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Saket Choudhary EE-588 : Homework # 2

3.15

a)

lim
α−→0

ualpha(x) = lim
α−→0

xα − 1

α

= lim
α−→0

d
dα (xα − 1)

dα
dα

(l′Hopital′srule)

= lim
α−→0

xα log(x)

= log(x)

b)

∇uα(x) = xα−1

=⇒ ∇uα(x) > 0 (x ∈ R+)

∇2uα(x) = α(α− 1)xα−2

=⇒ ∇2uα(x) ≤ 0 (0 ≤ α ≤ 1)

Also,

uα(1) =
1α − 1

1

= 0
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Saket Choudhary EE-588 : Homework # 2 3.15

3.16

c)

∇f =

( −1
x2
1x2

−1
x12x2

2

)

∇2f =

(
2

x3
1x2

1
x2
1x

2
2

1
x2
1x

2
2

2
x1x3

2

)

Now,

On R++2 :
2

x31x2
≥ 0;

2

x1x32
≥ 0;

2

x31x2
× 2

x1x32
≥ (

1

x21x
2
2

)2

, i.e. ∇2f(x) is positive semidefinite.

f(x) convex and quasiconvex.

d)

f(x1, x2) =
x1
x2

∇f =

(
1
x2

−x1

x2
2

)

∇2f =

(
0 −1

x2
2

−1
x2
2

2x1

x3
2

)

∇2f is neither positive nor negative semidefinite.

f(x) is neither convex nor concave.

e)

f(x1, x2) = x21/x2

∇f =

(
2x1/x2
−x2

1

x2
2

)

∇2f =

(
2
x2

−2x1

x2
2

−2x1

x2
2

2x2
1

x3
2

)

=
2

x2

(
1
−2x1

x2

)(
1 −2x1

x2

)
< 0

Now,

For x ∈ R++ : 2/x2 > 0; 2x21/x
2
2 ≥ 0;

2

x2
× 2x21

x32
≥ (
−2x1
x22

)2

f(x) is convex and quasiconvex.
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Saket Choudhary EE-588 : Homework # 2 3.16 (continued)

f)

f(x1, x2) = xα1x
1−α
2

∇f =

(
αxα−11 x1−α2

(1− α)xα1x
−α
2

)
∇2f = α(α− 1)xα1x

−α
2

(
−x−21 x−11 x−12

x−11 x−12 −x−22

)
= −α(1− α)xα1x

1−α
2

(
x−21 −x−11

−x−11 x−12 x−22

)
4 0

Not convex or quasiconvex.
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3.22

a)

f(x) = − log(− log(

n∑
i=1

ea
T
i x+bi))on dom f = {x|

n∑
i=1

ea
t
ix+biN1}

Given log(
∑n
i=1 e

yi) is convex. Hence, log(
∑n
i=1 e

aTi x+bi) is also convex as it is an affine transfor-
mation of xi and hence − log(

∑n
i=1 e

aTi x+bi) is concave. log(y) is concave for concave y and hence
log(− log(

∑n
i=1 e

aTi x+bi)) is concave and hence f(x) = − log(− log(
∑n
i=1 e

aTi x+bi)) is convex.
b)

f(x, u, v) = −
√
uv − xTx on dom f = {(x, u, v)|uv > xTx, u, v > 0}

= −
√
u(v − xTx/u)

= −
√
uz (z = v − xTx/u > 0;u > 0)

∇f(uz) = −1

2

((
z
u

)− 1
2(

u
z

)− 1
2

)

∇2f(uz) =
1

4
√
zu

(
z
u 1

1 z
u

)
z

u
=
v − xTx/u

u

> 0

and hence f(x, u, v) is convex.
c)

f(x, u, v) = − log(uv − xTx) on dom f = {(x, u, v)|uv > xTx, u, v > 0}
= − log(u)− log(v − xTx/u)

= − log(u)− log(z) (z = v − xTx/u > 0;u > 0)

− log(u) and − log(z) are both convex for u, z > 0 and hence f(x, u, v) is convex.
d)

f(x, t) = −(tp − ||x||pp)1/p on dom f = {(x, t)|t ≥ ||x||p}

= −(tp−1(t− ||x||pp/tp−1)1/p

= −(t1−1/p)(t− ||x||pp/tp−1)1/p

= −y1/pz1/p (y = tp−1, z = t− ||x||pp/tp−1)
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Saket Choudhary EE-588 : Homework # 2 3.22 (continued)

e)

f(x, t) = − log(tp − ||x||pp) (p > 1 and on dom f = {(x, t)|t > ||x||p}
= − log(tp−1(t− ||x||pp/tp−1))

= −(p− 1) log(t)− log((t− ||x||pp/tp−1))

−(p − 1) log(t) is convex. and log((t − ||x||pp/tp−1)) is concave as t − ||x||pp/tp−1 is concave and hence
-log((t− ||x||pp/tp−1)) is convex resulting in f(x, t) convex.
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Saket Choudhary EE-588 : Homework # 2 3.22

3.49

a)

f(x) =
ex

1 + ex

log(f(x)) = log(ex)− log(1 + ex)

= x− log(1 + ex)

x is concave and log(1 + ex) is convex as its is log-sum-exp. Hence x− log(1 + ex) is concave =⇒ f(x) is
log-concave
d)
log(f(x) = log(det(X))− log(tr(X))

We first prove the log-concavity of the determinant:
Define g(t) = log(X + tV ) where X + tV is a positive definite matrix. X is given to be positive definite so ∃

f(t) = log(det(X
1
2X

1
2 + tX

1
2X

−1
2 V X

−1
2 X

1
2 ))

′ = log(det(X
1
2 (I + tX

−1
2 V X

−1
2 )X

1
2 ))

= log(det(X
1
2 )) + log(det(I + tX

−1
2 V X

−1
2 )) + log(det(X

1
2 ))

= log(det(X)) + log(det(I + tX
−1
2 V X

−1
2 ))

Since X and X + tV are positive definite, X
1
2 and tX

−1
2 V X

−1
2 are positive definite.

