Problem 1 (20pts).

Define two signal sets C_1 and C_2 , $C_1 \in l_2(Z)$, $C_2 \in l_2(Z)$, where C_2 is defined as follows:

$$C_2 = \{x_2(n) \in l_2(Z), \text{ such that } \forall x_1(n) \in C_1, < x_2(n), x_1(n) \ge 0\},\$$

where as usual $\langle x_2(n), x_1(n) \rangle$ is the inner product between $x_2(n)$ and $x_1(n)$.

- 1. (10 pts) Prove that C_2 is a subspace of $l_2(Z)$.
- 2. (10 pts) Denote C_2^{\perp} the orthogonal complement of C_2 in $l_2(Z)$. Prove that $C_2^{\perp} \neq C_1$ if and only if C_1 is not a subspace.