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Dedication

One important idea is that science is

a means whereby learning is

achieved, not by mere theoretical

speculation on the one hand, nor by

the undirected accumulation of

practical facts on the other, but

rather by a motivated iteration

between theory and practice.

George Box

To my family and teachers
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Abstract

Any biological process is a manifestation of the protein levels. Protein are synthesized inside

the body through the process of translation. Translation is one of the most energy-intensive pro-

cesses and hence is highly regulated to ensure the proteins get synthesized in the right quantity in

the cell. The advent of next-generation sequencing has enabled transcriptome-wide monitoring of

translation regulation. In particular, Ribo-seq has provided us with a high-throughput sequencing

method to profile mRNA undergoing active translation at sub-codon resolution. However, the

resulting dataset has inherent noise arising from the sequencing of non-ribosomal and non-active

translation fragments. Through this work, I develop a method to identify regions under active

translation using Ribo-seq data. The method enables more accurate identification of both short

and long open reading frames. I develop a database of uniformly processed public Ribo-seq

datasets which have been appropriately de-noised to recover only the actively translating frag-

ments. I also demonstrate the utility of our method as a quality control metric to asses the

quality of Ribo-seq data generated in a variety of treatment and biological contexts.

I utilized our method to understand the changes involved in translational landscape in two

important biological contexts. First, I present a study on translational landscape changes involved

in the irradiation of glioblastoma cell lines thereby providing evidence of radio-resistance in some

target genes that can be likely candidates for increasing irradiation efficacy. Second, I provide
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evidence of translational landscape changes involved in the morphological transition of Candida

albicans, a fungal pathogen involved in inducing diseases as Candidasis in immunocompromised

patients. These target genes can serve as potential targets for anti-fungal drugs.

Finally, by applying our method to identify actively-translating regions on public Ribo-seq

datasets, I discovered thousands of upstream open reading frames under active translation across

various biological contexts in multiple species. These upstream open reading frames (uORFs)

often act as a repressive element for the downstream protein coding regions. Using Ribo-seq

datasets from multiple species across different conditions, I characterize the sequence properties

of a subset of these uORFs which are almost always under active translation. Further, I analyze

it in an evolutionary context providing evidence for the conservation of the upstream sequence

context.
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Chapter 1

Introduction

The basic structural, functional and biological unit of all organisms is the cell. Cell, the

smallest unit of life, is enclosed within a membrane and contains two key biomolecules : DNA

and proteins. Since their discovery in 1869 and 1838 respectively, these have become widely-

studied and amongst the best-understood biological molecules.

DNA has been known to biologists since 1869 when the young Swiss doctor Friedrich Miescher,

working in the laboratory of Felix Hoppe-Seyler at the University of T’́obingen, while performing

experiments to determine the chemical composition of leukocytes isolated a precipitate that

contained large amounts of phosphorus, lacked sulfur, and was resistant to protease digestion

thus essentially ruling out proteins and lipids [5].

By itself, DNA is little more than a blueprint for life. Any biological process is a manifestation

of the proteins and their abundance. Proteins were described in scientific literature as early as

1838 by the Dutch chemist Gerardus Johannes Mulder though the name itself was a creation of

Swedish chemist J’́ons Jacob Berzeliuswith [6]. The name protein originates from the Greek word

𝜋𝜌�́�𝜏𝜖𝜄𝜍 (proteios) - primary or leading in the front [7]. As such, proteins act as building blocks
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for a large variety of large molecules and account for 44% of the human body’s dry weight [8].

They also also act as enzymes that catalyze the biochemical reactions in all living beings.

Francis Crick gave a lecture on 19th September 1957 as part of the Society of Experimental

Biology Symposium on the Biological Replication of Macromolecules at University College London.

This lecture entitled “Protein Synthesis” that was later written up as “On Protein Synthesis”

[9] was significant from multiple fronts. First, it laid down the foundation of what is now

famously known as the central dogma of molecular biology. The central dogma states that once

‘information’ has passed into the protein, it cannot be transferred back to either nucleic acid or

protein. In other words, information can flow from nucleic acid to nucleic acid or from nucleic

acid to protein but transfer of information from protein to protein or protein to nucleic acid is

impossible. Second, Crick made a couple of predictions that were eventually proved to be true.

First, he predicted the existence of adaptor molecules (later discovered in the same year as tRNA

[10]) that work as mediators carrying amino acids to the site of protein synthesis And hence, Crick

“permanently altered the logic of biology [11]”. Second, he predicted that it would be possible

in the future to compare sequencing data to explore the vast amount of evolutionary information

between them.

The single largest investment of energy by cells is in the process of translation of mRNAs into

protein [12, 13]. Being a substantial energy investment, translation is highly regulated to ensure

that the resulting proteins have the desired stoichiometry and are available at the right places

within the cell. For example, in a rapidly growing yeast cell, nearly 200, 000 ribosomes occupy as

much as 30 − 40% of the cytoplasm and 2000 ribosomes are synthesized every minute absorbing

around 60% of its transcriptional activity [14]. Translation regulation is especially important
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in maintaining homeostasis and controlling cell proliferation and growth [15]. Dysregulation of

translation has been implicated in a wide range of diseases [16].

