. Taking one more derivative gives, for any ℓ ∈ Z \ {0},

d2

dω2

(
B(2)(ω)

)∣∣∣∣
ω=2πℓ

=
d

dω

(
3

2
sinc2

(ω
2

) d

dω
sinc

(ω
2

))∣∣∣∣
ω=2πℓ

(a)
=

3

2
sinc

(ω
2

)(1

2
sinc

(ω
2

) d2

dω2
sinc

(ω
2

)
+

(
d

dω
sinc

(ω
2

))2)∣∣∣∣∣
ω=2πℓ

(b)
= 0, (6.63)

where (a) follows from the product and chain rules of differentiation; and (b) from
sinc(πℓ) = δℓ. Together, (6.62) and (6.63) show that (6.60b) holds for k = 1, 2.
The theorem now implies that polynomials up to degree 2 can be expressed
using β(2) and its integer shifts, as we had already seen in Example 6.13 using a
time-domain argument.
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Bounds on approximation error The ability to represent polynomials with ϕ and
its shifts is not very interesting in itself, but it reflects an ability to approximate
smooth functions. Specifically, it is desirable for ϕ to satisfy the Strang–Fix con-
dition for a high order K + 1 because this ensures that the approximation error –
for sufficiently smooth functions – decays quickly as the spacing of shifts of ϕ is
reduced.

Let the function ϕ satisfy the Strang–Fix condition of order K + 1, and let
T ∈ R+. An approximation of x ∈ L2(R) of the form

x̂(t) =
∑

k∈Z

αkϕ

(
t− kT
T

)
, t ∈ R,

lies in the shift-invariant subspace of L2(R) with respect to shift T , generated by
ϕ(t/T ).105 If ϕ is a generator of the uniform spline space SK,Z, such as a causal
elementary B-spline, then x̂ is in the uniform spline space SK,TZ. Our interest is
in the quality of the best such estimate x̂. Assume, therefore, that the coefficient
sequence α is chosen to minimize ‖x− x̂‖.

Suppose that derivatives up to order K of x are continuous, and the derivative
of orderK+1 exists almost everywhere, with the resulting function x(K+1) in L2(R).
Then

‖x− x̂‖ ≤ cKT
K+1 ‖x(K+1)‖, (6.64)

where cK is a known constant. We will not prove this result (see the Further
reading), but we will interpret it in light of polynomial representation and give an
example.

Let pK be an arbitrary polynomial of degree K. Since ϕ satisfies the Strang–
Fix condition of order K + 1, by Theorem 6.14, pK can be represented exactly
with ϕ(t) and its integer shifts. Dilation by T ∈ R+ does not change whether a
function is a polynomial, so pK can also be represented exactly with ϕ(t/T ) and its
shifts by integer multiples of T . Consistently with this, (6.64) predicts zero error in
approximating pK because the derivative of order K + 1 of pK is zero everywhere,

implying that ‖p(K+1)
K ‖ = 0.106

Example 6.15 (Approximation in S0,TZ and S1,TZ spaces) Let T ∈ R+.
The uniform spline space S0,TZ is the set of piecewise-constant functions with
breakpoints at {kT }k∈Z. The orthogonal projection of x ∈ L2(R) to S0,TZ is

x̂(t) =
1

T

∑

k∈Z

〈
x(t), β̃

(0)
+

(
t− kT
T

)〉

t

β
(0)
+

(
t− kT
T

)
, t ∈ R, (6.65)

where β
(0)
+ is its own canonical dual, β̃

(0)
+ = β

(0)
+ . Note that β

(0)
+ satisfies the

Strang–Fix condition of order 1. Similarly, the uniform spline space S1,TZ is the

105Including a normalization factor, (1/
√
T )ϕ(t/T ), would keep the norm invariant to T ; this is

not necessary here.
106Technically, (6.64) does not apply because a nonzero polynomial cannot be in L2(R). The
evaluation of (6.64) is interesting nonetheless.
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set of piecewise-linear functions with breakpoints at {kT }k∈Z. The orthogonal
projection of x ∈ L2(R) to S1,TZ is

x̂(t) =
1

T

∑

k∈Z

〈
x(t), β̃

(1)
+

(
t− kT
T

)〉

t

β
(1)
+

(
t− kT
T

)
, t ∈ R, (6.66)

where the canonical dual β̃
(1)
+ is shown in Figure 6.26(b). Note that β

(1)
+ satisfies

the Strang–Fix condition of order 2.
For the approximation error bound (6.64) to be applicable for approxima-

tion both in S0,TZ and in S1,TZ, the function x must have at least one continuous
derivative, and the second derivative x(2) must exist almost everywhere and be in
L2(R). The function x1 in (6.4) satisfies these conditions. Figure 6.28(a) shows
approximations of x1 in S0,TZ and S1,TZ for T = 1

8 . (The approximation in S1,TZ

is almost completely obscured by x1 itself.) The corresponding approximation
errors are shown in Figure 6.28(c). Naturally, the piecewise-linear approxima-
tion is better than the piecewise-constant approximation. Figure 6.28(e) shows
the norm of the approximation error as T is varied. The difference between
‖x− x̂‖ = O(T ) for piecewise-constant approximations and ‖x− x̂‖ = O(T 2) for
piecewise-linear approximations, as implied by (6.64), is apparent.

Uniform spline approximations can be useful even when (6.64) is not ap-
plicable. For example, the function x2 in (6.7) is not continuous, so the bound
(6.64) does not even apply for K = 0. However, the approximation results shown
in Figure 6.28(b) show that the method is reasonably effective. Except at the
point of discontinuity 1/

√
2, x2 is linear. Thus, if the discontinuity had not

been present, we would have expected O(T ) error behavior for approximation in
S0,TZ and no error for approximation in S1,TZ. With splines, the effect of the
discontinuity is mostly localized to a neighborhood of size O(T ) near the discon-
tinuity; more precisely, it decays with distance from the discontinuity as fast as
the canonical dual spline, which has an exponential decay. The contribution to
‖x − x̂‖2 from the discontinuity is thus O(T ), resulting in ‖x − x̂‖ = O(T 1/2),
irrespective of the degree of the spline. The norm of the approximation error as
T is varied, shown in Figure 6.28(f), is consistent with this.

Bounds similar to (6.64) apply to ‖x− x̂‖p for p 6= 2, including p = ∞, that is, to
pointwise error.

6.3.4 Continuous-time operators in spline spaces implemented
with discrete-time processing

The present section and Section 5.4 of the previous chapter both study discrete-
time representations of continuous-time signals, that is, sequence representations
of functions. Various representations differ in terms of which types of processing
they facilitate. As illustrated in Examples 2.56 and 2.57, the basic principle is
that a linear operator A : H0 → H1 has a convenient form when Aϕ has a simple
representation in the basis used for H1, where ϕ is any element of the basis used
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(e) Error norms for x1. (f) Error norms for x2.

Figure 6.28 Approximations of x1 from (6.4) and x2 from (6.7) in S0, 1
8
Z
(black lines)

and S1, 1
8
Z
(gray lines) on [0, 1] using uniform splines.

for H0. For example, with representations based on sinc functions, a continuous-
time convolution has a simple equivalent in discrete time that is also a convolution
(see Theorem 5.16). For spline representations, integration and differentiation are
among the continuous-time operations that have simple forms in discrete time. In
fact, we saw this once already in Example 2.57.

Recall that the causal elementary B-spline β
(K)
+ is a generator of the shift-

invariant subspace SK,Z with respect to shift 1, without having to make a distinction
between odd and even values of K; see Theorem 6.12. These uniform spline spaces
are related by integration and differentiation: if a function is in SK,Z, its derivative
will be in SK−1,Z (assuming that K ∈ Z+) and its integral will be in SK+1,Z.
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Computing derivatives To compute the derivative of x ∈ SK,Z, we can differenti-
ate its series expansion

x(t) =
∑

k∈Z

αkβ
(K)
+ (t− k), t ∈ R, (6.67)

term by term. To do that, we need the derivative of β
(K)
+ . We find it by exploiting

the recursion (6.39b) and using the derivative formula for convolution (4.63).

While β
(0)
+ is not differentiable, its derivative exists everywhere except at 0

and at 1, where it has finite jumps. Thus, the derivative of β
(0)
+ can be written

using Dirac delta functions as

∆(0)(t) =
d

dt
β
(0)
+ (t) =

d

dt
(u(t)− u(t− 1))

(a)
= δ(t)− δ(t− 1), (6.68)

where (a) follows from (4.6). Then, the derivative of β
(K)
+ for K ∈ Z+ is

∆(K)(t) =
d

dt
β
(K)
+ (t)

(a)
=

d

dt

(
β
(K−1)
+ (t) ∗t β(0)

+ (t)
)

(b)
= β

(K−1)
+ (t) ∗t ∆(t)

(c)
= β

(K−1)
+ (t) ∗t (δ(t)− δ(t− 1))

(d)
= β

(K−1)
+ (t)− β(K−1)

+ (t− 1), (6.69)

where (a) follows from (6.39b); (b) from (4.63); (c) from (6.68); and (d) from
the shifting property of the Dirac delta function, (4.32e). The first few of these
derivatives of causal elementary B-splines are shown in Figure 6.29.

Then, starting from the spline expansion (6.67), the derivative of x ∈ SK,Z is

d

dt
x(t) =

d

dt

∑

k∈Z

αkβ
(K)
+ (t− k) =

∑

k∈Z

αk
d

dt
β
(K)
+ (t− k)

(a)
=
∑

k∈Z

αk

(
β
(K−1)
+ (t− k)− β(K−1)

+ (t− k − 1)
)

=
∑

k∈Z

αkβ
(K−1)
+ (t− k)−

∑

k∈Z

αkβ
(K−1)
+ (t− k − 1)

(b)
=
∑

k∈Z

αkβ
(K−1)
+ (t− k)−

∑

ℓ∈Z

αℓ−1β
(K−1)
+ (t− ℓ)

(c)
=
∑

k∈Z

(αk − αk−1)β
(K−1)
+ (t− k) (d)

=
∑

k∈Z

α′
kβ

(K−1)
+ (t− k), (6.70)

where (a) follows from (6.69); (b) from the change of variable ℓ = k + 1 in the
second sum; (c) from combining the two sums; and (d) from defining the first-order
backward difference, or discrete derivative, of the sequence α,

α′
k = αk − αk−1, k ∈ Z. (6.71)

Thus, to compute the derivative of a function x ∈ SK,Z, we can apply the discrete
derivative to the sequence that represents x; the result is the sequence representing
the derivative in SK−1,Z.
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2 4 6 8 10 12

-1

1

t

∆(K)(t)

Figure 6.29 Derivatives ∆(K) of the causal elementary B-splines β
(K)
+ of degree

0, 1, . . . , 11 (solid lines, from darkest to lightest).

The discrete derivative operation (6.71) has a simple form using matrix–vector
multiplication:




...
α′
−1

α′
0

α′
1
...




=




...
...

...
...

· · · −1 1 0 0 · · ·
· · · 0 −1 1 0 · · ·
· · · 0 0 −1 1 · · ·

...
...

...
...







...
α−2

α−1

α0

α1

...




. (6.72)

This shows that the matrix representation of the derivative operator – with respect

to using the bases {β(K)
+ (t − k)}k∈Z for the domain and {β(K−1)

+ (t − k)}k∈Z for
the codomain – is the matrix in (6.72). This matrix representation was previously
derived for K = 1 in Example 2.57.

Example 6.16 (Differentiation in S2,Z) The function x shown in Figure
6.30(a) is a uniform spline of degree 2 with knot sequence Z. Thus, it can be
differentiated on each interval [k, k + 1), k ∈ Z, yielding a polynomial of degree
1 on each of these intervals.

An alternative is to use (6.70). The expansion coefficient sequence of x with
respect to the causal elementary B-spline basis of degree 2 is

α =
[
. . . 0 0 1 3 4 5 4 2 −2 −1 0 0 . . .

]⊤
.

The discrete derivative of this sequence,

α′ =
[
. . . 0 0 1 2 1 1 −1 −2 −4 1 1 0 . . .

]⊤
,

is the expansion coefficient sequence of the derivative of x with respect to the
causal elementary B-spline basis of degree 1. The derivative is shown in Fig-
ure 6.30(b).
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2 4 6 8 10 12

5

t

x(t)

2 4 6 8 10 12

-4

-2

2

t

x′(t)

(a) Function in S2,Z. (b) Its derivative in S1,Z.

Figure 6.30 Differentiation in S2,Z. (a) Any function in S2,Z is a linear combination of
causal elementary B-splines of degree 2 (dashed lines) with some coefficient sequence α.
(b) Its derivative is in S1,Z and is a linear combination of causal elementary B-splines of
degree 1 (dashed lines) with coefficient sequence α′, where α′ is the discrete derivative of
α (see Example 6.16).

2 4 6 8 10 12

1

t

ζ(K)(t)

Figure 6.31 Integrals ζ(K) of the causal elementary B-splines β
(K)
+ of degree 0, 1, . . . , 11

(solid lines, from darkest to lightest).

Computing integrals Like differentiation, integration of a series can be done term
by term. To parallel the development for differentiation, we find an expression for

the integral of β
(K)
+ ,

ζ(K)(t) =

∫ t

−∞
β
(K)
+ (τ) dτ

(a)
=

∞∑

m=0

∫ t−m

t−m−1

β
(K)
+ (τ) dτ

(b)
=

∞∑

m=0

∫ ∞

−∞
β
(K)
+ (τ)β

(0)
+ (t−m− τ) dτ (c)

=

∞∑

m=0

β
(K+1)
+ (t−m), (6.73)

where (a) follows from breaking the interval of integration into unit-length subin-
tervals; (b) from using the causal elementary B-spline of degree 0 from (6.39a) to
restrict the integral to [t−m− 1, t−m]; and (c) from recognizing the integral as a
convolution and using (6.39b). The first few of these integrals of causal elementary
B-splines are shown in Figure 6.31.
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Then, starting from the spline expansion (6.67), the integral of x ∈ SK,Z is

∫ t

−∞
x(τ) dτ =

∫ t

−∞

∑

k∈Z

αkβ
(K)
+ (τ − k) dτ (a)

=
∑

k∈Z

αk

∫ t

−∞
β
(K)
+ (τ − k) dτ

(b)
=
∑

k∈Z

αk

∫ t−k

−∞
β
(K)
+ (s) ds

(c)
=
∑

k∈Z

αk

∞∑

m=0

β
(K+1)
+ (t− k −m)

(d)
=
∑

k∈Z

αk

∞∑

n=k

β
(K+1)
+ (t− n) (e)

=
∑

n∈Z

n∑

k=−∞
αkβ

(K+1)
+ (t− n)

(f)
=
∑

k∈Z

α
(1)
k β

(K+1)
+ (t− k), (6.74)

where (a) follows from interchanging the integral and sum; (b) from the change of
variable s = τ − k; (c) from (6.73); (d) from the change of variable n = k + m;
(e) from interchanging the sums; and (f) from defining the discrete integral of the
sequence α,

α
(1)
k =

k∑

m=−∞
αk, k ∈ Z. (6.75)

Thus, to compute the integral of a function x ∈ SK,Z, we can apply the discrete
integral to the sequence that represents x; the result is the sequence representing
the integral in SK+1,Z.

The discrete integral (6.75) has a simple form using matrix–vector multiplica-
tion: 



...

α
(1)
−1

α
(1)
0

α
(1)
1
...




=




...
...

...
...

· · · 1 1 0 0 · · ·
· · · 1 1 1 0 · · ·
· · · 1 1 1 1 · · ·

...
...

...
...







...
α−2

α−1

α0

α1

...




. (6.76)

Similarly to differentiation, this shows that the matrix representation of the integral

operator – with respect to using the bases {β(K)
+ (t − k)}k∈Z for the domain and

{β(K+1)
+ (t− k)}k∈Z for the codomain – is the matrix in (6.76).

Example 6.17 (Integration in S1,Z) To look at Example 6.16 in reverse, let
x now be the name of the function in Figure 6.30(b). This function is in the
uniform spline space S1,Z, and its expansion coefficient sequence with respect to
the causal elementary B-spline basis of degree 1 is

α =
[
. . . 0 0 1 2 1 1 −1 −2 −4 1 1 0 . . .

]⊤
.

The discrete integral of this sequence,

α(1) =
[
. . . 0 0 1 3 4 5 4 2 −2 −1 0 0 . . .

]⊤
,
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is the expansion coefficient sequence of the integral of x with respect to the causal
elementary B-spline basis of degree 2. The integral is shown in Figure 6.30(a).

We have touched on only a few of the remarkable properties of splines. For
example, Exercise 6.17 develops the use of B-spline representations for computing
inner products. Generalization of the spline concept beyond polynomial pieces with
exponential splines is also useful for signal processing; see the Further reading.

6.4 Approximation of functions and sequences by
series truncation

The approximations in uniform spline spaces in Section 6.3 are infinite series using
countable bases (see (6.51) and (6.52)). The approximations obtained by sampling
followed by interpolation in Chapter 5 have a similar character. We now shift our
attention to approximations formed by truncation of infinite series. Whether an
infinite series is an exact representation or merely an approximation, after trunca-
tion we will generally have only an approximation. While most series of interest are
structured – such as Fourier series, the series studied in Chapter 5 and Section 6.3,
and wavelet series [57] – most of the developments in this section do not depend on
such structure, so we work with bases abstractly; the examples often use Fourier
series. We will see that the approximation quality depends both on the choice of a
basis and on the manner of truncation. These choices are also related to the quality
of certain estimates of a signal computed from a noisy observation. We develop
most results for orthonormal bases; some extend to biorthogonal pairs of bases and
frames (see Exercise 6.18).

6.4.1 Linear and nonlinear approximations

Consider a Hilbert spaceH for which we have an orthonormal basis {ϕk}k∈N. Given
any x ∈ H , we can express it using the expansion (2.94a),

x =
∑

k∈N

αkϕk, where αk = 〈x, ϕk〉 for k ∈ N.

For any particular index set I ⊂ N, the best approximation of x using {ϕk}k∈I is

xI = PI x =
∑

k∈I
αkϕk, (6.77)

which is the orthogonal projection onto SI = span({ϕk}k∈I) (see Theorem 2.41);
this appears in block diagram form in Figure 6.32.

The approximation error is

eI = x− xI =
∑

k∈N\I
αkϕk. (6.78)

Since the basis is orthonormal, the approximation and approximation error satisfy
eI ⊥ xI , and thus,

‖x‖2 = ‖xI‖2 + ‖eI‖2, (6.79a)
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6.4 Approximation of functions and sequences by series truncation 561

x Φ∗
α

1I Φ xI

Figure 6.32 Depiction of approximation by series truncation. The analysis operator Φ∗

produces the coefficient sequence α. Coefficients with indices in the set I are retained for
use with the synthesis operator Φ; the rest are set to zero. When |I| = M , the output
xI is called an M -term approximation of x. When I is fixed for a set of signals without
depending directly on x, the output is the M -term linear approximation, denoted x̂M .
When I depends on x through (6.82), the output is the M -term nonlinear approximation,
denoted qxM .

where
‖xI‖2 =

∑

k∈I
|αk|2 (6.79b)

and
‖eI‖2 =

∑

k∈N\I
|αk|2. (6.79c)

Throughout this section, the index set I has M terms, so xI is called an M -term
approximation of x. We are interested in the quality of these approximations for
different ways of choosing I.

Linear approximation When I is fixed (does not depend on x), the approximation
xI is a linear function of x because PI is a (fixed) linear operator. The approxima-
tion is thus called the M -term linear approximation of x. For example, when the
index set is I = {0, 1, . . . , M − 1}, the M -term linear approximation of x is given
by

x̂M =
∑

k∈I
αkϕk =

M−1∑

k=0

αkϕk. (6.80a)

The resulting approximation error is x− x̂M =
∑∞

k=M αkϕk, and the squared norm
of the approximation error is

‖x− x̂M‖2 =
∞∑

k=M

|αk|2. (6.80b)

Nonlinear approximation Fixing the size |I| = M but not the index set itself,
the best choice of I is clear from (6.79): the norm of the error eI is smallest when
the norm of the approximation xI is largest. To get the largest possible terms in
(6.79b), the index set I should satisfy

|αk| ≥ |αm| for all k ∈ I and m 6∈ I. (6.81)

In other words, I should contain the indices that correspond to the largest-magni-
tude coefficients, which are the indices that correspond to the basis elements with
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562 Approximation and compression

largest-magnitude inner products with x. An approximation (6.77) formed with I
satisfying (6.81) is called an M -term nonlinear approximation of x. As suggested
by the name, an M -term nonlinear approximation of x is not a linear function of x
because I depends on x (see Exercise 6.19).

To find the nonlinear approximation qxM , we can start by creating an ordered
sequence (αnk

)k∈N of the expansion coefficients such that107

|αnk
| ≥ |αnk+1

| for all k ∈ N. (6.82a)

The firstM entries of n are indices of the basis vectors with theM largest-magnitude
inner products with x, so we choose

Ix = {n0, n1, . . . , nM−1}, (6.82b)

where Ix makes it explicit that this set depends on x. The M -term nonlinear
approximation of x is given by

qxM =
∑

k∈Ix

αkϕk =

M−1∑

k=0

αnk
ϕnk

. (6.83a)

The resulting approximation error is x − qxM =
∑∞

k=M αnk
ϕnk

, and the squared
norm of the approximation error is

‖x− qxM‖2 =

∞∑

k=M

|αnk
|2. (6.83b)

Comparing linear and nonlinear approximations Because of our choice of Ix,
∑

n∈Ix

|αn|2 ≥
∑

n∈I
|αn|2, (6.84)

where I is any set of M indices. Thus, using (6.80b) and (6.83b),

‖x− qxM‖2 ≤ ‖x− x̂M‖2. (6.85)

The fact that nonlinear approximation is at least as good as linear approximation is
rather obvious since nonlinear approximation uses the M most useful basis vectors
for representing x while linear approximation uses some fixed set ofM basis vectors.

The difference between linear and nonlinear approximations is illustrated in
Figure 6.33. The Hilbert space R2 has the orthonormal basis {ϕ0, ϕ1}. The 1-term
linear approximation of x ∈ R2 is the orthogonal projection of x onto the subspace
spanned by ϕ0, as shown in Figure 6.33(a). The 1-term nonlinear approximation
of x ∈ R2 is either the orthogonal projection of x onto the subspace spanned by ϕ0

or the orthogonal projection of x onto the subspace spanned by ϕ1, depending on
which gives a smaller error; clearly it is the latter for the x shown in Figure 6.33(b),
because |〈x, ϕ1〉| > |〈x, ϕ0〉|.
107The sequence (nk)k∈N is a permutation of N, and, unless the inequality (6.82a) is strict for all
k ∈ N, this permutation is not unique.
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ϕ0ϕ1 x

x̂1

ϕ0ϕ1 x

qx1

(a) Linear approximation. (b) Nonlinear approximation.

Figure 6.33 1-term linear and nonlinear approximation in R2. The orthonormal basis

is ϕ0 =
[
1 1

]⊤
/
√
2 and ϕ1 =

[
−1 1

]⊤
/
√
2. (a) Linear approximation keeps only the

coefficient of ϕ0. (b) Nonlinear approximation keeps the largest-magnitude coefficient.

In this simple two-dimensional setting, because of the orientation of the or-
thonormal basis, the 1-term linear and nonlinear approximations are identical when
x is in the first or third quadrant; the nonlinear approximation is superior when x is
in the second or fourth quadrant. This is illustrative of the general principle that the
performance difference between linear and nonlinear approximation depends both
on the basis and on the signal. Exercises 6.20 and 6.21 explore certain worst-case
and average analyses.

The difference between linear and nonlinear approximations can be substan-
tial, depending on the signal and the basis. This was illustrated in Section 6.1,
where we saw that linear approximation using Fourier series (Figure 6.5) performs
much worse than nonlinear approximation using a Haar basis (Figure 6.6) for a
piecewise-constant function. Fourier series bases and Haar bases each have ele-
ments that capture broad-scale trends (low frequencies) and fine-scale details (high
frequencies). The advantage illustrated in Figure 6.6 depends both on the types
of bases and on the use of nonlinear approximation: the short support intervals of
the Haar basis functions cause the effects of discontinuities to be limited to a few
coefficients, and the selection process of using the largest-magnitude coefficients
can then focus on the fine scale only where using these coefficients will be highly
advantageous for the quality of approximation.

Fourier series When approximating a function either by linear or by nonlinear
approximation, the key to the quality of the approximation is the decay of the
magnitudes of the expansion coefficients, either in natural ordering in the linear
case, or reordered in decreasing order in (6.82a) in the nonlinear case. Through
(6.80b) and (6.83b), fast decay of the coefficients implies fast decay with M of the
norm of the M -term approximation error.

For Fourier series, the natural order for linear approximation is from low fre-
quencies to high frequencies since, generally speaking, details (high frequencies) are
not useful without first correctly capturing the general trends (low frequencies). The
decay with increasing frequency of Fourier series coefficients of a function defined

Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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on [− 1
2T,

1
2T ) is closely related to the smoothness of the T -periodic version of the

function. Thus, the norm of the M -term approximation error is also closely related
to the smoothness of the periodized function; we illustrate this before developing a
general result.

Example 6.18 (Linear and nonlinear approximation)

(i) Square wave: Let x be the square wave of period 1 with one period given
in (4.117). According to (4.118), its Fourier series coefficients are given by

X = −2j

π

[
. . . − 1

5 0 − 1
3 0 −1 0 1 0 1

3 0 1
5 . . .

]⊤
.

The magnitudes of the coefficients are symmetric around the origin, and all
even-indexed terms are zero.

Using linear approximation, we keep the central M terms. For M =
4K − 1 with K ∈ Z+, we obtain

‖x− x̂M‖2
(a)
=

4

π2

∑

|k|≥K

1

(2|k|+ 1)2
=

8

π2

∞∑

k=K

1

(2k + 1)2

(b)
=

8

π2

∫ ∞

K−1

1

(2⌈t⌉+ 1)2
dt

(c)

≤ 8

π2

∫ ∞

K−1

1

(2t+ 1)2
dt

(d)
=

8

π2
· 1

2(2K − 1)

(e)
=

8

π2(M − 1)
= Θ(M−1), (6.86a)

where (a) follows from summing the squared magnitudes of the omitted
coefficients and using the Parseval equality, (4.104a); (b) from representing
the sum by an integral of a staircase function; (c) from bounding the stair-
case function from above; (d) from evaluating the integral; and (e) from
M = 4K − 1.

Choosing nonlinear approximation instead, we can skip all the zero
terms. All steps but the last of the computation above hold with M = 2K;
we thus obtain

‖x− qxM‖2 ≤
4

π2(M − 1)
= Θ(M−1). (6.86b)

The squared norm of the approximation error is improved by about a factor
of 2, but the dependence on M is unchanged.

(ii) Triangle wave: Let y be the triangle wave of period 1 with one period given
in (4.119). According to (4.120), its Fourier series coefficients are given by

Y =
1

π2

[
. . . 1

25 0 1
9 0 1 1

4π
2 1 0 1

9 0 1
25 . . .

]⊤
.

Like for the square wave, the magnitudes of the coefficients are symmetric
around the origin and all terms with nonzero even indices equal zero. The
coefficients decay more quickly than those of the square wave, which is
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6.4 Approximation of functions and sequences by series truncation 565

consistent with the fact that the triangle wave is continuous whereas the
square wave is not.

One can show (see Exercise 6.22) that the performance of linear and
nonlinear approximation satisfy

‖y − ŷM‖2 ≤
8

3π4(M − 1)3
= Θ(M−3), (6.87a)

‖y − qyM‖2 ≤
1

3π4(M − 2)3
= Θ(M−3). (6.87b)

Again nonlinear approximation improves upon linear approximation by a
constant factor because some Fourier series coefficients are zero. The de-
pendence onM is significantly improved compared with the approximations
of the square wave.

Let x ∈ L2([− 1
2T,

1
2T )) have q continuous derivatives. Then, repeating (4.131c),

the Fourier series coefficients of x satisfy

|Xk| ≤
γ

1 + |k|q+1
for all k ∈ Z, (6.88)

for some positive constant γ. Choosing the M central terms, with M = 2K − 1 for
some K ∈ Z+,

‖x− x̂M‖2
(a)
= T

∑

|k|≥K

|Xk|2
(b)

≤ T
∑

|k|≥K

γ2

(1 + |k|q+1)2
= 2T

∞∑

k=K

γ2

(1 + kq+1)2

≤ 2T

∞∑

k=K

γ2

k2(q+1)

(c)
= 2Tγ2

∫ ∞

K−1

1

⌈t⌉2(q+1)
dt

(d)

≤ 2Tγ2
∫ ∞

K−1

1

t2(q+1)
dt

(e)
=

2Tγ2

(2q + 1)(K − 1)2q+1

(f)
=

22q+2Tγ2

(2q + 1)(M − 1)2q+1
= Θ

(
M−(2q+1)

)
, (6.89)

where (a) follows from summing the squared magnitudes of the omitted coefficients
and using the Parseval equality, (4.104a); (b) from (6.88); (c) from representing the
sum by an integral of a staircase function; (d) from bounding the staircase function
from above; (e) from evaluating the integral; and (f) fromM = 2K−1. This analysis
is based only on a bound on |Xk| that is monotonically decreasing with |k|, and it
gives us no way to predict any improvement from replacing linear approximation
by nonlinear approximation. Example 6.18 illustrated that the improvement from
nonlinear approximation when using Fourier series is generally only by a constant
factor.

The Θ(M−1) dependence on M in (6.86) matches (6.89) for q = 0. While the
square wave is not continuous, it is continuous almost everywhere, so the match is
not too surprising even though (6.89) does not apply to the square wave for q = 0.
Similarly, the Θ(M−3) dependence on M in (6.87) matches (6.89) for q = 1. While
the triangle wave is not continuously differentiable, it is continuously differentiable
almost everywhere, so the match is again not too surprising even though (6.89) does
not apply to the triangle wave for q = 1.
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6.4.2 Linear approximation of random vectors and stochastic
processes

Choosing a basis to obtain the best possible approximation of a class of functions is
a difficult problem for which there are few general and useful solutions. One corner-
stone result, the optimality of the Karhunen–Loève transform (KLT) for minimizing
MSE, has great importance despite its limitation to linear approximation. Here we
develop the KLT for finite-dimensional random vectors; the KLT for stochastic pro-
cesses is more technical, so we instead discuss linear approximation of discrete-time
stochastic processes briefly and informally without the use of the KLT.

Linear approximation of random vectors Let x =
[
x0 x1 . . . xN−1

]⊤
be an

N -dimensional random vector for which the mean vector and covariance matrix
exist. By subtracting the mean vector if necessary, we may assume each xk to have
mean zero, so the covariance and autocorrelation matrix of x are given by

Σx = E[ xx∗ ] . (6.90)

Using any orthonormal basis {ϕk}N−1
k=0 for CN , one can expand x as

x =

N−1∑

k=0

αkϕk, where αk = 〈x, ϕk〉 for k = 0, 1, . . . , N − 1. (6.91)

The important distinction from the developments in Section 6.4.1 is that each αk

is now a (scalar) random variable.
The M -term linear approximation

x̂M =

M−1∑

k=0

αkϕk (6.92)

is a random vector; this appears in block diagram form in Figure 6.34. The squared
norm of the approximation error is a random variable,

‖x− x̂M‖2 =

∥∥∥∥
N−1∑

k=M

αkϕk

∥∥∥∥
2

(a)
=

N−1∑

k=M

|αk|2,

where (a) follows from the orthonormality of the basis. The expected squared norm
of the approximation error is thus

εM = E
[
‖x− x̂M‖2

]
= E

[
N−1∑

k=M

|αk|2
]

(a)
=

N−1∑

k=M

E
[
|αk|2

]
, (6.93)

where (a) follows from the linearity of the expectation operator. The term E
[
|αk|2

]

is the power of the coefficient αk, so the MSE εM is the sum of the powers of the
last N −M coefficients.
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x Φ∗ α
1{0,1,...,M−1} Φ x̂M

Figure 6.34 Depiction of M -term linear approximation of a random vector x. The
analysis operator Φ∗ produces the coefficient vector α. Coefficients with indices in the
set {0, 1, . . . , M} are retained and the rest are set to zero. Application of the synthesis
operator Φ gives the M -term linear approximation x̂M . It is optimal for Φ∗ to be a KLT
of x; this depends on the covariance matrix of x but not on the realization of x.

A basis that minimizes εM is optimal for linear approximation of x. To un-
derstand the impact of choosing the basis, first consider the sum of the powers of
all the coefficients:

N−1∑

k=0

E
[
|αk|2

]
= E

[
‖α‖2

] (a)
= E

[
‖x‖2

]
=

N−1∑

k=0

E
[
|xk|2

]

(b)
=

N−1∑

k=0

(Σx)kk = tr(Σx), (6.94)

where (a) follows from the Parseval equality and the orthonormality of {ϕk}N−1
k=0 ;

and (b) from the definition of the covariance matrix, (2.259). The key observation
is that the sum of the powers of all the coefficients is a fixed number that does not
depend on the choice of orthonormal basis. To minimize εM , this fixed total power
should be spread with the least possible power in αM , αM+1, . . . , αN−1 (and hence
also with the most possible power in α0, α1, . . . , αM−1). This is achieved with a
Karhunen–Loève (KL) basis.

Definition 6.15 (Karhunen–Loève transform in CN) Let {ϕk}N−1
k=0 be an

orthonormal basis for CN with analysis operator Φ∗ and synthesis operator Φ. The
operator Φ∗ is called a Karhunen–Loève transform for an N -dimensional random
vector x with covariance matrix Σx when Φ∗ΣxΦ = Λ, where Λ is a diagonal
matrix with nonincreasing entries on the diagonal. The basis {ϕk}N−1

k=0 is then
called a Karhunen–Loève basis for x.

Recall that a covariance matrix is Hermitian and that Hermitian matrices have
real eigenvalues and are diagonalized by an orthonormal matrix of eigenvectors (see
(2.241)). Thus, we can always find a KL basis for x by choosing orthonormal
eigenvectors of Σx, with the vectors taken in an order that makes the eigenvalues
nonincreasing:

Σxϕk = λkϕk, k = 0, 1, . . . , N − 1, (6.95a)

λk ≥ λk+1, k = 0, 1, . . . , N − 2. (6.95b)
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When {ϕk}N−1
k=0 is a KL basis, the random variables {αk}N−1

k=0 in (6.91) are
called KLT coefficients. They are uncorrelated, meaning that the covariance matrix
Σα = E[αα∗ ] is diagonal. Their variances satisfy

E
[
|αk|2

]
≥ E

[
|αk+1|2

]
, k = 0, 1, . . . , N − 2. (6.96)

Moreover, they satisfy the following property: over any choice of orthonormal ba-
sis and for each M ∈ {1, 2, . . . , N − 1}, the power of the first M coefficients,∑M−1

k=0 E
[
|αk|2

]
, is maximized and the power of the last N −M coefficients,∑N−1

k=M E
[
|αk|2

]
, is minimized. Proofs of these properties are developed in Solved

exercise 6.5.
Since the MSE of M -term linear approximation εM in (6.93) is minimized, a

KL basis is optimal for linear approximation. Note that the same basis is optimal
for every value of M . This basis depends on the distribution of x, but it does not
depend on the realization of x, so theM -term approximation x̂M is a linear function
of the realization of x.

Example 6.19 (Karhunen–Loève transform in R2) Let x be a Gaussian
random vector with mean zero and covariance matrix

Σx =

[
5 2
2 2

]
. (6.97)

The PDF of x is depicted in Figure 6.35 by plotting level curves. The eigenvalues
of Σx are λ0 = 6 and λ1 = 1. The KLT is

Φ∗ =
1√
5

[
2 1
−1 2

]
≈
[

0.8944 0.4472
−0.4472 0.8944

]
, (6.98)

and the KL basis is shown in Figure 6.35. The first basis element ϕ0 is aligned
with the direction in which x has maximum variation, so a 1-term linear approx-
imation is as good as possible.

Linear approximation of WSS processes For WSS discrete-time stochastic pro-
cesses, we change the notion of series truncation somewhat from the developments
in Section 6.4.1, but the spirit remains similar. We will require infinitely many
terms to produce an approximation, so truncation will be replaced by a reduction
in sampling rate.

Let x be a WSS discrete-time stochastic process, and consider the approxima-
tion xI generated by the system depicted in Figure 6.36. If we were to have a finite
index set I with |I| =M , the approximation xI would depend onM scalar random
variables, similarly to (6.92). However, because of the wide-sense stationarity of x,
a finite number of scalar random variables cannot adequately describe it; in fact,
xI would have no better MSE than approximating x by its constant mean, µx = 0.
Instead, to assign a size to set I even when it is infinite, let

η = lim
K→∞

|I ∩ {−K, −K + 1, . . . , K}|
2K + 1

,
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-2 2

-2

2

t1

t2

ϕ0

ϕ1

Figure 6.35 Level curves of the PDF of a two-dimensional Gaussian random vector x
and a KL basis for x. The first basis element ϕ0 is aligned with the major axis of each
elliptical level curve.

x Φ∗
α

1I Φ xI

Figure 6.36 Depiction of linear approximation of a WSS discrete-time stochastic process
x. The analysis operator Φ∗ produces the coefficient stochastic process α. Coefficients
with indices in the set I ⊂ Z are retained and the rest are set to zero. Application of
the synthesis operator Φ gives the linear approximation xI . The set I depends on the
autocorrelation (or power spectral density) of x but not on the realization of x.

which we assume to exist and interpret as a sampling rate. We will consider only
the case when I depends on the distribution of x but not on a specific realization,
so the approximation is linear; we denote that approximation by x̂η.

