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Saket Choudhary EE-588 : Homework # 3

4.15

a) If the relaxation LP

mincTx

s.t. Ax 4 b

0 ≤ x ≤ 1

is feasible, we get a lower bound on the solution of the original LP since xi ∈ {0, 1}. the optimal value will then
be lower also for the relaxed version.
b) If the optimal solution for the relaxed LP x∗i ∈ {0, 1}, then it is also the optimal solution for the original LP.
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4.17

Given revenue:

rj(xj) =

{
pjxj 0 ≤ xj ≤ qj
pjqj + pdisc

j (xj − qj) xj ≥ qj

Since,

pj > 0

qj > 0

0 < pdisc
j < pj

,
the revenue cost function can be simplified to:

min
(
pjxj , pjxj + pdisc

j )(xj − qj)
)

Our original optimization problem is given by:

max

n∑
j=1

rj(xj)

s.t. x < 0

Ac 4 cmax

This is convex as
∑n
j=1 rj(xj) is affine in concave function rj(xj) and we are maximizing a concave function.

The inequality constraints themselves are also affine.
We can reduce this to a LP as follows:

max1T sj
s.tx < 0

Ax 4 cmax

pjxj ≥ sj , pdisc
j (xj − qj) ≥ sj j = 1, 2, . . . , N

This LP leads to an optimal solution for the original problem as follows: for a fixed x, we have it satisfying the
constraints. Also rj(xj) ≥ sj so for a feasible x, s is in the LP and the LP objective itself is less than or equal
to the revenue.
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5.5

min cTx

s.t. Gx 4 h

Ax = b

Consider the langragian:

L(x, λ, ν) = cTx+ λT (Gx− h) + νT (Ax− b)
= (cT + λTG+ νTA)x− λTh− νT b

g(λ, ν) = inf
x
L(x, λ, ν)

s.t.λ < 0

where given the linearity of the langragian function,

g(λ, ν) = inf
x
L(x, λ, ν)

=

{
−λTh− νTA c+GTλ+AνT = 0

−∞ otherwise

The corresponding dual is given by:

max g(λ, ν)

s.t. c+GTλ+AT ν = 0

λ < 0
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SVM and Kernels

a) Given:

min
w.τ,v

n∑
i=1

τi + λ||w||22

s.t. 1− yi(wTxi + v) ≤ τi ∀i = 1, . . . , n

τi ≥ 0 ∀i = 1, . . . , n

Or equivalently,

min
w.τ,v

n∑
i=1

τi + λ||w||22

s.t. 1− yi(wTxi + v)− τi ≤ 0 ∀i = 1, . . . , n

− τi ≤ 0 ∀i = 1, . . . , n

For a fixed τi ≥ 0, we have 1 − yi(wTxi + v) ≤ τi =⇒ max(0, 1 − yi(wTxi + v)) = 1 − yi(wTxi + v) and
hence we obtain the original optimization problem minw,vmax(0, 1− yi(wTxi + v)) + λ||w||22
b) Dual problem:

max L̃(τ)L(α, βw, v, τ) = λ||w||22 +
n∑
i=1

τi +

n∑
i=1

αi(1− yi(wTxi + v)− τi)−
n∑
i=1

βiτi

∇wL = 0

=⇒ w −
n∑
i=1

αiyixi = 0

=⇒ w =

n∑
i=1

αiyixi

∇vL = 0

=⇒
n∑
i=1

αi = 0

∇τiL = 0

=⇒ 1− αi − βi = 0

=⇒ αi + βi = 1 ∀i = 1, . . . , n

Substituting for w, we get:

max L̃ = λ(

n∑
i=1

αiyixi)
2 +

n∑
i=1

αi +

n∑
i=1

τi(1−
n∑
i=1

αi −
n∑
i=1

βi)−
n∑
i=1

n∑
j=1

αiαjyiyjxixj

=

n∑
i=1

αi + λ(

n∑
i=1

α2
i y

2
i x

2
i ) + (2λ− 1)

n∑
i=1

n∑
j=1

αiαjyiyjxixj

s.t. 0 ≤ αi ≤ 1
n∑
i=1

αi = 0
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Saket Choudhary EE-588 : Homework # 3 SVM and Kernels (continued)

c) KKT conditions:

αi ≥ 0

βi ≥ 0

1− yi(wTxi + v)− τi ≤ 0

αi(1− yi(wTxi + v)− τi) ≤ 0

βi ≥ 0

βiτi ≥ 0

w =

n∑
i=1

αiyixi

n∑
i=1

αi = 0

αi + βi = 1

d) If the training samples themselves are not known and we have access to the kernel matrix Ki,j = 〈xi, xj〉,
we can still compute the dual problem by substituting Ki,j as the inner product:

maxL(α) =

n∑
i=1

αi + λ(

n∑
i=1

α2
i y

2
iKi,i) + (2λ− 1)

n∑
i=1

n∑
j=1

αiαjyiyjKi,j

s.t. 0 ≤ αi ≤ 1
n∑
i=1

αi = 0
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Reformulating constraints in CVX

Using the corrected constraints,

(a) norm cannot be used with an equality constraint as it is not affine and is redundant here.
Change to: x+2*y ==0; x-y == 0