The notion of translation regulation emerged only a few years after Crick formulated the

central dogma of molecular biology. In 1961, Jacob and Monod proposed the idea of ‘messenger’

intermediate (mRNA) could be subject to different utilization depending on the context [17].

They perceived “that the synthesis of individual proteins may be provoked or suppressed within

a cell, under the influence of specific external agents, and more generally that the relative rates

at which different proteins are synthesized may be profoundly altered, depending on external

conditions” [17] and that such a regulation is “is absolutely essential to the survival of the cell”

[17]. This idea of mRNA being utilized differently to regulate the final protein drew very little

attention at that time but has been one of the seminal ideas in molecular biology.

The advent of next-generation DNA sequencing technologies and the development of assays

such as RNA-seq [18] has facilitated relative ease of measuring mRNA abundance in a high-

throughput manner, thus, advancing our knowledge of how cells modulate their gene expression

across different physiological and pathological processes. However, biological processes are driven

by proteins, while mRNA concentration acts as a mere proxy to protein abundance. At a steady

state, protein abundance is a function of the rates of four phenomena: transcription, translation,

mRNA decay, and protein decay [19, 20]. Measuring mRNA abundance has been found to be a

good predictor of protein levels in multiple contexts [21].

Measuring mRNA abundance though highly informative provides a glimpse into the early

steps of a long chain of regulatory events. The correlation between mRNA and protein levels

in some contexts has been found to be as low as 0.36 [22]. Such low correlations have been

attributed to translational regulation and post-translational buffering. Deciphering the relative
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contribution of phenomena other than transcription can help us deepen our understanding of

biological regulation.

The need to decipher translational regulation has motivated the development of experimental

approaches to profile the translational landscape. With the advent of next-generation sequencing

technologies, it is now possible to determine the sequence of large DNA and RNA molecules in a

high-throughput manner [23]. Ribo-seq [24] is a deep-sequencing based technique that captures

snapshots of ribosome protected fragments revealing the positions of the entire pool of ribosomes

engaged in translation, hence, providing a global view of the translational process in-vivo. Ribo-

seq has been used to answer some key biological questions involving the prevalent and dynamic

nature of translational regulation of the mammalian cell cycle [25], the discovery of alternative

translation initiation sites [26, 27], and translational pauses under induced stress [28].

Ribo-seq provides a rich resource for understanding translation and its regulation. However,

ever since the inception of Ribo-seq, it has been known that not all fragments arising from a

Ribo-seq experiment are reflective of active translation [29, 30, 31]. Furthermore, Ribo-seq data

is highly heterogeneous and noisy making the task of separating “signal” from noise particularly

challenging. Multiple approaches have been taken to tackle this shortcoming [32, 33, 34, 35, 36].

These methods can be broadly classified into two paradigms. The first paradigm of methods

hypothesizes that the distribution of Ribo-seq fragments is different from a hypothetical null and

use this to separate the ones actively-translation from the non-active ones. The second paradigm

of methods uses the periodic pattern expected from Ribo-seq signal, since the ribosome moves

three nucleotides at a time, to determine actively-translating fragments.
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The number of Ribo-seq studies has grown over the years. These studies span several tissues

and species. They have been performed under different biologically or technically diverse condi-

tions. However, every new Ribo-seq studywill overlap with previous studies with respect to some

biological dimensions of interest. Hence, interpreting new data can leverage on existing public

data to accelerate the process of deciphering all biological characteristics for the new experi-

ment. Systematically leveraging on public Ribo-seq data can help us answer some key biological

questions involving translation regulation. A key mechanism of regulating translation during the

initiating step is via upstream open reading frames (uORFs) located in the 5’ untranslated regions

(5’ UTRs). uORFs are sequences located upstream of the main protein coding region charac-

terized by an initiation codon in-frame with the stop codon. uORFs regulate the translation of

downstream protein coding region by multiple mechanisms: by inhibiting initiation at the down-

stream start codon (AUG) because of their secondary structure; by stimulating cap-independent

translation through the internal ribosome entry sites (IRES); by inhibiting or promoting transla-

tion because of presence of potential RNA binding protein sites and by the upstream sequence

and start codon context [37].

The literature on uORFs thus far has primarily relied on simply using the presence of a

‘favorable’ sequence context in the 5’ UTRs. This favorable sequence context is most often char-

acterized by the presence of a start codon (AUG) and an in-frame stop codon (UAG/UGA/UGA).

Ribo-seq, on the other hand, can provide direct evidence of active translation in uORFs as com-

pared to a mere potential arising because of a favorable sequence context. By providing a snapshot

of active translation, Ribo-seq has enabled investigating the true coding potential of the uORFs.

Given that uORFs mediate translation regulation and it has functional implication, we expect this
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mechanism to be similar across species as “Nothing in Biology Makes Sense Except in the Light

of Evolution [38]”.

1.1 Contributions

1. A method for detecting active translation in both short and long ORFs: Though

tools exist for identifying active translation in Ribo-seq data, they are not sensitive enough

to detect active translation in short ORFs (< 100 amino acids). I developed a method,

ribotricer, that exploits the inherent periodicity in Ribo-seq data to identify active transla-

tion. It gives the highest accuracy and sensitivity compared to other existing approaches

as evaluated on multiple datasets across species .