The two key lessons from the optimality of the KLT for linear approximation
of random vectors are as follows:

(i) The analysis operator should produce uncorrelated transform coefficients; that
is, it should diagonalize the covariance matrix of x.

(ii) The transform coefficients with largest power (depending on the distribution
of x, not on the realization of x) should be retained; that is, their indices
should form I.

Let us now apply these lessons. Assume that x has zero mean and autocorrelation
sequence a with decay sufficient for the power spectral density A(ejω) to exist. The
autocorrelation matrix Σx is then an infinite-dimensional Toeplitz matrix with the
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autocorrelation sequence and its shifts as columns,

Σx = E[ xx∗ ] =




...
...

...
· · · a0 a−1 a−2 · · ·
· · · a1 a0 a−1 · · ·
· · · a2 a1 a0 · · ·

...
...

...



. (6.99)

As developed in Section 3.4.3, Toeplitz operators are diagonalized by the DTFT;
the eigensequences are the DTFT sequences ejωk, k ∈ Z, ω ∈ [0, 2π), and the
corresponding eigenvalues are values of the power spectral density A(ejω). Thus,
the DTFT seems to be an appropriate counterpart for the KLT, except that the
eigenvalues have not been put in nonincreasing order – which we will account for
shortly.

Having the continuous quantity ω rather than a discrete index changes the
reconstruction method from a series to an integral. The sampling rate η translates
to integrating over ω ∈ Sη ⊆ [0, 2π) with |Sη|/(2π) = η. Since the eigenvalues
have not been put in nonincreasing order, instead of simply choosing Sη = [0, η2π),
choose Sη to satisfy |Sη| = η2π and

A(ejω) ≥ A(ejθ) for all ω ∈ Sη and θ 6∈ Sη.

Formally, we do not apply the DTFT to x because, with probability 1, the
DTFT does not converge for a realization of a WSS random process. Instead, note
that, when this convergence is not an issue, first applying the DTFT, then setting
the resulting spectrum to zero outside of Sη, and finally applying the inverse DTFT
is equivalent to LSI filtering with frequency response

Hη(ω) =

{
1, for ω ∈ Sη;
0, otherwise.

(6.100a)

Thus, avoiding application of the DTFT to x, the linear approximation is

x̂η = hη ∗ x, (6.100b)

where hη is the inverse DTFT of Hη.
We can now compute the expected squared error of the linear approximation

from the power spectral density. Analogously to (6.93),

εη = E
[
|xn − (x̂η)n|2

]
=

1

2π

∫

ω 6∈Sη

A(ejω) dω,

since A(ejω) plays the role of the power of a transform coefficient indexed by ω.
We illustrate linear approximation on an AR-1 process.

Example 6.20 (Linear approximation of an AR-1 process) Let x be the
AR-1 process in Example 3.39 with coefficient a = 0.9. According to (3.245), the
power spectral density of the process is

A(ejω) =
1

1.81− 1.8 cosω
, (6.101)
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(a) Power spectral density of x. (b) Linear approximation (η = 1
4
).

Figure 6.37 Linear approximation of an AR-1 process is the restriction of the mono-
tonically decreasing power spectral density A(ejω) from (6.101) to [−ηπ, ηπ].

as shown in Figure 6.37(a). Since the power spectral density is monotonically
decreasing with |ω|, the set Sη is simply [−ηπ, ηπ]. For example, for η = 1

4 ,
the linear approximation is the projection of x onto BL[− 1

4π,
1
4π]. This can be

achieved by ideal lowpass filtering with a quarter-band filter. Figure 6.37(b)
shows a portion of a single realization of x and the approximation x̂1/4.

6.4.3 Linear and nonlinear diagonal estimators

There are many ways to estimate a signal from a noisy observation and many ways
to assess the performance of an estimator, as reviewed in Appendix 2.C.3. In prin-
ciple, one can choose an appropriate performance criterion and find the estimator
that gives the best possible performance. In practice, the accuracy of any chosen
model is limited and optimal estimators under most models are computationally
intractable. Thus, estimators are often limited to certain simple forms involving
diagonal operators applied to transform coefficient sequences.

Under the constraint of using a diagonal operator, it becomes natural to ask
how the choice of basis affects estimator performance. The bases that are best
for approximation are generally also best for estimation. We will see this in a few
simple settings; see the Further reading for pointers to more advanced results.

We will start with linear estimation of random vectors and stochastic pro-
cesses, where an exact optimality of diagonal estimators arises for certain problems.
We then shift to classical estimation settings, where the nonlinear approximation
introduced in Section 6.4.1 can be applied as an estimation technique.

Linear estimation of random vectors Let x and w be independent N -dimensional
random vectors for which the mean vectors and covariance matrices exist. By
subtracting the mean vectors if necessary, we may assume that E[ x ] = 0 and
E[w ] = 0, so the covariance and autocorrelation matrices of x and w are given by
Σx = E[ xx∗ ] and Σw = E[ww∗ ]. Let y = x + w be a noisy observation of x. Then

Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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x

w

+
y

Φ∗ Γ
α̂

Φ x̂

+
−

e

Figure 6.38 Estimation of a random vector x from an observation y that is corrupted by
signal-independent additive noise w. The analysis operator Φ∗ gives expansion coefficients
from which the linear operator Γ gives coefficient estimates α̂. The synthesis operator
Φ then gives the estimate x̂. An LMMSE estimator minimizes E

[
‖e‖2

]
by choosing Γ

depending on the distributions of x and w but not on their realizations.

y has mean zero, and the crosscovariance of x and y is

Σx,y = E[ xy∗ ] = E[ x(x + w)∗ ]
(a)
= E[ xx∗ ] + E[ xw∗ ]

(b)
= E[ xx∗ ] + E[ x ]E[ w∗ ] = Σx + 00∗ = Σx, (6.102a)

where (a) follows from the linearity of the expectation; and (b) from the indepen-
dence of x and w. Similarly, the covariance of y is

Σy = Σx +Σw. (6.102b)

Consider the estimation of x from y = t ∈ CN . The linear estimator that
minimizes the expected squared norm of the estimation error, E

[
‖x− x̂‖2

]
, is called

the LMMSE estimator. It was shown in Exercise 2.60 that the LMMSE estimator in
the present setting – where we have not assumed that x and y are jointly Gaussian –
is the same as the MMSE estimator from the setting where x and y are jointly
Gaussian. Using results from Example 2.67,

x̂
(a)
= Σx,yΣ

−1
y t

(b)
= Σx(Σx +Σw)

−1t, (6.103)

where (a) follows from (2.266a) with µx = 0 and µy = 0; and (b) from (6.102).
Using any orthonormal basis {ϕk}N−1

k=0 for CN , any linear estimator can be
implemented as shown in Figure 6.38, where Γ : CN → CN is a linear operator.
Upon combining x̂ = ΦΓΦ∗t from the block diagram with (6.103), we find that the
optimal choice is

Γ = Φ∗Σx(Σx +Σw)
−1Φ.

We now look at a special case that arises in particular when the noise is white.
Suppose that Φ∗ diagonalizes both Σx and Σw, so

Φ∗ΣxΦ = Λx = diag(σ2
x,0, σ

2
x,1, . . . , σ

2
x,N−1), (6.104a)

Φ∗ΣwΦ = Λw = diag(σ2
w,0, σ

2
w,1, . . . , σ

2
w,N−1). (6.104b)
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6.4 Approximation of functions and sequences by series truncation 573

Then

Γ = Φ∗Σx(Σx +Σw)
−1Φ

(a)
= Φ∗ΦΛxΦ

∗(ΦΛxΦ
∗ +ΦΛwΦ

∗)−1Φ

(b)
= Λx(Λx + Λw)

−1, (6.105)

where (a) follows from (6.104); and (b) from Φ∗Φ = I, which is implied by the
orthonormality of the basis. Since Λx and Λw are diagonal matrices, Γ is also a
diagonal matrix, with

Γkk =
σ2
x,k

σ2
x,k + σ2

w,k

, k = 0, 1, . . . , N − 1. (6.106)

Recall that one can always find a KL basis for x by eigendecomposition of Σx.
The computation above shows that, when such a KL basis is also a KL basis for
w, the operator Γ is diagonal. This occurs in particular when w is white, that is,
Σw = σ2

wIN for a scalar σ2
w; any orthonormal basis is then a KL basis for w.

Linear estimation of WSS processes Let x and w be uncorrelated WSS discrete-
time stochastic processes with mean zero, and consider again the system depicted
in Figure 6.38. If the overall estimation operator ΦΓΦ∗ is constrained to be linear
and shift-invariant, minimizing the power of the estimation error e is a problem
that was solved in Section 3.8.5 (compare Figures 3.36 and 6.38). The answer is the
Wiener filter, and this result can be extended to show that allowing a shift-varying
linear operator does not provide any improvement.

The Wiener filter is conveniently represented in the DTFT domain; see (3.261)
for the general case and (3.263) for the specialization to the uncorrelated additive
noise case. This is a diagonal representation of the estimator, with Φ∗ representing
the DTFT, Γ the pointwise multiplication in the DTFT domain, and Φ the inverse
DTFT. The DTFT-domain expression of the filter (3.263) is a direct analogue
of (6.106) with Ax(e

jω) playing the role of the variance of the component of x at
frequency ω (and similarly for Aw(e

jω)). Like in Section 6.4.2, the DTFT is playing
the role of the KLT. This works because the DTFT diagonalizes the autocorrelation
operator of every WSS process.

Classical estimation: Oracle scaling While Wiener filtering is an important tech-
nique, it has two key limitations: linear estimators generally perform worse than
nonlinear estimators,108 and an average over a signal distribution can be less mean-
ingful than a classical performance analysis, which holds for each possible value
of the unknown signal. We now shift our attention to nonlinear estimators and
classical analysis.109 We limit our attention to estimators in the form shown in
Figure 6.39, where a diagonal operator is applied to the expansion coefficients of
the observation with respect to some orthonormal basis. This class of estimators

108As discussed in Appendix 2.C.3, MMSE and MAP estimators are linear when a signal of
interest and an observation are jointly Gaussian; optimal estimators are rarely linear otherwise.
109The distinction between Bayesian and classical analysis of estimators was detailed in Ap-
pendix 2.C.3.
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x

w

+
y

Φ∗ α+ β
D

α̂
Φ x̂

+
−

e

Figure 6.39 Estimation of an unknown deterministic vector x from an observation y
that is corrupted by additive noise w. The analysis operator Φ∗ gives expansion coefficients
α + β, from which the diagonal operator D gives coefficient estimates α̂. The synthesis
operator Φ then gives the estimate x̂. We consider both linear and nonlinear operators D.

has low complexity and potentially good performance – depending on the choice of
basis.

Let {ϕk}k∈N be an orthonormal basis for H , and suppose a signal x ∈ H has
expansion coefficient sequence α ∈ ℓ2(N) with respect to this basis. The observation
of x is with additive noise w ∈ H , which has expansion coefficient sequence
β ∈ ℓ2(N) satisfying

E[βk ] = 0 and E[βkβ
∗
m ] = σ2δk−m, k,m ∈ N. (6.107)

The expansion coefficients of the noisy observation y are thus α + β. From this
sequence, the diagonal estimator D gives coefficient sequence α̂ = D(α + β), from
which the estimate of x is

x̂ =
∑

k∈N

α̂kϕk.

The MSE of this estimate is

E
[
‖x− x̂‖2

] (a)
= E

[
‖α− α̂‖2

] (b)
= E

[
∑

k∈N

|αk − α̂k|2
]

(c)
=
∑

k∈N

E
[
|αk − α̂k|2

]
,

where (a) follows from the Parseval equality; (b) from the definition of the ℓ2(N)
norm; and (c) from the linearity of the expectation.

Since we consider only diagonal estimators,

α̂k = γk(αk + βk), k ∈ N, (6.108)

for some sequence γ ∈ CN. Thus,

E
[
|αk − α̂k|2

] (a)
= E

[
|αk − γk(αk + βk)|2

]
= E

[
|(1 − γk)αk − γkβk|2

]

(b)
= |(1 − γk)αk|2 − (1− γk)αkγ

∗
kE[β

∗
k ]− (1 − γ∗k)α∗

kγkE[βk ] + |γk|2E
[
|βk|2

]
,

(c)
= |(1 − γk)αk|2 + |γk|2σ2, (6.109)
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6.4 Approximation of functions and sequences by series truncation 575

where (a) follows from (6.108); (b) from expanding the square, using the linearity
of the expectation and that αk and γk are deterministic quantities; and (c) from
(6.107). This contribution to the MSE is minimized over the choice of γk by

γk =
|αk|2

|αk|2 + σ2
, k ∈ N, (6.110)

resulting in

E
[
|αk − α̂k|2

]
=

|αk|2σ2

|αk|2 + σ2
, k ∈ N. (6.111)

Note the similarity of (6.110) to (6.106); in both cases, the optimal scaling factor is
the ratio of the signal energy to the sum of the signal energy and the noise energy.
Another way to write the scaling factor is as ρk/(1 + ρk), where ρk = |αk|2/σ2 or
ρk = σ2

x,k/σ
2
w,k is the signal-to-noise ratio (SNR). From this it is clear that the

scaling factor goes to 0 in the limit of low SNR and goes to 1 in the limit of high
SNR.

The estimator in (6.110) is called an oracle estimator because it depends
on information that is not ordinarily known – in this case the magnitudes of the
coefficient sequence α of the unknown signal x. An oracle estimator provides a
benchmark for other estimators. Calling this oracle scaling, we denote its MSE by

εOS =
∑

k∈N

|αk|2σ2

|αk|2 + σ2
. (6.112)

Classical estimation: From oracle projectors to nonlinear projectors If γk in
(6.108) is constrained to be in {0, 1} for all k ∈ N, the estimator is an orthogonal
projection operator. Using (6.109), the best choice is

γk =

{
1, if |αk|2 ≥ σ2;
0, otherwise,

k ∈ N, (6.113)

resulting in

E
[
|αk − α̂k|2

]
= min{|αk|2, σ2}, k ∈ N. (6.114)

This is an oracle projector because the choice of projection operator requires knowl-
edge of whether |αk|2 is larger than σ2. Its MSE is given by

εOP =
∑

k∈N

min{|αk|2, σ2}. (6.115)

Define an index set by

I =
{
k ∈ N

∣∣ |αk|2 ≥ σ2
}
,

and let M = |I|. The estimate x̂ produced by the oracle projector is the M -term
approximation of y =

∑
k∈N

(αk + β)ϕk obtained by keeping the terms with k ∈ I.
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Thus, its MSE combines the error from truncating the expansion of x with the error
from having additive noise on the M retained coefficients:

εOP = ‖x− qxM‖2 +Mσ2, (6.116)

where qxM is the M -term nonlinear approximation of x defined in Section 6.4.1.
From this characterization of the error of the oracle projector, the dependence on
the choice of orthonormal basis is the same for nonlinear approximation and this
form of estimation.

The MSE of oracle scaling is comparable to the MSE of the oracle projector
(see Exercise 6.24):

1

2
εOP ≤ εOS ≤ εOP. (6.117)

Thus, using an orthonormal basis in which the coefficient sequence decays quickly
is good for the oracle scaling estimator as well; see Exercise 6.25.

Without oracle knowledge of |αk|2, one can attempt to guess whether |αk|2 is
larger than σ2 from the observation αk + βk. Since αk is unknown and βk has a
symmetric distribution, the reasonable way to guess is to conclude that |αk|2 ≥ σ2

when |αk+βk| is larger than some threshold value ν ∈ R+. The resulting estimator

α̂k =

{
αk + βk, for |αk + βk| ≥ ν;

0, otherwise,
k ∈ N, (6.118)

is a nonlinear projector – nonlinear since the subspace upon which it projects de-
pends on the input to the estimator. It is also called a hard threshold estimator.
With an appropriate choice of ν, the MSE of the nonlinear projector can be bounded
relative to the oracle projector to show that it is approximately minimax for diag-
onal estimators; see the Further reading.

6.5 Compression

In the previous sections, we concentrated on approximating a given function or
sequence by using a finite sequence of coefficients – either coefficients of a series
expansion or coefficients of a polynomial. In this section, we will focus on approxi-
mating with bits rather than real or complex numbers, which is termed compression
or source coding. When the signal can be exactly recovered from the bits, the com-
pression is called lossless ; otherwise, it is called lossy.

Our interest is mostly in lossy compression. The limits of lossy compression
are within the purview of rate–distortion theory, which is rather divorced from prac-
tice because it suggests methods that have high computational cost for encoding
(see the Further reading). The practice of lossy compression is dominated by a mod-
ular approach with low computational cost, called transform coding, in which lossy
operations are applied only on one scalar expansion coefficient at a time. Transform
coding combines a basis expansion with quantization of expansion coefficients and
lossless compression of the resulting discrete values. We discuss lossless compres-
sion in Section 6.5.1, then scalar quantization in Section 6.5.2, and finally transform
coding in Section 6.5.3.
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6.5 Compression 577

6.5.1 Lossless compression

Lossless compression is possible only when a signal has been restricted a priori to a
countable set. Consider a discrete random variable v that takes values in a countable
set I. If |I| is finite, then each element of I can be numbered with an index in
{0, 1, . . . , |I| − 1}. The binary expansion of this index assigns a unique binary
string of length ⌈log2|I|⌉ to each element of I. The main idea behind lossless
compression is that the average length of the binary representation of v can be
reduced by assigning shorter strings to more likely values of v even though this
requires assigning longer strings to less likely values of v.

Definition 6.16 (Lossless code, extension, uniquely decodable) A
lossless code γ on a countable set I assigns a unique binary string, called a
codeword, to each i ∈ I. For any N ∈ N, the extension of γ maps the finite
sequence

[
i0 i1 . . . iN−1

]
∈ IN to the concatenation of the outputs of γ,

γ(i0), γ(i1), . . . , γ(iN−1). A lossless code is said to be uniquely decodable when
its extension is one-to-one.

Since the codewords are unique, a lossless code is always invertible. However, we
will generally impose the condition of a lossless code being uniquely decodable. This
is so that it can be used on a sequence of discrete random variables, with the entire
sequence recoverable from the resulting binary string without any punctuation to
show where one codeword ends and the next begins. In a prefix code, no codeword
is a prefix of any other codeword; prefix codes are thus always uniquely decodable.
We shall illustrate these concepts shortly.

Definition 6.17 (Code length and optimal code) The code length of the
lossless code γ applied to discrete random variable v taking values in I is

Lv(γ) = E[ ℓ(γ(v)) ] =
∑

i∈I
pv(i) ℓ(γ(i)),

where pv is the PMF of v and the length function ℓ gives the length of a binary
string. A lossless code γ is optimal for compression of v when it minimizes Lv(γ)
over all prefix codes.

Example 6.21 (Lossless codes) Let v be the discrete random variable taking
values in {0, 1, . . . , 5} with respective probabilities {0.3, 0.26, 0.14, 0.13, 0.09,
0.08}.
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578 Approximation and compression

(i) A simple binary expansion gives the fixed-rate lossless code

γFR(i) =





000, for i = 0;
001, for i = 1;
010, for i = 2;
011, for i = 3;
100, for i = 4;
101, for i = 5.

Clearly Lv(γFR) = 3 since ℓ(γFR(i)) = 3 for every i ∈ I. This code is a
prefix code and hence is uniquely decodable.

(ii) The lossless code

γ1-to-1(i) =





0, for i = 0;
1, for i = 1;
00, for i = 2;
01, for i = 3;
10, for i = 4;
11, for i = 5

gives a lower code length,

Lv(γ1-to-1) = 1 · 0.3+1 · 0.26+2 · 0.14+2 · 0.13+2 ·0.09+2 · 0.08 = 1.44.

The code is a one-to-one mapping, but its extension is not, so the code
is not uniquely decodable. For example, the output string 001 could arise
from any of the inputs (0, 0, 1), (0, 3), or (2, 1). Codes that are not uniquely
decodable are of little value because having to indicate the boundaries be-
tween codewords reduces the effectiveness of compression.

(iii) The lossless code

γSFE(i) =





00, for i = 0;
01, for i = 1;
100, for i = 2;
101, for i = 3;
110, for i = 4;
111, for i = 5

is an example of a Shannon–Fano–Elias code (see the Further reading). It
is a prefix code and hence is uniquely decodable. Its code length is

Lv(γSFE) = 2 · 0.3+ 2 · 0.26+ 3 · 0.14+ 3 · 0.13+ 3 · 0.09+ 3 · 0.08 = 2.44.

While a Shannon–Fano–Elias code is not always optimal, in this particular
example it is (compare with Example 6.23 in Section 6.6.1).

In Section 6.6.1, we present an algorithm for the design of optimal codes that is due
to Huffman. The code length of an optimal code is bounded from below and from
above using the concept of entropy; see the Further reading for pointers to proofs
of these results.
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6.5 Compression 579

Definition 6.18 (Entropy) The entropy of a random variable v that takes
values in a countable set I is

H(v) = E[−log2 pv(v) ] = −
∑

i∈I
pv(i) log2 pv(i), (6.119)

where pv is the PMF of v.

Theorem 6.19 (Entropy bound on optimal code length) Let γ be an
optimal lossless code for a discrete random variable v with entropy H(v). Then

H(v) ≤ Lv(γ) < H(v) + 1. (6.120)

Example 6.22 (Entropy) The entropy of the discrete random variable v de-
fined in Example 6.21 is

H(v) = −0.3 log2 0.3− 0.26 log2 0.26− 0.14 log2 0.14

− 0.13 log2 0.13− 0.09 log2 0.09− 0.08 log2 0.08

≈ 2.41.

The code length of 2.44 from Example 6.21(iii) satisfies (6.120).

We ignore the up-to-1-bit gap in (6.120) for the remainder of the section. If H(v) is
large, ignoring that 1 bit introduces only a small relative error. Also, even for low
entropies and code rates, Lv(γ) ≈ H(v) can effectively be attained by coding blocks
of symbols together. For example, if v0 and v1 are discrete random variables, then
the pair (v0, v1) is itself a discrete random variable, and

H( (v0, v1) ) ≤ H(v0) +H(v1), (6.121)

with equality if and only if v0 and v1 are independent (see Exercise 6.26). The code
length of an optimal lossless code for (v0, v1) satisfies

L(v0,v1)(γ)
(a)
< H( (v0, v1) ) + 1

(b)

≤ H(v0) +H(v1) + 1

=
(
H(v0) +

1
2

)
+
(
H(v1) +

1
2

)
,

where (a) follows from (6.120); and (b) from (6.121). Effectively, the excess above
the entropy lower bound has been reduced from at most 1 bit to at most 1

2 bit. By
losslessly coding N variables together, the excess is reduced to at most 1/N bits.

6.5.2 Scalar quantization

Digital computation and communication use discrete values rather than continuous
values such as real numbers. In the discussion of the precision of computation in
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(a) Outputs are integer multiples of ∆. (b) Thresholds are integer multiples of ∆.

Figure 6.40 Uniform quantization.

Section 2.6.2, it was appropriate to think of huge finite sets of values (232 and 264 for
the common 32-bit and 64-bit arithmetic). We now examine coarser discretizations
of real numbers for compression, where typical average numbers of bits per real
number are small (up to 8 but often less than 1).

In lossy compression, the mean approximation error is called the distortion
and the code length in bits per scalar input is called the rate. Just as we have
concentrated mostly on measuring the approximation error by MSE, we consider
only MSE distortion.

Uniform quantization The simplest and most common form of quantization is
uniform quantization. Typically, it takes the form of either rounding to the nearest
integer multiple of a step size ∆, as in Figure 6.40(a), or using the integer multiples
of the step size as threshold values at which the output jumps, as in Figure 6.40(b).

While even these simplest forms of quantization can be difficult to analyze
precisely, they allow us to see the typical trade-off between rate and distortion that
arises in quantizer design. Consider x uniformly distributed on the interval [0, 1).
A uniform quantizer as in Figure 6.40(b), with K cells and step size ∆ = 1/K,
quantizes x ∈ [m∆, (m + 1)∆) to (m + 1

2 )∆ for m = 0, 1, . . . , K − 1. Since K
codewords cover [0, 1), a fixed-rate lossless code γFR for q(x) will have code length

R = Lq(x)(γFR) = ⌈log2K⌉ ≈ log2K = −log2 ∆. (6.122a)

In this example, since q(x) has a uniform distribution, an optimal lossless code
would have the same code length as a fixed-rate lossless code. The MSE distortion
is

D = E
[
|x− q(x)|2

] (a)
=

∫ 1

0

(s− q(s))2fx(s) ds

(b)
=

K−1∑

m=0

∫ (m+1)∆

m∆

(s− q(s))2 ds (c)
=

K−1∑

m=0

∫ (m+1)∆

m∆

(
s−

(
m+

1

2

)
∆

)2
ds

(d)
=

1

12
∆2 (e)≈ 1

12
2−2R, (6.122b)
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x ∈ R β̃
i ∈ I

β x̂i ∈ C ⊂ R
x

q(x)

x̂j

︸ ︷︷ ︸
Sj

x̂i

︸︷︷︸
Si · · ·· · ·

(a) Block diagram. (b) Input–output relationship.

Figure 6.41 Notation for a general scalar quantizer.

where (a) follows from the definition of the expectation; (b) from fx(s) = 1 and
breaking the integral into a sum of K integrals over subintervals so that q(s) is
constant on each subinterval; (c) from substituting for q(s); (d) from computing the
integral; and (e) from (6.122a). We will see that, when using the MSE distortion
measure, the 2−2R dependence of distortion on rate will almost always be present.

General scalar quantization We now consider scalar quantization more gener-
ally, and we will give simple properties of optimal quantizers and approximations
for their performance. Nonuniform scalar quantization provides substantial perfor-
mance improvements over uniform scalar quantization in some situations. It tends
to be most useful at low rates and when scalar quantization is used without lossless
compression. We will see shortly that at high rates, there is a bounded performance
gap between optimal nonuniform quantization and uniform quantization combined
with optimal lossless coding.

Definition 6.20 (Scalar quantizer) A scalar quantizer q is a mapping from
R to a reproduction codebook C = {x̂i}i∈I ⊂ R, where I is an arbitrary countable

index set. Quantization can be decomposed into two operations, β and β̃, with
q = β ◦ β̃. The lossy encoder β̃ : R → I is specified by a partition {Si}i∈I of R

with partition cells Si = β̃−1(i) = {x ∈ R | β̃(x) = i}, i ∈ I. The reproduction
decoder β : I → R is specified by the codebook C.

The notation from this definition is illustrated in Figure 6.41.
Returning to uniform quantization as an example, the quantizer in Fig-

ure 6.40(a) can now be specified formally as

I = Z, C = ∆Z, β̃(x) = round
( x
∆

)
, β(i) = i∆, (6.123a)

where round(·) denotes rounding to the nearest integer. Similarly, the quantizer in
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582 Approximation and compression

Quantizer Rate R

Fixed-rate ⌈log2|I|⌉
Variable-rate E[ ℓ(γ(β̃(x))) ]

Entropy-constrained H(β̃(x))

Table 6.3 Rate measures for quantizers.

Figure 6.40(b) can be specified as

I = Z, C = ∆

(
Z− 1

2

)
, β̃(x) =

⌈ x
∆

⌉
, β(i) =

(
i− 1

2

)
∆. (6.123b)

The quality of a quantizer is determined by its distortion and rate. The MSE
distortion for quantizing the random variable x ∈ R is

D = E
[
|x− q(x)|2

]
= E

[
|x− β(β̃(x))|2

]
.

The rate can be measured in a few ways. The lossy encoder output β̃(x) is a dis-
crete random variable that is typically entropy coded because the output symbols
will have unequal probabilities. Associating an entropy code γ with the lossy en-
coder β̃ and reproduction decoder β gives a variable-rate quantizer specified by
(β̃, β, γ). The rate of this quantizer is the code length of γ applied to β̃(x). Not
specifying an entropy code (or specifying the use of a fixed-rate lossless code) gives
a fixed-rate quantizer with rate R = ⌈log2|I|⌉. Measuring the rate by the entropy

lower bound (6.120) gives R = H(β̃(x)); the quantizer in this case is called entropy-
constrained. These rates are summarized in Table 6.3. Even though a lossless com-
pression method will not meet the bound (6.120) in general, the entropy-constrained
case is important because lossless coding of blocks of quantizer outputs approaches
the bound and adds little complexity – especially compared with unconstrained
vector quantization (see Section 6.5.3 and the Further reading).

Optimal quantization An optimal quantizer minimizes the distortion subject to
an upper bound on the rate. Consider the case of fixed-rate quantization. The
distortion is given by

D = E
[
|x− q(x)|2

]
=

∫ ∞

−∞

(
s− β

(
β̃(s)

))2
fx(s) ds. (6.124)

With the reproduction decoder β fixed, the choice of lossy encoder β̃ can minimize
the distortion by minimizing the integrand of (6.124) pointwise; this has no effect
on the rate because the codebook size is unchanged. This implies that the optimal
lossy encoder β̃ returns the index of the nearest codeword:

i = β̃(x) = argmin
j∈I

|x− x̂j |. (6.125a)
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6.5 Compression 583

In particular, each partition cell Si must be a single interval (see Exercise 6.27).

Similarly, with the partition {Si}i∈I (or, equivalently, β̃) fixed, the reproduction
decoder β must satisfy

x̂i = β(i) = E[ x | x ∈ Si ] , for all i ∈ I, (6.125b)

to be optimal (see Exercise 6.28). The use of (6.125) for quantizer design is discussed
in Section 6.6.2.

The variable-rate and entropy-constrained cases are a bit more complicated.
Since β has no effect on the rate, the necessary condition (6.125b) remains valid.

However, since β̃ might affect the rate, pointwise minimization of the distortion
through (6.125a) is no longer optimal. A standard method to optimize β̃ with β
held fixed is to minimize a weighted combination of rate and distortion; see the
Further reading.

Because of simple shifting and scaling properties, an optimal quantizer for a
random variable x can be easily deduced from an optimal quantizer for the nor-
malized random variable (x− µx)/σx, where µx and σx are the mean and standard
deviation of x, respectively. One consequence of this is that optimal quantizers have
performance

D = σ2
x g(R), (6.126)

where g(R) is the performance of optimal quantizers for the normalized source.

High-resolution analysis For most sources, it is impossible to analytically opti-
mize quantizers or express the performance of optimal quantizers. Fortunately,
approximations obtained when it is assumed that the quantization is very fine are
reasonably accurate even at low to moderate rates.

High-resolution analysis is based on approximating the PDF fx on the entire
interval Si by its value at the midpoint. Assuming that fx is smooth, this approxi-
mation is accurate when each Si is short.

110 Optimization of scalar quantizers then
turns into finding how the optimal lengths of the partition cells depend on the PDF
fx. While the details of these optimizations for an arbitrary PDF are beyond our
scope, Exercise 6.29 develops optimal fixed-rate and entropy-constrained quantizers
for a source with a very simple PDF that are suggestive of the following general
results (see the Further reading):

(i) For fixed-rate quantization, it is optimal for the cell containing s to have length

approximately proportional to f
−1/3
x (s). The resulting distortion satisfies

DFR ≈
1

12

(∫ ∞

−∞
f1/3
x (s) ds

)3
2−2R. (6.127)

110An infinite partition cell does not have a midpoint. Thus, for a quantizer with a finite codebook
applied to a source with infinite support, this approximation does not make sense for the extremal
partition cells. It is furthermore assumed that the distortion contribution from the extremal
partition cells is not dominant.
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584 Approximation and compression

(ii) For entropy-constrained quantization, it is optimal for each Si to have approx-
imately equal length; that is, uniform quantization is optimal. The resulting
distortion satisfies

DEC ≈
1

12
22h(x)2−2R, (6.128)

where

h(x) = −
∫ ∞

−∞
fx(s) log2 fx(s) ds (6.129)

is the differential entropy of x.

For a Gaussian random variable with variance σ2, (6.127) yields

DFR ≈
√
3π

2
σ22−2R (6.130)

for fixed-rate quantization, and (6.128) yields

DEC ≈
πe

6
σ22−2R. (6.131)

for entropy-constrained quantization.
Summarizing (6.127)–(6.131), we see that high-resolution quantizer perfor-

mance is described by
D ≈ cσ22−2R, (6.132)

where σ2 is the variance of the source and c is a constant that depends on the
normalized density of the source and the type of quantization (fixed-rate, variable-
rate, or entropy-constrained). This is consistent with (6.126).

6.5.3 Transform coding

Transform coding is a method for lossy compression that combines the approxima-
tion power of a well-chosen basis expansion, as in Section 6.4.2, with the simplicity
of scalar quantization and lossless compression. The encoding and decoding are
modular, which is advantageous for design, implementation, and understanding.

Motivation Conceptually, it is simple to extend quantization of real numbers to
quantization of real vectors; in Definition 6.20, each instance of R can be replaced
by RN . Computationally, however, this is not so simple. For a fixed number of bits
per scalar component, the size of the codebook increases exponentially with N , and
the cost of computing the distance to a codeword for nearest-codeword encoding
(6.125a) is proportional to N . For scalars, one can perform nearest-codeword encod-
ing (6.125a) by comparing an input to a precomputed list of endpoints of partition
cells; for vectors (N > 1), partition cells are more complicated N -dimensional sets
rather than intervals, so nearest-codeword encoding may require a full search over
the codebook. The cost of this search is prohibitive for many applications. Thus,
methods for structuring the codebook for efficient search – even at the expense of
having a suboptimal codebook – are important; see the Further reading.
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6.5 Compression 585

Dimension Distortion decrease Rate decrease

2 0.167 dB 0.028 bits

3 0.257 dB 0.043 bits

4 0.366 dB 0.061 bits

5 0.422 dB 0.070 bits

6 0.496 dB 0.082 bits

7 0.561 dB 0.093 bits

8 0.654 dB 0.109 bits

∞ 1.533 dB 0.255 bits

Table 6.4 Gains of vector quantization over scalar quantization for entropy-constrained
coding (based on high-resolution analysis).

Most of the benefit of vector quantization over scalar quantization comes from
exploiting statistical dependencies between components of a vector. To illustrate
that there is some advantage beyond this, consider the vector quantization of an
i.i.d. Gaussian vector. The best performance, allowing the dimension N to grow
without bound, is

D = σ22−2R. (6.133)

The distortion given by (6.131) is worse only by a factor of πe/6 (≈ 1.53 dB). Equiv-
alently, the increase in rate to achieve equal distortion is only 1

2 log2(πe/6) ≈ 0.255
bits. These gaps from the best possible performance caused by using scalar (rather
than vector) quantization diminish slowly as the dimension of quantization increases
(see Table 6.4). Since the computational cost of unstructured vector quantization
is exponential in N , the benefit (decrease in distortion or rate) is often not justified
if statistical dependencies are exploited in some other way.

Pixels of an image tend to be similar to their neighbors, or differ in partially
predictable ways. These tendencies, arising from the continuity, texturing, and
boundaries of objects, the similarity of objects in an image, gradual lighting changes,
etc., might extend over an entire image with millions of pixels. With the dimension
of a signal being so high, it is important to use methods with computational costs
that grow slowly with dimension. Thus, state-of-the-art lossy compression methods
for images divide the encoding operation into a sequence of three relatively simple
steps: the computation of a linear transformation of the data designed primarily to
produce uncorrelated coefficients, separate quantization of each scalar coefficient,
and entropy coding. Contemporary methods for compression of video and music
follow similar steps; standards for speech compression operate rather differently and
include vector quantization.

Terminology A transform code is defined as follows (see Figure 6.42).
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Figure 6.42 The encoder of a transform code applies the analysis operator Φ̃∗ to
x ∈ RN to compute transform coefficients {αk}N−1

k=0 . The lossy encoders of scalar quantizers

{β̃k}N−1
k=0 then produce discrete variables {vk}N−1

k=0 that are compressed with lossless codes
{γk}N−1

k=0 . The decoder reverses these steps by first inverting the lossless codes, then
applying reproduction decoders of the scalar quantizers {βk}N−1

k=0 , and finally applying the
synthesis operator Φ. The bases used in analysis and synthesis are a biorthogonal pair of
bases, so Φ−1 = Φ̃∗.

Definition 6.21 (Transform code) A transform code for x ∈ RN uses a
biorthogonal pair of bases {ϕk}N−1

k=0 and {ϕ̃k}N−1
k=0 for RN , a set of scalar quantizers

{(β̃k, βk)}N−1
k=0 , and a set of lossless codes {γk}N−1

k=0 .

(i) Encoding: Applying the analysis operator Φ̃∗ associated with {ϕ̃k}N−1
k=0 to x

produces transform coefficients {αk}N−1
k=0 . Applying the lossy encoder β̃k to

αk produces vk, and applying the lossless code γk to vk produces a portion
of the encoded representation, for k = 0, 1, . . . , N − 1.

(ii) Decoding: Applying the reproduction decoder βk to vk produces α̂k, for
k = 0, 1, . . . , N − 1. Applying the synthesis operator Φ associated with
{ϕk}N−1

k=0 to α̂ produces the reproduction x̂.