Let λ1, λ2, λd be eigen values of X
−1
2 V X

−1
2 such that X

−1
2 V X

1
2 = QΛQT =

∑d
i=1 λziz

T
i

log(det(I + tX
−1
2 V X

−1
2 )) = log(

d∏
i=1

(1 + tλi))

=

d∑
i=1

log(1 + tλi)

=⇒ g(t) = log(det(X)) +

d∑
i=1

log(1 + tλi)

g′′(t) = −
d∑
i=1

λ2i
(1 + tλi)2

≤ 0

Hence, log(det(X)) is concave.
Now consider log(tr(X + tV )):

log(tr(X + tV )) = log(tr(X(I + tX
−1
2 V X

1
2 )))

= log(

d∑
i=1

zTi Xzi(1 + tλi))

which is concave.
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Saket Choudhary EE-588 : Homework # 2 3.49 (continued)

Combining,

log(det(X + tV ))− log(tr(X + tV )) = log(det(X)) +

d∑
i=1

log(zTi Xzi)(1 + tλi)−
d∑
i=1

log((zTi xzi)(1 + tλi))

= log(C) +

n∑
i=i

log(xi)− log(

n∑
i=1

xi)
(
xi = zTi Xzi(1 + tλi);C constant

)

∑n
i=i log(xi)− log(

∑n
i=1 xi) is concave.
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Saket Choudhary EE-588 : Homework # 2 3.49

4.11

a) Minimize ||Ax− b||∞:
Equivalent LP:

minimize t

subject to Ax− b ≥< −t1
Ax− b ≥4 t1

How equivalent:
For x = (x1, . . . xn) (xi is scalar) and A = (a1, a2, . . . , an) (ai are columns) we have:
aTk xk + bk ≥ −t and aTk xk + bk ≤ t =⇒ |aTk x− bk| ≤ t =⇒ t ≥ max|aTk x− bk| = ||Ax− b||∞. The optimal
value solution for this is p∗(x) = ||Ax− b||∞ as desired.
b) Minimize ||Ax− b||1

minimize 1T t

subject to Ax− b ≥< −t
Ax− b ≥4 t1

Equivalence:
From the constraint: |aTk xk − bk| ≤ tk for each k. Hence the optimum is given by sk = |aTk xk − bk| =⇒
p∗(x) = ||Ax− b||
c) Minimize ||Ax− b||1 subject to ||x||∞ ≤ 1:
Equivalent LP: x ∈ Rn and t ∈ Rm

minimize 1T t

subject to t− 1 ≤ 0

− 1− t ≤ 0

Ax− b ≤ t
−Ax+ b ≤ −t

Equivalence is implied from the previous two cases (a) and (b).
d) Minimize ||x||1 subject to ||Ax− b||∞ ≤ 1

Equivalent LP:

minimize 1T t

subject to Ax− b ≤ 1

−Ax+ b ≤ −1
− 1 ≤ x ≤ t

4.11 continued on next page. . . Page 10 of 12



Saket Choudhary EE-588 : Homework # 2 4.11 (continued)

e) Minimize |Ax− b||1 + ||x||∞
Equivalent LP:

minimize 1T t+ y

subject to − t ≤ Ax− b ≤ t
− y1 ≤ x ≤ y1

Additional Exercise

(a) Minimize f(x) = cTF (x)−1c where c ∈ Rm. Making use of Schur’s complement, we have an equivalent
LP:

min t

such that
(
F (x) c

cT 1

)
< 0

(b) Minimize f(x) = maxi=1,...,K c
T
i F (x)−1ci where ci ∈ Rm where i = 1, . . . ,K

Again, making use of Schur’s complement as in (a):

min t

such that
(
F (x) ci
cTi 1

)
< 0 i = 1, . . . ,K

(c) Minimize f(x) = sup||c||2≤1c
TF (x)−1c

Let F (x)−1 = QΛQT , thus sup||c||2≤1c
TF (x)−1c = cTQΛQT c. Thus, minf(x) = λmax(F (x)−1).

f(x) ≤ t =⇒ λmax(F (x)−1) ≤ t =⇒ F (x)−1 4 tI.Now making use of Schur’s complement:

min t

(
F (x) I

I tI

)
< 0

Additional Exercise continued on next page. . . Page 11 of 12



Saket Choudhary EE-588 : Homework # 2 Additional Exercise (continued)

(d)

f(x) = E[cTF (x)−1c]

E[C] = c̄

E[(c− c̄)(c− c̄)] = S

S = E[ccT ]− c̄c̄T

E[cTF (X)−1c] = E[(c− c̄+ c̄)TF (X)−1(c− c̄+ c̄)]

= E[(c− c̄)F (X)−1(c− c̄)] + E[c̄TF (x)−1c]

= E[(c− c̄)F (X)−1(c− c̄)] + c̄TF (x)−1c̄ ∵ E[c] = c̄

= tr(F (x)−1S) + c̄TF (x)−1c̄

Let S =
∑d
i=1 sis

T
i so that the problem becomes equivalent t to minimize c̄TF (X)−1c̄+

∑d
i=1 s

T
i F (X)−1si

Equivalent LP:

minimize t0 +

d∑
i=1

ti

subject to
(
F (x) c̄

c̄T t0

)
< 0(

F (x) si
sTi t0

)
< 0 (i = 1, 2, . . . , d)
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