2. Characterization of translational landscape changes in C. albicans: C. albicans is a

fungal pathogen that inhabits the mucosal surfaces of most healthy individuals as human

commensals. Though mostly asymptomatic, they are opportunistic pathogens and are

known to causes disease in individuals with a debilitated immune system or a disruption in

the host’s microbiome. Using ribotricer, I provide insights into changes that take place in

its translational landscape and are responsible for its increased virulence of this pathogen.

3. A uniformly processed database of Ribo-seq studies: I develop a database, ribopod,

of uniformly processed public Ribo-seq datasets across multiple species. Leveraging the

accuracy of ribotricer, I provide access to de-noised Ribo-seq datasets that will serve as a

rich resource for the translation regulation research community.

6



4. Conservation of uORF mediated regulation: uORFs are known to play a role in sup-

pression of translation. Using ribotricer and ribopod, I provide evidence of conservation of

uORF mediated regulation across species. I describe universal uORFs (uuORFs) that are

almost always translating across different physiological and pathological contexts within a

species. Furthermore, I show that the sequence context of the uuORFs is conserved across

species.

1.2 Outline

In Chapter 2, I provide a background for translational regulation and Ribo-seq. I provide

a history of translation regulation, the known mechanisms that regulate translation. Finally, I

describe Ribo-seq and highlight some of the challenges associated with the analysis of Ribo-seq

data.

Chapter 3 introduces a new computational method, ribotricer, to identify actively-translating

regions in Ribo-seq data. I first provide a review of the existing computational approaches and

their limitations. Next, I introduce our method, ribotricer, that overcomes the shortcomings of

previous approaches. I provide detailed validation of our approach on multiple datasets across

species.

In Chapter 4, I describe changes in the transcriptional and translational landscape of C.

albicans, a fungal pathogen, that rapidly transitions between yeast-like and filamentous growth

patterns where the latter pattern leads to increased virulence. I utilize ribotricer to discover

hundreds of genes with altered translation during the morphological translation. Using RNA-seq
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and Ribo-seq data jointly I re-annotated the partially incomplete transcriptome of C. albicans and

discovered novel exons.

In Chapter 5, with the aim of developing a better targeted therapy for glioblastoma, I charac-

terize the effect of radiation on glioblastoma. Using RNA-seq and Ribo-seq data, we conducted

an integrated analysis in the glioblastoma cell lines to profile alterations in the gene expression at

multiple levels including transcription, splicing, and translation. Our approach provides a com-

prehensive view of early response to radiation in and suggests new target options to increase

radiation sensitivity and prevent relapse of glioblastoma.

In Chapter 6, I provide a background of existing Ribo-seq datasets and highlight their short-

comings. Next, I try to overcome these shortcomings by developing a database, ribopod, of

uniformly processed public Ribo-seq projects from multiple species. Ribopod provides ready ac-

cess to de-noised Ribo-seq projects that can be used to discover new biological mechanisms or

as a resource to test a hypothesis in different biological and physiological contexts.

In Chapter 7, I use ribopod database to investigate uORF mediated regulation across species.

I describe uuORFs, a set of uORFs that are almost always expressed across physiological and

pathological conditions withing a species. I discover that the sequence context associated with

these uORFs is different from the context associated with protein coding regions yet is conserva-

tion across species.
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Chapter 2

Background: Translational regulation and Ribo-seq

Protein synthesis is a quintessential part of the gene expression pathway and is itself involved

in its control. The rate of synthesis of protein depends on both the concentration of the mRNA

and its translational efficiency [39]. Translational efficiency is determined by the density of active

ribosomes translating the mRNA. Half-life, i.e., the time required for degradation of 50% mRNA

molecules for a majority of mammalian mRNAs is > 2 hours [40], and hence tight protein

regulation requires is done via translational efficiency and protein decay rates [41].

2.1 Translation

The process of translation is one of the most energy-intensive processes in any cell. The

energy requirements are high owing to the multiple GTP hydrolysis steps involved [42]. The

process is precise with the frequency of translations errors reported to be as low as 0.1% [43, 44]

in incorporating an erroneous amino acid. Aberrations in the translation pathway are known to

cause various diseases [45]. Complete translation of a protein involves three steps of initiation,

elongation, and termination that we briefly discuss in the sections that follow.
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2.1.1 Translation Initiation

Translation initiation begins with recognizing the 5’ -m7G cap by the protein initiation com-

plex. This protein initiation complex consists of the 40S (smaller) subunit, translation initiation

factors, and tRNA conjugated to methionine and attached to the peptidyl transfer (P-) site of

the 40S subunit. The eukaryotic initiation factor 4F (eIF4F), which consists of factors eIF4E,

eIF4A, and eIF4G bind to the m7GpppN cap structure located at the 5’ end of pol-II transcribed

mRNAs. The 40S subunit carries the tRNA-eIF2-GTP complex that gets attached at or near the

5’ end of the mRNA. The 40-S associated factor eIF3 and eIF4G aid this linking [46].