(iii) Distortion: The distortion is the per-component MSE

D =
1

N
E
[
‖x− x̂‖2

]
. (6.134)

(iv) Rate: For fixed-rate coding, the rate is

RFR =
1

N

N−1∑

k=0

log2Kk =
1

N
log2

(
N−1∏

k=0

Kk

)
, (6.135a)

where Kk is the size of the codebook of quantizer (β̃k, βk). For entropy-
constrained coding, the rate is

REC =
1

N

N−1∑

k=0

H(β̃(vk)). (6.135b)

Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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The simplicity of transform coding makes large values of N practical. Computing
each of the transforms Φ̃∗ and Φ requires at most N2 multiplications and N(N − 1)
additions. A structured transform, such as a DFT, a DCT, or a discrete wavelet
transform (DWT), is often used to reduce the complexity of these steps further.

Bit allocation Separate quantization and entropy coding of each transform coeffi-
cient requires splitting of the total number of bits among the transform coefficients,
implying some sort of a bit allocation among the components. Bit allocation prob-
lems can be stated in a single common form. Given is a set of quantizers described
by their distortion–rate performances as

Dk = gk(Rk), Rk ∈ Rk, k = 0, 1, . . . , N − 1,

where each set of available rates Rk is a subset of the nonnegative real numbers
and might be discrete or continuous. The problem is to minimize the distortion

D =
1

N

N−1∑

k=0

Dk,

subject to the maximum rate

R =
1

N

N−1∑

k=0

Rk.

If the distortion can be reduced by taking bits away from one component and
giving them to another, the initial bit allocation is not optimal. Applying this
reasoning with infinitesimal changes in the component rates, a necessary condition
for an optimal allocation is that the slope of each gk at Rk is equal to a common
constant value; see the Further reading for pointers to more formal arguments.

The approximate performance given by (6.132) leads to a particularly easy bit
allocation problem with

gk(Rk) = ckσ
2
k2

−2Rk , Rk = [0, ∞), k = 0, 1, . . . , N − 1. (6.136)

Ignoring the fact that each component rate must be nonnegative, an equal-slope
argument shows that the optimal bit allocation is

Rk = R+
1

2
log2

ck
(∏N−1

n=0 cn

)1/N +
1

2
log2

σ2
k(∏N−1

n=0 σ
2
n

)1/N . (6.137a)

With these rates, D0 = D1 = · · · = DN−1 = D, and this distortion is

D =

(
N−1∏

n=0

cn

)1/N (N−1∏

n=0

σ2
n

)1/N
2−2R. (6.137b)

This solution is valid when each Rk given above is nonnegative. For lower rates, the
components with smallest ckσ

2
k are allocated no bits, and the remaining components

have correspondingly higher numbers of bits.
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588 Approximation and compression

Since (6.137) gives equal distortions for each component, it has a very simple
consequence for entropy-constrained quantization. Under high-resolution analysis,
uniform quantizers are approximately optimal. Furthermore, the component dis-
tortion Dk obtained from uniform quantization with step size ∆k is ∆2

k/12, without
any dependence on the source distribution. Therefore, using the optimal bit alloca-
tion implies having equal step sizes for all N uniform quantizers. See Exercise 6.30
for a related computation.

Visualizing the effect of the transform Beyond two or three dimensions, it is
difficult to visualize vectors – let alone the effects of transforms and quantizers on
vectors. Fortunately, the most important case for transform coding lends itself to
visualization. Assume that the transform coefficient vector α is quantized with uni-
form scalar quantizers with equal step sizes for each component. The partitioning
for α is then into axis-aligned hypercubes, and we can visualize the effect of this
partitioning on the original vector of interest x because a linear transform com-
bines rotating, scaling, and shearing such that a hypercube is always mapped to a
parallelepiped.

For illustration, consider a two-dimensional random vector x with a zero-
mean Gaussian distribution. The level curves of its PDF are ellipses centered at
the origin with collinear major axes, as shown earlier in Figure 6.35 and repeated
in Figure 6.43(a). Applying the analysis operator Φ̃∗ results in a Gaussian vector
(see Appendix 2.C.2), so the level curves of the PDF of α are also ellipses centered
at the origin with collinear major axes; Figure 6.43(b) shows an example. Uniform
scalar quantization of α, with equal step sizes for each component, partitions the
transform domain into squares, which are also shown in Figure 6.43(b). Applying
the synthesis operator Φ returns to the original coordinates, and the partitioning is
deformed into identical parallelograms, as shown in Figure 6.43(c).

The partition in the original coordinates is what is truly relevant. It shows
which source vectors are mapped to the same reconstruction vector, thus giving an
indication of the average distortion. Looking at the number of cells with appreciable
probability gives an indication of the rate.

A singular transform is a degenerate case. As shown in Figure 6.43(d), the
transform coefficients have probability mass only along a line. Inverting the trans-
form is not possible, but we may still return to the original coordinates to view the
partition induced by quantizing the expansion coefficients. The cells are unbounded
in one direction, as shown in Figure 6.43(e). This is undesirable unless the variation
of the source in the direction in which the cells are unbounded is very small.

It is inherently suboptimal to have the parallelogram-shaped partition cells
that arise from using nonorthogonal bases (see Exercise 6.31). To get rectangular
partition cells, the basis vectors must be orthogonal. For square cells, the basis
vectors, in addition to being orthogonal, should have equal lengths. A KL basis
is an orthonormal basis and thus gives square cells; in addition, the partition is
aligned with the axes of the source PDF, as shown in Figures 6.43(f) and (g).

Transform optimization Under various assumptions, one can show that KL bases
are optimal for transform coding. We will concentrate on results for orthonormal
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x1

x0

α1

α0

x1

x0

(a) x. (b) α. (c) x̂.

α1

α0

x1

x0

(d) α. (e) x̂.

α1

α0

x1

x0

(f) α. (g) x̂.

Figure 6.43 Illustration of the effect of the transform on the partitioning of R2. (a)

A Gaussian source x is depicted by level curves of its PDF. (b) An analysis operator Φ̃∗

results in Gaussian transform coefficients α, which are in a space partitioned into squares
by uniform scalar quantization with equal step sizes in each dimension. (c) Inverting
the transform with the synthesis operator Φ returns to the original coordinates, with
partitioning into parallelograms. (d) A degenerate case of Φ̃∗ having a one-dimensional
range results in linearly dependent transform coefficients. (e) In the degenerate case, the
partitioning of the original space has unbounded cells. (f) A KLT gives uncorrelated
transform coefficients. (g) When the KLT has been used, the partitioning of the original
space is aligned with the axes of the source PDF.
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bases and Gaussian sources; see the Further reading for pointers to proofs and more
general results.

Consider transform coding of zero-mean random vector x ∈ RN , with covari-
ance matrix Σx, using orthonormal basis {ϕk}N−1

k=0 . Since the basis is orthonormal,

it is its own dual, and the analysis transform is Φ̃∗ = Φ∗ = Φ−1, yielding transform
coefficient vector α = Φ∗x. As observed previously in Section 6.4.2, the sum of
the powers of the transform coefficients is a fixed number that does not depend on
the choice of the orthonormal basis (see (6.94)). For M -term approximation, the
best performance was achieved by maximizing the energy in α0, α1, . . . , αM−1, and
a KL basis was found to be optimal. With optimal bit allocation and additional
assumptions, we will come to the same conclusion for transform coding.

As in Definition 6.21 and Figure 6.42, let α̂ denote the quantized versions of the
transform coefficients. Suppose that the quantizer performance on each transform
coefficient is described by (6.132). The distortion is then given by

D =
1

N
E
[
‖x− x̂‖2

] (a)
=

1

N
E
[
‖α− α̂‖2

] (b)
=

1

N
E

[
N−1∑

k=0

|αk − α̂k|2
]

(c)
=

1

N

N−1∑

k=0

E
[
|αk − α̂k|2

] (d)
=

1

N

N−1∑

k=0

ck(Σα)kk2
−2Rk , (6.138)

where (a) follows from the Parseval equality; (b) from the definition of the norm; (c)
from the linearity of the expectation; and (d) from (6.132), with each ck a constant
that depends on the normalized density of αk and the type of quantization. Using
(6.137), optimal bit allocation now yields

D =

(
N−1∏

n=0

cn

)1/N (N−1∏

n=0

(Σα)nn

)1/N
2−2R. (6.139)

In this distortion expression, the factor
∏N−1

n=0 (Σα)nn depends on the choice of

orthonormal basis in a straightforward way, while the factor
∏N−1

n=0 cn is more com-
plicated – unless we assume that the source is Gaussian.

If x is a Gaussian random vector, then every transform coefficient is a Gaussian
random variable for any choice of the orthonormal basis. With this invariance of
the normalized densities of {αk}N−1

k=0 , the distortion simplifies to

D = c

(
N−1∏

n=0

(Σα)nn

)1/N
2−2R, (6.140)

where c depends on the type of quantization (for example, c =
√
3π/2 for fixed-rate

quantization and c = πe/6 for entropy-constrained quantization).
The distortion in (6.140) can be used to define a figure of merit called the

coding gain:

coding gain =

(∏N−1
n=0 (Σx)nn

)1/N

(∏N−1
n=0 (Σα)nn

)1/N . (6.141)

Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal

Cambridge University Press (ISBN 110703860X) v1.1 [May 2014] [free version] Comments to book-errata@FourierAndWavelets.org



6.6 Computational aspects 591

The coding gain is the factor by which the distortion is reduced because of the
transform, assuming high rate and optimal bit allocation.

To maximize the coding gain, and hence minimize the distortion, the choice of
orthonormal basis should minimize the geometric mean of the transform coefficient
variances. This minimization is achieved by a KL basis. Specifically,

N−1∏

n=0

(Σα)nn
(a)

≥ det(Σα)
(b)
= det(Φ∗ΣxΦ)

(c)
= det(Φ∗) det(Σx) det(Φ)

(d)
= det(Σx)

(e)
=

N−1∏

n=0

λn, (6.142)

where (a) follows from Hadamard’s inequality; (b) from Solved exercise 6.5(i); (c)
from det(AB) = det(A) det(B); (d) from unitary matrices having unit determinant;

and (e) from (2.228), where {λn}N−1
n=0 are the eigenvalues of Σx. Thus,

∏N−1
n=0 (Σα)nn

has a lower bound that is independent of the choice of basis and achieved with
equality by a KL basis.

The optimality of the KLT under optimal bit allocation and expressions from
high-resolution analysis is a special case of the following more general result:

Theorem 6.22 (Optimality of Karhunen–Loève transform) Consider
transform coding using an orthonormal basis. Suppose that there is a single non-
increasing function g that describes the quantization of each transform coefficient
through

E
[
(αk − α̂k)

2
]

= σ2
k g(Rk), k = 0, 1, . . . , N − 1,

where σ2
k is the variance of αk and Rk is the rate allocated to αk. Then, a KLT

minimizes the distortion for any nonincreasing bit allocation (R0, R1, . . . , RN−1).

6.6 Computational aspects

In this section, we present design algorithms for lossless and lossy source codes. We
then discuss estimation from quantized samples.

6.6.1 Huffman algorithm for lossless code design

Huffman introduced a simple algorithm for constructing optimal entropy codes. The
algorithm starts with a graph with one node for each symbol and no edges. At each
step of the algorithm, the probabilities of the disconnected sets of nodes are sorted
and the two least probable sets are merged through the addition of a parent node
connected with edges to each of the two sets. The edges are assigned labels of 0
and 1. When a tree has been formed, codewords are assigned to each leaf node by
concatenating the edge labels on the path from the root to the leaf. We illustrate
the algorithm through an example.
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Figure 6.44 A Huffman code construction. One starts with a graph with no edges. At
each step, the probabilities are sorted and the two least probable sets are merged by adding
a parent node. When a tree has been formed, the codewords can be read off the tree by
concatenating the edge labels.

Example 6.23 (Huffman code design) Consider the random variable v de-
fined in Example 6.21. Figure 6.44 shows the steps of the Huffman code design
algorithm for v. The code length is

Lv(γ) = 0.3 · 2 + 0.26 · 2 + 0.14 · 3 + 0.13 · 3 + 0.09 · 3 + 0.08 · 3 = 2.44,

which is quite close to the entropy of 2.41 bits obtained in Example 6.22.
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6.6.2 Iterative design of quantizers

The design of optimal quantizers is a challenging problem. Consider fixed-rate
quantization of x with codebook C = {x̂i}K−1

i=0 , with

x̂0 < x̂1 < x̂2 < · · · < x̂K−1,

and partition cells

Si = [yi, yi+1), i = 0, 1, . . . , K − 1,

where y0 = −∞ and yK =∞.111 The distortion is

D
(a)
=

∫ ∞

−∞

(
s− β

(
β̃(s)

))2
fx(s) ds

(b)
=

K−1∑

i=0

∫ yi+1

yi

(
s− β

(
β̃(s)

))2
fx(s) ds

(c)
=

K−1∑

i=0

∫ yi+1

yi

(s− x̂i)2 fx(s) ds, (6.143)

where (a) follows from (6.124); (b) from breaking the integral into a sum of K

integrals over subintervals so that β̃(s) is constant on each subinterval; and (c)
from substituting the codebook entries. This is a complicated function of {x̂i}K−1

i=0

and {yi}K−1
i=1 , and often the best that can be hoped for is to find a local minimum

of D.
The optimality conditions (6.125) are the basis of an iterative design algorithm

due to Lloyd. The following two steps improve the partition with the codebook fixed
and improve the codebook with the partition fixed:

(i) Partition optimization: With the codebook {x̂i}K−1
i=0 fixed, using (6.125a),

each interior partition endpoint should be at the midpoint between codebook
entries:

yi =
1

2
(x̂i−1 + x̂i) , i = 1, 2, . . . , K − 1. (6.144a)

(ii) Codebook optimization: With the partition endpoints {yi}K−1
i=1 fixed, using

(6.125b), each codebook entry should be at the centroid of the corresponding
cell:

x̂i = E[ x | x ∈ [yi, yi+1) ] =

∫ yi+1

yi
sfx(s) ds∫ yi+1

yi
fx(s) ds

, i = 0, 1, . . . , K − 1.

(6.144b)

Repeating these steps creates a nonincreasing sequence of distortions; the iteration
can be halted when the change of distortion is very small. When log fx is concave,
the distortion has a single local minimum, so convergence is to the optimal quantizer;
see the Further reading.

The design of variable-rate and entropy-constrained quantizers is a bit more
complicated because (6.125a) is not a necessary condition for optimality of the
lossy encoder. This changes the partition optimization step of the iterative design
algorithm; see the Further reading.

111Exercise 6.27 establishes that each partition cell of an optimal quantizer is a single interval.
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x ∈ RN Φ̃∗ α ∈ RM

Q α̂ ∈ ∆ZM

Figure 6.45 Quantized expansion coefficients obtained with a frame analysis operator
are used to form an estimate of x.

6.6.3 Estimating from quantized samples

The difference between a quantizer’s output and its input can be considered as
noise that the quantizer has added to a signal. While generic methods like those
described in Section 6.4.3 may be employed to mitigate this noise, two peculiarities
should inspire caution in analysis:

(i) Determinism: The error q(x) − x is a function of the input x. For a random
input x, the error q(x)−x is a random variable that is a deterministic function
of x.

(ii) Boundedness: The error q(x)−x is often bounded, unlike the Gaussian model
for noise under which many analyses are performed. In particular, if the
quantizer is uniform with step size ∆, then |q(x) − x| ≤ 1

2∆ for all inputs
x. More generally, q(x) = x̂i implies that x ∈ Si, and Si generally has finite
length.

The boundedness property introduces novel geometric aspects to estimation prob-
lems and leads to algorithms that perform better than LMMSE estimation. Here
we will introduce a finite-dimensional estimation problem, interpret it geometrically,
and present a few algorithmic approaches.

Estimation from a quantized frame expansion Let {ϕk}M−1
k=0 be a frame in RN

with M > N , and let {ϕ̃k}M−1
k=0 be its canonical dual frame. Also let Q : RM →

∆ZM be the operator that applies the uniform scalar quantizer with step size ∆
in Figure 6.40(a) (rounding to the nearest integer multiple of ∆) separately to
each of the M entries of its input. Analysis of x ∈ RN with {ϕ̃k}M−1

k=0 results in

coefficient vector α = Φ̃∗x ∈ RM . Suppose that we observe its quantized version,
α̂ = Q(α) = Q(Φ̃∗x) as in Figure 6.45, and wish to form an estimate for x.

The redundancy from the expansion of a vector in RN to a higher-dimensional
space RM allows us to mitigate some of the error introduced by the quantization.
From the canonical dual property, Φ̃∗Φ : RM → RM is an orthogonal projection
operator onto S = R(Φ̃∗). The noiseless coefficients α must lie in S, so it is sensible
to compute the orthogonal projection of α̂ onto S before synthesizing with Φ. This
would result in the estimate

x̂L = Φ(Φ̃∗Φα̂) = (ΦΦ̃∗)Φα̂
(a)
= Φα̂,

where (a) follows from ΦΦ̃∗ = I for any pair of dual frames. This computation
shows an optimality property of canonical dual frames.
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S0(−1)
S0(0)

S0(1)
S0(2)

ϕ̃0·
0

S0(1)

S1(0)

ϕ̃0

ϕ̃1

·
0

ϕ̃0

ϕ̃1
ϕ̃2

·
0

(a) One constraint. (b) Two constraints. (c) Three constraints.

Figure 6.46 Visualizing the information present in a quantized frame expansion of x ∈ R2.
(a) A single quantized expansion coefficient specifies a strip in R2 perpendicular to ϕ̃0.
(b) A second quantized expansion coefficient specifies a second strip in R2, perpendicular
to ϕ̃1. Together, they determine a parallelogram as in Figure 6.43. (c) A third quantized
expansion coefficient localizes x further, and many shapes for the partition cell containing
x are possible.

Under the model that β = Q(α) − α is a random vector with mean zero
and uncorrelated entries of equal variance, x̂L is the LMMSE estimate of x. As
M increases with N fixed, the MSE of this estimate is generally a function with
Θ(M−1) decay (there is a dependence on the construction of the frames).

Other estimates can give faster decay of MSE with M , often Θ(M−2). The
key observation is that the boundedness of quantization error implies that each
quantized coefficient α̂k specifies hard constraints on x that one might exploit.
Figure 6.46 illustrates the geometry for x ∈ R2. The first quantized coefficient α̂0

specifies

〈x, ϕ̃0〉 ∈
[
α̂0 −

1

2
∆, α̂0 +

1

2
∆

]
= S0(α̂0/∆),

which is the intersection of two half-spaces. This is illustrated in Figure 6.46(a),
with one of several sets S0(i), i ∈ Z, shaded. Each additional quantized coefficient
specifies an additional constraint

〈x, ϕ̃k〉 ∈
[
α̂k −

1

2
∆, α̂k +

1

2
∆

]
= Sk(α̂k/∆). (6.145)

In general, the linear estimate x̂L might not satisfy all the constraints.

Linear programming The constraint (6.145) can be written as a pair of constraints

〈x, ϕ̃k〉 ≥ α̂k −
1

2
∆, (6.146a)

〈x, ϕ̃k〉 ≤ α̂k +
1

2
∆, (6.146b)
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the first of which is equivalent to

〈x, −ϕ̃k〉 ≤ −α̂k +
1

2
∆, (6.146c)

Gathering all constraints of the form of (6.146b) and (6.146c) using the analysis
operator gives [

Φ̃∗

−Φ̃∗

]
x ≤

[
α̂
−α̂

]
+

1

2
∆12M×1, (6.147)

where the inequalities are elementwise and every element of 12M×1 ∈ R2M is 1.
Any linear programming package can be used to solve (6.147), with an arbitrary
objective function, to find an estimate in ∩M−1

k=0 Sk(α̂k/∆).
Linear programming generally yields a corner of the feasible set, where at

least one constraint in (6.147) is active. Typically, the estimate can be improved by
maximizing the slack in (6.147), meaning that each constraint is as far from active
as possible. To this end, let

A =

[
Φ̃∗ 1M×1

−Φ̃∗ 1M×1

]
, b =

[
α̂
−α̂

]
, c =

[
0N×1

−1

]
, (6.148a)

and use a linear programming method to

minimize c⊤
[
x
δ

]
subject to A

[
x
δ

]
≤ b (6.148b)

and return the first N components of the minimizer as x̂.

Iterative projection Since the set Sk(α̂k/∆) in (6.145) is convex, the POCSmethod
of Section 5.6.1 can be applied to the estimation of x. For an iterative method, set
x̂(n+1) to the orthogonal projection of x̂(n) onto Sk(α̂k/∆) for some appropriate
choice of k. This update is

x̂(n+1) =





x̂(n) + (α̂k − 1
2∆− 〈x̂(n), ϕ̃k〉)ϕ̃k/‖ϕ̃k‖2, if 〈x̂(n), ϕ̃k〉 < α̂k − 1

2∆;
x̂(n) + (α̂k + 1

2∆− 〈x̂(n), ϕ̃k〉)ϕ̃k/‖ϕ̃k‖2, if 〈x̂(n), ϕ̃k〉 > α̂k +
1
2∆;

x̂(n), otherwise.
(6.149)

Convergence to the intersection ∩M−1
k=0 Sk(α̂k/∆) extracts all the information

from α̂. In a traditional POCS method, this requires the number of orthogonal
projections to each Sk(α̂k/∆) to be unbounded. The optimal Θ(M−2) decay with
M is also possible even when each constraint x ∈ Sk(α̂k/∆) is used only once; see
the Further reading.

Other formulations and algorithms The estimation problem was posed here in
non-Bayesian terms. Given a prior on x, an MMSE or MAP estimate can be com-
puted efficiently with message-passing algorithms; see the Further reading.
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Method Approximation Approximating Error

criterion polynomial pK(t) eK(t)

Least-squares min
pK
‖x− pK‖22

K∑

k=0

〈x, ϕk〉ϕk(t) x(t) − pK(t)

Lagrange
pK(tk) = x(tk),
k = 0, 1, . . . , K

K∑

k=0

x(tk)
K∏

i = 0
i 6= k

t− ti
tk − ti

∏K
k=0(t − tk)
(K + 1)!

x(K+1)(ξ)

Taylor series
p
(k)
K (t0) = x(k)(t0),
k = 0, 1, . . . , K

K∑

k=0

(t − t0)k
k!

x(k)(t0)
(t − t0)K+1

(K + 1)!
x(K+1)(ξ)

Minimax min
pK
‖x− pK‖∞

Near-minimax
(on [−1, 1])

Lagrange interp. with
{tk}Kk=0 zeros of TK

≤ 1

(K + 1)!2K
‖x(K+1)‖∞

Table 6.5 Approximation of functions by polynomials of degree K. In the least-squares
case, an orthogonal basis (for example, Legendre polynomials) is constructed. Matching
a function at several points gives a Lagrange interpolation, and matching a function and
several derivatives at one point gives a Taylor series. The minimax case has no closed-form
solution, but a near-minimax solution can be expressed simply using the zeros of TK , the
Chebyshev polynomial of degree K.

Method Approximation

B-splines x̂(t) =
∑

k∈Z

〈
x(t), β̃(N)(t− k)

〉
t
β(N)(t − k)

β(0)(t) =

{
1, |t| ≤ 1

2
;

0, otherwise

FT←→ B(0)(ω) = sinc
(
1
2
ω
)

β(N)(t) = β(N−1)(t) ∗ β(0)(t)
FT←→ B(N)(ω) = sincN+1

(
1
2
ω
)

Orthogonalized splines x̂(t) =
∑

k∈Z

〈
x(t), ϕ(N)(t − k)

〉
t
ϕ(N)(t − k)

ϕ(N)(t) =
∞∑

k=0

d
(N)
k β(N)(t − k)

Partition of unity
∑

n∈Z

ϕ(t − n) = 1
FT←→ Φ(2πk) = δk

Polynomial reproduction
(Strang–Fix)

pK(t) =
∑

k∈Z

αkϕ(t − k)

Φ(0) 6= 0; Φ(k)(2πℓ) = 0 for k = 1, 2, . . . , K, ℓ ∈ Z \ {0}

Table 6.6 Approximation of functions by splines.
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Cambridge University Press (ISBN 110703860X) v1.1 [May 2014] [free version] Comments to book-errata@FourierAndWavelets.org



598 Approximation and compression

Method Approximation x̂M Coefficients used Squared L2 norm of error ε2M

Linear

M−1∑

k=0

〈x, ϕk〉ϕk First M
∞∑

k=M

|〈x, ϕk〉|2

Nonlinear
∑

k∈IM

〈x, ϕk〉ϕk Largest M
∑

k/∈IM

|〈x, ϕk〉|2

Table 6.7 Approximation of functions and sequences by series truncation.

Historical remarks

One of the names appearing prominently in this chapter is that ofPafnuty
Lvovich Chebyshev (1821–1894), who is considered to be the found-
ing father of Russian mathematics. His contributions are many, in fields
ranging from probability and statistics to number theory. Chebyshev poly-
nomials were described in this chapter for use in minimax approximation;
they are also responsible for Chebyshev’s name finding its way into sig-
nal processing, through the family of Chebyshev filters. As an interesting
aside, a crater on the Moon was named after Chebyshev.

The origins of splines are particularly interesting. They date back to ship building;
naval engineers needed a method to thread a smooth curve through a given set of points.
This resulted in thin wooden strips, splines, placed between pairs of points, which were
called ducks, rats, or dogs. The method was then used both in the aircraft and in the
automobile industry in the late 1950s and early 1960s. Engineers at Citroën, Renault,
and General Motors developed the theory further; in particular, Pierre Bézier, a French
engineer working at Renault, became a leader in using mathematical and computational
tools in design and manufacturing. With the advent of computers, splines took over from
polynomials as a tool for interpolating functions.

Transform coding was invented to reduce the bandwidth

required to transmit analog speech signals. An early speech

transmission system used a ten-channel vocoder (voice coder) [28].

The channels carried correlated, continuous-time, continuous-

amplitude signals representing estimates, local in time, of the

power in ten contiguous frequency bands. By adding modulated

versions of these power signals, the synthesis unit resynthesized

speech. The vocoder’s ancestor, Pedro, the Voder, was presented

at the 1939 World’s Fair. Kramer and Mathews [58] showed that

the total bandwidth necessary to transmit the signals with a pre-

scribed fidelity could be reduced by transmitting an appropriate set of linear combinations

of the signals instead of the signals themselves. This was not source coding yet because it

did not involve discretization. Thus, one could ascribe a later birth to transform coding.

Huang and Schultheiss [46] introduced the structure shown in Figure 6.42. They studied

the coding of Gaussian sources while assuming independent expansion coefficients and op-

timal fixed-rate scalar quantization. They first showed that Φ−1 = Φ̃∗ is optimal and then

that Φ̃∗ should have orthogonal rows. Transform coding has since spread through its use

in the popular media standards, such as MP3, JPEG, and MPEG.
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Further reading

Polynomial approximation An excellent introductory textbook on numerical analysis
is the one by Atkinson [1]; it includes details on polynomial approximations and their error
bounds. Our statements of Theorems 6.7 and 6.8 are patterned on [1]. We also recommend
an earlier textbook by Davis [20] for polynomial approximations, including a full proof of
the Chebyshev equioscillation theorem, Theorem 6.8.

Filter design Numerous filter design techniques exist; for an overview, see [72]. They
all try to approximate the desired specifications of the filter by a realizable discrete-time
filter. For IIR filters, one of the standard methods is to design the discrete-time filters
from continuous-time ones using the bilinear transformation. For FIR filters, windowing is
often used to approximate the desired response by truncating it with a window, a topic we
touched upon in Example 3.4. Many software packages implement minimax polynomial
approximation with variants of an algorithm introduced by E. Y. Remez in 1934 and
brought into common use for FIR filter design by Parks and McClellan [79]; see also [69]
for additional history.

Splines The initial result on B-spline bases for uniform spline spaces is due to Schoen-
berg [87]. The magazine review article by Unser [102] gives a thorough overview of splines
and their use in signal processing, including cardinal splines, error analyses, and a num-
ber of references. For more details on error analysis, see [104]. The book by Strang and
Fix [95] contains further details on polynomial reproduction and the Strang–Fix theorem,
Theorem 6.14.

Approximation and estimation Some important connections between approximation
and estimation were developed by Donoho [22], and the near-minimax performance of
threshold estimators was developed by Donoho and Johnstone [24]. Both are covered in
detail in Chapter 10 of Mallat’s book [66].

Lossless compression The entropy bound for optimal code length, Theorem 6.19, is
one of the foundational results of lossless source coding theory. It is Theorem 5.4.1 of [17],
Theorem 5.1 of [65], or a combination of Theorems 3.5, 3.16, and 3.17 of [110]. Huff-
man codes were introduced in [47]; the book by Cover and Thomas [17] covers them in
Section 5.6 and Shannon–Fano–Elias codes in Section 5.9.

Quantization The review by Gray and Neuhoff [39] is the authoritative source on the
history and foundational results in quantization theory. It discusses optimality conditions
for variable-rate and entropy-constrained quantizers, high-resolution quantization theory,
the complexity of unconstrained vector quantization, the roots of its advantage over scalar
quantization, and methods to reduce complexity. For design algorithms and details on
types of constrained vector quantizers, see the book by Gersho and Gray [34]

The quantizer design algorithm in Section 6.6.2 was introduced by Lloyd as “Me-
thod I” in an unpublished Bell Labs technical memorandum in 1957, and was not published
until 25 years later [62]. Lloyd’s “Method II” from the same paper was independently dis-
covered by Max [68]. Lloyd’s Method I is easily extended to vector quantization, including
various types with structural constraints. The sufficient condition for global optimality of
the locally optimal scalar quantizer is due to Fleischer [29] and Trushkin [101].

Transform coding The review by Goyal [36] provides detailed coverage of transform
coding, including a description of settings where a Karhunen–Loève transform is not op-
timal. The entries in Table 6.4 are derived from the dimensionless second moments of
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600 Approximation and compression

space-filling polytopes given in a paper by Conway and Sloane [15]. The optimal bit
allocation (6.137) can be derived using the method of Lagrange multipliers [88]. The tech-
niques used when the available rates are discrete are quite different [90]. Theorem 6.22 is
derived from Theorem 6 of [38].

Estimation from quantized samples The study of improved estimation from quan-

tized samples based on boundedness was initiated by Thao and Vetterli [97–99]. The linear

programming formulation is from [37,71]. Iterative projection using each set just once was

introduced by Rangan and Goyal [84] and subsequently studied by Powell [81]. Figure 6.46

is taken from Kamilov et al. [52], which also provides a message-passing algorithm for the

estimation problem; this algorithm allows the use of non-regular quantizers.
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Chapter 7

Localization and
uncertainty

“The more precise the measurement of position, the more
imprecise the measurement of momentum, and vice versa.”

— Werner Karl Heisenberg

Contents

7.1 Introduction 616

7.2 Localization for functions 619

7.3 Localization for sequences 627

7.4 Tiling the time–frequency plane 638

7.5 Examples of local Fourier and wavelet bases 645

7.6 Recap and a glimpse forward 656

Chapter at a glance 666

Historical remarks 667

Further reading 667

Exercises with solutions 669

Exercises 671

A major theme of this book is the construction of sets of vectors {ϕk} to use for
signal analysis and synthesis. The expansions with respect to bases and frames

x =
∑

k

αkϕk

we considered were, for the most part, quite general; apart from orthonormality for
bases and tightness for frames, we did not impose further requirements on {ϕk}.
For many applications, the utility of a representation is tied to time and frequency
properties of {ϕk}.

Our primary goal in this chapter is to explore time and frequency properties
first of individual vectors and then of sets of vectors, as these will be our tools

615
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(a) Musical score. (b) Time-domain functions.



♩♩♩

������

(c) Time–frequency plane.

Figure 7.1 Musical score as an illustration of a time–frequency plane [107].

for extracting information about a given signal (function or sequence). We extract
information by computing an inner product of the signal with ϕk, the result of
which is the expansion coefficient

αk = 〈x, ϕk〉
(a)
=

1

2π
〈X, Φk〉, (7.1)

where (a) follows from the generalized Parseval equality. Understanding what we
can deduce about the signal from αk is our goal; one of the main tools we will use
is the uncertainty principle, which helps us understand how much local information
in time and frequency we can extract using one such inner product.

7.1 Introduction

For certain simple signals, time and frequency properties are quite intuitive. Think
of a note on a musical score. It is of a certain frequency (for example, middle A
has the frequency of 440 Hz), it has a start time, and its value (, ♩, �) indicates its
relative duration. We can think of the musical score as a time–frequency plane with
a logarithmic frequency axis and notes as rectangles in that plane with horizontal
extent determined by start and end times, and vertical position related in some way
to frequency, as in Figure 7.1.

Localization in time and frequency Time and frequency views of a signal are
intertwined in several ways. In this chapter, we consider how various forms of
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7.1 Introduction 617

the uncertainty principle determine the trade-off between fine localization in the
two domains: signals that are finely localized in time cannot be finely localized in
frequency; conversely, signals that are finely localized in frequency cannot be finely
localized in time. We can conceptually illustrate this trade-off using extreme cases
of two transform pairs involving Dirac delta functions (see Table 4.1),

δ(t)
FT←→ 1,

1
FT←→ 2πδ(ω).

The trade-off is precisely specified by the uncertainty principle, which bounds from
below the product of what we will define as spreads in time and frequency, with the
bound reached by Gaussian functions.

Scale Given a signal, its scale changes when it is contracted or stretched. Signals
that are scales of each other might convey the same information. For example,
given a portrait of a person, recognizing that person should not depend on whether
they occupy one-tenth or one-half of the image; thus, image recognition should be
scale-invariant.

We can gain an intuitive understanding of scale by examining maps. In a map
at scale 1:100 000, an object of length 1 km is represented by a length of

1 km

100 000
= 1 cm;

in other words, the scale factor a = 105 is used as a contraction factor, to map x(t)
into its scaled version y(t) = x(at).

Now consider using ϕ to extract some information about x. The inner product
between ϕ and the function scaled by a is

〈√
ax(at), ϕ(t)

〉
t
=
√
a

∫ ∞

−∞
x(at)ϕ∗(t) dt =

1√
a

∫ ∞

−∞
x(τ)ϕ∗

(τ
a

)
dτ

=

〈
x(t),

1√
a
ϕ

(
t

a

)〉

t

, (7.2)

where the multiplicative factor of
√
a in

√
ax(at) is present to keep the norm of

the function unchanged. This shows that examining a contracted function x(at)
with ϕ(t) is equivalent to examining the function x(t) with the stretched function
ϕ(t/a). If stretched and contracted versions of a single ϕ are available, large-scale
features in x can be extracted using a stretched ϕ (a > 1) and small-scale features
(fine details) using a contracted ϕ (a < 1).

This scale invariance is a purely continuous-time property, however, since
discrete-time signals cannot be scaled so easily. For example, downsampling by
a factor of N is in general a lossy operation, while upsampling by a factor of N
is not. We will consider sampling and interpolation operations from Chapter 5 as
scaling in the discrete domain: downsampling preceded by ideal lowpass prefiltering
makes a sequence shorter, and upsampling followed by ideal lowpass postfiltering
makes a sequence longer.
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618 Localization and uncertainty

Resolution We often speak of the resolution of a digital photograph in terms of
the number of pixels. However, a blurry photograph does not have the resolution of
a sharp one, even when the two have the same number of pixels. This is because the
resolution of an image usually refers to whether nearby fine details of the underlying
scene can be distinguished.

Without a formal mathematical definition, we consider resolution to be related
to the information content of a signal, such as the number of degrees of freedom per
unit time or space. This is related to bandwidth in that signals in a bandlimited
set have an upper bound on the degrees of freedom. Note, however, that sets of
full-band signals can also have limited degrees of freedom.

Consider the space of bandlimited functions BL[− 1
2ω0,

1
2ω0] as in Defini-

tion 5.13. The sampling theorem, Theorem 5.15, states that samples taken every
T = 2π/ω0 seconds, or x(nT ), n ∈ Z, uniquely specify x ∈ BL[− 1

2ω0,
1
2ω0]. This

equivalence means that the functions in BL[− 1
2ω0,

1
2ω0] have ω0/(2π) complex de-

grees of freedom per unit time. Since a real function has real samples, functions in
the subset of BL[− 1

2ω0,
1
2ω0] with real-valued functions have ω0/(2π) real degrees

of freedom per unit time. The set of piecewise-constant functions from (5.1) is an
example of a set of functions that, while not bandlimited, still have a finite number
of degrees of freedom per unit time. A function from such a space has one degree
of freedom per unit time, but an unbounded spectrum since it is discontinuous at
every integer.

Interactions Clearly, scale and resolution interact; this is most obvious with im-
ages, as illustrated with a drawing by C. Allan Gilbert, All is Vanity, in Fig-
ure 7.2.112 It is designed to be perceived as either a woman sitting in front of
a mirror (when seen from nearby and at high resolution as in Figure 7.2(a)) or as a
skull (when seen from afar or at low resolution as in Figure 7.2(b)). Figure 7.2(c)
illustrates what happens when the scale changes; even though the scale has been
halved, the resolution remains unchanged and thus our perception of the image
remains the same as long as our visual acuity is high enough. Figure 7.2(d) shows
a postage-stamp version; the scale has been further reduced, and our perception of
the image changes (we see only the skull) since our visual acuity is not high enough
to capture details.

Filtering can affect resolution as well. If a function of bandwidth ω0 is perfectly
lowpass-filtered to |ω| < 1

2βω0, with 0 < β < 1, then its resolution changes from
ω0/(2π) to βω0/(2π). The same holds for sequences, where an ideal lowpass filter
with cutoff frequency βπ, 0 < β < 1, reduces the resolution to β samples per unit
time.

