Problem 1 (35 pts). (Note: All questions can be solved independently)

Define the following time series (for $k \ge 1$):

$$x(1) = 1$$
 and $x(k+1) = x(k) + 1$, $k > 1$.

Use this to define a set, S, of vectors in \mathbb{R}^2 indexed by a non-negative integer k:

$$\mathcal{S} = \{\mathbf{x}_k\}_{k \in \mathbb{Z}, k \ge 1}.$$

where

$$\mathbf{x}_k = [x(k) \ x(k+1)]^t, \ k \ge 1, \text{ and}$$

 $\mathbf{x}_0 = [-1, 1],$

with t denoting the transpose.

- a. (5 pts) Plot in the 2D plane \mathbf{x}_0 , \mathbf{x}_1 , \mathbf{x}_2 , and \mathbf{x}_3 .
- **b.** (10 pts) Prove that for all $k_1, k_2 \ge 0$, $k_1 \ne k_2$ we have that $\mathbf{x}_{k_1}, \mathbf{x}_{k_2}$ form a basis for R^2 .

- c. (10pts) Design an orthogonal basis for R^2 , taking as a starting point a pair of vectors $\mathbf{x}_0, \mathbf{x}_k$, with $k \neq 0$.
- d. (10pts) We wish to create a dictionary $S_D \subset S$ by selecting vectors in S. Our goal in designing such a dictionary is minimizing the maximum coherence, i.e., minimizing

$$\max_{k_1,k_2 \in \mathcal{S}_D} \frac{1}{||x_{k_1}|| \ ||x_{k_2}||} < \mathbf{x}_{k_1}, \mathbf{x}_{k_2} >$$

where $||\mathbf{x}_k||$ is the norm of \mathbf{x}_k and $\langle ., . \rangle$ denotes the inner product. Prove that the minimum coherence dictionary of size d will have the form:

$$\mathcal{S}_D = \{\mathbf{x}_0\} \cup \{\mathbf{x}_{k_1}, \mathbf{x}_{k_2}, \dots \mathbf{x}_{k_{d-1}}\},\$$

that is, \mathbf{x}_0 should always be part of such a minimum coherence dictionary.