The pre-initiation complex scans for the start codon ‘AUG’ in the 5’ to 3’ direction along the

mRNA. Once an AUG is encountered, the methionine tRNA canonically base pairs with the AUG

start codon thus arresting scanning and releasing initiation-factors. It makes way for the more

prominent subunit 60S to bind to the 40S at AUG resulting in the 80S ribosome assembly. The

presence of m7G cap is quintessential for translation [47], though alternate mechanisms such as

the presence of internal ribosomal entry sites (IRES) in the 5’ untranslated region (UTR) can

also recruit the translation initiation machinery independent of m7G presence [48]. Initiation is

the rate-limiting step of the three steps in protein synthesis [49].

2.1.2 Translation Elongation

The 80S assembly traverses the mRNA codon by codon. There are three sites inside the 80S

monosome: A, P and E. The A (acceptor) site acts as a binding site for the aminoacyl tRNA,

the P (peptidyl) site binds to the tRNA that holds the growing nascent polypeptide and the E

(exit) site serves as a threshold for releasing the tRNA devoid of its amino acid. At each codon,
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Figure 2.1
Canonical model of translation: initiation, elongation and termination. 40S subunit
along with the pre-initiation complex scans for ’AUG’. On encountering AUG, the 60S
subunit binds to 40S forming the 80S complex while the pre-initiation complex is let

free. The 80S complex traverses the mRNA one codon at a time growing the
peptide chain (green) till it encounters a stop codon. The two subunits are released

and recycled.

the corresponding aminoacyl-tRNA is base pairs with the codon at the A-site. It results in the

formation of a peptide bond and the growing peptide chain (Figure 2.1) is translocated to the

P-site. The tRNA-peptide is still base-paired to the mRNA at the P-site while the initiator tRNA

now occupies the E-site. It leaves the A-site empty for the next codon to recognize its cognate

aminoacyl-tRNA. The elongation process proceeds one codon at a time until it encounters an

in-frame stop codon.

2.1.3 Translation Termination

At the stop codon, the linkage between elongated peptide chain and the P-site tRNA site

undergoes hydrolysis thus releasing the nascent protein, and the two subunits of the ribosome

disassociate. The subunits are recycled and re-used for the translation of other mRNA fragments.
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2.1.4 Translation in eukaryotes versus prokaryotes

In prokaryotes, ribosomes engage in co-transcriptional regulation. As soon as the mRNA

emerges from the RNA polymerase, ribosomes can recognize the start codon on these mRNA

and start translating. On the other hand, the eukaryotic translation starts only after some quality

control checks. The mRNA in eukaryotes gets processed in the nucleus before being exported

to the cytoplasm where the ribosomes can translate it. The mRNA goes through capping and

polyadenylation, among other processing steps in the nucleus. These processing steps ensure that

the ribosomes engage with only mRNAs that are complete [50].

2.2 Factors affecting translation

There are five main contexts that can modulate translation in eukaryotes and more specifically

in vertebrates [51]: 1. m7G cap 2. the sequence context surrounding the AUG start codon 3. the

relative position of AUG start codon in the transcript (“first” versus others) 4. upstream and

downstream secondary structure 5. leader length We briefly discuss the effects of each of these

contexts in the sections that follow.

2.2.1 m7G cap

The m7G cap stabilizes the mRNA by preventing it from degrading by the attack of phos-

phatases and other nucleases. The cap generally gets added to mRNA precursors synthesized

by RNA polymerase II and to viral transcripts that are replicated in the nucleus. It increases

translational efficiency [52] and is quintessential for translation except in viral mRNAs.
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2.2.2 Sequence context

Marilyn Kozak characterized GCC(A/G)CCAUGG as the optimal sequence context for

translation initiation [47] at the AUG start codon in vertebrates. This context affects both

fidelity and the efficiency of initiation. AUGs around sub-optimal contexts can cause some

40S subunits to bypass it and initiate translation at a downstream AUG. It is possible that

the first AUG if lying in a sub-optimal context, is recognized inefficiently which is consistent

with the leaky scanning model. The leaky scanning model proposes that the 40S subunit

continues scanning the mRNA for AUGs even after encountering an AUG. This leaky scan-

ning model enables some viral mRNAs to produce two proteins by initiating at two AUGs ly-

ing close to each other [53]. Based on the two most crucial nucleotides -3 (A/G) and +4G,

the surrounding sequence context has been classified as ‘optimal’, GCC(A/G)CCAUGG; ‘strong’

NNN(A/G)CCAUGG when the two important nucleotides are present; ‘adequate’, when either of

the two important nucleotides are present: NNNRNNAUG(A/C/U) or NNN(C/U)NNAUGG, and

‘weak’ NNN(C/U)NNAUG(A/C/U) that lacks both of the two important nucleotides. This con-

text was assumed to be universal amongst eukaryotes. Later, however, it was eastablished that

sequence context might be species dependent. Amongst the characterized species, the sequence

context is ACAACCAAAAUGGC for Drosophila, AAAAAAAAAAUGTC for Saccharomyces cere-

visiae, and UAAAT(A/C)AACAUG(A/G)C for other invertebrates [54].