While high-resolution signals have high bandwidth, the converse is not nec-
essarily true; a signal can have high bandwidth without necessarily being of high
resolution. For example, adding noise increases bandwidth without increasing res-
olution. Figure 7.3 compares reducing bandwidth with adding noise, indicating the
similarity of the two effects; too much noise or too little bandwidth both preclude

112Another beautiful optical illusion is Salvador Daĺı’s Gala Contemplating the Mediterranean
Sea which at Twenty Meters Becomes the Portrait of Abraham Lincoln (Homage to Rothko).
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7.2 Localization for functions 619

(a) (b) (c) (d)

Figure 7.2 Interplay of scale and resolution. (a) The original, high-resolution version.
(b) A blurred, lower-resolution version; the resolution is lower and thus our perception of
the image has changed. (c) A scaled version of half size in each dimension; the resolution is
unchanged and thus our perception of the image remains unchanged as long as our visual
acuity is high enough. (d) A version scaled further, to the point that our perception of
the image changes (we see only the skull) since our visual acuity is not high enough to
capture details.

our ability to extract relevant information.

Chapter outline

The present chapter explores the time and frequency properties both of individual
vectors and of sets of vectors as tools for extracting information about a signal.
Section 7.2 discusses localization concepts for functions, while Section 7.3 does the
same for sequences. Section 7.4 discusses localization concepts for sets of functions
and sequences, while Section 7.5 illustrates signal analysis with simple local Fourier
and wavelet bases, both for functions and for sequences. Section 7.6 summarizes the
main concepts of the book and discusses issues that arise when applying the tools
from the book to real-world problems, illustrating them with examples of real-world
signals.

7.2 Localization for functions

Consider a function x ∈ L2(R), where the domain of the function is a time index.
In Sections 7.4 and 7.5, we will build structured sets of functions from one or more
prototype functions by certain basic operations. Those basic operations are as
follows:
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adding noise

re
d
u
ci
n
g
b
a
n
d
w
id
th

Figure 7.3 Interplay of bandwidth and noise; reducing bandwidth and adding noise
both affect our ability to perceive relevant information. The original image is in the lower-
right-hand corner; the SNR decreases in increments of 6 dB from right to left, and the
bandwidth is progressively halved from bottom to top.

(i) Shift in time by t0 ∈ R:

y(t) = x(t− t0) FT←→ Y (ω) = e−jωt0X(ω). (7.3a)

(ii) Shift in frequency (modulation) by ω0 ∈ R:

y(t) = ejω0tx(t)
FT←→ Y (ω) = X(ω − ω0). (7.3b)

(iii) Scaling in time by a ∈ R+ (which implies scaling in frequency by 1/a):

y(t) =
√
ax(at)

FT←→ Y (ω) =
1√
a
X
(ω
a

)
. (7.3c)

7.2.1 Localization in time

We now discuss localization of a function in time. When the function is supported
on any finite interval, its Fourier transform is not (see Exercise 7.1); this implies
that using support length is too coarse a measure of locality, as all functions with
finite support in time have infinite support in frequency.

A concise way to describe locality (or lack thereof) is to introduce a spreading
measure akin to standard deviation. The normalized function |x(t)|2/‖x‖2 can
be interpreted as the PDF of a random variable; we call the mean of that random
variable the time center of x and the standard deviation of the same random variable
the time spread of x.
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7.2 Localization for functions 621

Definition 7.1 (Time center and spread for functions) The time center
µt and the time spread ∆t of x ∈ L2(R) are

µt =
1

‖x‖2
∫ ∞

−∞
t |x(t)|2 dt, (7.4a)

∆t =

(
1

‖x‖2
∫ ∞

−∞
(t− µt)

2 |x(t)|2 dt
)1/2

. (7.4b)

Example 7.1 (Time centers and spreads for functions) To illustrate
the concepts of time center and time spread, we compute them for three functions.

(i) The sinc function from (4.76) has µt = 0 because of its even symmetry. It
has infinite ∆t because the decay of sinc2 t is canceled by the t2 factor in
(7.4b), causing the integrand of (7.4b) to have no decay.

(ii) The box function from (4.75) also has µt = 0 because of even symmetry. A
simple calculation gives ∆t = t0/(2

√
3).

(iii) The Gaussian function from (4.78) also has µt = 0 because of even sym-
metry. Normalizing (4.78) and comparing with (2.261) shows that ∆t =
1/(2
√
α).

From the example, we see that the time spread can vary widely; the box and
Gaussian functions have finite spreads, while the sinc function has an infinite one,
showing that the time spread can be unbounded. As further illustration, Solved
Exercise 7.1 computes the time spreads for B-splines of various degrees.

Under the operations in (7.3), the time center and time spread satisfy the
following (see also Solved Exercise 7.2 and Table 7.1):

(i) Shift in time by t0 ∈ R, (7.3a), causes the time center to shift and leaves the
time spread unchanged,

µt(y) = µt(x) + t0, (7.5a)

∆t(y) = ∆t(x). (7.5b)

(ii) Shift in frequency (modulation) by ω0 ∈ R, (7.3b), leaves both the time center
and the time spread unchanged,

µt(y) = µt(x), (7.5c)

∆t(y) = ∆t(x). (7.5d)

(iii) Scaling in time by a ∈ R+, (7.3c), causes both the time center and the time
spread to scale,

µt(y) =
1

a
µt(x), (7.5e)

∆t(y) =
1

a
∆t(x). (7.5f)
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622 Localization and uncertainty

7.2.2 Localization in frequency

We now discuss localization of a function in frequency; the concepts are dual to those
for localization in time. The normalized function |X(ω)|2/‖X‖2 can be interpreted
as the PDF of a random variable; we call the mean of that random variable the
frequency center of x and the standard deviation of the same random variable the
frequency spread of x.

Definition 7.2 (Frequency center and spread for functions) The fre-
quency center µf and the frequency spread ∆f of x ∈ L2(R) with Fourier transform
X are

µf =
1

2π‖x‖2
∫ ∞

−∞
ω |X(ω)|2 dω, (7.6a)

∆f =

(
1

2π‖x‖2
∫ ∞

−∞
(ω − µf)

2 |X(ω)|2 dω
)1/2

. (7.6b)

Note that the frequency center will be 0 for all real functions because of the sym-
metry of the magnitude of the Fourier transform.

Example 7.2 (Frequency centers and spreads for functions) To illus-
trate the concepts of frequency center and frequency spread, we compute them
for the same functions as in Example 7.1.

(i) The sinc function from (4.76) has µf = 0 and ∆f = ω0/(2
√
3).

(ii) The box function from (4.75) has µf = 0 and infinite ∆f , as |X(ω)|2 decays
only as |ω|−2.

(iii) The Gaussian function from (4.78) has µf = 0 and ∆f =
√
α.

From the example, we see that the frequency spread can vary widely; the sinc and
Gaussian functions have finite spreads, while the box function has an infinite spread,
showing that the frequency spread can be unbounded. As further illustration, Solved
Exercise 7.1 computes the frequency spreads for B-splines of various degrees.

Under the operations in (7.3), the frequency center and frequency spread sat-
isfy the following (see also Solved Exercise 7.2 and Table 7.1):

(i) Shift in time by t0 ∈ R, (7.3a), leaves both the frequency center and the
frequency spread unchanged,

µf(y) = µf(x), (7.7a)

∆f(y) = ∆f(x). (7.7b)

(ii) Shift in frequency (modulation) by ω0 ∈ R, (7.3b), causes the frequency center
to shift and leaves the frequency spread unchanged,

µf(y) = µf(x) + ω0, (7.7c)

∆f(y) = ∆f(x). (7.7d)

Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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7.2 Localization for functions 623

(iii) Scaling in time by a ∈ R+, (7.3c), causes both the frequency center and the
frequency spread to scale,

µf(y) = aµf(x), (7.7e)

∆f(y) = a∆f(x). (7.7f)

In Sections 7.4 and 7.5, we will show constructions of simple structured sets obtained
by applying these operations to a single prototype function. Thus, knowing the time
and frequency centers and spreads of the prototype function, we will know the time
and frequency centers and spreads of all the other functions in the set as well.

One-sided frequency center and spread We mentioned already that the frequency
center of any real function will be 0 (because of the symmetry of the magnitude of
the Fourier transform). We might prefer a definition of the frequency center that
captures the spectral characteristics of a real bandpass function.

Definition 7.3 (One-sided frequency center and spread) The one-
sided frequency center µ+

f and the one-sided frequency spread ∆+
f of x ∈ L2(R)

with Fourier transform X are

µ+
f =

1

π‖x‖2
∫ ∞

0

ω |X(ω)|2 dω, (7.8a)

∆+
f =

(
1

π‖x‖2
∫ ∞

0

(ω − µ+
f )

2 |X(ω)|2 dω
)1/2

. (7.8b)

Example 7.3 (Frequency center for a real bandpass function) Let
x be the difference between two Gaussian functions,

x(t) = exp
(
−π
8
(3 + 2t)2

)
− exp

(
−π
8
(3− 2t)2

)
(7.9a)

FT←→ X(ω) =
√
2 exp

(
−ω(ω + 3jπ)

2π

)
(e3jω − 1), (7.9b)

as shown in Figure 7.4. Clearly, µf = 0 because the magnitude of the spectrum
has even symmetry. However, in certain circumstances, we might want to know
where the bulk of the spectrum is located on either side of the frequency axis;
the frequency center in Definition 7.2 will not provide such information. Using
Definition 7.3 to compute the one-sided frequency center of x, we get

µ+
f =

1

π‖x‖2
∫ ∞

0

ω |X(ω)|2 dω ≈ 1.098,

which is close to and slightly larger than 1
3π, consistent with what we would

guess by looking at Figure 7.4.
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(a) Function. (b) Magnitude squared of the spectrum.

Figure 7.4 A function with bandpass Fourier spectrum.

t
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|x(t)|2
|X(ω)|2
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2∆t

2∆f

t

ω

|x(t)|2
|X(ω)|2

(a) Time–frequency plane. (b) |x(t)|2 |X(ω)|2.

Figure 7.5 The time–frequency plane. The function x with Fourier transform X has an
associated Heisenberg box centered at (µt, µf), of width 2∆t and height 2∆f . Interpreting
|x(t)|2/‖x‖2 · |X(ω)|2/‖X‖2 as the joint PDF of two random variables yields (µt, µf) as
the means of the random variables and ∆t, ∆f as the standard deviations along the two
directions.

7.2.3 Uncertainty principle for functions

Heisenberg box Given a function x and its Fourier transform X , we have just
introduced the 4-tuple (µt, ∆t, µf , ∆f) describing the function’s center in time and
frequency (µt, µf) and its spread in time and frequency (∆t,∆f). It is convenient
to show this pictorially (see Figure 7.5), as it conveys the idea that there is a
center of mass (µt, µf) around which a rectangular box of width 2∆t and height
2∆f is located. The plane on which this is drawn is called the time–frequency plane,
and the box is usually called a Heisenberg box or a time–frequency tile. We adopt
the convention of showing only the first quadrant of the time–frequency plane; we
reserve the second quadrant for the squared magnitude of the Fourier transform of
the function, |X |2, and the fourth quadrant for the squared absolute value of the
function itself, |x|2.

Given that we know the effects of the three operations (7.3) on the time and
frequency centers and spreads of a function x, (7.5) and (7.7), we can deduce their
effects on the Heisenberg box of the function (see also Table 7.1):
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t
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|x(t)|2
|X(ω)|2

µt

µf
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ω

|x(t)|2
|X(ω)|2
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µf

ω0

(a) Shifting in time. (b) Shifting in frequency.

Figure 7.6 Shifting of a function with Heisenberg box centered at (µt, µf), of width
2∆t and height 2∆f . (a) Shifting in time by t0, x(t − t0), shifts the Heisenberg box to
(µt + t0, µf); the area remains the same. (b) Shifting in frequency by ω0 (modulating),
X(ω − ω0), shifts the Heisenberg box to (µt, µf + ω0); the area remains the same. (Note
that in the figure we used a negative ω0.)

t

ω

|x(t)|2
|X(ω)|2

µt/a

aµf

µt

µf

2∆t/a
2a∆f

Figure 7.7 Scaling of a function with Heisenberg box centered at (µt, µf), of width 2∆t

and height 2∆f , shifts the Heisenberg box to (µt/a, aµf) and scales its width to 2∆t/a
and its height to 2a∆f ; the area remains the same. (Illustrated for a = 4

7
.)

(i) Shift in time by t0 ∈ R, (7.3a), causes the Heisenberg box to shift in time by
t0 (dashed box in Figure 7.6(a)).

(ii) Shift in frequency (modulation) by ω0 ∈ R, (7.3b), causes the Heisenberg box
to shift in frequency by ω0 (dashed box in Figure 7.6(b)).

(iii) Scaling in time by a ∈ R+, (7.3c), causes the Heisenberg box to shift in time
to µt/a and in frequency to aµf , and to scale in time by 1/a and in frequency
by a (dashed box in Figure 7.7).

Uncertainty principle Neither shifting nor scaling of the function affects the area
of the associated Heisenberg box, even when the time and the frequency spreads
change. Thus, when manipulating a function through these operations, for one
spread to decrease the other must increase. This agrees with what we have seen in
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626 Localization and uncertainty

Function Time Time Fourier Frequency Frequency

center spread transform center spread

x(t) µt ∆t X(ω) µf ∆f

x(t − t0) µt + t0 ∆t e−jωt0X(ω) µf ∆f

ejω0tx(t) µt ∆t X(ω − ω0) µf + ω0 ∆f√
ax(at) µt/a ∆t/a X(ω/a)/

√
a aµf a∆f

Table 7.1 Effects of shifts in time and frequency, as well as scaling on the Heisenberg
box (µt, ∆t, µf , ∆f).

Examples 7.1 and 7.2; a function that is narrow in one domain will be wide in the
other. It is formalized in the uncertainty principle as the area of the Heisenberg
box being lower bounded; no function can be arbitrarily narrow in both time and
frequency.

Theorem 7.4 (Uncertainty principle) Let x ∈ L2(R) have time spread ∆t

and frequency spread ∆f . Then,

∆t∆f ≥
1

2
, (7.10)

with the lower bound attained by Gaussian functions (4.78).

Proof. We prove the theorem for real functions; see Exercise 7.2 for the complex case.
Let x ∈ L2(R). Without loss of generality, assume that µt = 0 and ‖x‖ = 1; otherwise,
we may shift and scale x appropriately. Since x is real, µf = 0.

Suppose that the derivative of x exists and is in L2(R); if not, the decay of X(ω)
is |ω|−2 or slower (see (4.83b)), so ∆f =∞ and the statement holds trivially. Similarly,
we may assume that tx(t) is in L2(R) because otherwise ∆t = ∞ and the statement
holds trivially.

Consider the following integral:
∣∣∣∣
∫ ∞

−∞
tx(t)x′(t) dt

∣∣∣∣
2 (a)

≤
(∫ ∞

−∞
|tx(t)|2 dt

)(∫ ∞

−∞
|x′(t)|2 dt

)

(b)
=

(∫ ∞

−∞
|tx(t)|2 dt

)(
1

2π

∫ ∞

−∞
|jωX(ω)|2 dω

)

= ∆2
t∆

2
f , (7.11)

where (a) follows from the Cauchy–Schwarz inequality, (2.35); and (b) from the Parseval
equality (4.71a) and the differentiation in frequency property of the Fourier transform,
(4.59a). Simplifying the integral on the left-hand side gives

∫ ∞

−∞
tx(t)x′(t) dt

(a)
=

1

2

∫ ∞

−∞
t
dx2(t)

dt
dt

(b)
=

1

2
tx2(t)

∣∣∞
−∞ −

1

2

∫ ∞

−∞
x2(t) dt

(c)
= −1

2

∫ ∞

−∞
x2(t) dt

(d)
= −1

2
, (7.12)
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7.3 Localization for sequences 627

where (a) follows from (x2(t))′ = 2x′(t)x(t); (b) from integration by parts; (c) from
limt→±∞ tx2(t) = 0, which holds because x ∈ L2(R) implies that it decays faster than
1/
√
|t| for t→ ±∞ (see Section 4.4.2); and (d) from x being real-valued and ‖x‖ = 1.

Substituting (7.12) into (7.11) yields (7.10).
To find functions that meet the bound with equality, recall that the Cauchy–

Schwarz inequality (2.29) becomes an equality if and only if the two vectors are scalar
multiples of each other, which here means that x′(t) = βtx(t); solving this differential
equation yields a Gaussian function. Indeed, from Examples 7.1 and 7.2, for a Gaussian
function, ∆t = 1/(2

√
α) and ∆f =

√
α, yielding the product ∆t∆f =

1
2
.

Other localization measures While the uncertainty principle uses a spreading
measure akin to standard deviation, other measures can be defined. Though they
typically lack fundamental bounds of the kind given by the uncertainty principle
(7.10), they can be useful as well as intuitive. One such measure finds the centered
intervals containing a given fraction β of the energy in time and frequency (and β
is typically 0.90 or 0.95).

For a unit-norm function x with time center µt and frequency center µf , the

modified time spread ∆
(β)
t and the modified frequency spread ∆

(β)
f are defined such

that

∫ µt+(1/2)∆
(β)
t

µt−(1/2)∆
(β)
t

|x(t)|2 dt = β, (7.13a)

1

2π

∫ µf+(1/2)∆
(β)
f

µf−(1/2)∆
(β)
f

|X(ω)|2 dω = β. (7.13b)

Exercise 7.3 shows that ∆
(β)
t and ∆

(β)
f satisfy the same shift, modulation, and

scaling properties as do ∆t and ∆f in Table 7.1.

7.3 Localization for sequences

Thus far, we have restricted our attention to the study of localization properties
and bounds for functions. Analogous results for sequences are neither as elegant
nor do they precisely parallel those for functions, as they require restrictions be-
yond membership in ℓ2(Z) to avoid complications caused by the periodicity of the
frequency axis (see the Further reading for alternative approaches).

Consider a sequence x ∈ ℓ2(Z), where the domain of the sequence is a discrete
time index. In Sections 7.4 and 7.5, we will build structured sets of sequences from
one or more prototype sequences by certain operations. Those basic operations are
as follows:

(i) Shift in time by n0 ∈ Z:

yn = xn−n0

DTFT←→ Y (ejω) = e−jωn0X(ejω). (7.14a)

(ii) Shift in frequency (modulation) by ω0 ∈ (−π, π]:

yn = ejω0nxn
DTFT←→ Y (ejω) = X(ej(ω−ω0)). (7.14b)
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(a) Original sequence. (b) Upsampled by 2. (c) Lowpass-filtered.

Figure 7.8 Upsampling by 2 followed by ideal lowpass postfiltering as in Figure 5.12(b),
with g an ideal half-band filter from Table 3.5. The upsampled sequence is denoted by w.
Note that g is of unit norm, so g0 = 1/

√
2.

æ

æ

æ æ

æ

æ

æ æ

æ æ æ æ æ æ æ æ æ

æ

æ

æ æ

æ

æ

æ æ

æ æ æ æ æ æ æ æ

5 10 15

0.3

0.6

n

xn

æ

æ

æ

æ

æ
æ

æ

æ

æ
æ æ

æ æ
æ æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

æ

5 10 15

0.3

0.6

n

(g ∗ x)n

æ

æ

æ

æ

æ
æ
æ
æ æ æ æ æ æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ æ æ æ

5 10 15

0.3

0.6

n

yn

(a) Original sequence. (b) Lowpass-filtered. (c) Downsampled by 2.

Figure 7.9 Downsampling by 2 preceded by ideal lowpass postfiltering as in Fig-
ure 5.12(a), with g an ideal half-band filter from Table 3.5. Note that g is of unit norm,
so g0 = 1/

√
2.

(iii) Upsampling by N ∈ Z+ followed by ideal lowpass postfiltering:

yn = gn ∗n
{
xn/N , for n/N ∈ Z;

0, otherwise

DTFT←→ Y (ejω) =

{√
NX(ejNω), for ω ∈ (−π/N, π/N ];

0, otherwise,

(7.14c)

where g is the ideal Nth-band filter (see Table 3.5). Figure 7.8 illustrates this
form of discrete scaling for N = 2.

(iv) Downsampling by N ∈ Z+ preceded by ideal lowpass prefiltering:

yn = (g ∗x)Nn
DTFT←→ Y (ejω) =

1√
N
X(ejω/N ), ω ∈ [−π, π), (7.14d)

where g is the ideal Nth-band filter. Figure 7.9 illustrates this form of discrete
scaling for N = 2.

For sequences, scaling has been separated into two cases: upsampling followed by
ideal lowpass postfiltering and downsampling preceded by ideal lowpass prefiltering,
which are the interpolation and sampling operations defined in Chapter 5.
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7.3 Localization for sequences 629

7.3.1 Localization in time

We now discuss localization of a sequence in time. When the sequence is finitely
supported, its DTFT is not (it can only have isolated zeros); see Exercise 7.1. This
implies that using support length is too coarse a measure of locality, as all sequences
with finite support in time have full-band frequency support.

We again describe locality concisely by introducing a spreading measure akin
to standard deviation. The normalized sequence |xn|2/‖x‖2 can be interpreted as
the probability mass function of a discrete random variable; we call the mean of
that random variable the time center of x and the standard deviation of the same
random variable the time spread of x. Note that neither the time center nor the
time spread is necessarily an integer.

Definition 7.5 (Time center and spread for sequences) The time cen-
ter µt and the time spread ∆t of x ∈ ℓ2(Z) are

µt =
1

‖x‖2
∑

n∈Z

n |xn|2, (7.15a)

∆t =

(
1

‖x‖2
∑

n∈Z

(n− µt)
2 |xn|2

)1/2

. (7.15b)

Example 7.4 (Time centers and spreads for sequences) To illustrate
the concepts of time center and time spread, we compute them for two sequences.

(i) The sinc sequence from Table 4.5 has µt = 0 because of its even symmetry.
It has infinite ∆t because the decay of sinc2(ω0n) is canceled by the n2

factor in (7.15b), causing the summand of (7.15b) to have no decay.

(ii) The right-sided box sequence of length n0 from (3.13) has µt =
1
2 (n0 − 1)

and ∆t =
√
n2
0 − 1/(2

√
3).

From the example, we see that the time spread can vary widely; the box sequence
has a finite spread, while the sinc sequence has an infinite one, showing that the
time spread can be unbounded.

Under the operations in (7.14), the time center and time spread satisfy the
following (see also Exercise 7.5 and Table 7.2):

(i) Shift in time by n0 ∈ Z, (7.14a), causes the time center to shift and leaves the
time spread unchanged,

µt(y) = µt(x) + n0, (7.16a)

∆t(y) = ∆t(x). (7.16b)
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Cambridge University Press (ISBN 110703860X) v1.1 [May 2014] [free version] Comments to book-errata@FourierAndWavelets.org



630 Localization and uncertainty

(ii) Shift in frequency (modulation) by ω0 ∈ (−π, π], (7.14b), leaves both the time
center and the time spread unchanged,

µt(y) = µt(x), (7.16c)

∆t(y) = ∆t(x). (7.16d)

(iii) Upsampling by N ∈ Z+ followed by ideal lowpass postfiltering, (7.14c), causes
both the time center and the time spread to scale,

µt(y) = Nµt(x), (7.16e)

∆t(y) = N∆t(x). (7.16f)

(iv) Downsampling by N ∈ Z+ preceded by ideal lowpass prefiltering, (7.14d),
causes both the time center and the time spread to scale,

µt(y) =
1

N
µt(x), (7.16g)

∆t(y) =
1

N
∆t(x), (7.16h)

provided that the original signal is bandlimited, x ∈ BL[−π/N, π/N ]. Of
course, when x ∈ BL[−π/N, π/N ], the ideal lowpass prefiltering is simply
scalar multiplication by 1/

√
N ; when x is not bandlimited, the effect of down-

sampling on the time center and the time spread is more complicated.

7.3.2 Localization in frequency

We now discuss localization of a sequence in frequency; the concepts are dual to
those for localization in time and similar to the localization of a function in fre-
quency. The normalized function |X(ejω)|2/‖X‖2 can be interpreted as the PDF of
a random variable; we call the mean of that random variable the frequency center
of x and the standard deviation of the same random variable the frequency spread
of x.

Definition 7.6 (Frequency center and spread for sequences) The fre-
quency center µf and the frequency spread ∆f of x ∈ ℓ2(Z) with DTFT X are

µf =
1

2π‖x‖2
∫ π

−π

ω |X(ejω)|2 dω, (7.17a)

∆f =

(
1

2π‖x‖2
∫ π

−π

(ω − µf)
2 |X(ejω)|2 dω

)1/2
. (7.17b)

Note that the frequency center will be 0 for all real sequences because of the sym-
metry of the magnitude of the DTFT. Unlike for functions, the frequency spread
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7.3 Localization for sequences 631

of a sequence is always finite; from the interpretation of |X(ejω)|2/‖X‖2 as a PDF,
the frequency spread is the standard deviation of a random variable taking values
in [−π, π], so it cannot exceed π.

Example 7.5 (Frequency centers and spreads for sequences) To
illustrate the concepts of frequency center and frequency spread, we compute
them for the same sequences as in Example 7.4.

(i) The sinc sequence from Table 4.5 has µf = 0 and ∆f = ω0/(2
√
3).

(ii) The right-sided box sequence of length n0 from (3.13) has µf = 0 and

∆f =

(
1

2π

∫ π

−π

ω2

(
1 + 2

n0−1∑

m=1

(
1− m

n0

)
cosmω

)
dω

)1/2

; (7.18)

proving this is left for Exercise 7.4.

Under the operations in (7.14), the frequency center and frequency spread
satisfy the following (see also Exercise 7.5 and Table 7.2):

(i) Shift in time by n0 ∈ Z, (7.14a), leaves both the frequency center and the
frequency spread unchanged,

µf(y) = µf(x), (7.19a)

∆f(y) = ∆f(x). (7.19b)

(ii) Shift in frequency (modulation) by ω0 ∈ (−π, π], (7.14b), generally causes the
frequency center and the frequency spread to change. These properties are
analogous to those for functions only when a shift by ω0 does not cause any
frequency content to cross from (−π, π] to outside this finite interval, since
only this interval is used in defining the frequency center and frequency spread.
Specifically, for ω0 ∈ (0, π], if x ∈ ℓ2(Z) has DTFT X satisfying X(ejω) = 0
for ω ∈ (π−ω0, π], then the frequency center shifts and the frequency spread
is unchanged,

µf(y) = µf(x) + ω0, (7.19c)

∆f(y) = ∆f(x). (7.19d)

The same conclusion holds for ω0 ∈ (−π, 0] when X(ejω) = 0 for
ω ∈ (−π, −π − ω0].

(iii) Upsampling by N ∈ Z+ followed by ideal lowpass postfiltering, (7.14c), causes
both the frequency center and the frequency spread to scale,

µf(y) =
1

N
µf(x), (7.19e)

∆f(y) =
1

N
∆f(x). (7.19f)
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632 Localization and uncertainty

(iv) Downsampling by N ∈ Z+ preceded by ideal lowpass prefiltering, (7.14d),
causes both the frequency center and the frequency spread to scale,

µf(y) = Nµf(x), (7.19g)

∆f(y) = N∆f(x), (7.19h)

provided that the original signal is bandlimited, x ∈ BL[−π/N, π/N ]. As be-
fore, when x ∈ BL[−π/N, π/N ], the ideal lowpass prefiltering is simply scalar
multiplication by 1/

√
N ; when x is not bandlimited, the effect of downsam-

pling on the time center and the time spread is more complicated.

In Sections 7.4 and 7.5, we will show constructions of simple structured sets obtained
by applying these basic operations to a single prototype sequence. Thus, knowing
the time and frequency centers and spreads of the prototype sequence, we will know
the time and frequency centers and spreads of all the other sequences in the set as
well.

One-sided frequency center and spread We mentioned already that, because of
the symmetry of the magnitude of the DTFT, the frequency center of any real
sequence is 0. We might prefer a definition of the frequency center that captures
the spectral characteristics of a real bandpass sequence.

Definition 7.7 (One-sided frequency center and spread) The one-
sided frequency center µ+

f and the one-sided frequency spread ∆+
f of x ∈ ℓ2(Z)

with DTFT X are

µ+
f =

1

π‖x‖2
∫ π

0

ω |X(ejω)|2 dω, (7.20a)

∆+
f =

(
1

π‖x‖2
∫ π

0

(ω − µ+
f )

2 |X(ejω)|2 dω
)1/2

. (7.20b)

Example 7.6 (Frequency center for a real bandpass sequence) Let
x be a sequence formed by sampling the function from (7.9a) at t = 1

2n, for
n = −10, −9, . . . , 10,

xn = exp
(
−π
8
(3 + n)2

)
− exp

(
−π
8
(3− n)2

)
, n = −10, −9, . . . , 10.

(7.21a)
Its DTFT is

X(ejω) =

10∑

n=−10

(
exp
(
−π
8
(3 + n)2

)
− exp

(
−π
8
(3− n)2

))
e−jωn. (7.21b)

Both the sequence and the magnitude of its DTFT are shown in Figure 7.10.
Clearly, µf = 0 because the magnitude of the spectrum has even symmetry.
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Figure 7.10 A sequence with bandpass DTFT spectrum.

However, in certain circumstances, we might want to know where the bulk of the
spectrum is located on either side of the frequency axis; the frequency center in
Definition 7.6 will not provide such information. Using Definition 7.7 to compute
the one-sided frequency center of x, we get

µ+
f =

1

π‖x‖2
∫ π

0

ω |X(ejω)|2 dω

≈ 1

3.9967π

∫ π

0

ω

∣∣∣∣
10∑

n=−10

(
e−

1
8π(3+n)2 − e− 1

8π(3−n)2
)
e−jωn

∣∣∣∣
2

dω

≈ 0.5490,

which is close to and slightly larger than 1
6π, consistent with what we would

guess by looking at Figure 7.10.

7.3.3 Uncertainty principle for sequences

Heisenberg box Similarly to functions, given a sequence x and its DTFT X , we
have just introduced the 4-tuple (µt, ∆t, µf , ∆f) describing the sequence’s center
in time and frequency (µt, µf) and its spread in time and frequency (∆t, ∆f). As
before, we show this pictorially (see Figure 7.11), with a center of mass (µt, µf)
around which a rectangular box of width 2∆t and height 2∆f is located, again
producing a Heisenberg box, but now for sequences. As before, we show only the
first quadrant of the time–frequency plane; we reserve the second quadrant for the
squared magnitude response of the DTFT of the sequence, |X |2, and the fourth
quadrant for the squared absolute value of the sequence itself, |x|2.

Given that we know the effects of the four basic operations (7.14) on the time
and frequency centers and spreads of a sequence x, (7.16) and (7.19), we can deduce
their effects on the Heisenberg box of the sequence (see also Table 7.2):

(i) Shift in time by n0 ∈ Z, (7.14a), causes the Heisenberg box to shift in time
by n0 (dashed box in Figure 7.12(a)).

(ii) Shift in frequency (modulation) by ω0 ∈ (−π, π], (7.14b), causes the Heisen-
berg box to shift in frequency by ω0 (dashed box in Figure 7.12(b)), provided
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Figure 7.11 The time–frequency plane. The sequence x with DTFT X has an associated
Heisenberg box centered at (µt, µf), of width 2∆t and height 2∆f .
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Figure 7.12 Shifting of a sequence with Heisenberg box centered at (µt, µf), of width
2∆t and height 2∆f . (a) Shifting in time by n0, xn−n0 , shifts the Heisenberg box to
(µt + n0, µf); the area remains the same. (b) When no frequency content crosses from
(−π, π] to outside this interval, shifting in frequency by ω0 (modulating), X(ej(ω−ω0)),
shifts the Heisenberg box to (µt, µf + ω0); the area remains the same. (Note that in the
figure we used a negative ω0.)

that the shift does not cause any frequency content to cross from (−π, π]
to outside this interval. For ω0 ∈ (−π, 0], this requires X(ejω) = 0 for
ω ∈ (−π, −π−ω0]; for ω0 ∈ (0, π], this requiresX(ejω) = 0 for ω ∈ (π−ω0, π].

(iii) Upsampling by N ∈ Z+ followed by ideal lowpass postfiltering, (7.14c), causes
the Heisenberg box to shift in time to Nµt and in frequency to µf/N , and also
to scale in time by N and in frequency by 1/N (dashed box in Figure 7.13).

(iv) Downsampling by N ∈ Z+ preceded by ideal lowpass prefiltering, (7.14d),
causes the Heisenberg box to shift in time to µt/N and in frequency to Nµf ,
and also to scale in time by 1/N and in frequency by N (similarly to what
is shown in Figure 7.13), provided that the original signal is bandlimited,
x ∈ BL[−π/N, π/N ].
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Figure 7.13 Upsampling followed by ideal lowpass postfiltering of a sequence with
Heisenberg box centered at (µt, µf), of width 2∆t and height 2∆f , shifts the Heisenberg
box to (Nµt, µf/N) and scales its width to 2N∆t and its height to 2∆f/N ; the area
remains the same. (Illustrated for N = 2.)

Sequence Time Time DTFT Frequency Frequency

center spread center spread

xn µt ∆t X(ejω) µf ∆f

xn−n0 µt + n0 ∆t e−jωn0X(ejω) µf ∆f

ejω0nxn µt ∆t X(ej(ω−ω0)) µf + ω0 ∆f

upsampled
& postfiltered

Nµt N∆t

√
NX(ejNω) µf/N ∆f/N

prefiltered
& downsampled

µt/N ∆t/N
1√
N
X(ejω/N ) Nµf N∆f

Table 7.2 Effects of shifts in time and frequency, as well as upsampling followed by postfil-
tering and downsampling preceded by prefiltering, on the Heisenberg box (µt, ∆t, µf , ∆f).
The properties for frequency center and spread after shift in frequency hold only when a
shift by ω0 does not cause any frequency content to cross from (−π, π] to outside this
interval. For the last row, the DTFT expression holds for ω ∈ (−π, π], and it is assumed
that the signal is bandlimited, x ∈ BL[−π/N, π/N ].

Uncertainty principle Shifting, upsampling followed by postfiltering, and down-
sampling preceded by prefiltering (under certain conditions) do not affect the area
of the Heisenberg box associated with a sequence, even when the time and frequency
spreads change. Thus, when manipulating a sequence through these basic opera-
tions, for one spread to decrease the other must increase. This agrees with what we
have seen in Examples 7.4 and 7.5; a sequence that is narrow in one domain will be
wide in the other. With the definitions paralleling those for continuous-time signals,
we can thus obtain a result similar to Theorem 7.4; a proof is given in Exercise 7.6.
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Theorem 7.8 (Uncertainty principle for sequences) Let x ∈ ℓ2(Z) have
time spread ∆t, frequency spread ∆f , and DTFT satisfying X(ejπ) = 0. Then,

∆t∆f >
1

2
. (7.22)

Note that there exist versions of the uncertainty principle for sequences that use a
different measure of frequency spread (to take periodicity into account) and do not
require X(ejπ) = 0; see the Further reading for details.

Example 7.7 (Uncertainty bound does not apply) The Kronecker delta
sequence from (3.8) is interesting to discuss as it possesses perfect time local-
ization; it is easy to calculate that µt = 0 and ∆t = 0. This means that the
Heisenberg box for this sequence has zero width. Theorem 7.8 is not contra-
dicted because it does not apply; the theorem requires X(ejπ) = 0, but in this
case X(ejω) = 1 for all ω ∈ R.

Example 7.8 (Uncertainty bound for box sequences) Using results from
Examples 7.4 and 7.5 for the right-sided box sequence of length n0, we can com-
pute the time–frequency product

∆t∆f =

(
n2
0 − 1

24π

∫ π

−π

ω2

(
1 + 2

n0−1∑

m=1

(
1− m

n0

)
cosmω

)
dω

)1/2

.

For any even value of n0, the DTFT of the box sequence at ω = π is zero, so
Theorem 7.8 applies to bound ∆t∆f from below. Table 7.3 gives this product
for several lengths. As we can see, ∆t∆f increases monotonically, away from the
lower bound, suggesting that the two-point box sequence is the most compact in
terms of the time–frequency spread.

n0 2 4 8 16

∆t∆f 0.5679 0.9211 1.3452 1.9176

Table 7.3 Time–frequency products of the box sequence for a few selected lengths.
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7.3.4 Uncertainty principle for finite-length sequences

In addition to the uncertainty principle for infinite sequences, there exists a simple
and powerful uncertainty principle for finite-length sequences and their DFTs.

Theorem 7.9 (Uncertainty principle for finite-length sequences)
Let a nonzero x ∈ CN have Nt nonzero entries and DFT X with Nf nonzero
entries. Then,

NtNf ≥ N. (7.23)

Proof. The proof hinges on the fact that x having Nt nonzero entries implies that X
cannot have Nt consecutive zeros, where consecutive is interpreted modN . We prove
this intermediate result by contradiction.

Suppose that there exist Nt consecutive zero entries in the DFT of x, Xk+m for
m = 0, 1, . . . , Nt − 1, for some k ∈ {0, 1, . . . , N − 1}. Denote by i0, i1, . . . , iNt−1

the indices of the Nt nonzero entries of x, and use these indices to form y ∈ CNt by
yn = xin and zn =W in

N for n = 0, 1, . . . , Nt − 1. Observe that

Xk+m =

N−1∑

n=0

xnW
n(k+m)
N

(a)
=

Nt−1∑

n=0

ynz
(k+m)
n , m = 0, 1, . . . , Nt − 1,

where (a) follows from summing only over nonzero entries of x. This system of linear
equations can be expressed as

X̂ =




Xk

...
Xk+Nt−1


 = Z




y0
...

yNt−1


 = Zy,

where Z is an Nt ×Nt matrix with elements Zm,n = zk+m
n , 0 ≤ m,n ≤ Nt − 1.