(b) The outermost square requires affine inputs.
Change to: square_pos(square(x+y)) <= x-y

(c) 1/x is not convex unless the domain is restricted to R+ and similarly 1/y requires R+ for it to be convex.
inv_pos function inherently uses R+ as the domain for any variable inside it.
Change to: inv_pos(x) + inv_pos(y) <=1

(d) norm can only take affine inputs.
Change to:
norm([u,v]] <= 3*x +y
max(x,1) <= u
max(y,2) <= v

(e) x*y is not concave. we use the trick from previous part.
Change to: x >= inv_pos(y)

(f) (x+ y)2 is convex while sqrt(y) is concave and a convex function cannot be divided by concave.
Change to: quad_over_lin(x+y,y)

(g) x3 is convex over R+ and hence we need to change to pow_pos so that the constraints of R+.
Change to: pow_pos(x,3) + pow_pos(y,3) <=1

(h) xy is not concave. xy − z2 = x(y − z2/y)
Change to: x+z <= 1 + geo_mean([x-quad_over_lin(z,y),y])

combining all the reforumated constraints in CVX results in an intractable problem:

cvx_begin
variables x y u z v
x == 0;
y == 0;
square_pos( square( x + y ) ) <= x - y
inv_pos(x)+inv_pos(y)<=1
norm( [ u ; v ] ) <= 3*x + y;
max( x , 1 ) <= u;
max( y , 2 ) <= v;
x >= inv_pos(y);
x >= 0;
y >= 0;
quad_over_lin(x + y , sqrt(y)) <= x - y + 5;
pow_pos(x,3) + pow_pos(y,3) <= 1;
x+z <= 1+geo_mean([x-quad_over_lin(z,y),y])
cvx_end

solution:
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Saket Choudhary EE-588 : Homework # 3Reformulating constraints in CVX (continued)

Calling SDPT3 4.0: 64 variables, 26 equality constraints
For improved efficiency, SDPT3 is solving the dual problem.

------------------------------------------------------------

num. of constraints = 26
dim. of sdp var = 26, num. of sdp blk = 13
dim. of socp var = 3, num. of socp blk = 1
dim. of linear var = 22
2 linear variables from unrestricted variable.
*** convert ublk to lblk

*******************************************************************
SDPT3: Infeasible path-following algorithms

*******************************************************************

sqlp stop: dual problem is suspected of being infeasible
-------------------------------------------------------------------
number of iterations = 12
residual of dual infeasibility
certificate X = 3.13e-12
reldist to infeas. <= 3.56e-13
Total CPU time (secs) = 0.44
CPU time per iteration = 0.04
termination code = 2
DIMACS: 1.9e-05 0.0e+00 7.3e-01 0.0e+00 -1.0e+00 5.2e-03

-------------------------------------------------------------------

------------------------------------------------------------
Status: Infeasible
Optimal value (cvx_optval): +Inf

Optimal Activity Levels

Code:

A = [1 2 0 1;
0 0 3 1;
0 3 1 1;
2 1 2 5;
1 0 3 2];

cmax = [100; 100; 100; 100; 100];

p = [3; 2; 7; 6];
pdisc = [2; 1; 4; 2];
q = [4; 10 ;5; 10];

cvx_begin
variable x(4)
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maximize( sum(min(p.*x,p.*q+pdisc.*(x-q))) )
subject to
x >= 0;
A*x <= cmax
cvx_end

x
r = min(p.*x,p.*q+pdisc.*(x-q))
revenue = sum(r)
avg_price_per_unit = r./x

Output:

Calling SDPT3 4.0: 17 variables, 8 equality constraints
For improved efficiency, SDPT3 is solving the dual problem.

------------------------------------------------------------

num. of constraints = 8
dim. of linear var = 17

*******************************************************************
SDPT3: Infeasible path-following algorithms

*******************************************************************

number of iterations = 10
primal objective value = 1.92500000e+02
dual objective value = 1.92500000e+02
gap := trace(XZ) = 4.00e-07
relative gap = 1.04e-09
actual relative gap = 1.03e-09
rel. primal infeas (scaled problem) = 2.53e-13
rel. dual " " " = 4.78e-12
rel. primal infeas (unscaled problem) = 0.00e+00
rel. dual " " " = 0.00e+00
norm(X), norm(y), norm(Z) = 2.2e+00, 8.8e+01, 1.1e+02
norm(A), norm(b), norm(C) = 1.2e+01, 1.1e+01, 2.3e+02
Total CPU time (secs) = 0.40
CPU time per iteration = 0.04
termination code = 0
DIMACS: 3.5e-13 0.0e+00 1.1e-11 0.0e+00 1.0e-09 1.0e-09

-------------------------------------------------------------------

------------------------------------------------------------
Status: Solved
Optimal value (cvx\_optval): +192.5

x =
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Saket Choudhary EE-588 : Homework # 3 Optimal Activity Levels (continued)

4.0000
22.5000
31.0000
1.5000

r =

12.0000
32.5000

139.0000
9.0000

revenue =

192.5000

avg_price_per_unit =

3.0000
1.4444
4.4839
6.0000
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