2.2.3 The relative position of AUG

The scanning model of the ribosome hypothesizes that the ribosomes will initiate translation

at the first encountered AUG as long as it lies in a ‘optimal’ context [55, 56]. An experiment
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Figure 2.2
uORFs and their potential effects on the downstream CDS. uORF translation can
result in short peptides while the free sub-units can re-initiate translation at the

downstream CDS. Presence of uORFs can repress the production from downstream
CDS. Leaky scanning by 40S subunit can skip uORFs and initiate translation at the

downstream CDS.

involving the insertion of out-of-frame AUG codons showed dramatic inhibition of translation [57].

Thus, efficient translation requires that no spurious AUG codons be present upstream. However,

the presence of upstream AUGs in the 5’ UTR regions may not lead to complete inhibition

of translation if it is followed by a stop codon. The 80S ribosome may be released after the

translation of this small region, but the 40S will remain bound and continue to scan the mRNA.

It may then re-initiate translation at a downstream start codon (the original CDS), however, the

re-initiation will happen efficiently only if the upstream ORF is short (Figure 2.2).
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2.2.4 Secondary Structure

Secondary structure can have both positive and negative effects on translation initiation. A

small amount of secondary structure near the AUG can up-regulate its recognition by 40S. The

secondary structure downstream tends to slow down the scanning by the 40S thus giving it more

time to recognize the AUG. On the other hand, the presence of stem-and-loop secondary structure

between the AUG codon and the 5’ cap can inhibit translation. This stem-and-loop prevents the

40S subunit from binding if it inhibits the entry sites for ribosomes. If the secondary structure

occurs far away from the cap such that binding of the 40S subunit is not impaired, the inhibition

of translation depends on the stability of the stem-and-loop as a strong stable structure will

inhibit 40S’ movement.

2.2.5 Leader length

If the AUG is located very close to the 5’cap, the recognition might be impaired. In an

experiment with synthetic transcripts where the AUG was located in a favorable Kozak context

too close to the cap, the initiation efficiency was significantly lower as compared to when the

leader sequences were elongated independent of the sequence context. This can be attributed

to the fact that longer 5’ leaders might provide more avenues for loading 40S as compared to

shorter sequences.

2.3 Quantitative analysis of in-vivo translation by Ribo-seq

Ingolia et al. [24] developed a high throughput sequencing-based approach for ribosome

profiling called Ribo-seq. It has enabled a transcriptome-wide quantitative analysis of in-vivo
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translation. The assay involves deep-sequencing of mRNA fragments protected by ribosomes

which are believed to be undergoing active translation. It gives a codon level resolution for the

dwell time of ribosomes [58]. The abundance of Ribo-seq fragments has been shown to be more

correlated with the absolute protein abundances [24].

Ribosomes protect around 28 − 30 nucleotides of the mRNA from digestion [24, 59] while

tightly packed ribosome pairs can protect around 58 − 62 nucleotides [60]. On the other hand,

48S pre-initiation complex can protect 50 − 70 nucleotides [61] because of the presence of eIFs.

2.3.0.1 Comparison to polysome profiling

Polysome profiling measures the constituent mRNA bound by different ribosome number

fractions using microarrays [62]. Ribo-seq has some clear advantages over the microarray based

approach. Ribo-seq can distinguish between ribosomes engaged at the protein-coding regions

from those engaged in the upstream regulatory open reading frames (uORFs) [31]. mRNAs that

undergo rapid degradation might not be profiled by polysome profiling [62]. Ribo-seq, on the other

hand, relies only on nuclease footprint from single ribosomes and as such has lesser sensitivity to

the integrity of mRNA. At the same point, there are certain key properties of polysome profiling

that Ribo-seq is not able to capture. For instance, polysome profiling has a greater ability to

measure differences in the translation of alternate isoforms, particularly so when they differ in their

ribosomal occupancy in the 5’ or 3’ untranslated regions. Also, polysome profiling monitors the

translation status of entire full length transcripts while Ribo-seq focuses on determining activity

of individual ribosomes. As such, using polysome profiling it is possible to capture the difference

arising from a uniform decrease in ribosomal occupancy on all copies of a transcript from the
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Figure 2.3
Protocol of Ribo-seq. A translating ribosome encloses 30 nucleotides of the mRNA
and protects it from digestion. mRNA protected fragments are obtained by nuclease
digestion which digests the unprotected mRNA. The protected fragments are then

sequenced post ribosome separation.

scenario where a sub-population of mRNAs is under complete repression, a scenario that has been

observed in mouse embryonic stem cells [63].

2.3.1 Ribo-seq protocol

Ribo-seq protocol consists of five major steps: 1. Cell lysis and ribosome arrest 2. Nuclease

footprinting (RNAse digestion) 3. Isolation of ribosome footprints 4. Library preparation and

high-throughput sequencing

Cell lysis and ribosome arrest: In order to profile the translatome, the polysomes need to

be first stabilized. This has traditionally been carried out by treating the cells with translation

elongation inhibitors before lysing them. One of such inhibitors, cycloheximide has been shown to
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be biased towards certain codons, altering the distribution of ribosomes on the mRNA, especially

near the start codons [64, 65, 66, 67]. Based on these observations, flash-freezing of cells appears

to be the most robust approach [68].