By assumption, X̂ is a zero vector and the vector y is nonzero; hence, the matrix
Z has a nontrivial null space. Since Z is a square matrix, it must be rank-deficient; that
is, its rank is smaller than Nt. However, Z = ẐD, where Ẑm,n = zmn , 0 ≤ m,n ≤ Nt−1,
and D = diag(zk0 , z

k
1 , . . . , z

k
Nt−1). The matrix Ẑ is a Vandermonde matrix as in (2.248)

constructed from nonzero entries; hence, it is of full rank Nt. The matrix D is a diagonal
matrix with nonzero diagonal elements; hence, it is also of full rank Nt. As a product
of two square, full-rank matrices, Z must also be a full-rank matrix, contradicting our
previous statement. Thus, X cannot have Nt consecutive zero entries.

We now come to the result itself. Arrange the points of X in a circle and choose
one nonzero entry to start from. Because of what we just showed, this nonzero entry
can be followed by at most (Nt− 1) zero ones. Continuing the argument until we reach
the initial point, we will have at least ⌈N/Nt⌉ nonzero entries. Thus, the total number
of nonzero entries will be

Nf ≥
⌈
N

Nt

⌉
≥ N

Nt
⇒ NtNf ≥ N.

Exercise 7.8 establishes a set of vectors that achieves equality in (7.23).
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7.4 Tiling the time–frequency plane

Having seen the localization properties of individual functions and sequences in the
previous two sections, a natural next step is to consider the localization properties
of sets of functions or sequences. We consider sets generated by taking a prototype
function and applying basic operations of time shift, frequency shift, and scaling
from (7.3), or taking a prototype sequence and applying basic operations of time
shift, frequency shift, upsampling followed by lowpass postfiltering, and downsam-
pling preceded by lowpass prefiltering, from (7.14). Compared with arbitrary sets,
these structured sets can be described simply because of the presence of a single
prototype function or sequence and a few parameters to describe the shifting and
scaling operations. This simplicity is essential in applications, in particular because
the structure often leads to efficient algorithms for analysis and synthesis. These
algorithms and the properties of structured bases and frames are central to the
companion volume [57].

Displaying all the Heisenberg boxes for a specific set of functions or sequences
is termed the actual time–frequency plot of the set; that set of Heisenberg boxes
might have overlaps or gaps. In this section, we concentrate on selecting combi-
nations of operations from (7.3) or (7.14) that lead to actual time–frequency plots
that, in a loose sense, have Heisenberg boxes that are evenly spaced on the time–
frequency plane – even when the boxes have different aspect ratios. We will also
introduce idealized time–frequency tilings where only the time and frequency centers
play a role.

7.4.1 Localization for structured sets of functions

In Figures 7.5–7.7, we illustrated the concepts of the time–frequency plane, local-
ization of a function described by the 4-tuple (µt, ∆t, µf , ∆f), and basic operations
of shifting in time, shifting in frequency, and scaling. We use a Heisenberg box for
each individual function in a set Φ = {ϕi}i∈Z to visually represent that set.

If the set Φ has no particular structure, the time–frequency plane display of
the corresponding Heisenberg boxes will look quite random and is probably of little
interest. We thus consider only structured sets, related to desired features such as
some invariance to shifts in time/frequency, and to computational efficiency.

Given a prototype function ϕ, generate a collection of functions by using the
following operations from (7.3):

(i) Shifts in time by mt0, m ∈ Z, t0 ∈ R+,

Φ = {ϕ(t−mt0)}m∈Z; (7.24a)

see Figure 7.14(a).

(ii) Shifts in frequency (modulation) by kω0, k ∈ Z, ω0 ∈ R+,

Φ = {ejkω0tϕ(t)}k∈Z; (7.24b)

see Figure 7.14(b).
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(a) Shifts in time. (b) Shifts in frequency. (c) Scales in time/frequency.

Figure 7.14 Basic operations (7.24) on a Gaussian function ϕ(t) = 21/4e−πt2 . (Illus-
trated for t0 = 1, ω0 = 2π, and a = 2.)
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(a) Shifts in time. (b) Shifts in frequency. (c) Scales in time/frequency.

Figure 7.15 Actual time–frequency plots resulting from basic operations (7.24) on
functions. The Heisenberg box of the prototype function ϕ is highlighted (dashed lines).

(iii) Scales in time by aℓ, a ∈ (1,∞), ℓ ∈ Z,

Φ = {ϕ(a−ℓt)}ℓ∈Z; (7.24c)

see Figure 7.14(c). Since a > 1, the scale of the function decreases for ℓ < 0
and increases for ℓ > 0.

When the operations used are shifts in time and frequency, the prototype func-
tion is typically a lowpass function (a function centered around the origin in time
and frequency); when the operation used is scaling, the prototype function is typi-
cally a bandpass function (a function centered around some nonzero frequency ω0).
Figure 7.15 displays examples of actual time–frequency plots resulting from these
operations.

Sets generated by time shift and modulation Given a prototype function ϕ (typ-
ically lowpass) and t0, ω0 ∈ R+, generate the set

ϕk,m(t) = ejkω0tϕ(t−mt0), k,m ∈ Z. (7.25)

Since the time shifts are on a regular grid {mt0}m∈Z and the frequency shifts are
also on a regular grid {kω0}k∈Z, the actual time–frequency plot of the set con-
sists of the Heisenberg box of ϕ along with its shifts on a two-dimensional grid
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t
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ω

(0, 0)

(1, 2)

(−2, 3)

(a) Actual plot. (b) Idealized tiling.

Figure 7.16 Actual time–frequency plot and idealized time–frequency tiling for sets
generated by time shift and modulation (7.25). In (b), tiles are labeled by (m, k), where
the time shift is by mt0 and the modulation is by kω0.

{(mt0, kω0)}m,k∈Z, as illustrated in Figure 7.16(a). The Heisenberg boxes are iden-
tical in shape and the grid is regular, so we consider the time–frequency plane to
be evenly covered. The idealized time–frequency tiling is constructed as a simplifi-
cation of the actual time–frequency plot using just the grid of time and frequency
shifts {(mt0, kω0)}m,k∈Z, without using the dimensions of the Heisenberg box of ϕ,
as illustrated in Figure 7.16(b) (we assumed that µt = µf = 0). As we will discuss
in Section 7.5.1, local Fourier bases have tilings of this form.

Sets generated by time shift and scaling Given a prototype function ϕ (typically
bandpass), the set of scales in (7.24c) gives Heisenberg boxes of differing aspect
ratios as shown in Figure 7.15(c) for µt = 0 and µf > 0. Using equally spaced shifts
in time would create a higher density of Heisenberg boxes for low |ω| and a lower
density for high |ω|. Instead, for t0 ∈ R+, a ∈ (1,∞), generate the set

ϕℓ,m(t) = ϕ(a−ℓt−mt0), ℓ,m ∈ Z. (7.26)

In this set of functions, the scaled version ϕ(a−ℓt) appears along with its shifts by
integer multiples of aℓt0 because

ϕ(a−ℓt−mt0) = ϕ(a−ℓ(t−maℓt0)).
At scale ℓ, the time spread is proportional to aℓ and the time shifts are on the grid
{maℓt0}m∈Z, so the time–frequency plane is again considered to be evenly covered.
The actual time–frequency plot is illustrated in Figure 7.17(a), while the idealized
time–frequency tiling of this set of functions for a = 2 is shown in Figure 7.17(b);
we assumed that µt = 0. Such a tiling is called dyadic because of scaling by 2. As
we will discuss in Section 7.5.1, wavelet bases have tilings of this form.

7.4.2 Localization for structured sets of sequences

What we just saw for sets of functions can be carried over to sets of sequences
as well. In Figures 7.11–7.13, we illustrated the concepts of the time–frequency
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(a) Actual plot. (b) Idealized tiling.

Figure 7.17 Actual time–frequency plot and idealized time–frequency tiling for sets
generated by time shift and scaling (7.26). In (b), tiles are labeled by (m, ℓ), where the
time shift is by maℓt0 and the scaling is by a−ℓ. (Illustrated for a = 2.)

plane, localization of a sequence described by the 4-tuple (µt, ∆t, µf , ∆f), and basic
operations of shifting in time, shifting in frequency, and discrete scaling (upsampling
followed by ideal lowpass postfiltering and downsampling preceded by ideal lowpass
prefiltering). We use a Heisenberg box for each individual sequence in a set Φ =
{ϕi}i∈Z to visually represent that set, and, as before, we distinguish actual time–
frequency plots from idealized time–frequency tilings. One distinction from the
previous discussion is that we will no longer assume that the filters we use are ideal
lowpass filters.

Given a prototype sequence ϕ, generate a collection of sequences by using the
following operations from (7.14):

(i) Shifts in time by mn0, m ∈ Z, n0 ∈ Z+,

Φ =
{
ϕn−mn0

}
m∈Z

; (7.27a)

see Figure 7.18(a).

(ii) Shifts in frequency (modulation) by kω0, k ∈ {0, 1, . . . , N − 1}, ω0 ∈ (−π, π],

Φ =
{
ejkω0nϕn

}
k∈{0,1,...,N−1}; (7.27b)

see Figure 7.18(b). The frequency ω0 is typically chosen as ω0 = 2π/N for
some N ∈ Z+; since the DTFT of ϕ is 2π-periodic, the finite set of k above
produces all N distinct frequency shifts, as the rest are identical mod 2π.

(iii) Upsampling by N ℓ−1, ℓ ∈ Z+, N ∈ Z+, N > 1, followed by appropriate
postfiltering,

Φ =
{
g(ℓ−1) ∗ ϕ(Nℓ−1)

}
ℓ∈Z+

, (7.27c)

where ϕ(Nℓ−1

) denotes the prototype sequence ϕ upsampled by N ℓ−1, g(ℓ−1) is
an appropriate lowpass filter that depends on scale with g(1) = g and g(0) = δ,
and N is typically a small integer; see Figure 7.18(c). Often, the lowpass filter
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(c) Upsampling followed by filtering. (d) Downsampling preceded by filtering.

Figure 7.18 Basic operations (7.27) on a Gaussian sequence ϕn = 21/4e−π(n/8)2 . (Illus-
trated for n0 = 8, ω0 = π, N = 2, and gn = (δn + δn−1)/

√
2.)

g(ℓ) is created as a convolution of upsampled versions of a prototype lowpass
filter g with itself. Because of upsampling and multiple convolutions, this type
of scaling creates long sequences and is thus an increase of scale.

Example 7.9 (Upsampling) Let N = 2, the lowpass filter be
gn = (δn + δn−1)/

√
2, and the prototype sequence be ϕn = δn − δn−1.

The resulting sequence at scale ℓ = 1 is

g(0) ∗ ϕ(20) = δ ∗ ϕ = ϕ,

that is, the prototype sequence.
The resulting sequence at scale ℓ = 2 is the convolution of g and the

upsampled-by-2 version of ϕ,

(g(1) ∗ ϕ(21))n =
1√
2
(δn + δn−1) ∗n (δn − δn−2)

=
1√
2
(δn + δn−1 − δn−2 − δn−3).

The resulting sequence at scale ℓ = 3 is the convolution of g(2) and
the upsampled-by-4 version of ϕ. When g(2) is constructed by convolving
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Figure 7.19 Time–frequency tilings resulting from basic operations (7.27) on sequences.
The Heisenberg box of the prototype sequence ϕ is highlighted (dashed lines).

g with the upsampled-by-2 version of g, the resulting sequence is

(g(2) ∗ ϕ(22))n =
1

2
((δn + δn−1) ∗n (δn + δn−2)) ∗n (δn − δn−4)

=
1

2
(δn + δn−1 + δn−2 + δn−3) ∗n (δn − δn−4)

=
1

2
(δn + δn−1 + δn−2 + δn−3 − δn−4 − δn−5 − δn−6 − δn−7).

Note that for illustration, here we have used the construction of the lowpass
filter g(ℓ) as a convolution of upsampled versions of a prototype lowpass
filter g with itself; this is not necessary in general.

We see that, indeed, increasing ℓ increases the length of the sequence.

When the operations used are shifts in time and frequency, the prototype
sequence is typically a lowpass sequence (a sequence centered around the origin in
time and frequency). Note that when the operations used are shifts in time and
discrete-time scaling, we use upsampling only. The prototype ϕ then determines
the lowest available scale (this is a difference between sequences and functions), and
is typically a highpass sequence. Figure 7.19 displays the time–frequency tilings
resulting from these operations; one period of the frequency axis is shown.

Sets generated by time shift and modulation Given a prototype sequence ϕ
(typically lowpass) and n0, N ∈ Z+, generate the set

ϕk,m,n = ejkω0nϕn−mn0 , k ∈ {0, 1, . . . , N − 1}, m ∈ Z, (7.28)

where ω0 = 2π/N . The actual time–frequency plot is illustrated in Figure 7.20(a),
while the idealized time–frequency tiling for µt = µf = 0 is shown in Figure 7.20(b).
As we will discuss in Section 7.5.2, local Fourier bases have tilings of this form.

Sets generated by time shift and scaling Given a prototype sequence ϕ (typically
highpass), the set of scales in (7.27c) gives Heisenberg boxes of differing aspect ratios
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Cambridge University Press (ISBN 110703860X) v1.1 [May 2014] [free version] Comments to book-errata@FourierAndWavelets.org



644 Localization and uncertainty

Π

n

ω
Π

n

ω

(0, 0)

(1, 2)

(−2, 3)

(a) Actual plot. (b) Idealized tiling.

Figure 7.20 Actual time–frequency plot and idealized time–frequency tiling for sets
generated by time shift and modulation (7.28). In (b), tiles are labeled by (m, k), where
the time shift is by mn0 and the modulation is by kω0 = k2π/N . (Illustrated for N = 4.)
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(a) Actual plot. (b) Idealized tiling.

Figure 7.21 Actual time–frequency plot and idealized time–frequency tiling for sets
generated by time shift and scaling (7.29). In (b), tiles are labeled by (m, ℓ), where the
time shift is by mNℓ−1n0 and the scaling is by N−ℓ. (Illustrated for n0 = N = 2.)

as shown in Figure 7.19(c) for µt = 0 and µf > 0. Using equally spaced shifts in
time would create a higher density of Heisenberg boxes for low |ω| and a lower
density for high |ω|. Instead, for N,n0 ∈ Z+, N > 1, generate the set

ϕℓ,m,n =
(
g(ℓ−1) ∗ ϕ(Nℓ−1)

)
n−mNℓ−1n0

, ℓ ∈ Z+, m ∈ Z. (7.29)

At scale ℓ, the time spread is proportional to N ℓ−1 and the shifts are on the grid
{mN ℓ−1n0}m∈Z, so the time–frequency plane is evenly covered. The actual time–
frequency plot is illustrated in Figure 7.21(a), while the idealized time–frequency
tiling for such sets with N = n0 = 2 and µt = 0 is shown in Figure 7.21(b). Such a
dyadic tiling can be obtained, for example, with the discrete-time wavelet basis we
discuss in Section 7.5.2.
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7.5 Examples of local Fourier and wavelet bases

The discussion of time–frequency tilings and structured bases thus far has been
mostly conceptual. We now show examples of simple orthonormal bases with the
structured time–frequency tilings developed in Section 7.4. Local Fourier bases
are generated by time shift and modulation of a prototype function/sequence,
and wavelet bases are generated by time shift and scaling of a prototype func-
tion/sequence. Constructing bases with desirable time–frequency localization and
other properties is a major topic of the companion volume, [57].

7.5.1 Local Fourier and wavelet bases for functions

Local Fourier bases for functions

Our first task is to create an orthonormal basis generated from a single prototype
function by time shift and modulation as in Section 7.4.1, ideally producing a tiling
as in Figure 7.16(b).

Basis Construct an orthonormal set generated from a prototype function ϕ by
shifts mt0, m ∈ Z, and modulations kω0, k ∈ Z, as in (7.25), where

ϕ(t) = w(t), t0 = 1, ω0 = 2π,

and w is the box function from (4.8a),

w(t) =

{
1, for |t| ≤ 1

2 ;
0, otherwise.

(7.30a)

Together, these yield a local Fourier basis

ϕk,m(t) = ejk2πtw(t −m), k,m ∈ Z; (7.30b)

a few of the basis functions are shown in Figure 7.22. According to Theorem 4.14, for
a fixed shiftm, the set {ϕk,m}k∈Z forms an orthonormal basis for L2([m− 1

2 ,m+ 1
2 )).

For two different shifts m 6= ℓ, the sets {ϕk,m}k∈Z and {ϕk,ℓ}k∈Z are orthogonal to
each other because the supports of the functions do not overlap. Thus, {ϕk,m}k,m∈Z

is an orthonormal set. Below, we will establish that {ϕk,m}k,m∈Z is a basis for L2(R)
by showing the completeness of this set.

Expansion We compute the expansion coefficients of x ∈ L2(R) with respect to
the local Fourier basis (7.30) as

Xk,m = 〈x, ϕk,m〉 =

∫ ∞

−∞
x(t)ϕ∗

k,m(t) dt

(a)
=

∫ ∞

−∞
x(t) e−jk2πtw(t −m) dt

(b)
=

∫ m+1/2

m−1/2

x(t) e−jk2πt dt, (7.31a)

where (a) follows from (7.30b); and (b) from the finite support of w. For a fixed
m, {Xk,m}k∈Z is the Fourier series coefficient sequence of x̃m(t) = x(t + m)w(t).
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Figure 7.22 Example local Fourier basis functions (real parts only) from (7.30b) and
the magnitudes of their Fourier transforms. For a given k, the absolute values |Φk,m| are
the same for all m ∈ Z.

By Theorem 4.15(i), the Fourier series reconstruction x̂m obtained from {Xk,m}k∈Z

satisfies

‖xm − x̂m‖ = 0

using the L2 norm. Thus, since x can be decomposed into a sum of pieces over
unit-length intervals

x(t) =
∑

m∈Z

x̃m(t−m),

we may combine the Fourier series reconstructions, (4.94b), of {x̃m}m∈Z, to obtain

x(t) =
∑

m∈Z

∑

k∈Z

Xk,me
jk2πtw(t −m), (7.31b)

where the equality means that

lim
M→∞

lim
K→∞

∥∥∥∥x(t)−
M∑

m=−M

K∑

k=−K

Xk,me
jk2πtw(t −m)

∥∥∥∥ = 0,

again using the L2 norm. The expansion (7.31b) generally suffers from the Gibbs
phenomenon at interval boundaries, since the 1-periodic version of each x̃m is usually
discontinuous at {k+ 1

2}k∈Z (the periodized version of x̃m is continuous only if x is
continuous on [m− 1

2 , m+ 1
2 ] and x(m− 1

2 ) = x(m+ 1
2 )).
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Figure 7.23 Approximation x̂ (solid line) and approximation error e = x−x̂ of x (dashed
line) from (7.32) on [0, 4] using the local Fourier basis with k = −3, −2, . . . , 3.

Example 7.10 (Approximation with a local Fourier basis) Let

x(t) =

{
t sin 5t, for − 1

2 ≤ t ≤ 9
2 ;

0, otherwise,
(7.32)

that is, the function x1 from (6.4) restricted to [− 1
2 ,

9
2 ]. Figure 7.23 shows an

approximation of x on [0, 4] that is obtained by truncating (7.31b) to frequencies
k = −3, −2, . . . , 3. Since the approximation uses the seven lowest frequencies
per interval and the approximation is shown for an interval of length 4, it is
essentially an approximation formed with 28 expansion coefficients. Disconti-
nuities of the approximation at 1

2 ,
3
2 ,

5
2 , and

7
2 are apparent. The sizes of the

discontinuities would not be diminished by including additional frequencies, but
the L2 norm of the approximation error would vanish.

Time–frequency localization How similar is the actual time–frequency plot of this
basis to the idealized tiling from Figure 7.16(b) (repeated in Figure 7.24(a))? From
Examples 7.1 and 7.2, we know that, for the prototype box function with t0 = 1,
the time spread is ∆t = 1/(2

√
3), while the frequency spread ∆f is infinite, making

the time–frequency product unbounded. The Heisenberg boxes for ϕk,m will be
centered at (m, 2πk), m, k ∈ Z, of width 1/

√
3; the height is unbounded, however,

leaving us far from the desired tiling (see Figures 7.24(b) and (c)).

Haar wavelet basis for functions

Our next task is to create an orthonormal basis generated from a single prototype
function by time shift and scaling as in Section 7.4.1, ideally producing a tiling as
in Figure 7.17(b).

Basis Construct an orthonormal set generated from a prototype function ϕ by
shifts mt0, m ∈ Z, and scalings aℓ, ℓ ∈ Z, as in (7.26), where

ϕ(t) = ψ(t), t0 = 1, a = 2,
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Figure 7.24 Idealized time–frequency tiling (same as Figure 7.16(b)) versus actual time–
frequency plots for the local Fourier basis in (7.30b). The Heisenberg box of the prototype
function, centered at (0, 0), of width 1/

√
3 and infinite height, is shown in dark gray, while

the Heisenberg boxes of the rest of the basis functions are shown in light gray. Because ∆f

is infinite, for a fixed m and k ∈ Z, boxes overlap in frequency; we thus show the tilings
for k = 0 and k = 1 separately for clarity.

and ψ is the Haar wavelet function from (1.6),

ψ(t) =





1, for 0 ≤ t < 1
2 ;

−1, for 1
2 ≤ t < 1;

0, otherwise.
(7.33a)

Together, these yield the dyadic Haar wavelet basis

ϕℓ,m(t) = 2−ℓ/2ψ(2−ℓt−m), ℓ,m ∈ Z; (7.33b)

a few of the basis functions are shown in Figure 7.25. The prototype function, the
Haar wavelet ψ, is bandpass in nature; in particular, Ψ(0) = 0. For a fixed scale ℓ,
the basis functions are orthogonal to each other since their supports do not overlap;
when their supports do overlap, their inner product is zero because one changes
sign over the constant span of the other. Moreover, a simple calculation shows that
each one is of unit norm; thus, the set is orthonormal. One can show that the set
{ϕℓ,m}ℓ,m∈Z is also a basis for L2(R) (see the Further reading).

Expansion We compute the expansion coefficients of x ∈ L2(R) with respect to
the Haar wavelet basis (7.33) as

Xℓ,m = 〈x, ϕℓ,m〉 =

∫ ∞

−∞
x(t)ϕ∗

ℓ,m(t) dt

(a)
= 2−ℓ/2

∫ ∞

−∞
x(t)ψ(2−ℓt−m) dt

(b)
= 2−ℓ/2

(∫ 2ℓ(m+1/2)

2ℓm

x(t) dt−
∫ 2ℓ(m+1)

2ℓ(m+1/2)

x(t) dt

)
, (7.34a)

where (a) follows from (7.33b); and (b) from (7.33a). The expansion is

x(t) =
∑

ℓ∈Z

2−ℓ/2
∑

m∈Z

Xℓ,mψ(2
−ℓt−m). (7.34b)
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Figure 7.25 Example Haar wavelet basis functions from (7.33b) and the magnitudes
of their Fourier transforms. For a given ℓ, the absolute values |Φℓ,m| are the same for all
m ∈ Z.

In practice, one often fixes a coarsest scale J and uses the wavelets at scales ℓ =
−∞, . . . , J−1, J . The contributions from the omitted scales ℓ = J+1, J+2, . . . , ∞
are then represented with the scaling function (1.8) at scale J together with its
shifts, {2−J/2ϕ(2−J t−m)}m∈Z. The expansion then becomes

x(t) = 2−J/2
∑

m∈Z

X̃J,mϕ(2
−J t−m) +

J∑

ℓ=−∞
2−ℓ/2

∑

m∈Z

Xℓ,mψ(2
−ℓt−m), (7.34c)

where X̃J,m = 〈x(t), 2−J/2ϕ(2−J t −m)〉t is the expansion coefficient with respect
to the scaling function at scale J and shift m. For more details, see the companion
volume, [57].

Example 7.11 (Approximation with a wavelet basis) Figure 7.26 shows
an approximation of the function x from (7.32) on [0, 4] by truncating (7.34c)
to 32 terms: one scaling coefficient for scale ℓ = 2 and 31 wavelet coefficients
for scales ℓ = −2, −1, . . . , 2 and shifts m = 0, 1, . . . , 2−(ℓ−2) − 1. The ap-
proximation using this basis looks quite different from that obtained using the
local Fourier basis, which was shown in Figure 7.23. Comparing Figure 7.26(b)
to Figure 7.23(b), rather than seeing the Gibbs phenomenon, we see that the
magnitude of the error is more uniform.
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Figure 7.26 Approximation x̂ (solid line) and approximation error e = x−x̂ of x (dashed
line) from (7.32) on [0, 4] using the Haar wavelet basis with ℓ = −2, −1, . . . , 2
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(a) Idealized tiling. (b) Actual plot for ℓ = 0. (c) Actual plot for ℓ = −1.

Figure 7.27 Idealized time–frequency tiling (same as Figure 7.17(b) shifted) versus
actual time–frequency plots for the dyadic Haar wavelet basis in (7.33b). The Heisenberg
box of the prototype function, centered at ( 1

2
, 0), of width 1/

√
3 and infinite height, is

shown in dark gray, while the Heisenberg boxes of the rest of the basis functions are shown
in light gray. Because ∆f is infinite, for a fixed m and ℓ ∈ Z, boxes overlap in frequency;
we thus show the tilings for ℓ = 0 and ℓ = −1 separately for clarity.

Time–frequency localization How similar is the actual time–frequency plot of this
basis to the idealized tiling from Figure 7.17(b) (repeated in Figure 7.27(a), shifted
because the prototype basis function has µt =

1
2 )? For the prototype function, we

can compute the time spread to be ∆t = 1/(2
√
3), and the frequency spread ∆f

to be infinite, making the time–frequency product unbounded, just as for the local
Fourier basis. The Heisenberg boxes for ϕℓ,m will be centered at (m2ℓ, 0), ℓ,m ∈ Z,
of width 1/(2−ℓ

√
3); the height is unbounded, however, leaving us far from the

desired tiling (see Figure 7.27(b) and (c)). In fact, not only are the boxes far from
the ideal boxes, but also the time–frequency centers all have µf = 0 because the
basis functions are real. In this case, not even the one-sided frequency center µ+

f

from (7.8a) would help since the integral does not converge.
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7.5.2 Local Fourier and wavelet bases for sequences

We now consider the discrete-time counterparts of the continuous-time bases we
have just seen, namely local Fourier bases and the Haar wavelet basis.

Local Fourier bases for sequences

As in continuous time, our first task is to create an orthonormal basis generated
from a single prototype sequence by time shift and modulation as in Section 7.4.2,
ideally producing a tiling as in Figure 7.20(b).

Basis Construct an orthonormal set generated from a prototype sequence ϕ by
shifts mn0, m ∈ Z, and modulations kω0, k ∈ {0, 1, . . . , N−1}, as in (7.28), where

ϕn = wn, n0 = N, ω0 = 2π/N,

and w is the normalized right-sided box sequence from (3.13),

wn =

{
1/
√
N, for 0 ≤ n ≤ N − 1;
0, otherwise.

(7.35a)

Together, these yield a discrete local Fourier basis

ϕk,m,n = ejk(2π/N)nwn−mN , k ∈ {0, 1, . . . , N − 1}, m ∈ Z; (7.35b)

a few of the basis sequences are shown in Figure 7.28. According to (3.165), for
a fixed shift m, the set {ϕk,m}k∈{0,1,...,N−1} forms a basis for ℓ2({mN, mN +
1, . . . , (m+1)N −1}). For two different shifts m 6= ℓ, the sets {ϕk,m}k∈{0,1,...,N−1}
and {ϕk,ℓ}k∈{0,1,...,N−1} are orthogonal to each other because the supports of the
sequences do not overlap. Thus, {ϕk,m}k∈{0,1,...,N−1},m ∈ Z is an orthonormal
set. Below, we will establish that {ϕk,m}k∈{0,1, ..., N−1},m∈Z is a basis for ℓ2(Z) by
showing the completeness of this set.

Expansion We compute the expansion coefficients of x ∈ ℓ2(Z) with respect to the
discrete local Fourier basis (7.35) as

Xk,m = 〈x, ϕk,m〉 =
∑

n∈Z

xnϕ
∗
k,m,n

(a)
=
∑

n∈Z

xne
−jk(2π/N)nwn−mN

(b)
=

1√
N

(m+1)N−1∑

n=mN

xne
−jk(2π/N)n

=
1√
N

(m+1)N−1∑

n=mN

xnW
kn
N , (7.36a)

where (a) follows from (7.35b); and (b) from the support of w. For
a fixed m, {Xk,m}k∈{0,1,...,N−1} is the DFT coefficient sequence of
x̃m,n = xn+mNwn. By (3.163b), we can obtain the DFT reconstruction of x̃m
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Figure 7.28 Example local Fourier basis sequences (real parts only) from (7.35b) and
the magnitudes of their DTFTs. For a given k, the absolute values |Φk,m| are the same
for all m ∈ Z. (Illustrated for N = 8.)

from {Xk,m}m∈Z,k∈{0,1,...,N−1}. Thus, since x can be decomposed into a sum of
pieces over intervals of length N ,

xn =
√
N
∑

m∈Z

x̃m,n−mN

(where the factor 1/
√
N appears because of (7.35a)), we may combine the DFT

reconstructions, (3.163b), of {x̃m}m∈Z, to obtain

xn =
1√
N

∑

m∈Z

N−1∑

k=0

Xk,me
jk(2π/N)nwn−mN . (7.36b)

This expansion is often called a block-by-block transform, or simply a block transform.

Example 7.12 (Approximation with a discrete local Fourier basis)
Let

xn =

{
1
8n sin

(
5
8n
)
, for n = 0, 1, . . . , 31;
0, otherwise,

(7.37)

that is, the function from (7.32) sampled at t = 1
8n. Figure 7.29 shows an approx-

imation of x on 0, 1, . . . , 31 that is obtained with N = 8 by truncating (7.36b)
to frequencies k = −2, −1, . . . , 2. Since the approximation uses the five lowest
frequencies per interval and the approximation is shown on four nonoverlapping
intervals, it is essentially an approximation formed with 20 expansion coefficients.
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Figure 7.29 Approximation x̂ (black stems) and approximation error e = x−x̂ of x (gray
stems) from (7.37) on 0, 1, . . . , 31 using the local Fourier basis with k = −2, −1, . . . , 2
and N = 8.
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Figure 7.30 Idealized time–frequency tiling (same as Figure 7.20(b) shifted) versus
actual time–frequency plots for the local Fourier basis in (7.35b). The Heisenberg box of
the prototype sequence, centered at (3.5, 0), of width 4.5826 and height 1.1742, is shown
in dark gray in (b), while the Heisenberg boxes of the rest of the basis sequences are shown
in light gray. Because for a fixed m and k ∈ Z boxes overlap in frequency, we show tilings
for k = 0 and k = 1 separately for clarity. Note that the areas of the Heisenberg boxes are
not preserved across shifts in frequency, since the prototype sequence is not bandlimited.

Time–frequency localization How similar is the actual time–frequency plot of this
basis to the idealized tiling from Figure 7.20(b)? From Examples 7.4 and 7.5, we
know that, for the prototype window sequence with n0 = N , the time spread is
∆t =

√
N2 − 1/(2

√
3); unlike for functions, the frequency spread ∆f is no longer

unbounded, as we have seen in (7.18). For k = 0, the Heisenberg boxes for ϕ0,m

will be centered at (mN + 1
2 (N − 1), 0), m ∈ Z, of width

√
(N2 − 1)/3; the height

is 2∆f with ∆f as in (7.18). Because ϕ is not bandlimited, the shift in frequency
causes the frequency spread to change; the frequency center is in general not shifted
by the amount of shift in frequency. Because of this, unlike for functions, the area
of the Heisenberg box will change. Figure 7.30 illustrates this for N = 8.
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Cambridge University Press (ISBN 110703860X) v1.1 [May 2014] [free version] Comments to book-errata@FourierAndWavelets.org



654 Localization and uncertainty

Haar wavelet basis for sequences

Our final task is to create an orthonormal basis generated from a single prototype
sequence by time shift and scaling as in Section 7.4.2, ideally producing a tiling as
in Figure 7.21(b).

Basis Construct an orthonormal set generated from a prototype sequence ϕ by
shifts mn0, m ∈ Z, and upsampling by N ℓ followed by lowpass postfiltering, ℓ ∈ Z+,
as in (7.29), where

ϕn = hn, n0 = 2, N = 2,

and h is the Haar wavelet sequence

hn =





1/
√
2, for n = 0;

−1/
√
2, for n = 1;
0, otherwise,

(7.38a)

and, at scale ℓ,

h(ℓ)n = 2−ℓ/2




2ℓ−1−1∑

k=0

δn−k −
2ℓ−1∑

k=2ℓ−1

δn−k


. (7.38b)

Together, these yield the discrete dyadic Haar wavelet basis

ϕℓ,m,n = h
(ℓ)

n−2ℓm
, m ∈ Z, ℓ ∈ Z+; (7.38c)

a few of the basis sequences are shown in Figure 7.31. The prototype sequence, the
Haar wavelet h, is highpass in nature; in particular, H(ejω)|ω=0 = H(1) = 0. For a
fixed scale ℓ, the basis sequences are orthogonal to each other since their supports
do not overlap; when their supports do overlap, their inner product is zero because
one changes sign over the constant span of the other. Moreover, a simple calculation
shows that each one is of unit norm; thus, the set is orthonormal. One can show
that the set {ϕℓ,m}ℓ∈Z+,m∈Z is also a basis for ℓ2(Z); for details, see the companion
volume [57].

Expansion We compute the expansion coefficients of x ∈ ℓ2(Z) with respect to the
discrete Haar wavelet basis (7.38) as

Xℓ,m = 〈x, ϕℓ,m〉 =
∑

n∈Z

xnϕ
∗
ℓ,m,n

(a)
=
∑

n∈Z

xnh
(ℓ)

n−2ℓm

(b)
=

2ℓ(m+1)−1∑

n=2ℓm

xn2
−ℓ/2




2ℓ−1−1∑

k=0

δn−2ℓm−k −
2ℓ−1∑

k=2ℓ−1

δn−2ℓm−k


, (7.39a)

where (a) follows from (7.38c); and (b) from (7.38b). The expansion is

xn =
∑

ℓ∈Z+

∑

m∈Z

Xℓ,mh
(ℓ)

n−2ℓm
. (7.39b)
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Figure 7.31 Example Haar wavelet basis sequences from (7.38c) and the magnitudes of
their DTFTs. For a given ℓ, the absolute values |Φℓ,m| are the same for all m ∈ Z.

In practice, one often fixes a coarsest scale J and uses the wavelet sequences at scales
ℓ = 1, 2, . . . , J . The contributions from the omitted scales ℓ = J +1, J +2, . . . , ∞
are then represented with the scaling sequence, a right-sided box sequence g of

length 2, at scale J together with its shifts, {g(J)
n−2Jm

}m∈Z, where g
(J) is

g(J)n = 2−J/2
2J−1∑

k=0

δn−k. (7.39c)

The expansion then becomes

xn =
∑

m∈Z

X̃J,mg
(J)

n−2Jm
+

J∑

ℓ=1

∑

m∈Z

Xℓ,mh
(ℓ)

n−2ℓm
, (7.39d)

where X̃J,m = 〈xn, g(J)n−2Jm〉n is the expansion coefficient with respect to g at scale

J and shift m; X̃ and X are often referred to as the DWT coefficients. For more
details, see the companion volume, [57].

Example 7.13 (Approximation with a discrete Haar wavelet basis)
Figure 7.32 shows an approximation of the sequence x from (7.37) on 0, 1, . . . , 31
by truncating (7.39d) to 16 terms: one scaling coefficient for scale ℓ = 5 and 15
wavelet coefficients for scales ℓ = 2, 3, 4, 5 and shifts m = 0, 1, . . . , 2(5−ℓ) − 1.
The approximation using this basis looks quite different from that using the local
Fourier basis shown in Figure 7.29.
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Figure 7.32 Approximation x̂ (black stems) and approximation error e = x − x̂ of x
(gray stems) from (7.37) on 0, 1, . . . , 31 using the discrete dyadic Haar wavelet basis with
ℓ = 2, 3, 4, 5.

ℓ 1 2 3

µ+f 2.2074 1.2879 0.8150

∆+
f 0.6459 0.4924 0.5904

Table 7.4 One-sided frequency centers and spreads for Haar basis sequences.

Time–frequency localization How similar is the actual time–frequency plot of
this basis to the idealized tiling from Figure 7.21(b) (repeated in Figure 7.33(a)
and shifted because the prototype basis sequence is not centered around zero)?
For the prototype sequence and all basis sequences for ℓ = 1, we compute the
time spread to be ∆t = 1

2 and the frequency spread to be ∆f =
√
2 + π2/3 ≈

2.3000. The Heisenberg boxes all have µf = 0 because the basis sequences are real;
they correspond to the highest-frequency boxes in Figure 7.33(a) and are shown
in Figure 7.33(b). For ℓ = 2, ∆t =

√
5/2, and ∆f ≈ 1.3788; they also all have

µf = 0 and correspond to the next-highest-frequency boxes in Figure 7.33(a) and
are shown in Figure 7.33(c).

This is an example where the one-sided concepts come in handy; the one-
sided frequency centers and spreads for ℓ = 1, 2, 3 are given in Table 7.4; the
corresponding plots for ℓ = 1 and ℓ = 2 are shown in Figures 7.33(d) and (e).