Nuclease footprinting (RNAse digestion): This step involves digesting the portion of

mRNA that is not protected by ribosomes. RNAse I in eukaryotes and micrococcal nuclease

(MNAse) has been used in bacterial cells to perform digestion step [69].

Isolation of Ribosome footprints: After RNA digestion, the ribosome protected fragments

that are intact need to separated from the cell lysates. This was originally performed using a

sucrose density gradient centrifugation but is now performed by passing the lysate through a

sucrose cushion during ultracentrifugation to ensure purification ribosome-bound mRNA.

Library preparation: The library preparation step encompasses rRNA deletion and linker lig-

ation. Each ribosome-footprint complex has several kilo-bases of rRNA while the mRNA protected

fragments are only 28 bases

2.3.2 Using Ribo-seq to decipher translation regulation

Ribo-seq data can be leveraged to answer the “how much-where-how” questions involving

translation regulation. The simplest of these questions,“how much”, is answered by the profiled

mRNA fragments serving as a proxy to the protein levels. On the other hand, proximity-specific

ribosome profiling has enabled deciphering the “where” questions. For example, the majority

of mitochondrial inner membrane proteins are co-translationally translocated except the proteins

that are targeted to other mitochondrial sites [70]. Not all aspects of translational control cannot

be emulated in-vitro. By enabling in-vivo measurements, Ribo-seq facilitates identification of
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Figure 2.4
Ribo-seq protocol The protocol encompasses four major steps. In the first step, the

cell is lysed and harvested under conditions to ensure in-vivo positions of the
ribosomes are unaffected. The cell lysate can then be digested using a nuclease

which will digest all portions of the mRNA not being protected by the ribosome. The
portion being protected by the ribosome called the ribosome footprints can then be
purified and ligated to a single-stranded linker molecule that serves as a priming site
for reverse transcription. The products of first-strand reverse transcription can be
circularized to provide a second priming site flanking the original captured footprint
sequence which is then used for PCR amplification of a deep-sequencing library.
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translation mechanism that vary across cell states and organisms thus answering the “how”

questions. For example, Ribo-seq has been used to understand the role of Dom34 in rescuing

stalled ribosomes [71].

If multiple isoforms are co-expressed, translation initiated at the upstream initiation sites can

obscure the strength of initiation signal downstream. However, treatment with certain drugs

such as harringtonine [72], or lactimidomycin [26] which is capable of immobilizing the initiating

ribosomes will result in an overabundance poof ribosome protected fragments (RPFs) at the

initiation sites. Translation initiation inhibitors have been used to discover alternate translation

initiation sites [73].

The number of footprints originating from a transcript directly correspond to the number of

ribosomes engaged in translation. This is also equivalent to a) the amount of protein being pro-

duced and b) the time required to synthesize it. The time to translate an an ORF is proportional

to its length. Ribo-seq has been used to provide empirical evidence that the speed dynamics of

translation are consistent across different group of genes [74].

The number of ribosomes over a gene indicates how many ribosomes are translating it.

Similarly, the number of footprints over a particular codon indicates how often do ribosomes

hit that particular spot. If ribosomes pause at a particular location while translating a gene,

then ribosomes will spend a longer duration of time at these codons which would lead to an

over-abundance of footprints at this location. Ribo-seq data has been used to discover ribosomal

pausing sites in bacteria [69], yeast [75] and mammals [76].

In the upcoming chapters we rely on Ribo-seq data to answer some key questions on mech-

anisms of translational regulation. In particular, we first present a new computational method
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to identify short regions which are actively engaged by the ribosomes and apply this method to

discover prevalent translation in the upstream leaders across species.

21



Chapter 3

Accurate detection of short and long ORFs from Ribo-seq

data

3.1 Introduction

The process of translating messenger RNA into protein is among the greatest investments

of energy by cells [12]. Consequently, translation is highly regulated to ensure that each cell

synthesizes the right amount of each protein. Our understanding of the mechanisms regulating

the translational process remains limited, which has motivated the development of experimental

approaches to profile the translation landscape globally. Ribo-seq [24] is a technology that uses

deep-sequencing to identify ribosome-protected fragments, revealing the positions of the entire

pool of ribosomes engaged in translation.

Ribo-seq has led to the surprising discovery of prevalent translation through non-canonical

ORFs [77]. The non-canonical ORFs include the upstream ORFs (uORFs) located in the 5’

untranslated region (UTR), the downstream ORFs (dORFs) located in the 3’ UTR, and the

ORFs within presumed non-coding genes [78].
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Figure 3.1
Length distribution of candidate ORFs for human and mouse. The length distribution

of uORFs, dORFs, and novel ORFs predicted from presumably non-coding genes
compared with the CCDS exon and CCDS transcript lengths (CCDS = Canonical

Coding Sequence; uORF = upstream ORF in 5’ UTR; dORF = downstream ORF in
3’ UTR; novel = candidate ORFs in annotated non-coding genes.)