7.6 Recap and a glimpse forward

We are now ready to close this chapter, and the book, with a summary of tools and
a discussion of issues that arise when adapting these tools to real-world problems.
We end with a few bite-size illustrations of locality and localized bases on real-world
signals.
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Figure 7.33 Idealized time–frequency tiling (same as Figure 7.20(b) shifted) versus
actual (both double-sided and one-sided) time–frequency plots for the dyadic Haar wavelet
basis in (7.38c). The Heisenberg box of the prototype sequence, centered at ( 1

2
, 0), of width

1 and height 4.6, is shown in dark gray (in (b) and (d)), while the Heisenberg boxes of the
rest of the basis sequences are shown in light gray. Because boxes overlap in frequency, we
show tilings for ℓ = 1 and ℓ = 2 separately for clarity.

7.6.1 Tools

We have seen a number of basic yet powerful tools and concepts.

Geometry Inner products lead to a powerful geometric view of signals and spaces.
This includes orthogonality between signals (vectors), and best approximation in a
subspace by orthogonal projection.

Bases and frames The fact that (separable) Hilbert spaces have countable bases
leads to natural signal representations using orthonormal bases and biorthogonal
pairs of bases. For a linear operator, a representation with respect to a basis of
eigenvectors is particularly attractive because it is diagonal. Beyond bases are
frames, which are sets of vectors that span a space but are not necessarily linearly
independent. Similarly to bases, they also provide signal representations.

Fourier representations Linear, shift-invariant systems operate on signals using
a convolution operator. In particular, the eigensequence/eigenfunction property of
complex exponentials leads naturally to various forms of the Fourier transform.
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Sampling and interpolation Connections between the discrete and continuous
worlds are made concrete by sampling and interpolation. For digital processing
of a continuous-domain signal, the function is sampled, resulting in a sequence,
manipulated in the discrete domain, and interpolated back into the continuous do-
main; in digital communications, a sequence is interpolated, resulting in a function,
manipulated in the continuous domain, and sampled back into the discrete domain.
Sampling and interpolation together thus bridge the two worlds.

Approximation and compression Continuous-valued signals cannot be perfectly
represented in digital systems, so approximations are necessary. Common approx-
imations are based on parametric families such as polynomials, the truncation of
series expansions, and the quantization of expansion coefficients.

7.6.2 Adapting tools to real-world problems

The basic concepts we have covered form the foundations upon which to build tools
that are not only more advanced but also more practical; these tools need to be
adapted to real-world problems taking into account the following issues.

Finiteness and localization While real-world signals are of finite duration, we use
infinite ones as a convenient mathematical abstraction. Moreover, real-world signals
often contain both smooth parts and sharp discontinuities. Signal analysis that per-
mits localization in both time and frequency can thus aid in finding characteristics
of interest.

Prior knowledge It helps to know what we are looking for: more often than not,
we have some prior information about the signal or event we are interested in. Such
priors on the signal class or the noise will help shape the solution.

Performance bounds There are limits on what can be done: in the linear mea-
surement case, bounds such as the uncertainty principle set limits to how local an
analysis can ever be. In a noisy setting, estimation theory provides lower bounds
on the variance of an unbiased estimator. For compression and communications,
information theory bounds the performance of any possible scheme, by specifying
rate–distortion and capacity regions. Such bounds are useful in at least two funda-
mental ways: they separate what can be done from what is impossible, and they
provide yardsticks against which to compare practical systems.

Computational aspects Whatever the solution, it needs to be computable; for ex-
ample, some constructive solutions providing bounds on performance lead to hope-
lessly complex algorithms. Even seemingly simple tasks such as finding the best
approximation in a frame require exhaustive search and thus become impractical
for real-world problems. Instead, we seek approximate solutions together with per-
formance bounds. Often, the problem is structured and can thus lead to savings in
computation. Some computations can be simplified using the FFT. However, since
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real-world signals can be arbitrarily long, even the N logN cost of the FFT for a
length-N signal is sometimes too great. Furthermore, computations on an entire
signal or very long blocks can require too much memory or create too much delay.
Thus, time localization is necessary from a computational point of view as well.

7.6.3 Music analysis, communications, and compression

To close this book and motivate some of the constructions in the companion volume
[57], we illustrate the importance of locality for a few real-world signals.

Time–frequency analysis of music Ravel’s Boléro is one of the most famous and
popular pieces of Western classical music. It starts with a single flute, whispering the
theme, and ends with the full, 120-instrument orchestra thundering the finale. The
characteristics of the piece evolve dramatically from beginning to end, illustrated
by the 15-minute time-domain display of the acoustical signal in Figure 7.34(a).
While the Fourier transform of that sequence, shown in Figure 7.34(b), exhibits
a number of spectral peaks corresponding to some key harmonic structures, the
signature evolution of the Bolero from the introduction to the grand finale is lost.

To understand the local behavior, we look at two short pieces, at 500 s and
800 s, respectively, each of 0.1 s in duration. Figures 7.34(c) and (e) show the
local behavior in time, while Figures 7.34(d) and (f) show the local behavior in
frequency. Upon comparing the two segments, we can tell that locally in time
the dynamic range has changed, and that locally in frequency, different harmonic
components are present, reflecting the numbers and types of instruments involved.

Another way to study locality is by using a spectrogram of a short time seg-
ment, as shown in Figure 7.35 for a segment of length 10 s starting at 15 s. A
spectrogram computes a DFT on partitions of the sequence, with partitions over-
lapping by a specified offset. With a shorter partition, as in Figure 7.35(a), we can
observe the underlying beat of the piece (time-local events), while with a longer
partition, as in Figure 7.35(b), we see that the time information has been smoothed
out and the frequency information has become clearer. Figure 7.35(c) zooms in
on the lower frequencies in Figure 7.35(b); we can now see the spectral component
of the flute playing as well as the rough underlying beat (see the musical score in
Figure 7.35(d)).

Digital communications Wireless communication systems operate in allotted por-
tions of the electromagnetic spectrum, as illustrated in Figure 7.36(a). The trans-
mitted and received signals are real-valued, so their Fourier spectra have conjugate
symmetry, which implies that the spectra at negative frequencies are completely
determined by the spectra at positive frequencies. This is exploited by shifting in
frequency to the baseband, resulting in complex-valued signals with bandwidth ω0,
as illustrated in Figure 7.36(b). Typically, the communication channel is approxi-
mated as an LSI system with an impulse response h and additive noise w,

y = h ∗ x+ w,
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(a) Full piece (902 s). (b) Magnitude of spectrum of full piece.
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(c) Segment at 500 s (0.1 s). (d) Magnitude of spectrum of (c).
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(e) Segment at 800 s (0.1 s). (f) Magnitude of spectrum of (e).

Figure 7.34 Ravel’s Boléro in the time and frequency domains. The time axes are in
seconds and the frequency axes in kHz. The unusually large dynamic range of the piece is
reflected in (a), and little structure is apparent in the global spectrum in (b). At 500 s, a
single trumpet plays, and the spectrum locally exhibits simple harmonic structure (see (c)
and (d)). At 800 s, many more instruments play; the music is louder and the spectrum is
more complicated (see (e) and (f)).

with baseband-equivalent transmitted signal x and baseband-equivalent received
signal y. The length of the support of h depends on physical characteristics such as
the distances to objects from which there are strong reflections.

From the sampling and interpolation theory in Section 5.4.2, in principle
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Figure 7.35 Time–frequency analysis of Ravel’s Boléro. A segment from 15 s to 25 s is
used. The offset is set to one third of the partition length. The time axes are in seconds
and the frequency axes in kHz.

x ∈ BL[− 1
2ω0,

1
2ω0] can be generated by sinc interpolation of a sequence with a

sampling rate of at most ω0/(2π) symbols per second; for digital communications,
each symbol would be drawn from some finite codebook C ⊂ C. Such a function
x is impractical because it depends noncausally on the sequence of symbols; thus,
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(a) Spectra of communication signals (b) Baseband equivalent.

(showing only positive frequencies).

Figure 7.36 The transmitted and received signals in a wireless communication system are
real-valued signals with spectra concentrated within an allotted band. Shifting to baseband
results in complex-valued signals that are approximately bandlimited to bandwidth ω0.

one would instead use a causal interpolation filter that only approximates an ideal
lowpass filter. An additional complication is that the channel impulse response
h causes intersymbol interference – an overlap of the influences of the individual
symbols in the received signal y. For a fixed h, the number of symbols that inter-
fere increases as the communication rate of ω0/(2π) symbols per second increases.
Therefore, counteracting intersymbol interference can be a significant challenge.

Conceptually, to avoid intersymbol interference, a symbol αk in some finite
codebook Ck ⊂ C could be sent as a component αke

jωkt of x using some frequency
ωk ∈ [− 1

2ω0,
1
2ω0). Since complex exponentials are eigenfunctions of LSI systems,

the received signal y would have a component H(ωk)αke
jωkt, where the scaling

H(ωk) is determined by the frequency response of the channel. Conveniently, can-
celing the effect of the channel can be done independently for different symbols
since the Fourier transform has diagonalized the channel impulse response h. Each
symbol αk can be detected with some level of reliability that depends on the char-
acteristics of the noise w. One problem with this approach – which is shared by the
sinc interpolation discussed above – is that every symbol affects the transmitted
signal for all t ∈ (−∞, ∞), violating causality at the transmitter and implying that
the receiver would have to wait forever to perform optimal detection. Note also
that, in this impractical description, the frequencies {ωk} can be arbitrarily close to
each other; with any finite set of frequencies, the number of symbols communicated
per unit time is zero because the transmitted and received signals have infinite
duration.

Real communication systems have causal transmitters, and it is furthermore
desirable for each symbol to affect the transmitted signal for only a short duration so
that the receiver may detect the transmitted symbols without great delay and with
little intersymbol interference. The model of the channel as LSI is itself accurate
only over short time scales, so it is necessary to handle variations in the channel.
Being able to achieve these aims can be explained in part using time–frequency
tilings.

The use of a sinc-interpolated symbol sequence divides the time–frequency
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Figure 7.37 Wireless communication concepts contrasted using idealized time–frequency
tilings. Among other possible weaknesses, time division leads to high intersymbol inter-
ference and frequency division leads to difficulties with time-varying channels. Practical
systems use division in both time and frequency.

plane finely in time but not at all in frequency, as shown in Figure 7.37(a); being
wider than the time division, the channel impulse response creates high intersymbol
interference. Signaling with complex exponentials divides the time–frequency plane
finely in frequency but not at all in time, as shown in Figure 7.37(b); in addition
to the reasons for impracticality discussed above, the channel cannot be considered
LSI over the symbol duration. Practical approaches – such as orthogonal frequency-
division multiplexing in several current standards – divide in time and frequency, as
shown in Figure 7.37(c). Time division allows the use of a local LSI approximation
h, and when the time increments are similar to the length of the support of h, there
is little if any intersymbol interference. Additionally, dividing the time–frequency
plane enables the use of different codebook sizes for different symbols, depending
on the SNR locally in time and frequency. The tiling in Figure 7.37(c) is achieved
by local Fourier bases, and these bases are important in understanding modern
communication methods in more detail.

Image compression As a final example, consider the compression of images. The
transform coding paradigm introduced in Section 6.5.3 demonstrated that the choice
of a basis can affect the compression performance, for example, in terms of the cod-
ing gain defined in (6.141). The high-resolution analysis used to arrive at the coding
gain gives close approximations to performance when each transform coefficient is
allocated at least 1 bit. In this case, the average number of bits per coefficient might
be much higher, so the coding gain is not necessarily relevant at typical coding rates
for images, which are about 1 bit per pixel. The effect of the choice of a basis can
be even more dramatic at lower rates, where the differences between linear and
nonlinear approximations developed in Section 6.4.1 become significant.

To illustrate two choices of bases, Figure 7.38(b) shows the magnitudes of the
transform coefficients of the image in Figure 7.38(a), sorted in descending order and
on a log scale, for a two-dimensional DCT and a two-dimensional DWT. The DCT
here is a block-by-block transform with blocks of size 8 × 8; the underlying basis
has locality in space and frequency quite similar to the local Fourier bases in Sec-
tion 7.5.2, and it is convenient for image processing because it produces real-valued
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coefficients from a real-valued image. The basis underlying the DWT used here
is similar to the Haar wavelet basis in Section 7.5.2, but the prototype sequence
ϕ is known as the Daubechies length-8 filter. With the DWT, significantly more
of the signal energy is in the first few hundred coefficients; thus, as shown in Fig-
ures 7.38(c) and (d), the 1000-term nonlinear approximation is much more accurate
with the DWT than with the DCT. The effectiveness of the DWT can be explained
through modeling the image as piecewise-smooth; see the companion volume, [57],
and the Further reading.

Improvements in nonlinear approximation translate to improvements in com-
pression, but this can be reduced or even overridden by the cost of specifying which
coefficients are the largest in magnitude. The impact of the basis choice is thus
often smaller in compression. As shown in Figures 7.38(e) and (f), sharp features
are more accurately reproduced with JPEG2000 compression (which uses a DWT)
than with JPEG compression (which uses an 8 × 8 block-by-block DCT); see the
Further reading.
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7.6 Recap and a glimpse forward 665
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(a) Original 384 × 576 image x. (b) Sorted coefficients.

(c) qx1000 with a DCT. (d) qx1000 with a DWT.

(e) JPEG compression (DCT). (f) JPEG2000 compression (DWT).

Figure 7.38 Approximation and compression of Giovanni Pacifici’s Fire Truck image
using a two-dimensional DCT on 8 × 8 blocks and a two-dimensional DWT. In (d), the
nonlinear approximation uses the separable, orthonormal DWT with Daubechies length-8
filters. In (e) and (f), the rate is 0.6 bits per pixel.
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666 Localization and uncertainty

Chapter at a glance

Functions For a function x ∈ L2(R) with Fourier transform X:

energy in time ‖x‖2
∫ ∞

−∞
|x(t)|2 dt

time center µt
1

‖x‖2
∫ ∞

−∞
t |x(t)|2 dt

time spread ∆t

(
1

‖x‖2
∫ ∞

−∞
(t− µt)2 |x(t)|2 dt

)1/2

energy in frequency 2π ‖x‖2
∫ ∞

−∞
|X(ω)|2 dω

frequency center µf
1

2π‖x‖2
∫ ∞

−∞
ω |X(ω)|2 dω

frequency spread ∆f

(
1

2π‖x‖2
∫ ∞

−∞
(ω − µf )2 |X(ω)|2 dω

)1/2

Uncertainty principle: ∆t∆f ≥ 1
2
, with equality achieved by a Gaussian x.

Sequences For a sequence x ∈ ℓ2(Z) with DTFT X:

energy in time ‖x‖2
∑

n∈Z

|xn|2

time center µt
1

‖x‖2
∑

n∈Z

n |xn|2

time spread ∆t



 1

‖x‖2
∑

n∈Z

(n− µt)2 |xn|2



1/2

energy in frequency 2π ‖x‖2
∫ π

−π
|X(ω)|2 dω

frequency center µf
1

2π‖x‖2
∫ π

−π
ω |X(ω)|2 dω

frequency spread ∆f

(
1

2π‖x‖2
∫ π

−π
(ω − µf )2 |X(ω)|2 dω

)1/2

Uncertainty principle: ∆t∆f >
1
2
, provided that X(ejπ) = 0.

Finite-length sequences For a nonzero sequence x ∈ CN with DFT X:

number of nonzero entries of x Nt

number of nonzero entries of X Nω

Uncertainty principle: NtNω ≥ N .

Table 7.5 Uncertainty principles.
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Historical remarks 667

Historical remarks

Uncertainty principles stemming from the Cauchy–Schwarz in-
equality have a long and rich history. The best known one is
Heisenberg’s uncertainty principle in quantum physics, which
was first developed in a 1927 essay [44]. Werner Karl Heisen-
berg (1901–1976) was a German physicist, credited as a founder
of quantummechanics, for which he was awarded the Nobel Prize
in 1932. He had seven children, one of whom, Martin Heisenberg,
was a celebrated geneticist. He collaborated with Bohr, Pauli,
and Dirac, among others. While he was initially attacked by the
Nazi war machine for promoting Einstein’s views, he did head
the Nazi nuclear project during the war. His role in the project

has been a subject of controversy ever since, with differing views on whether he was de-
liberately stalling Hitler’s efforts.

Kennard is credited with the first mathematically exact formula-

tion of the uncertainty principle, and Robertson and Schrödinger

provided generalizations. The uncertainty principle presented

in Theorem 7.4 was proven by Weyl and Pauli and introduced

to signal processing by Dennis Gabor (1900–1979) [31], a

Hungarian–British electrical engineer and inventor, winner of the

1971 Nobel Prize in Physics for the invention of holography. By

finding a lower bound to ∆t∆f , Gabor was intending to define an

information measure or capacity for signals. Shannon’s commu-

nication theory [89] proved more fruitful for this purpose, but Ga-

bor’s proposal of signal analysis by shifted and modulated Gaus-

sian functions has been a cornerstone of time–frequency analysis

ever since. Slepian’s survey [92] is enlightening on these topics.

Further reading

Uncertainty principles Many of the uncertainty principles for discrete-time signals are
considerably more complicated than Theorem 7.8. We have given only a result that follows
papers by Ishii and Furukawa [48] and by Calvez and Vilbé [12]. In [78], Parhizkar,
Barbotin, and Vetterli use a definition of frequency spread that avoids the requirement of
X(ejπ) = 0, and they construct sequences of minimum time spread for a given frequency
spread.

In addition to Theorem 7.9, Donoho and Stark [25] derived several new uncertainty
principles. Particularly influential was the demonstration of the significance of uncertainty
principles for signal recovery (see Exercise 7.9). Moreover, Donoho and Huo [23] introduced
performance guarantees for ℓ1 minimization-based signal recovery algorithms; this has
sparked a large body of work under the name compressed sensing.

Bases with time and frequency localization Localized orthonormal bases corre-
sponding to the short-time Fourier transform have been sought ever since Gabor proposed
a localized Fourier analysis [31]. Unfortunately, a negative result known as the Balian–
Low theorem shows that there are no Fourier-like orthonormal bases with good time and
frequency localization [3, 5, 63]. Further results on time–frequency tilings and on Fourier
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668 Localization and uncertainty

and wavelet constructions can be found in books by Daubechies [19] and by Mallat [66],
and in the companion volume, [57].

Image compression The JPEG image compression standard is named after the stan-

dards committee that developed it from the late 1980s to 1992 – the Joint Photographic

Experts Group. It follows the basic principles for transform coding described in Sec-

tion 6.5.3, with additions that include selecting quantization step sizes that are consistent

with human visual perception and using differential coding for the zero-frequency com-

ponents of neighboring 8 × 8 blocks. The JPEG2000 standard deviates further from the

basic transform coding paradigm so that it can provide a variety of features, including vari-

able resolution and regions of interest. The book edited by Taubman and Marcellin [96]

describes the standard and a range of issues around wavelet-based compression.
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no. 1, pp. 1–67, March 1962.
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C, xvi
C4

interpolation followed by sampling in, 427
interpolation in, 423, 426
sampling followed by interpolation in, 424,

429
sampling in, 422, 425

CN , 18–19, 31, 39, 163–164
1 norm on, 33
2 norm on, 33
basis for, 71
completeness of, 39, 172
equivalence of norms on, 33, 172
inner product on, 24, 170
norm on, 28, 170
p norm on, 33
standard basis for, 71

Cq([a, b]), 346
Cq([a, b]), 32

as subspace
of C[a,b], 32
of L2([a, b]), 32

lack of completeness of, 40
polynomial functions as subspace of, 32

CR, 19
inner product on, 24
norm on, 28

CZ, 19
basis for, 71
inner product on, 24
norm on, 28
standard basis for, 71

λ-tight frame, 104, 161
normalization, 104

ℓ0(Z), 39, 172
ℓ0 norm on, 172

L1(R), 35, 346
L1 norm on, 35
Fourier transform of functions in, 361, 405,

406
ℓ1(Z), 33, 35, 186
ℓ1 norm on, 33
DTFT of sequences in, 218
Fourier series of functions with spectra in,

383
L2(R), xvii, 31–32, 35, 39, 346

L2 norm on, 31, 35
Fourier transform of functions in, 363
interpolation followed by sampling in, 472
interpolation in, 472
orthogonal projection operator in, 58
sampling followed by interpolation in, 475

L2([a, b]), 31
L2 norm on, 31
Cauchy–Schwarz inequality, 31
inner product on, 31

ℓ2(Z), xvii, 31, 33, 39, 185
ℓ2 norm on, 31, 33
convergence of inner product in, 171
DTFT of sequences in, 219
failure to belong to ℓ1(Z), 35
Fourier series of functions with spectra in,

384
interpolation followed by sampling in, 445
interpolation in, 434
sampling followed by interpolation in, 436,

447
sampling in, 432, 443

L∞(R), xvii, 39, 346
L∞ norm on, 35

ℓ∞(Z), xvii, 34, 39, 186
ℓ∞ norm on, 34, 171, 172

Lp(R), xvii, 35, 39
Lp norm on, 35
completeness of, 40

ℓp(Z), xvii, 34, 39
ℓp norm on, 33
LSI system acting on sequence in, 329–330
Minkowski’s inequality, 164
nesting of spaces, 34, 172

N, xvi
ω independence, 160
p norm, 33, 174
Q, xvi

lack of completeness of, 37, 38
R, xvi
R+, xvi
R2, 10–17
p norm on, 174
basis for, 13–17, 169

analysis operator in, 16
Karhunen–Loève, 612
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standard, 13
synthesis operator in, 17

biorthogonal pair of bases for, 14–15
biorthogonality condition in, 14
change of basis in, 14
coordinates in, 13–17
distance in, 11
dual

basis in, 14
frame in, 15
pair of frames in, 107

expansion
coefficient in, 13
with frame in, 15
with orthonormal basis in, 13
with pair of biorthogonal bases in, 14
with tight frame, 15

frame for, 15–17, 103, 169
tight, 16, 104

inner product on, 10–11
Karhunen–Loève basis for, 612
matrix representation of bases and frames

in, 16–17
nonorthogonal vectors

interpolation in, 417–420
sampling in, 417–420

norm on, 10–11
oblique projection in, 12
orthogonal projection in, 12
orthogonality in, 11, 13
orthonormal

basis for, 13
set in, 13

Parseval equality in, 14
projection

oblique in, 12
orthogonal in, 12
theorem in, 11

Riesz basis for, 72
standard basis for, 13
subspace in, 11–12
tight frame for, 16, 104
vector space, 10

R3

best approximation in, 169
matrix representation of bases and frames

in, 170
normal equations in, 99

RN , 18–19, 39
1 norm on, 33
2 norm on, 33
completeness of, 39
diagonalization of basis operator in, 113
equivalence of norms on, 33, 172
inner product on, 24
norm on, 28
p norm on, 33

Z, xvi
Z+, xvi

1-tight frame, 105, 161
1 norm, 33
2 norm, 33

Absolute convergence, 137
Accumulator, 200

difference equation of, 203
Additive identity property

vector space axiom, 18
Additive white Gaussian noise, 288, 397
Additivity property

operator axiom, 40
Adjoint operator, 43, 43–47, 58, 173, 174

generalization of Hermitian transpose, 43
matrix representation of, 118
of convolution

for functions on real line, 406
for infinite sequences, 210–211

of downsampling, 270
of downsampling preceded by filtering, 275
of DTFT, 227
of Fourier transform, 371
of local averaging operator, 45
of polynomial matrix, 322
of sampling and interpolation, 505
of upsampling, 270
of upsampling followed by filtering, 275
polyphase representation of, 282
properties of, 46

Adjugate, 142
Advance operator, 198
Affine

function, 63, 176
subspace, 20, 21

Algebra, 318–324
fundamental theorem of, 318
linear, 141, 324
polynomials, 318–324

Algebraic
basis, 159
theory of signal processing, 328

Aliasing, 267
of functions, 460–462

complex exponentials, 461
sinusoids, 461

of sequences, 440–441
All Is Vanity, 618
Allpass filter

as orthonormal basis, 232
continuous-time, 373
discrete-time, 231, 251
energy conservation for, 231
orthogonality of impulse response

to all shifts, 231
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Cambridge University Press (ISBN 110703860X) v1.1 [May 2014] [free version] Comments to book-errata@FourierAndWavelets.org



Index 683

Parseval equality for, 231
Anticausal filter, 208
Antiderivative, 362
Antidiagonal matrix, 150
Approximation, 4–6, 82, 98–100, 508–576,

658
by polynomials, 513–537
by sampling followed by interpolation, 500
by series truncation, 560–576, 598
by splines, 510–511, 537–560, 597
Chebyshev equioscillation theorem, 525
de la Vallée-Poussin alternation theorem,

525
error of, 513

Lagrange interpolation, 519, 522, 597
Taylor series, 521, 597

filter design as, 529–537
least-squares, 530–532
minimax, 532–534
weighted minimax, 533–537

Hermite, 522–523, 608
Lagrange, 509–510, 517–520, 597, 601–602,

608
error of, 519, 522, 597

least-squares, 50, 175, 384, 508, 514–517,
597

in R2, 418
linear, 5, 510–511, 560–565, 598, 611, 612

of AR-1 process, 570
with Fourier basis, 5, 510–511
with Haar basis, 6

minimax, 523–529, 597
near-minimax, 527–529, 597, 609
nonlinear, 6, 511–512, 560–565, 598, 611,

612
operator, 611
with Haar basis, 6, 511–512

of functions, 510–511, 513–560
by polynomials, 513–537
by series truncation, 560–576, 598
by splines, 510–511, 537–560

of sequences
by series truncation, 560–576, 598

performance of, 612
piecewise-constant, 504
power of, 417
Taylor series, 509, 520–522, 597, 608

error of, 521, 597
to ideal filters, 464–467
Weierstrass theorem, 524
with Bernstein polynomials, 608, 609
with Chebyshev polynomials, 528
with Fourier basis, 5, 510–511
with Haar basis, 6, 511–512
with Legendre polynomials, 515
with local Fourier basis, 647, 652
with wavelet basis, 649, 655

Argument
of complex number, 313
of function, 136

Arithmetic
fixed-point, 123
floating-point, 123–126

Arithmetic–geometric sequence
DTFT pair, 222
z-transform pair, 243

Associativity property
failure of, 208
of convolution

for functions on real line, 356, 404, 405
for infinite sequences, 207

vector space axiom, 18
Asymptotic notation, xvi, 121

Ω(·), xvi, 121
O(·), big O, xvi, 121
o(·), little o, xvi, 121
Θ(·), xvi, 121

Atkinson, Kendall E., 599
Autocorrelation of function

deterministic, 350–351
relation to convolution, 356

Fourier transform pair, 369
of white noise, 397
stochastic, 395, 399

Autocorrelation of sequence
deterministic, 190, 327, 336, 338

relation to convolution, 207
DTFT pair, 224
of polyphase components, 279
of white noise, 288
rational, 245
stochastic, 286, 292, 341
z-transform pair, 245

Autocorrelation of vector sequence
deterministic, 191–192
DTFT pair, 225
z-transform pair, 246

Autoregressive process, 291
first-order, 291, 293, 296

linear approximation of, 570
MA, 290

Averaging operator
continuous-time, 354

local, 45
discrete-time, 201

B-splines, 541–545, 597, 610
orthogonalizing, 610
uncertainty principle for, 669

Balakrishnan, A. Venkataraman, 499
Balian, Roger, 668
Banach space, 38
Band matrix, 150
Bandlimited
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continuous-time stochastic process, 470, 505
finite-dimensional vector, 504
function, 452

aliasing of, 460–462
interpolation for, 452–470
projection to subspace, 453–454
sampling followed by interpolation for,

455–456
sampling for, 452–470
subspace of, 452

periodic function, 481
interpolation for, 481–489
projection to subspace, 483–486
sampling followed by interpolation for,

486–489
sampling for, 481–489
subspace of, 481

sequence, 437
aliasing of, 440–441
interpolation for, 437–442
oversampling of, 441
projection to subspace, 438
sampling followed by interpolation for,

440–442
sampling for, 437–442
subspace of, 437

Bandpass
filter

continuous-time, 374
discrete-time, 228

sampling, 460, 505
Bandwidth

of finite-dimensional vector, 504
of function, 452
of periodic function, 481
of sequence, 437

Barbotin, Yann, 667
Base spectrum, 441
Basis, xvii, 70, 69–119, 159–160, 162

algebraic, 159
analysis operator, 75

in R2, 16
best approximation with, 82
change in R2, 14
completeness of, 70
decomposition with, 97
diagonalization of operator in RN , 113
dual, 161, 175
existence of, 657
for CN , 71
for CZ, 71
for R2, 13–17
Gram matrix for, 108
Haar, 3–5

for functions, 647–650
for sequences, 654–656

Hamel, 159

local Fourier, 645–656
for functions, 645–647
for sequences, 651–653

nonorthogonal, 74
nonunit norm, 74
orthogonal decomposition with, 82
orthonormal, 76
Riesz, 72, 69–76, 174
Schauder, 160
standard, xvii

for R2, 13
successive approximation, 82
synthesis operator, 75

in R2, 17
unconditional, 70, 160, 162
wavelet, 645–656

for functions, 647–650
for sequences, 654–656

Battle–Lemarié
scaling function, 610
wavelet, 610

Bayes’ rule, 151
Bayesian estimation, 156, 179
Belyaev, Yuri K., 499
Bernstein polynomials, 608, 609
Bertsekas, Dimitri P., 162
Bessel’s inequality, 82
Best approximation, 50–51

by ramps, 436
by sampling followed by interpolation, 500
in R3, 169
in splines spaces, 548
piecewise-constant, 500, 504
projection theorem, 54
pseudoinverse operator, 60
with

basis, 82
pair of biorthogonal bases, 98–100

Bézout identity, 319
Biased estimation, 157
Bijective function, 136
Biorthogonal pair of bases, 86, 86–101, 161

change of, 111
finite-dimensional, 87
for R2, 14–15
matrix representation of operators with,

116
of cosine functions, 87, 175
series truncation with, 611
successive approximation with, 175

Biorthogonality condition, 87
in R2, 14

Bit allocation, 587–588, 613
Blahut, Richard E., 328
Block

average filter, 202
transform, 652
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Blu, Thierry, 498
Bounded operator, 41
Bounded-input bounded-output stable sys-

tem
discrete-time, 208, 250

Bounded-input, bounded-output stable sys-
tem

continuous-time, 353, 357, 406
discrete-time, 198

Box
function, 349, 402

centered and normalized, 349
Fourier series pair, 386
Fourier transform pair, 361, 366, 372
frequency center and spread, 622
relation to sinc function, 349
spectral decay, 376
time center and spread, 621
unit-width, 376

sequence, 188, 402
centered and normalized, 188
DFT pair, 256
DTFT pair, 222, 229
frequency center and spread, 631, 671
right-sided, 188
time center and spread, 629
uncertainty principle, 636

Bracewell, Ronald N., 403
Brémaud, Pierre, 403

Calvez, Léon Claude, 667
Canonical dual

frame, 108, 176
spline, 544, 610

Cardinal spline, 547
Carleson, Lennart, 403
Cauchy sequence of vectors, 38, 173
Cauchy–Schwarz inequality, 29, 31, 139

proof of, 171
Causal

elementary B-splines, 542, 610
filter, 208
system

continuous-time, 353
discrete-time, 197

Central limit theorem, 155
Centroid decoding, 612
Change

of basis
biorthogonal pair, 111
in R2, 14

of orthonormal basis, 109
by rotation in R2, 110
to standard in ℓ2(Z), 111

Characteristic polynomial, 145
Chebira, Amina, 162
Chebyshev

equioscillation theorem, 525
polynomial approximation with, 528
polynomials, 527, 602–603

Chebyshev, Pafnuty L., 598, 674
Cheney, Ward, 499
Christensen, Ole, 162
Circulant matrix, 150, 332–333

as circular convolution operator, 215
block, 338
diagonalization of, 150, 332–333

Circular
shift in frequency

DFT pair, 257
DTFT pair, 223

shift in time
DFT pair, 255
Fourier series pair, 385

time reversal
DFT pair, 257

Circular autocorrelation
of function

Fourier series pair, 388
of sequence

DFT pair, 257
of vector sequence

DFT pair, 258
Circular convolution for functions, xviii, 359,

358–359
definition, 359
diagonalization of, 394
eigenfunctions of, xviii, 381
Fourier series pair, 387, 409
operator, 359

Circular convolution for sequences, xviii, 213,
211–216

as polynomial product, 337
circulant matrix as operator for, 215
cost of computing, 307
definition, 213
DFT pair, 257
diagonalization of, 259
eigensequences of, xviii, 252, 325
equivalence with linear, 213
in frequency

DFT pair, 257
DTFT pair, 224, 337

matrix representation of, 214–216
operator, 213, 325

Circular crosscorrelation
of function

Fourier series pair, 388
of sequence

DFT pair, 258
Circular extension, 183

for functions, 358
for sequences, 211

Classical estimation, 157
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oracle scaling, 573–575
Closed

set, 135
subspace, 37

Closure of set, 135
Code

fixed-rate lossless, 577
Shannon–Fano–Elias, 578

Codebook optimization, 593
Coding

gain, 590
Huffman, 591–592
lossless, 576
lossy, 576
nearest-neighbor, 612
source, 576
transform, 584–591

Codomain of function, 136
Coefficient

expansion, 70, 161
in R2, 13

Fourier, 70, 381
generalized, 70

Haar wavelet
continuous, 648
discrete, 654

local Fourier
continuous, 645
discrete, 651

subband, 70
transform, 70, 161
wavelet

continuous, 648
discrete, 654

Cofactor, 141
Column

space, 142, 144
vector, 141

Commutativity property
of convolution

for functions on real line, 356
for infinite sequences, 207

of upsampling and downsampling, 271, 340
vector space axiom, 18

Completeness, 35, 38, 37–40
lack of, 164–165, 172
of CN , 39, 172
of Cq([a, b]), 40
of Lp(R), 40
of RN , 39
of basis, 70, 172
of Fourier series, 408
of Hilbert space, 35, 37–40

Complex
analysis, 313–314
exponential function, 354

aliasing, 461

Fourier transform pair, 365
exponential sequence, 193, 329
number(s), 313

argument of, 313
complex conjugate of, 313
Euler’s formula, 313
imaginary part of, 313
magnitude of, 313
modulus of, 313
phase of, 313
polar form of, 313
real part of, 313

Complexity, 120
Composition of functions, 136
Compression, 511, 576–591, 658

image, 663–664
JPEG, 664, 668
JPEG2000, 664, 668
lossless, 577–579
lossy, 576

Computational aspects, 119–134, 303–312, 489–
495, 591–596, 658

Condition number
of Hermitian matrix, 127
of normal matrix, 127

Conditional
convergence, 137
expectation, 153
PDF, 153
probability, 151

Conditioning of matrix, 126–128
Consistent operator, 427, 445, 472, 497
Constant

function
Fourier transform pair, 365
piecewise, 413, 504

sequence, 199
DFT pair, 256
DTFT pair, 220, 222

Continuity of inner product, 170
Continuous random variable, 152
Continuous-time signal processing, 343–403

using discrete-time operators, 462
modulation, 505

Continuous-time stochastic process, 395–397
autocorrelation of, 395
bandlimited, 470, 505
crosscorrelation of, 395
filtering, 400
Fourier transform, 399–400
Gaussian, 397
mean of, 395
power spectral density, 399
sampling for, 470
standard deviation of, 395
stationary, 396
variance of, 395
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white noise, 397, 400
WSS, 396

Continuous-time system, 351–359
adjoint of convolution, 358
averaging operator, 354
BIBO-stable, 353, 406
causal, 353
circular convolution, 359, 358–359
convolution for functions on real line, 356,

356–359
differential equations, 355
impulse response of, 355
integrator, 354
linear, 352
LSI, 353, 355–359
maximum operator, 354
memoryless, 352
modulator, 354
properties of, 352–354
shift, 353
shift-invariant, 353
stable, 353
stochastic, 397–399

Convergence, 36–37, 136–137
absolute, 137
conditional, 137
in normed vector space, 36–37
mean-square, 219
of convolution sum, 316
of DTFT, 218–221
of Fourier series, 383–385
of Fourier transform, 360–365
of inner product in ℓ2(Z), 171
of sequence

of functions, 137
of numbers, 136–137, 177
of vectors, 36

of series, 137
of z-transform, 235–240
pointwise, 137
tests, 177
uniform, 137

Convex set, 20
projection onto, 491–495

Convolution
adjoint of, 406
circular

for finite-length sequences, 213
for periodic functions, 359

of derivative and primitive, 407
of PDFs, 406
of PMFs, 340

Convolution for functions on real line, xviii,
356, 356–358

adjoint of, 358
associativity, 356, 404, 405
commutativity, 356

connection to inner product, 356
deterministic autocorrelation, 356
differentiation, 369
eigenfunctions of, xviii, 359
Fourier transform pair, 368
in frequency

Fourier series pair, 388
Fourier transform pair, 369

operator, 356
properties of, 356–357
smoothing effect of, 357
via discrete-time processing, 462
with circularly extended signal, 358–359

Convolution for infinite sequences, xviii, 206,
205–211

adjoint of, 210–211
associativity, 207
commutativity, 207
computation of using

overlap–add algorithm, 310
overlap–save algorithm, 311, 341

connection to inner product, 207
convergence of sum, 316
cost of computing, 307–311
deterministic autocorrelation, 207
DTFT pair, 224
eigensequences of, xviii, 216, 234, 325
failure of the associative property, 208
matrix representation of, 209
operator, 206, 325
properties of, 207–208
with circularly extended signal, 211–213
z-transform pair, 242

Convolution theorem
for finite-length sequences, 257
for functions on real line, 368
for infinite sequences, 224, 242
for periodic functions, 387

Conway, John H., 600
Cooley, James W., 328
Cooley–Tukey FFT, 306, 328
Coordinates in R2, 13–17
Correlation

coefficient, 32, 153
of function

deterministic, 350–351
stochastic, 395

of sequence
deterministic, 189–192
stochastic, 286

Cosine
function

biorthogonal pair of bases of, 87, 175
frame of, 102, 175
orthonormal basis of, 76

sequence
DTFT pair, 221
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Cost of computing, 120–123
circular convolution, 307
complex multiplication, 176
convolution, 307–311, 338
downsampling preceded by filtering, 311
FFT, 303–307
Gaussian elimination, 131
linear convolution, 307–311, 338
matrix multiplication, 122, 167–168
multirate operations, 282, 311–312
polynomial evaluation, 120
solution of system of linear equations, 134
upsampling followed by filtering, 312
Walsh–Hadamard transform, 335

Coulot, Lionel, 498
Courant, Richard, 162
Covariance, 153

matrix, 154
Cover, Thomas M., 599
Cramer’s formula, 142
Crochiere, Ronald E., 328
Cross spectral density, 400
Crosscorrelation

of function
deterministic, 351
Fourier transform pair, 371
stochastic, 395

of sequence
deterministic, 190–191, 327, 336
DTFT pair, 225
stochastic, 286, 341
z-transform pair, 246

Cumulative distribution function, 152

Daubechies, Ingrid, 162, 664
Davis, Philip J., 599
DCT, 328, 587, 664
de la Vallée-Poussin alternation theorem, 525
Decay

of function, 407
spectral

of Fourier series, 393, 409
of Fourier transform, 374–379

Decoding
centroid, 612

Decomposition, 2, 50–51, 60, 60–63, 82, 161
polyphase, 278
with basis, 97

Decorrelation, 288
Definite linear operator, 50

eigenvalue of, 173
Degenerate Gaussian PDF, 154
Delay operator, 198
Dense span, 160
Derivative

discrete, 556
Descartes, René, 1

Determinant, 141
Cramer’s formula, 142

Deterministic
autocorrelation

of function, 350–351, 356, 369
of sequence, 190, 207, 224, 245, 279,

327, 336, 338
of vector sequence, 191–192, 225, 246

correlation
of function, 350–351
of sequence, 189–192

crosscorrelation
of function, 351, 371
of sequence, 190–191, 225, 246, 327, 336

DFT, 659
Diagonalization

of basis operator in RN , 113
of circular convolution operator, 259
of matrix, 146

circulant, 150
Difference equations, 202, 315–316

homogeneous solution to, 315
impulse response from, 205
initial conditions to, 205
linear, 202

constant-coefficient, 202
LSI, 336

solution to, 206
of accumulator, 203
particular solution to, 315
transfer function, 249
with finite number of coefficients, 249

Differential entropy, 584
Differential equations, 355

homogeneous solution to, 355
initial conditions to, 355
linear, 355

constant-coefficient, 355
particular solution to, 355

Differentiation
convolution of derivative and primitive, 407
in z
z-transform pair, 241

in frequency
DTFT pair, 223
Fourier transform pair, 367

in time
Fourier series pair, 385
Fourier transform pair, 367

of convolution for functions on real line,
369

Digital communications, 411, 659–663
Dimension of vector space, 22
Dirac

comb, 390, 392
Fourier series pair, 386, 390, 505
Fourier transform pair, 366, 409
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weighted, 415, 456
delta function, xvi, 316, 404

derivative of, 406
Fourier transform pair, 365, 366, 372
properties of, 318
relation to Heaviside function, 349

Direct sum, 60, 60–63
decomposition, 61
failure of, 61

Dirichlet kernel, 482–483
properties, 503–504
properties of, 503

Discrete
derivative, 556
frequency, 253, 381
integral, 559
spline

uncertainty principle for, 672
Discrete cosine transform, 328, 587, 664
Discrete Fourier transform, xix, 253, 256,

252–264, 325, 401
analysis

of infinite sequences, 260–264
with orthonormal basis, 254

circular convolution
in frequency, 257
in time, 257

circular deterministic autocorrelation, 257
of vector sequence, 258

circular shift
in frequency, 257
in time, 255

definition, 252–255
deterministic crosscorrelation, 258
diagonalization

of circulant matrix, 150, 332–333
of circular convolution operator, 259

FFT, 303
frequency, 253
frequency response, xviii, 253, 259–264
inverse, 253
linearity, 255
matrix representation of, 254
modulation, 257
operator, 253, 255

Vandermonde matrix, 254
Parseval equality for, 258
properties of, 255–258, 338
relation to DTFT, 255
spectrum, 253
time reversal, 257

Discrete-time Fourier transform, xix, 217, 222,
216–233, 325, 401

adjoint of, 227
angular frequency, 217
circular convolution in frequency, 224, 337
convergence of, 218–221

convolution in time, 224
definition, 216–218
deterministic

autocorrelation, 224
autocorrelation of vector sequence, 225
crosscorrelation, 225

differentiation, 223
downsampling

by 2, 267
by N , 268
preceded by filtering, 272

downsampling followed by upsampling
by 2, 270
by N , 271

duality with Fourier series, 382, 412
existence of, 218–221
failure of convergence, 220
for stochastic processes, 292–294
frequency, 199, 217
frequency response, xviii, 217, 227–233
Gibbs phenomenon, 219
inverse, 217
linearity, 221
mean-square convergence of, 219
modulation, 223
moments, 223
of sequences

constant, 220
cosine, 221
in ℓ1(Z), 218
in ℓ2(Z), 219
sinc, 219

Parseval equality for, 226, 231
properties of, 221–227
relation to DFT, 255
sampling of, 504
scaling in time, 223
shift

in frequency, 223
in time, 221

spectrum, 217
time reversal, 223
upsampling

by 2, 269
by N , 270
followed by filtering, 274

Discrete-time operator
for continuous-time signal processing, 462

modulation, 505
Discrete-time signal processing, 325, 181–328
Discrete-time stochastic process, 285–288

ARMA, 290
autocorrelation of, 286, 341
crosscorrelation of, 286, 341
downsampling, 297

preceded by filtering, 299
DTFT, 292–294
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filtering, 294, 298
Gaussian, 288
i.i.d., 286
mean of, 286
MMSE estimation, 300–303
multirate system, 294–303
orthogonal, 300
power spectral density, 292
rational sampling rate change, 300
standard deviation of, 286
stationary, 287
upsampling, 298

followed by filtering, 299
variance of, 286
white noise, 288, 294
Wiener filtering, 300, 334
WSCS, 294
WSS, 287

Discrete-time system, 195–216
accumulator, 200, 203
adjoint of convolution, 210–211
advance, 198
averaging operator, 201
BIBO-stable, 198, 250
causal, 197
circular convolution, 213, 211–216
convolution, 211–213

for infinite sequences, 206, 205–211
difference equations, 202–205, 249
equivalence of circular and linear convolu-

tions, 213
impulse response of, 205
Laplacian, 336
linear, 195
LPSV, 265, 340
LSI, 197, 205–211
matrix representation

of circular convolution, 214–216
of convolution, 209

maximum operator, 202
memoryless, 196
modulator, 199
multirate, 264–285
periodically shift-varying, 266
properties of, 195–202
shift, 198
shift-invariant, 197
stable, 197
stochastic, 288–292

Discrete wavelet transform, 587, 655, 664
Distance, 30

in R2, 11
not induced by norm, 171

Distortion, 580
Distributivity property

inner product axiom, 23
vector space axiom, 18

Divergent sequence, 136
Domain of function, 136
Dominated convergence theorem, 139
Donoho, David L., 599, 667
Doubly infinite series, 137
Downsampling, 265–268, 339, 628, 630, 632,

634
and upsampling, 270–271, 340

and filtering, 275, 272–278
by 2, 265, 265
by N , 268, 339, 504
commutativity with upsampling, 271, 340
DTFT pair, 223, 267, 268, 339
followed by upsampling, 270
matrix representation of, 266
of discrete-time stochastic process, 297
operator, 266
preceded by filtering, 272

cost of computing, 311
of discrete-time stochastic process, 299

preceded by upsampling, 270
z-transform pair, 241, 267, 268, 339

Dragotti, Pier Luigi, 498
Draščić, Biserka, 499
Dual

basis, 86, 92–96, 118, 161, 175
in R2, 14

expansion coefficients, 96
frame, 108, 161, 176

in R2, 15
pair of frames, 107, 107–109, 161

in R2, 107
properties of, 176

spline, 544, 610
canonical, 544, 610

Dudgeon, Dan E., 328
DWT, 587, 655, 664
Dyadic

Haar basis
for functions, 648
for sequences, 654

tiling
for functions, 640
for sequences, 644

Eigenfunction, xviii, 49
of circular convolution for functions, 381
of convolution for functions on real line,

359
Eigenpair

of matrix, 145
of operator, 49

Eigensequence, xviii, 49
of circular convolution for sequences, 252,

325
of convolution for infinite sequences, 216,

234, 325
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Eigenvalue
and operator norm, 173
of linear operator, 173
of matrix, 145, 178
of operator, 49, 179
of positive definite matrix, 149
of self-adjoint operator, 49
real, 49

Eigenvector, xviii
of matrix, 145, 178
of operator, 49
of self-adjoint operator, 49
orthogonal, 49

Elementary B-spline, 541–542, 610
orthogonalizing, 610

Elias, Peter, 599
Energy, 225, 293, 370, 400

conservation, 226
spectral density, 225, 293, 370, 400

Entropy
bound on optimal code length, 579
constrained quantization, 582
differential, 584
joint, 612

Equivalence of norms, 172
Error

loss of significance, 125
of approximation, 513

by Lagrange interpolation, 519, 522, 597
by Taylor series, 521, 597

of estimation, 157
system, 532
weighted, 533

Essential
infimum, 135
lower bound, 135
supremum, 135
upper bound, 135

Estimation, 155–159
Bayesian, 179
classical, 157

oracle scaling, 573–575
error of, 157
from quantized frame expansion, 594–595
hard threshold, 576
linear, 63–66, 68

diagonal, 571–576
LMMSE, 63, 64, 179
MAP, 156
minimum-variance unbiased, 158
ML, 158
MMSE, 63–69, 156, 158, 300–303
MSE of, 157
nonlinear

diagonal, 571–576
of random vectors, 67–69
optimal, 63, 66–69

oracle, 575
performance of, 612
(un)biased, 157

Euclid, 162, 673
Elements, 29, 162

Euclidean
geometry, 162
norm, 28
space, 10, 18
square norm, 33

Euler’s formula, 313
Even function, 174
Event, 151
Existence

of DTFT, 218–221
of Fourier series, 383–385
of Fourier transform, 360–365
of z-transform, 235–240

Expansion, 161
coefficient, 70, 161

in R2, 13
matrix representation in R2, 17
of operators, 173
Taylor, 509, 520–522, 597, 608

error of, 521, 597
with frame in R2, 15
with orthonormal basis, 76–79

in R2, 13
with pair of biorthogonal bases, 88–90

in R2, 14
with tight frame in R2, 15

Expectation, 152–153
Exponential function

Fourier transform pair, 366
Extension, 577

Fano, Robert M., 599
Fast algorithms, 328
Fast Fourier transform algorithm, 303–307

computing
circular convolution, 307
cost of, 303–307
linear convolution, 307–311, 338

Cooley–Tukey, 306, 328
Good–Thomas, 306
Rader’s, 306
radix-2, 304
split-radix, 307
Winograd, 307

FFT, 658
Fibonacci filter, 331, 332
Filter

allpass
continuous-time, 373
discrete-time, 231, 232, 251

anticausal, 208
block average, 202
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causal, 208
Daubechies, 664
design, 599
Fibonacci, 331, 332
FIR, 208, 229, 251
half-band

design, 531, 533
ideal

approximation to, 464–467
continuous-time, 373
discrete-time, 228, 229

ideal bandpass
continuous-time, 374
discrete-time, 228

ideal half-band, 229
continuous-time, 402
discrete-time, 229
DTFT pair, 219

ideal highpass
continuous-time, 374
discrete-time, 228

ideal lowpass
continuous-time, 373
discrete-time, 228, 229

ideal Nth-band
discrete-time, 229

ideal third-band, 337
IIR, 208
linear-phase, 230, 251

continuous-time, 373
design, 529–537
discrete-time, 227
generalized, 227

lowpass design, 535
moving-average

continuous-time, 354
discrete-time, 184, 201, 229

orthogonal, 278
orthogonality of impulse response

to all shifts, 337
to even shifts, 277

passband
continuous-time, 373
discrete-time, 228

post, 433, 444, 450, 471, 479
pre, 430, 442, 449, 471, 478
stopband

continuous-time, 373
discrete-time, 228

transition band, 442
two-sided, 208
zero-phase

continuous-time, 373
design, 529–537
discrete-time, 227

Filtering
as projection, 330

followed by downsampling, 272
cost of computing, 311
of discrete-time stochastic process, 299

interchange of multirate operations, 340
interchange of multirate operations and,

275
of discrete-time stochastic process, 298
preceded by upsampling, 273

cost of computing, 312
of discrete-time stochastic process, 299

to remove uncorrelated additive noise, 302
Wiener, 300, 334

Finite
geometric series, 178
impulse response filter, 208, 229, 251

Finite-dimensional
biorthogonal pair of bases, 87
nonorthogonal vectors

interpolation followed by sampling for,
427

interpolation for, 426
sampling followed by interpolation for,

427–429
sampling for, 425–426

orthonormal basis, 76
orthonormal vectors

interpolation followed by sampling for,
423

interpolation for, 422–423
sampling followed by interpolation for,

423–424
sampling for, 421–422

space, 18
vectors

bandlimited, 504
full-band, 504
interpolation for, 420–429
sampling for, 420–429

Finite-length sequence, 183, 192–193
recovery, 672
uncertainty principle for, 637, 672

Fix, George, 599
Fixed-point arithmetic, 123
Fixed-rate

lossless code, 577
quantization, 582

Fleischer, P. E., 599
Floating-point arithmetic, 123–126
Folding frequency, 457
Folland, Gerald B., 403
Fourier coefficient, 70, 381

generalized, 70
Fourier representations, 48, 401, 657

for finite-length sequences, 253
for functions on real line, 360
for infinite sequences, 217
for periodic functions, 381
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Fourier series, xix, 2–3, 5, 381, 386, 380–394,
401

as orthonormal basis expansion, 383
circular convolution in time, 387, 409
circular deterministic

autocorrelation, 388
crosscorrelation, 388

completeness of, 408
convergence of, 383–385
convolution in frequency, 388
definition, 381–382
diagonalization of circular convolution op-

erator, 394
differentiation in time, 385
Dirac comb, 390, 505
duality with DTFT, 382
existence of, 383–385
frequency, 381

fundamental, 381
frequency response, xviii, 394
Gibbs phenomenon, 5
integration, 387

real, 408
inversion

in L2, 384
least-squares approximation, 384
linearity, 385
modulation, 385
norm conservation, 384
of functions with spectra

in ℓ1(Z), 383
in ℓ2(Z), 384

Parseval equality for, 384
Poisson sum formula, 392, 409
properties of, 385–394
real, 408

integration, 408
regularity of, 393, 409
relation to Fourier transform, 382, 406
sawtooth wave, 386, 409
shift

in frequency, 385
in time, 385

spectral decay of, 393, 409
spectrum, 381
square wave, 386, 388
time reversal, 385
triangle wave, 386, 389, 409

Fourier transform, xix, 360, 366, 359–380,
401

Cq regularity, 375
adjoint of, 371
angular frequency, 359
box function, 372
convergence of, 360–365
convolution

in frequency, 369

in time, 368
definition, 359–360
deterministic

autocorrelation, 369
crosscorrelation, 371

differentiation
in frequency, 367
in time, 367

Dirac
comb, 409
delta function, 372

existence of, 360–365
for stochastic processes, 399–400
frequency, 359
frequency response, xviii, 360, 373–374
integration, 368
inverse, 360
inversion, 364
linearity, 365
Lipschitz regularity, 378, 408
modulation, 365
moments, 368
no existence, 364
of functions

in L1(R), 361, 405, 406
in L2(R), 363

of periodic functions, 391
Parseval equality for, 371
properties of, 365–372
regularity of, 374–379
relation to Fourier series, 382, 406
scaling

in frequency, 367
in time, 367

shift
in frequency, 365
in time, 365

spectral decay of, 374–379, 407
spectrum, 360
time reversal, 367

Fourier, J. B. Joseph, 2, 403, 673
Frame, 101, 101–109, 161, 162, 175

1-tight, 105
analysis operator, 103
bounds, 101
canonical dual, 108, 176
dual, 176

pair of, 107
estimation from quantized, 594–595
for R2, 15–17, 103
Gram matrix for, 108
inverse

relationship for operators, 106
synthesis and analysis, 108

oblique projection with, 108
of cosine functions, 102, 175
Parseval tight, 106
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redundancy of, 106
synthesis operator, 103
tight, 104
versus Riesz basis, 101

Frequency, 199, 217, 359
angular, 217, 359
center and spread

for box function, 622
for box sequence, 631, 671
for functions, 622, 666, 670
for Gaussian function, 622
for sequences, 630, 666, 672
for sinc function, 622
for sinc sequence, 631

discrete, 253, 381
division, 663
folding, 457
fundamental, 381
localization, 616

for functions, 622–623
for sequences, 630–633

Nyquist, 457
one-sided center and spread

for functions, 623
for sequences, 632

response, xviii
DFT of filter, 259
DTFT of filter, 227
Fourier series of filter, 394
Fourier transform of filter, 373
inverse, 227, 259, 373, 394
magnitude response, 227, 259, 373, 394
phase response, 227, 259, 373, 394

sampling, 457
Frobenius norm, 147
Fubini’s theorem, 138
Full-band

finite-dimensional vector, 504
function, 452
periodic function, 481
sequence, 437

Full-rank matrix, 161
Function, 135–137, 345–351

affine, 63, 176
antiderivative of, 362
argument of, 136
bandlimited, 452

aliasing of, 460–462
interpolation for, 452–470
sampling followed by interpolation for,

455–456
sampling for, 452–470
subspace of, 452

bandlimited periodic
interpolation for, 481–489
sampling for, 481–489

bandwidth of, 452

bijective, 136
box, 349, 402

centered and normalized, 349
Fourier transform pair, 361, 372
frequency center and spread, 622
relation to sinc function, 349
time center and spread, 621

circular extension, 358
codomain of, 136
complex

uncertainty principle for, 671
complex exponential

aliasing, 461
Fourier transform pair, 365

composition of, 136
continuous, 346
cosine, 76, 87, 102, 175
decay of, 407
Dirac comb, 390, 392, 505

weighted, 415, 456
Dirac delta, xvi, 316, 404

derivative of, 406
Fourier transform pair, 365, 372
relation to Heaviside function, 349

domain of, 136
even, 174
frequency center and spread, 622, 666, 670
full-band, 452
Gaussian, 350

as PDF, 350
Fourier transform pair, 372, 407
frequency center and spread, 622
time center and spread, 621

generalized, 317
Heaviside, 348, 380

Fourier transform pair, 372
Laplace transform pair, 380
relation to Dirac delta function, 349

image of, 136
improper, 317
indicator, xvi, 413
infinite bandwidth, 452
injective, 136
interpolation for, 447–477
inverse, 136
Lebesgue

integrable, 24
measurable, 24

Lipschitz
pointwise, 378
uniformly, 378

localization for, 619–627
in frequency, 622–623
in time, 620–621

modified
frequency center and spread, 627, 671
time center and spread, 627, 671
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nonorthogonal
interpolation followed by sampling for,

472–473
interpolation for, 471–472
sampling followed by interpolation for,

474–477
sampling for, 471

odd, 174
on finite interval, 345
on real line, 345, 345–351
one-sided frequency center and spread, 623
orthonormal

interpolation followed by sampling for,
451

interpolation for, 414, 450–451, 501
sampling followed by interpolation for,

415, 451–452
sampling for, 414, 449–450, 501

orthonormal periodic
interpolation followed by sampling for,

480
interpolation for, 479–480
sampling followed by interpolation for,

480–481
sampling for, 478–479, 505

periodic, 351
bandlimited, 481
bandlimited subspace of, 481
bandwidth of, 481
full-band, 481
interpolation for, 477–489
sampling for, 477–489
sampling theorem for, 489
shift-invariant subspace of, 478, 505

piecewise
constant, 413, 504
linear, 346

primitive of, 362
projection to bandlimited subspace of, 453–

454
periodic, 483–486

range of, 136
rational, 319
recovery for, 415
regularity of, 374–379
Riemann integrable, 24
sampling for, 447–477
sampling theorem for, 457, 456–460
shift-invariant subspace of, 449
sinc, 186, 402

Fourier transform pair, 363, 372
frequency center and spread, 622
relation to box function, 349
time center and spread, 621

sinc squared
Fourier transform pair, 458
Nyquist sampling, 458

undersampling of, 459
sinusoidal, 461
surjective, 136
time center and spread, 621, 666, 670
triangle

Fourier transform pair, 362
in frequency, 458, 459, 506
periodic, 94

uncertainty principle for, 624–627
complex, 671

unit-step, 348
Fundamental

frequency, 381
theorem of algebra, 318

Furukawa, Keiichi, 667

Gabor, Dennis, 667, 674
Gallager, Robert G., 403
Gauss, Carl F., 328
Gaussian

continuous-time stochastic process, 397
degenerate PDF, 154
discrete-time stochastic process, 288
distribution, 154
elimination, 129–131, 176

cost of computing, 131
function, 350

as PDF, 350
Fourier transform pair, 366, 372, 407
frequency center and spread, 622
time center and spread, 621

PDF, 154
random

variable, 154–155
vector, 154–155, 179

General frame, 107
Generalized

function, 317
Parseval equality, 77

for DTFT, 227
for Fourier transform, 407

Generator of shift-invariant subspace
of L2(R), 449
of L2([− 1

2
T, 1

2
T )), 478

of ℓ2(Z), 430
Geometric

sequence, 186
DFT pair, 256
DTFT pair, 222
properties of, 336
ROC of left-sided, 237, 337
ROC of right-sided, 236, 337
z-transform pair, 243

series, 178
Geometric view of signals and spaces, 657
Gerchberg, R. W., 499
Gersho, Allen, 599
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Gibbs phenomenon
for DTFT, 219
for Fourier series, 5
sawtooth wave, 409

Gibbs, Josiah W., 5, 403, 673
Gilbert, Alan. C

All Is Vanity, 618
Givens rotations, 162
Gohberg, Israel, 162
Goldberg, Seymour, 162
Goldstein, Allen A., 499
Good–Thomas FFT, 306
Goyal, Vivek K, 185, 232, 600, 668
Gram matrix, 90

for basis, 108
for frame, 108
for Riesz basis, 98

Gram–Schmidt orthogonalization, 84–86
of Legendre polynomials, 86

Grant, Edward, 1
Gray, Robert M., 599
Grimmett, Geoffrey R., 162

Haar
basis, 3–5

for functions, 647–650
for sequences, 654–656

scaling
function, 3, 649
sequence, 655

wavelet
continuous-time, 3, 648
discrete-time, 654

Haar, Alfred, 3
Half-band filter

DTFT pair, 219
impulse response of, 229
least-squares design, 531
minimax design, 533

Hamel basis, 159
Hamming, Richard W., 24
Heaviside

function, 348
Fourier transform pair, 372
Laplace transform pair, 380
pointwise multiplication by, 349
relation to Dirac delta function, 349

sequence, 187
pointwise multiplication by, 188

Heil, Christopher E., 162
Heisenberg box

for functions, 624
uncertainty principle, 625

for sequences, 633
uncertainty principle, 634

Heisenberg, Werner K., 667, 674
Hermite interpolation, 522–523, 608

Hermitian
matrix, 127, 148, 191

condition number of, 127
operator, 43
symmetry property

inner product axiom, 23
of autocorrelation, 190

transpose, 43, 141, 277
Highpass filter

continuous-time, 374
discrete-time, 228

Hilbert space, xvi–xvii, 38, 35–50, 79–80
isometry of, 79

Hilbert, David, 162, 673
Hölder

conjugates, 139
exponent, 378
inequality, 139

Householder building blocks, 162
Huffman coding, 591–592
Huo, Xiaoming, 667

Ideal filter
approximation to, 464–467
bandpass

continuous-time, 374
discrete-time, 228

continuous-time, 373
discrete-time, 228, 229
half-band

discrete-time, 229
highpass

continuous-time, 374
discrete-time, 228

impulse response of, 228
lowpass

continuous-time, 373
discrete-time, 228, 229

magnitude response of, 228
Nth-band

discrete-time, 229
third-band, 337

Ideally matched operator, 428, 446, 474, 497,
504

Idempotency property, 51
Idempotent operator, 55
Identity matrix, 141
Image of function, 136
Images, 663–664
Imaginary part of complex number, 313
Improper function, 317
Improper rotation matrix, 148
Impulse response

and periodized version, 212
from difference equation, 205
of continuous-time system, 355
of discrete-time system, 205
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orthogonality of
to all shifts, 337
to even shifts, 277

Inconsistent
operator, 500

Independent
events, 151
random variables, 153

Indicator
function, xvi, 56, 413

via pointwise multiplication by Heavi-
side function, 349

sequence, 56
via pointwise multiplication by Heavi-

side sequence, 188
Inequality, 139–140

Bessel’s, 82
Cauchy–Schwarz, 29, 31, 139, 171
Hölder’s, 139
integral, 140
Jensen’s, 612
Minkowski’s, 139, 164
triangle, 27, 171

Infimum, 135
Infinite

bandwidth function, 452
impulse response filter, 208
length sequence, 183, 185–192

Injective function, 136
Inner product, xvii, 23, 23–30

computation, 76–79, 88–91
in spline spaces, 611

conjugate linearity in second argument prop-
erty, 23

continuity of, 170
convergence in ℓ2(Z), 171
distributivity property, 23
Hermitian symmetry property, 23
linearity in first argument property, 23
on CN , 24, 170
on CR, 24
on CZ, 24
on L2([a, b]), 31
on R2, 10–11
on RN , 24
on random

variables, 32
vectors, 179

positive definiteness property, 23
preservation of, 48
relation to convolution

for functions on real line, 356
for infinite sequences, 207

Inner product space, 27, 30–32
of complex-valued

finite-dimensional vectors, 31

of continuous functions with q continuous
derivatives, 32

of polynomials, 172
of random variables, 32
of square-integrable functions, 31
of square-summable sequences, 31

Integral
discrete, 559
inequalities, 140

Integration
by parts, 140
Fourier series pair, 387

real, 408
Fourier transform pair, 368

Integrator, 354
Interchange

of multirate operations and filtering, 275,
340

of summation and integration, 138
theorems, 138–139

Interior point, 135
Interpolation, 658

for finite-dimensional vectors, 420–429
in C4, 423, 426
in R2, 417–420
nonorthogonal, 426, 497
operator, 421, 422, 425, 426
orthonormal, 422–423, 496

for functions, 447–477
adjoint operator of, 505
bandlimited, 452–470
error of Lagrange, 519
error of Lagrange interpolation, 522, 597
Hermite, 522–523, 608
in L2(R), 472
Lagrange, 509–510, 517–520, 597, 601–

602, 608
nonorthogonal, 471–472, 497
operator, 414, 449, 450, 471
orthonormal, 414, 450–451, 496, 501
oversampled, 502–503

for periodic functions, 477–489
bandlimited, 481–489
nonorthogonal, 497
operator, 478, 479
orthonormal, 479–480, 496

for sequences, 429–447
bandlimited, 437–442
in ℓ2(Z), 434
nonorthogonal, 444, 497
operator, 430, 433, 442, 444
orthonormal, 433–434, 496

node, 509
operator

consistent with sampling operator, 427,
445, 472, 497

Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal

Cambridge University Press (ISBN 110703860X) v1.1 [May 2014] [free version] Comments to book-errata@FourierAndWavelets.org



698 Index

for finite-dimensional vectors, 421, 422,
425, 426

for functions, 414, 449, 450, 471
for periodic functions, 478, 479
for sequences, 430, 433, 442, 444
ideally matched with sampling opera-

tor, 428, 446, 474, 497, 504
inconsistent with sampling operator, 500
range of, 501

Interpolation followed by sampling
for finite-dimensional vectors

in C4, 427
nonorthogonal, 427, 497
orthonormal, 423, 497

for functions
in L2(R), 472
nonorthogonal, 472–473, 497
orthonormal, 451, 497

for periodic functions
nonorthogonal, 497
orthonormal, 480, 497

for sequences
in ℓ2(Z), 445
nonorthogonal, 444–446, 497
orthonormal, 415, 434, 497

operator
for finite-dimensional vectors, 423, 427
for functions, 451, 472
for periodic functions, 480
for sequences, 415, 434, 444

Intersymbol interference, 662
Inverse

DFT, 253
DTFT, 217
Fourier transform, 360
function, 136
matrix, 141
operator, 41, 58, 174
synthesis and analysis, 91–92

Inversion
of Fourier series, 384
of Fourier transform, 364

Ishii, Rokuya, 667
Isometry of separable Hilbert space, 79–80
Iterative projection, 596

Jensen’s inequality, 612
Jerri, Abdul J., 498
Johnstone, Iain M., 599
Joint

CDF, 153
entropy, 612
PDF, 153

Jointly
distributed random variables, 153–154
Gaussian

PDF, 154

random vector, 179
Jones, M. C., 499
JPEG, 664, 668
JPEG2000, 664, 668

Karhunen–Loève
basis for R2, 612
transform, 567, 605–607

optimality of, 591
Kaczmarz’s algorithm, 132, 177
Kailath, Thomas, 162
Kamilov, Ulugbek, 600
Kernel

Dirichlet, 482, 503–504
matrix, 142, 144
operator, 40

Knot, 537
Kolmogorov, Andrey N., 403
Konsbruck, Richard, 499
Kotelnikov, Vladimir A., 457, 498
Kovačević, Jelena, 162, 185, 232, 328, 668
Kronecker

delta sequence, xvi, 13, 186, 636
DFT pair, 256
DTFT pair, 222
periodic, 192
z-transform pair, 243

product, 324, 334, 335

Lagrange
interpolating polynomial, 518, 608
interpolation, 509–510, 517–520, 597, 601–

602, 608
error of, 519, 522, 597

Laplace transform, 379, 380, 379–380
of Heaviside function, 380
ROC of, 379

Laplacian operator, 336
Least-squares, 143–144

approximation, 50, 384, 508, 514–517, 597
filter design as, 530–532
in R2, 418

solution, 144, 179
Lebesgue

integrable function, 24
measurable function, 24

Left
inverse, 41, 141
null space, 142
singular vector, 146

Legendre polynomials, 86, 166, 515–516, 607
Likelihood, 156, 157
Lindberg, David C., 1
Linear

approximation, 5, 510–511, 560–565, 598,
611, 612

comparison with nonlinear, 562–563
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of AR-1 process, 570
of random vector, 566–573
of square wave, 564
of stochastic process, 566–571, 573
of triangle wave, 564, 612

diagonal estimation, 571–576
difference equations, 202

constant-coefficient, 202
LSI, 336

differential equations, 355
constant-coefficient, 355

estimation, 63–66, 68
MMSE, 63, 64

independence, 160, 170
operator, 40
programming, 595–596

Linear algebra, 10, 141–151, 162
definitions, 141–147
Kronecker product, 324
special matrices, 147–151

Linear shift-invariant system, 197, 353
acting on sequences in ℓp(Z), 329–330
anticausal filter, 208
BIBO stability, 406

continuous-time, 357
discrete-time, 208

causal filter, 208
circular convolution, 213, 359

for functions, 358–359
for sequences, 211–216

continuous-time, 353, 355–359
convolution

for functions on real line, 356–358
for infinite sequences, 205–211
with circularly extended signal, 211–213,

358–359
difference equations, 206
discrete-time, 197, 205–211
equivalence of circular and linear convolu-

tions, 213
filter, 208, 357
FIR filter, 208
IIR filter, 208
impulse response of

continuous-time, 355
discrete-time, 205

operator norm of, 603–604
stability

continuous-time, 357
discrete-time, 208–209

two-sided filter, 208
Linear system

continuous-time, 352
discrete-time, 195
periodically shift-varying, 265, 340

Linear-phase filter
antisymmetric, 230

continuous-time, 373
discrete-time, 227, 230, 251
symmetric, 230

Linearity property
DFT, 255
DTFT, 221
Fourier series, 385
Fourier transform, 365
inner product axiom, 23
z-transform, 241

Linearly independent set, 21
Lipschitz

exponent, 378
regularity, 378, 408

pointwise, 378
uniform, 378

Lloyd, Stuart P., 499, 599
Local Fourier

basis, 645–656
approximation with, 647, 652
for functions, 645–647
for sequences, 651–653

time–frequency localization
for functions, 647
for sequences, 653

Localization, 658
for functions, 619–627

in frequency, 622–623
in time, 620–621

for sequences, 627–637
in frequency, 630–633
in time, 629–630

for structured sets
of functions, 638–640
of sequences, 640–644

Loss of significance error, 125
Lossless

code, 577
entropy bound on optimal code length,

579
fixed-rate, 577
length, 577
optimal, 577
prefix, 577
uniquely decodable, 577

coding, 576
compression, 577–579

Lossy
coding, 576

distortion, 580
rate, 580

encoder, 581
Low, Francis E., 668
Lower bound, 135
Lowpass filter

continuous-time, 373
discrete-time, 228, 229
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weighted minimax design, 535
LU decomposition, 131
Luenberger, David G., 162

MacLaurin series, 178
expansions, 178

Magnitude
of complex number, 313
response

DFT, 259
DTFT, 227
Fourier series, 394
Fourier transform, 373
of allpass filter, 231

Mallat, Stéphane, 403, 599
Manhattan norm, 33
Mantissa, 123
Marcellin, Michael W., 668
Marginal

CDF, 153
PDF, 153

Marks, Robert J., 498
Marziliano, Pina, 498
Matrix, 141–151

adjoint of polynomial, 322
adjugate, 142
antidiagonal, 150
band, 150
block circulant, 338
characteristic polynomial of, 145
circulant, 150, 215, 332–333
cofactor, 141
column space of, 142, 144
condition number of, 127
covariance, 154
determinant of, 141
DFT, 254
diagonalization of, 146
eigenpair of, 145
eigenvalue of, 145, 178
eigenvector of, 145, 178
Frobenius norm of, 147
Gram, 90
Hermitian, 127, 148, 191
identity, 141
improper rotation, 148
inverse, 141
kernel of, 142–143, 144
Kronecker product of, 324
Laurent unimodular polynomial, 322
left inverse, 141
lossless, 324
minor, 141
multiplication, 169

cost of computing, 122, 167–168, 176
norm, 147
normal, 127, 149

null space of, 142–143, 144
of Laurent polynomials, 322
of polynomials, 321–324
of ratios of polynomials, 322
operations, 141
orthogonal, 148, 169
paraunitary, 323
polynomial, 321
positive definite, 149
power of, 179
pseudocirculant polynomial, 324
pseudoinverse, 144
range of, 142–143
rank of, 144
rectangular, 141
right inverse, 141
rotation, 148
rotoinversion, 148
row space of, 144
self-adjoint, 148
short, 141
singular, 141

value of, 146
vector of, 146

sparse, 131–134
spectral

decomposition of, 145
theorem, 145

square, 141
SVD of, 146
symmetric, 149, 191
tall, 141
Toeplitz, 150, 197, 341
trace of, 146
transpose, 141
unimodular polynomial, 321
unit antidiagonal, 150
unitary, 147
Vandermonde, 150–151, 254
Walsh–Hadamard, 334, 335

Matrix representation
of accumulator, 200
of adjoint, 118
of advance operator, 199
of averaging, 201–202
of bases and frames

in R2, 16–17
in R3, 170

of basic systems, 203
of BIBO-stable system, 198
of causal system, 197
of circular convolution for sequences, 214–

216
of convolution for infinite sequences, 209
of delay, 198
of DFT, 254
of linear system, 196
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of LSI system, 197
of memoryless system, 196
of modulator, 199
of operator, 109–119

with biorthogonal pair of bases, 116
with orthonormal basis, 112

of running average, 200
of shift, 198

Max, Joel, 599
Maximum a posteriori probability, 156

estimation, 156
Maximum likelihood, 158

estimation, 158
Maximum operator

continuous-time, 354
discrete-time, 202

McClellan, James H., 599
Mean, 152

of continuous-time stochastic process, 395
of discrete-time stochastic process, 286
of white noise, 288, 397