Transcriptome-wide searches for pairs of in-frame start and stop codons defining potential

ORFs in human, and mouse genomes reveal that the sizes of such non-canonical ORFs are gen-

erally 10-20 fold shorter [79] than the conventional coding sequences (CDS) (Figure 3.1). Their

short size presents challenges in detecting the resulting peptides through proteomic approaches

[80]. However, there is emerging evidence that these short ORFs, or the products of their transla-

tion, serve some function [81, 58]. In particular, the role of uORFs in regulating the translation of

downstream CDS has been well documented [82] for individual genes [83], and they are correlated

with substantial (30%-80%) repression of protein production [79]. The same mechanism is also

used to encode condition-specific activation: in integrated stress response, where the repressed

state is the default, uORF-associated repression is released following the stress stimulus [84].
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The presence of amplification bias, non-ribosomal RNA-protein complexes or other non-

ribosomal contamination can often result in apparent RPFs that do not represent actively-

translating ribosomes. Some RNAs such as telomerase RNA, RNAse P, snRNAs, and snoRNAs

that are known to be “classical” non-coding RNAs and are predominantly localized in the nucleus

have also been reported as origin for RPFs [30]. This is an indication that not all RPFs rep-

resent actively-translating ribosomes. Such fragments could represent non-ribosomal protected

regions such as those protected by RNA binding proteins. When drawing any conclusion about

translational regulation from Ribo-seq data it is imperative to focus only on those fragments

that represent actively-translating ribosomes. However, the presence of noise in the data makes

the task of identifying actively translated regions challenging. A shorter translation unit means

less total data on average for inference, so detection of short ORFs in Ribo-seq has remained

especially difficult.

Several methods exist for analyzing Ribo-seq data to determine the coding potential of the

transcribed RNA. FLOSS [31], one of the earliest methods, identifies actively translating ORF

by focusing on the read length distribution. The key assumption is that the distribution of

sequenced fragments contains both RPFs and technical noise, and the true RPFs should exhibit

a particular length distribution. FLOSS first learns a reference distribution of RPF lengths on

a set of protein-coding genes likely to represent active translation, and then compares fragment

lengths through the other regions in the transcriptome to this reference distribution. The idea of

treating different fragment lengths separately has been adopted in several subsequent methods.

Most other methods can be understood broadly through two paradigms. The first hypothesizes

that the distribution of number of mapped fragments differs over actively translated regions, and
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compares this distribution with some selected null model. The other general approach exploits

the periodic pattern in the mapped fragment profiles to distinguish actively-translating regions.

In the first paradigm of methods, ORFscore [85] compares the distribution of reads falling in

the three frames to a uniform distribution. ORF-RATER [33] uses a combination of regression

and random-forest based classification to predict actively-translating ORFs. It uses a non-negative

least squares fit for regressing Ribo-seq read profile of the transcript against the profile obtained

from known protein-coding genes. A random-forest classifier then uses these scores to predict

the translational status of the ORF. RiboHMM [86], on the other hand, uses a hidden Markov

model (HMM) to detect translating ORFs. It models the contribution of each fragment length

separately and then combines them to increase sensitivity. The HMM learns the distributions of

Ribo-seq coverage over the start/stop codons and the translated CDS; the distributions are then

used to predict translation status for candidate ORFs. Rp-Bp [36] uses probabilistic modeling to

estimate if read counts at each position belong to an enriched model or a null uniform model.

RiboCode [87] uses a modified Wilcoxon signed-rank test [88] to assess periodicity by testing for

differential enrichment in one of the frames against the other two.

The second paradigm typically leverages spectral approaches to examine the periodic pattern

in Ribo-seq data. Mapping RPFs from Ribo-seq onto the mRNA is expected to reveal a “high-

low-low” pattern, owing to ribosome’s movement over codons, resulting in a three-nucleotide

periodicity. RiboTaper [35] uses multi-tapered windows for calculating a Fourier transform to as-

sess periodicity in the Ribo-seq signal. Based on related principles in signal processing, SPECtre

[89] makes use of spectral coherence to correlate Ribo-seq signal with the expected “high-low-low”
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pattern. RiboWave [90] uses a wavelet transform based method to denoise the RPF profile by ex-

tracting the three-nucleotide periodicity. This denoised RPF profile leads to a better performance

when identifying active translation.

Methods within both paradigms have enabled discovery of actively-translating ORFs. Each

method makes assumptions about the data that are not always satisfied in practice, for different

data sets or different data analysis goals. The detection of short ORFs is an example of the

latter. However, these methods provide a conceptual foundation that we borrow from to design

a simplified method that is more robust to varying statistical features across datasets, and that is

capable of detecting both short and long ORFs. Our method, called ribotricer, directly assesses

the three-nucleotide periodicity in Ribo-seq data. Ribotricer can account for read length specific

P-site offsets and sparsity in Ribo-seq data. Its underlying model emphasizes consistency in the

qualitative profile through each codon while down-weighting the influence of the magnitude of

the individual values contributing to that profile. This approach helps ribotricer overcome the

challenge of detecting short ORFs in regions of low signal to noise ratio.