Mean-squared error, 63
of estimation, 157

Measure, 317
Memoryless system

continuous-time, 352
discrete-time, 196

Mersereau, Russell M., 328
Minimal set, 160
Minimax approximation, 597

design
criterion, 532
filter, 532–534

near, 527–529, 609
Minimum mean-squared error

estimation, 63–69, 156, 158
of discrete-time stochastic process, 300–

303
Minimum-phase solution to spectral factor-

ization, 247
Minimum relative perturbation, 127
Minimum-variance unbiased estimation, 158
Minkowski’s inequality, 139, 164
Minkowski, Hermann, 162
Minor, 141
Modified

frequency center and spread
for functions, 627, 671

time center and spread
for functions, 627, 671

Modulation, 199, 620–622, 625, 627, 629, 631,
633, 638, 641

continuous-time, 354
using discrete-time operators, 505

DFT pair, 257
discrete-time, 199
DTFT pair, 223

Fourier series pair, 385
Fourier transform pair, 365

Modulus of complex number, 313
Moment, 152–153

DTFT pair, 223
Fourier transform pair, 368
z-transform pair, 241

Moura, José M. F., 328
Moving-average

filter
continuous-time, 354
discrete-time, 184, 201, 229

process, 290, 293, 297
Multichannel sampling, 467–470, 505
Multidimensional signal processing, 328
Multiplicative identity property

vector space axiom, 18
Multirate processing, 264–285, 326, 328, 504

commutativity of upsampling and down-
sampling, 271, 340

cost of computing
downsampling preceded by filtering, 311
upsampling followed by filtering, 312

downsampling, 265–268, 339
and upsampling, 270–271, 340
by 2, 265, 265
by N , 268, 339
followed by upsampling, 270
of discrete-time stochastic process, 297
preceded by filtering, 272, 312
preceded by filtering of discrete-time stochas-

tic process, 299
upsampling and filtering, 275, 272–278

filtering of discrete-time stochastic process,
298

identities, 340
interchange of multirate operations and

filtering, 275, 340
operations, 265–285
orthogonality of filter’s impulse response

to even shifts, 277
polyphase representation, 278–285

of downsampling preceded by filtering
with period 2, 283

of filtering with period 2, 280
of filtering with period N , 284
of sequences with period 2, 278
of sequences with period N , 284
of upsampling followed by filtering with

period 2, 282
rational sampling rate change of discrete-

time stochastic process, 300
system, 264–285

with stochastic input, 294–303
upsampling

by 2, 265, 268
by N , 270
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Cambridge University Press (ISBN 110703860X) v1.1 [May 2014] [free version] Comments to book-errata@FourierAndWavelets.org



702 Index

followed by downsampling, 270
followed by filtering, 273
followed by filtering of discrete-time stochas-

tic process, 299
of discrete-time stochastic process, 298

with different sampling rates, 339
Multiset, 107
Multivariate normal PDF, 154
Music, 659

Near-minimax approximation, 527–529, 597,
609

with Chebyshev polynomials, 527
Nearest-neighbor coding, 612
Negative (semi)definite linear operator, 50
Neuhoff, David L., 599
Newton, Isaac, 1
Node, 509
Noise

AWGN, 288, 397
uncorrelated additive, 302
white, 288, 397
whitening, 288

Nonlinear
approximation, 6, 511–512, 560–565, 598,

611, 612
comparison with linear, 562–563
of square wave, 564
of triangle wave, 564, 612
operator, 611

diagonal estimation, 571–576
operator, 202, 354
projection, 576

Nonnegative/positive (semi)definite linear op-
erator, 50

Nonorthogonal
finite-dimensional vector

interpolation followed by sampling for,
427

interpolation for, 426
interpolation in R2, 417–420
recovery for, 428
sampling followed by interpolation for,

427–429
sampling for, 425–426
sampling in R2, 417–420

function
interpolation followed by sampling for,

472–473
interpolation for, 471–472
recovery for, 474
sampling followed by interpolation for,

474–477
sampling for, 471

sequence
interpolation followed by sampling for,

444–446

interpolation for, 444
recovery for, 446
sampling followed by interpolation for,

446–447
sampling for, 442–444

Nonsingular matrix, 161
Nonuniform sampling, 468
Norm, 27, 27–30, 161
ℓ1, 33
ℓp, 33
L1, 35
L2, 35
ℓ2, 33
L∞, 35
ℓ∞, 34, 171, 172
Lp, 35
p, 33
1, 33
2, 33
convergence in, 36
equivalence of, 33, 172
Euclidean, 28
Frobenius, 147
induced by inner product, 28–30, 171
Manhattan, 33
matrix, 147
on CN , 28, 170
on CR, 28
on CZ, 28
on L1(R), 35
on ℓ1(Z), 33
on L2(R), 31, 35
on L2([a, b]), 31
on ℓ2(Z), 31, 33
on Lp(R), 35
on ℓp(Z), 33
on C([0, 1]), 170
on R2, 10–11
on RN , 28
on random variables, 32
operator, 173
positive definiteness property, 27
positive scalability property, 27
preservation, 174
quasi, 172
taxicab, 33
triangle inequality property, 27

Normal
distribution, 154
equations, 98, 98–100, 144

in R3, 99
matrix, 127, 149
PDF, 154
rank, 321

Normalization property
of Dirac delta function, 318
of Kronecker delta sequence, 187
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Normed vector space, xvii, 30, 33–35
of absolutely integrable functions, 35
of absolutely summable sequences, 33
of bounded

functions, 35
sequences, 34

of complex-valued
finite-dimensional vectors, 33

of functions with finite Lp norm, 35
of real-valued finite-dimensional vectors,

33
of sequences with finite ℓp norm, 33

Null space
of matrix, 142–143, 144
of operator, 40

sampling, 501
Nyquist

frequency, 457
rate, 457
sampling, 458

Nyquist, Harry, 457, 498

Oblique projection, 96–97, 175
in R2, 12
onto one-dimensional subspace, 62
operator, 55
with frame, 108
with pair of biorthogonal bases, 96–97

Odd function, 174
One-sided

frequency center and spread
for functions, 623
for sequences, 632

Open set, 135
Operator, 40–51, 136, 161

additivity property of, 40
adjoint, 43, 43–47, 173

of DTFT, 227
of Fourier transform, 371

advance, 198
averaging, 115, 201, 354
basis analysis, 75

in R2, 16
basis synthesis, 75

in R2, 17
bounded, 41
circular convolution

for functions, 359
for sequences, 213

consistent, 427, 428, 445, 472, 497
continuous-time in spline spaces, 554–560
convolution

for functions on real line, 356
for infinite sequences, 206

definite linear, 50
delay, 198
derivative, 117

DFT, 253
eigenpair of, 49
eigenvalue of, 49, 173, 179
eigenvector of, 49
expansion, 173
frame

analysis, 103
synthesis, 103

Hermitian, 43
ideally matched, 428, 446, 474, 497, 504
idempotent, 55
inconsistent, 500
interpolation

for finite-dimensional vectors, 421, 422,
425, 426

for functions, 414, 449, 450, 471
for periodic functions, 478, 479
for sequences, 430, 433, 442, 444

inverse, 41, 58, 174
invertible, 48
Laplacian, 336
matrix representation of, 40, 109–119

with biorthogonal pair of bases, 116
with orthonormal basis, 112

maximum, 202, 354
nonlinear, 202, 354

approximation, 611
nonnegative (semi)definite linear, 50
nonpositive (semi)definite linear, 50
norm, 41, 147, 173, 179

of LSI system, 603–604
null space of, 40

sampling, 501
oblique projection, 55
orthogonal projection, 55, 108

in R2, 11
orthonormal basis

analysis, 80
synthesis, 80

projection, 55, 54–60, 174
oblique, 55
orthogonal, 11, 55, 108

pseudoinverse, 59–60
range of, 40

interpolation, 501
restriction, 56, 188, 349
sampling followed by interpolation

for finite-dimensional vectors, 423, 427
for functions, 415, 451, 472, 474
for periodic functions, 480
for sequences, 415, 434, 435, 444, 446

scalability property of, 40
self-adjoint, 43, 55
shift, 198, 353
singular value of, 179
smoothing, 333
unbounded, 41
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unitary, 48, 47–48, 253
Oppenheim, Alan V., 328
Optimal

estimation, 63, 66–69
frame bounds, 101
quantization, 582–583
stability constants, 72

Oracle
estimation, 575
projection, 575, 612
scaling, 573–575, 612

Orthogonal
complement, 25
decomposition, 50–51, 60

with basis, 82
filter, 278
matrix, 148, 169
polynomials, 517, 607

root of, 607
weight function, 517

random vectors, 69, 67–69
set(s), 25
vectors, 25

Orthogonal projection, 50–51, 59, 165–166
in R2, 11, 12
in coefficient space, 175
onto subspace, 81

one-dimensional, 56
operator, 55, 57, 108

in R2, 11
on L2(R), 58

projection theorem, 51–54
via truncation, 609
with orthonormal basis, 80–82

Orthogonality, 25, 25–27, 67–69, 301
condition, 76
in R2, 11, 13
of discrete-time stochastic process, 300
of filter’s impulse response

to all shifts, 231, 337
to even shifts, 277

Orthonormal
finite-dimensional vector

interpolation followed by sampling for,
423

interpolation for, 422–423
recovery for, 423
sampling followed by interpolation for,

423–424
sampling for, 421–422

function
interpolation followed by sampling for,

451
interpolation for, 414, 450–451, 501
recovery for, 452
sampling followed by interpolation for,

415, 451–452

sampling for, 414, 449–450, 501
periodic function

interpolation followed by sampling for,
480

interpolation for, 479–480
recovery for, 480
sampling followed by interpolation for,

480–481
sampling for, 478–479, 505

sequence
interpolation followed by sampling for,

415, 434
interpolation for, 433–434
recovery for, 435
sampling followed by interpolation for,

435–436, 504
sampling for, 430–433

set
in R2, 13
normal equations, 99

Orthonormal basis, 76, 76–86, 160–161
allpass filter, 232
analysis operator, 80
change of, 109

by rotation in R2, 110
to standard in ℓ2(Z), 111

DFT, 254
expansion, 77
finite-dimensional, 76
for R2, 13
for shift-invariant subspaces, 504
Fourier series, 3, 383
Haar, 4
least-squares approximation with, 175
matrix representation of operators with,

112
of cosine functions, 76
orthogonal projection with, 80–82
shift-invariant, 232
synthesis operator, 80
uniqueness of expansion, 76

Outcome, 151
Overflow, 123
Overlap

add algorithm, 310
save algorithm, 311, 341

Oversampling, 441
interpolation, 502–503
interpolation of, 502

Pacifici, Giovanni
Fire Truck, 664

Pair of biorthogonal bases, 86
Papoulis, Athanasios, 162, 403, 498
Papoulis–Gerchberg algorithm, 491–495
Parallelogram law, 29

proof of, 171
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Parhizkar, Reza, 667
Parks, Thomas W., 599
Parseval equality, 48, 77

for biorthogonal pair of bases, 89
for DFT, 258
for DTFT, 226, 231
for Fourier series, 384
for Fourier transform, 371, 407
for tight frames, 106
generalized, 77, 227, 407
in R2, 14

Parseval tight frame, 106
Partial sum, 137
Partition

cells, 581, 613
of unity, 550
optimization, 593

Passband
continuous-time, 373
discrete-time, 228

Pattern recognition, 338
Periodic function, 351

bandlimited, 481
sampling followed by interpolation for,

486–489
subspace of, 481, 483–486

bandwidth of, 481
Fourier series of sinc, 386
Fourier transform, 391
full-band, 481
interpolation for, 477–489
regularity of, 393, 409
sampling for, 477–489
sampling theorem for, 489
shift-invariant subspace of, 478, 505
sinc, 386

Periodic nonuniform sampling, 468
Periodic sequence, 183, 184, 192–193

complex exponential, 193
DFT of sinc, 256
Kronecker delta, 192
sinc, 256

Periodically shift-varying system
with deterministic input, 266
with stochastic input, 294

Phase
of complex number, 313
response

DFT, 259
DTFT, 227
Fourier series, 394
Fourier transform, 373

Picket-fence function, 390
Piecewise

constant
approximation, 500, 504
function, 413, 504

linear
function, 346

polynomials, 537
Pivot, 130
Pixel, 193
Pointwise

convergence, 137
Lipschitz function, 378
multiplication by Heaviside

function, 349
sequence, 188

Poisson sum formula, 392, 409
Polar form of complex number, 313
Polynomial(s), 318, 318–320

adjoint of vector or matrix, 322
approximation by, 513–537
B-spline

representation with, 549–551
reproduction with, 549

Bernstein, 608, 609
Bézout identity for, 319
Chebyshev, 527, 528, 602–603
constant sequence, 320
coprime, 319
cost of evaluation, 120
degree of, 318
discrete, 320
function, 318
inner product

computation with bases, 91
space of, 172

irreducible, 319
Lagrange, 518, 608
Laurent, 319

unimodular matrix, 322
vectors and matrices of, 322

Legendre, 86, 166, 515–516, 607
linear sequence, 320
lossless matrix, 324
matrix, 321

adjoint of, 322
lossless, 324
of Laurent, 322
paraunitary, 323
pseudocirculant, 324
rank, 321
unimodular, 321

minimax approximation by, 523–529
orthogonal, 517, 607

root of, 607
weight function, 517

paraunitary matrix, 323
piecewise, 537
pseudocirculant matrix, 324
quadratic, 319
quadratic sequence, 320
ratio of, 319
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vectors and matrices of, 322
rational function, 319
representing with B-splines, 549–551
reproduction with B-splines, 549, 552
root of, 318
sequence, 320
unimodular matrix, 321
vector, 321

space of, 19
Polyphase representation, 278–285

component
zero, 340

components, 278
decomposition, 278
deterministic autocorrelation

with period 2, 279
of downsampling preceded by filtering

with period 2, 283
of filtering

with period 2, 280
with period N , 284

of sequences
with period 2, 278
with period N , 284

of upsampling followed by filtering
with period 2, 282

polyphase matrix, 280
Porat, Boaz, 328, 403, 499
Positive

(semi)definite linear operator, 50
scalability property

norm axiom, 27
Positive definite

linear operator, 50
matrix, 149
operator, 49–50

Positive definiteness property
inner product axiom, 23
norm axiom, 27

Posterior distribution, 156
Postfilter, 433, 444, 450, 471, 479
Powell, Alex M., 600
Power, 225, 293, 370, 400

complementarity, 277
of approximation, 417
of matrix, 179
output, 294, 400
series, 178
spectral density, 225, 292–294, 370, 399,

400
and filtering, 294, 400
of white noise, 294, 400

Prandoni, Paolo, 328
Pre-Hilbert space, 27
Precision, 123–126

of computing average, 125
Prefilter, 430, 442, 449, 471, 478

Prefix code, 577
Primitive, 362

convolution with derivative, 407
Prior distribution, 156
Probability, 10, 151–159, 162

estimation, 155–159
law, 151
model, 151
standard distributions, 154–155

Probability density function, 152, 153
conditional, 153
convolution of, 406
Gaussian, 154

degenerate, 154
jointly, 154

marginal, 153
multivariate normal, 154
normal, 154
uniform, 154

Probability mass function, 340
convolution of, 340

Projection, 50–54
filtering as, 330
in R2, 11–12
onto convex sets, 491–495

inpainting, 492–493
Papoulis–Gerchberg algorithm, 491–495

onto subspace, 58
operator, 55, 54–60, 174
oracle, 612
orthogonal, 609
to bandlimited subspace

of functions, 453–454
of periodic functions, 483–486
of sequences, 438

via domain restriction, 55, 173
via truncation, 609

Projection theorem, 51, 51–54, 162
best approximation, 54
existence, 51
idempotency, 51
in R2, 11
linearity, 51
orthogonality, 51
self-adjointness, 51
uniqueness, 51

Proper subspace, 21
Pseudocirculant polynomial matrix, 324, 328
Pseudoinverse

matrix, 144
operator, 59–60

Püschel, Markus, 328
Pythagoras, 29
Pythagorean theorem, 29, 83

in R2, 14

Quadrature mirror formula, 277
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Quantization
design, 593

codebook optimization, 593
partition optimization, 593

entropy-constrained, 582
estimation, 594–596
fixed-rate, 582
high-resolution analysis, 583–584
optimization, 613
scalar, 579–584

general, 581–582
optimal, 582–583
uniform, 580–581

variable-rate, 582
Quasinorm, 172

Raabe, Herbert P., 457, 498
Rabiner, Lawrence R., 328
Rader’s FFT, 306
Radix-2 FFT, 304
Rainbow

geometric explanation of, 1
spectral explanation of, 1

Raised cosine window, 189
Ramp sequence, 436
Random variable, 152–155

CDF, 152
conditional

expectation, 153
PDF, 153

continuous, 152, 406
correlation coefficient of, 153
covariance of, 153
discrete, 340
entropy of, 579
expectation of, 152–153
Gaussian, 154–155
independent, 153
joint

CDF, 153
PDF, 153

jointly distributed, 153–154
marginal

CDF, 153
PDF, 153

mean of, 152
moment of, 152–153
MSE, 63
PDF, 152
scalar, 67
space of, 32
standard, 154
sum of, 340, 406
uniform, 154
variance of, 152, 152–153

Random vector, 67
covariance matrix, 154

estimation of, 67–69
Gaussian, 154–155
inner product on, 179
linear approximation of, 566–573
orthogonal, 69, 67–69

Rangan, Sundeep, 600
Range

of function, 136
of matrix, 142, 142–143
of operator, 40

interpolation, 501
Rank, 144

full, 161
normal, 321

Rate, 580
Nyquist, 457

Rational
autocorrelation of sequence, 245
function, 319
transfer function, 237

Ravel, Maurice
Boléro, 659

Real
Fourier series, 408
part of complex number, 313
plane, 10–17

Real analysis, 135–140
convergence, 136–137

of convolution sum, 316
definitions, 135–136
difference equations, 315–316
inequalities, 139–140
integration by parts, 140
interchange theorems, 138–139

Reconstruction, 161
Recovery

for functions, 415
for sequences, 415

finite-length, 672
with nonorthogonal

functions, 474
sequences, 446
vectors, 428

with orthonormal
functions, 452
periodic functions, 480
sequences, 435
vectors, 423

Rectangular
matrix, 141, 161
window, 188

Redundancy, 161
Region of convergence, 337

of z-transform, 235
of geometric sequence

left-sided, 237, 337
right-sided, 236, 337
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of Laplace transform, 379
of shift sequence, 236, 337

Regularity
Cq, 375
Lipschitz, 378, 408
of functions, 374–379
of periodic functions, 393, 409

Remez, Evgeny Y., 599
Representation, 161
Reproduction

codebook, 581
decoder, 581

Resolution, 618
Restriction

operator, 56
property of Kronecker delta sequence, 187

Riemann
integrable function, 24
series theorem, 137

Riesz
basis, 72, 69–76, 162, 174

for R2, 72
condition for unconditional convergence

of series, 25
failure of condition, 74, 174
invertibility of Gram matrix, 98
normal equations, 98
versus frame, 101

sequence, 101
Right

inverse, 41, 141
singular vector, 146

Root of unity of order N , xvi, 314
orthogonality of, 314

Rotation matrix, 148
Rotoinversion matrix, 148
Row

space, 142, 144
vector, 141

Sample space, 151
Sampling, 658

bandpass, 460, 505
DTFT of finite-length sequence, 504
for continuous-time stochastic processes,

470
for finite-dimensional vectors, 420–429

in C4, 422, 425
in R2, 417–420
nonorthogonal, 425–426, 497
orthonormal, 421–422, 496

for functions, 447–477, 504
adjoint operator of, 505
and derivative, 469
bandlimited, 452–470
nonorthogonal, 471, 497
orthonormal, 414, 449–450, 496, 501

for periodic functions, 477–489
bandlimited, 481–489
nonorthogonal, 497
orthonormal, 478–479, 496

for sequences, 429–447
bandlimited, 437–442
in ℓ2(Z), 432, 443
nonorthogonal, 442–444, 497
orthonormal, 430–433, 496

frequency, 457
function, 504
in movies, 505
multichannel, 467–470, 505
Nyquist, 458
operator

consistent with interpolation operator,
427, 445, 472, 497

ideally matched with interpolation op-
erator, 428, 446, 474, 497, 504

inconsistent with interpolation opera-
tor, 500

null space of, 501
periodic nonuniform, 468
property of

Dirac delta function, 318
Kronecker delta sequence, 187

sinc squared, 458
triangle wave, 485

Sampling followed by interpolation
for finite-dimensional vectors

in C4, 424, 429
nonorthogonal, 427–429, 497
operator, 423, 427
orthonormal, 423–424, 497

for functions
aliasing, 460–462
bandlimited, 455–456
best approximation by, 500
in L2(R), 475
nonorthogonal, 474–477, 497
operator, 415, 451, 472, 474
orthonormal, 415, 451–452, 497

for periodic functions
bandlimited, 486–489
nonorthogonal, 497
operator, 480
orthonormal, 480–481, 497

for sequences
aliasing, 440–441
bandlimited, 440–442
in ℓ2(Z), 436, 447
nonorthogonal, 446–447, 497
operator, 415, 434, 435, 444, 446
orthonormal, 435–436, 497, 504
oversampling, 441

operator
for finite-dimensional vectors, 423, 427
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for functions, 415, 451, 474
for periodic functions, 480
for sequences, 435, 446

Sampling theorem
for functions, 457, 456–460
for periodic functions, 489
for sequences, 440

Sathe, Vinay P., 328
Sawtooth wave

Fourier series pair, 386, 409
Gibbs phenomenon, 409

Scalability property
operator axiom, 40

Scalar, 141
quantization, 581, 579–584

lossy encoder, 581
partition cells, 581
reproduction codebook, 581
reproduction decoder, 581

random variable, 67
Scale, 617, 618
Scaling

function
Battle–Lemarié, 610

in frequency, 620, 621, 623, 625, 639
Fourier transform pair, 367

in time, 620, 621, 623, 625, 639
DTFT pair, 223
Fourier transform pair, 367
z-transform pair, 241

property of Dirac delta function, 318
Schafer, Ronald W., 328
Schauder basis, 160
Schoenberg, Isaac J., 599
Self-adjoint

matrix, 148
operator, 43, 51, 55

Separable
Hilbert space, 35, 79–80
space, 40

Sequence, 185–194
bandlimited, 437

aliasing of, 440–441
interpolation for, 437–442
oversampling of, 441
sampling followed by interpolation for,

440–442
sampling for, 437–442
subspace of, 437, 438

bandwidth of, 437
box, 188, 402

centered and normalized, 188
frequency center and spread, 631, 671
right-sided, 188
time center and spread, 629
uncertainty principle, 636

circular extension, 183, 211

complex exponential, 193, 329
constant, 220
cosine, 221
finite-length, 183, 192–193

sampling DTFT of, 504
uncertainty principle for, 637, 672

frequency center and spread, 630, 666, 672
full-band, 437
geometric, 186, 336

left-sided, 237, 337
right-sided, 236, 337

Heaviside, 187
infinite-length, 183, 185–192
interpolation for, 429–447
Kronecker delta, xvi, 13, 186

periodic, 192
localization for, 627–637

in frequency, 630–633
in time, 629–630

nonorthogonal
interpolation followed by sampling for,

444–446
interpolation for, 444
sampling followed by interpolation for,

446–447
sampling for, 442–444

of numbers convergence, 136–137
one-sided frequency center and spread, 632
orthogonal, 185
orthonormal

interpolation followed by sampling for,
415, 434

interpolation for, 433–434
sampling followed by interpolation for,

435–436, 504
sampling for, 430–433

periodic, 183, 192–193
periodization of, 183
ramp, 436
recovery for, 415
sampling for, 429–447
sampling theorem for, 440
shift-invariant subspace of, 430
sinc, 186, 219, 402

frequency center and spread, 631
time center and spread, 629

time center and spread, 629, 666, 672
two-dimensional, 193–194
uncertainty principle for, 633–636, 672
unit-norm, 185
unit-step, 187
window, 188

raised cosine, 189
rectangular, 188

with zero polyphase component, 340
Series

absolute convergence of, 137
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conditional convergence of, 137
convergence tests, 177
doubly infinite, 137
finite geometric, 178
geometric, 178
MacLaurin, 178
partial sum of, 137
power, 178
Riemann series theorem, 137
Taylor, 178
truncation, 560–576

approximation by, 598
with biorthogonal pair of bases, 611

Set, 135
closed, 135
closure of, 135
convex, 20

projection onto, 491–495
linearly independent, 21
minimal, 160
open, 135
orthogonal, 25
orthonormal

in R2, 13
span of, 21

Shannon, Claude E., 457, 498, 599, 667, 673
A Mathematical Theory of Communica-

tion, 498
Shannon–Fano–Elias code, 578
Shift

continuous-time, 353
discrete-time, 198
in frequency, 620–622, 625, 627, 629, 631,

633, 638, 641
DTFT pair, 223
Fourier series pair, 385
Fourier transform pair, 365

in time, 619, 621, 622, 625, 627, 629, 631,
633, 638, 641

DTFT pair, 221
Fourier series pair, 385
Fourier transform pair, 365
z-transform pair, 241

Shift-invariant
subspace

of functions, 449
of periodic functions, 478, 505
of sequences, 430
orthonormal basis for, 504

system
continuous-time, 353
continuous-time linear, 353
discrete-time, 197
discrete-time linear, 197

Shifting property
of Dirac delta function, 318, 357
of Kronecker delta sequence, 187, 207

Short matrix, 141
Siebert, William M., 403
Sifting property

of Dirac delta function, 318
of Kronecker delta sequence, 187

Signal processing
algebraic theory, 328
continuous-time, 343–403
discrete-time, 181–328
fast algorithms for, 328
for communications, 328
multidimensional, 328
multirate, 328
statistical, 328

Signal-to-noise ratio, 575
Signaling

frequency division, 663
time division, 663
time–frequency division, 663

Significand, 123
Sinc

function, 186, 402
Fourier transform pair, 363, 366, 372
frequency center and spread, 622
relation to box function, 349
squared, 458, 459
time center and spread, 621

sequence, 186, 402
DTFT pair, 219, 222
frequency center and spread, 631
time center and spread, 629

Singular
matrix, 141
value

decomposition, 146
of matrix, 146
of operator, 179

Sinusoidal
function, 184, 461
sequence, 184, 336

Sloane, Neil J. A., 600
Smoothing operator, 333
Solving systems of linear equations, 129–134,

144
Someya, Isao, 457, 498
Source coding, 576
Space
Lp([0, 1]), 172
Banach, 38
Hilbert, 38
inner product, 27
normed vector, 30
of absolutely integrable functions, 35
of absolutely summable sequences, 33
of complex-valued

finite-dimensional vectors, 31

Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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of continuous functions with q continuous
derivatives, 32

of finite-energy
functions, 31
sequences, 31

of functions
of bounded variations, 348
with finite Lp norm, 35

of random variables, 32
completeness of, 40
inner product on, 32
norm on, 32

of sequences with finite ℓp norm, 33
of square-integrable functions, 31
of square-summable sequences, 31
pre-Hilbert, 27
vector, 18

Span, 21
failure of closure, 37

Sparse matrix, 131–134
Spectral

decay
of Fourier series, 393, 409
of Fourier transform, 374–379, 407

decomposition of matrix, 145
density

cross, 400
energy, 225, 293, 370, 400
power, 225, 292–294, 370, 399, 400

factorization, 247
minimum-phase solution, 247

replica, 441
theorem, 145

Spectrogram, 659
Spectrum

base, 441
for DFT, 253
for DTFT, 217
for Fourier series, 381

of triangle function, 506
for Fourier transform, 360

Speech processing, 464–467
Spline(s), 538–541

approximation by, 510–511, 537–560
B-splines, 541–545, 597, 610

bases, 543–545
causal elementary, 542
elementary, 541–542, 610
representing with, 549–551
uncertainty principle for, 669

bases, 541–548
B-splines, 543–545

best approximation by, 548
canonical dual, 544, 610
cardinal, 547
computing in spline spaces

derivatives, 555–557

inner products, 611
integrals, 558–560

discrete
uncertainty principle for, 672

free-knot, 537
knot, 537
spaces, 538, 538–541, 609

best approximation in, 548
computing derivatives in, 555–557
computing inner products in, 611
computing integrals in, 558–560
orthonormal bases for, 546–547

uniform, 537, 538
Split-radix FFT, 307
Square

matrix, 141, 161
wave

(non)linear approximation of, 564
Fourier series pair, 386, 388

Stability constants, 72
Stable system

continuous-time, 353
discrete-time, 197

Standard
basis, xvii

for R2, 13
deviation, 32

of continuous-time stochastic process,
395

of discrete-time stochastic process, 286
of white noise, 288

random variable, 154
Stark, Philip B., 667
Stationarity

of continuous-time stochastic process, 396
of discrete-time stochastic process, 287

Statistical signal processing, 328
Stirzaker, David R., 162
Stochastic

autocorrelation, 341
continuous-time, 395, 399
discrete-time, 286, 292

continuous-time
bandlimited process, 470, 505
process, 395–397
system, 397–399

crosscorrelation, 341
continuous-time, 395
discrete-time, 286

discrete-time
process, 285–303, 566–571, 573
system, 288–292

Stopband
continuous-time, 373
discrete-time, 228

Strang, W. Gilbert, 162, 599
Strang–Fix condition, 548–554, 604–605

Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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Strassen’s algorithm, 122, 167–168
Subband coefficient, 70
Subnormal numbers, 124
Subspace, 20

affine, 20, 21
closed, 37, 172
decomposition, 60–63
in R2, 11–12
of bandlimited

functions, 452–454
periodic functions, 481, 483–486
sequences, 437, 438

proper, 21
Successive approximation, 82, 100–101

with biorthogonal pair of bases, 175
Supremum, 135
Surjective function, 136
Symmetric matrix, 149, 191
System

BIBO-stable, 198, 250, 353
causal, 197, 353
linear, 195, 352
LPSV, 265, 340
LSI, 197, 353
memoryless, 196, 352
of linear equations, 129–134, 143–144, 179

iterative solution, 131
Kaczmarz’s algorithm, 132

periodically shift-varying, 266
shift-invariant, 197, 353
stable, 197, 353

Tall matrix, 141
Taubman, David S., 668
Taxicab norm, 33
Taylor series, 178

error of, 521, 597
expansion, 509, 520–522, 597, 608

Textbook on
bases, 162
compression, 599
discrete-time signal processing, 328, 403,

599
fast algorithms, 328
filter design, 599
finite elements, 599
Fourier representations, 48, 403
frames, 162
harmonic analysis, 403
information theory, 599
interpolation and approximation, 599
linear algebra, 10, 141, 162
multidimensional signal processing, 328
multirate processing, 328
numerical analysis, 599
probability, 10, 162
pseudocirculant polynomial matrix, 328

real analysis, 135
sampling, 498
signal processing, 403
signal processing for communications, 328
statistical signal processing, 328, 403
vector spaces, 10, 162
wavelet representations, 48, 403, 599
z-transform, 328

Thao, Nguyen T., 600
Theodoric of Freiberg, 1

De iride, 1
Thomas, Joy A., 599
Tight frame, 104, 104–107

as projection, 338
for R2, 16, 104
for affine functions, 176
normalization, 104
Parseval, 106
Parseval equality for, 105
redundancy of, 106
with nonequal-norm vectors, 176

Time
center and spread

for box function, 621
for box sequence, 629
for functions, 621, 666, 670
for Gaussian function, 621
for sequences, 629, 666, 672
for sinc function, 621
for sinc sequence, 629

division, 663
localization, 616

for functions, 620–621
for sequences, 629–630

reversal, 277
DTFT pair, 223
Fourier series pair, 385
Fourier transform pair, 367
z-transform pair, 241

series, 286
Time–frequency

actual plot, 638
analysis of music, 659
division, 663
idealized tiling, 638
localization

local Fourier, 647, 653
wavelet, 650, 656

plane, 624, 638–644
tile, 624
tiling, 638–644

dyadic, 640, 644
Toeplitz

matrix, 150, 341
representation of LSI system, 197
vector product, 341

system, iterative solution of, 132
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Tonelli’s theorem, 138
Topology, 135
Trace, 146
Transfer function

rational, BIBO stability, 250
z-transform, 249

Transform
block, 652
coding, 585, 584–591, 598

bit allocation, 587–588, 613
distortion, 585
transform optimization, 588–591
visualizing effect of transform, 588

coefficient, 70, 161, 585
decoding, 585
domain, 161
encoding, 585
Walsh–Hadamard, 334, 335

Transition band, 442
Triangle

function, 94
dual to basis of periodic, 94
Fourier transform pair, 362, 366
in frequency, 458, 459, 506
spectral decay, 377

inequality, 27
norm axiom, 27
proof of, 171

spectrum
Fourier series, 506

wave
(non)linear approximation of, 564, 612
Fourier series pair, 386, 389, 409
sampling, 485

Truncation, 609
series, 611

approximation by, 560–576, 598
Trushkin, Alexander V., 599
Tsitsiklis, John N., 162
Tukey, John W., 328
Two-dimensional sequence, 193–194
Two-sided filter, 208

Unbiased estimation, 157
Unbounded operator, 41
Uncertainty principle

for B-splines, 669
for box sequence, 636
for discrete splines, 672
for finite-length sequences, 637, 666, 672
for functions, 624–627, 666

complex, 671
Heisenberg box, 625

for sequences, 633–636, 666, 672
Heisenberg box, 634

Unconditional basis, 70, 160, 162
Undersampling, 459

Uniform
convergence, 137
distribution, 154
quantization, 580–581

step size, 580
random variable, 154
splines, 537, 538, 546–547

Uniformly Lipschitz function, 378
Unimodular polynomial matrix, 321

Laurent, 322
Unique expansion, 105
Unit

antidiagonal matrix, 150
vector, 10

Unit-step
function, 348
sequence, 187

Unit-width box function, 376
Unitary

analysis, 79
matrix, 147, 161, 162
operator, 48, 47–48
synthesis, 79

Unser, Michael, 498, 599
Upper bound, 135
Upsampling, 268–270, 628, 630, 631, 634,

641
and downsampling, 270–271, 340

and filtering, 275, 272–278
by 2, 265, 268
by N , 270
commutativity with downsampling, 271,

340
DTFT pair, 223, 269, 270
followed by downsampling, 270, 340
followed by filtering, 273

cost of computing, 312
of discrete-time stochastic process, 299

matrix representation of, 268
of discrete-time stochastic process, 298
operator, 268
preceded by downsampling, 270
z-transform pair, 241, 269, 270

Vaidyanathan, P. P., 162, 328
Vandermonde matrix, 150–151

DFT, 254
Variable-rate quantization, 582
Variance, 152, 152–153

of continuous-time stochastic process, 395
of discrete-time stochastic process, 286
of white noise, 288

Vector
adjoint of polynomial, 322
finite-dimensional

bandwidth of, 504
full-band, 504
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interpolation for, 420–429
sampling for, 420–429

of Laurent polynomials, 322
of polynomials, 321–324
of ratios of polynomials, 322

Vector space, xvi–xvii, 10, 18, 18–35, 162
additive identity property, 18
associativity property, 18
commutativity property, 18
dimension of, 22
distributivity property, 18
multiplicative identity property, 18
of bounded

functions, 35
sequences, 34

of complex-valued
finite-dimensional vectors, 31
functions over R, 19
sequences over Z, 19

of continuous functions with q continuous
derivatives, 32

of functions with finite Lp norm, 35
of polynomials, 19
of sequences with finite ℓp norm, 33
of square-integrable functions, 31
of square-summable sequences, 31
properties of, 18

Vetterli, Martin, 185, 232, 328, 498, 600, 667,
668

Vilbé, Pierre, 667
von Neumann, John, 162

Walsh–Hadamard
matrix, 334, 335
transform, 334, 335

Wave
sawtooth

Fourier series pair, 386, 409
Gibbs phenomenon, 409

square
(non)linear approximation of, 564
Fourier series pair, 386, 388

triangle
(non)linear approximation of, 564, 612
Fourier series pair, 386, 389, 409
sampling, 485

Wavelet
basis, 645–656

approximation with, 649, 655
for functions, 647–650
for sequences, 654–656
Haar, 3, 648, 654

Battle–Lemarié, 610
representations, 3, 48
time–frequency localization

for functions, 650
for sequences, 656

Weierstrass approximation theorem, 524
Weierstrass, Karl, 524
Weight function, 517
Weighted

Dirac comb, 415
Fourier transform, 456

error, 533
minimax approximation

filter design as, 533–537
Weyl, Hermann, 162
White noise

autocorrelation of, 288, 397
continuous-time stochastic process, 397
discrete-time stochastic process, 288
mean of, 288, 397
power spectral density, 294, 400
standard deviation of, 288
variance of, 288

Whitening, 288
Whittaker, Edmund T., 457, 498
Whittaker, John M., 457, 498
Wide-sense stationary process

autocorrelation of, 287, 396
continuous-time, 396
cyclostationary, 294
discrete-time, 287
mean of, 287, 396
power, 225, 292, 370, 399
power spectral density, 225, 292, 370, 399
white noise, 288, 397

Wiener filtering, 300, 334
Window sequence, 188

raised cosine, 189
rectangular, 188

Winograd FFT, 307

Young, Nicholas, 162

z-transform, xix, 235, 233–252, 328
convergence of, 235–240
convolution in time, 242

failure of, 244
definition, 234–235
deterministic

autocorrelation, 245
autocorrelation of vector sequence, 246
crosscorrelation, 246

differentiation, 241
downsampling

by 2, 267
by N , 268
preceded by filtering, 272

downsampling followed by upsampling
by 2, 270
by N , 271

existence of, 235–240
inversion, 238–251
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by inspection, 238
using partial fraction expansion, 238–

240
using power-series expansion, 240

linearity, 241
moments, 241
of difference equation, 249
of filter, 249–252
pole of rational, 237
properties of, 243, 240–249
rational, 237

autocorrelation, 245
transfer function, 249, 250

relation to DTFT, 235
ROC of, 235, 236, 337
scaling

in z, 241
in time, 241

shift in time, 241
spectral factorization, 247
time reversal, 241
upsampling

by 2, 269, 270
followed by filtering, 274

zero of rational, 237
Zero-phase filter

continuous-time, 373
discrete-time, 227
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