3.2 Methods

To detect actively-translating ORFs, ribotricer focuses on the characteristic three-nucleotide

periodicity in Ribo-seq data. The workflow of ribotricer consists of five major steps. Ribotricer

first prepares a candidate set of all potentially translatable ORFs by searching for pairs of start

and stop codons genome-wide but inside annotated transcription units. This requires providing

gene annotations and the reference genome but is only done once for each genome and gene

annotation. Next, ribotricer partitions the mapped reads based on their length. The rationale
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for processing reads by their length is that each length may be associated with a different P-site

offset relative to the 5’ end of the mapped fragment. For each read length, ribotricer generates

a metagene profile using 5’ ends of the mapped reads (accounting for strand as appropriate).

The metagene profiles are used to infer P-site offsets for different read lengths by choosing the

offsets that maximize the cross-correlation of these profiles with the profile for the most abundant

read length. The read profiles corresponding to different read-lengths can then be merged using

the corresponding inferred P-site offsets, an approach taken previously by Calviello et al. for

RiboTaper [35] and Xiao et al. for RiboCode [87]. The previous step produces a single RPF

profile for each candidate ORF. In its final step, ribotricer assesses the periodicity of the merged

RPF profile using a novel approach to predict its translation status.

Our key contribution is a novel method for assessing the three-nucleotide periodicity of RPF

profile based on 3D to 2D projection (Figure 3.2). Within each codon, we may observe reads

with 5’ ends at each of the three nucleotides, providing three unconstrained count values. These

count values can be imagined as vectors in a three-dimensional space with each nucleotide position

representing one dimension. Based on early observations, we hypothesized that in practice, using

information related to total read abundance might obscure the signal. This would happen, for

example, if codons that are assigned a higher total read count are also more likely to receive

reads associated with non-active translation. Applying any spectral method would require that

the profiles satisfy conditions to ensure stationarity. Instead, we rely on using the qualitative

information at each codon in the form of “high-low-low” or related pattern. This approach discards

much of the quantitative information associated with individual read counts but also simplifies

the problem while eliminating the need to explicitly model random variation or systematic trend

in total read counts along the RPF profile.
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Figure 3.2
Methodology design of ribotricer.

For a given ORF consisting of 𝑁 codons, let 𝑥𝑖𝑗 denote the number of P-sites inferred

from the reads of Ribo-seq experiment aligning to the 𝑖-th codon and 𝑗-th frame of the ORF,

where 𝑖 = 1, 2, … , 𝑁 and 𝑗 = 1, 2, 3. The RPF profile of the ORF can then be denoted as

𝑃 = (𝑥11, 𝑥12, 𝑥13, … , 𝑥𝑁1, 𝑥𝑁2, 𝑥𝑁3). For each codon profile 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3), a 3D vector,

we perform the following transformation to convert it into a 2D unit vector 𝜙𝑖 = (𝑎𝑖, 𝑏𝑖)T:

𝜙𝑖 = 𝑤𝑥T
𝑖

‖𝑤𝑥T
𝑖 ‖, (3.1)

where

𝑤 =
⎛⎜⎜⎜⎜
⎝

1 cos (−2𝜋/3) cos (−4𝜋/3)

0 sin (−2𝜋/3) sin (−4𝜋/3)

⎞⎟⎟⎟⎟
⎠

.
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With this transformation, the three basis vectors {(1, 0, 0), (0, 1, 0), (0, 0, 1)} are mapped as

(1, 0, 0) → (1, 0),

(0, 1, 0) → (cos (−2𝜋/3), sin (−2𝜋/3)),

(0, 0, 1) → (cos (−4𝜋/3), sin (−4𝜋/3)).

The three mapped unit vectors lie 2𝜋/3 away from each other to ensure the direction of the

transformed vector 𝜙𝑖 is equally determined by reads of each frame. These can be replaced by

any three unit vectors that are equally spaced on the unit circle, and the results would not change.

For the transformation performed, the direction of the resulting vector is determined by the

relative values of 𝑥𝑖1, 𝑥𝑖2, and 𝑥𝑖3. For an actively-translating ORF, we expect to see a “high-low-

low” pattern for each codon. This is equivalent to observing 𝑥𝑖1 as the largest value consistently

over all codons. If this holds, we expect the directions of the resulting unit vectors 𝜙𝑖 to be

consistent across codons. As indicated above, the motivation behind unit normalization of each

vector is to help ensure that each codon contributes equally to our assessment of translation

status, avoiding bias from the fraction of codons with an over-abundance of reads. This trans-

formation disregards the total read counts at each of the three positions. For example, the

two codon profiles (100, 20, 10) and (10, 2, 1) will result in the same unit vectors when applying

equation Eq., (3.1). While this discards quantitative information, it still captures the qualitative

“high-low-low” pattern of the profile. This approach helps ribotricer handle the heterogeneous

nature of Ribo-seq data where despite of pervasive active-translation, different codons could have

completely different coverages either because of the actual difference in ribosome’s dwell time or

because of usage of drugs like cycloheximide which can alter codon-specific elongation rates [91].

29



The 𝑙2-norm of the mean vector of the transformed vectors can be used to assess the peri-

odicity of RPF profile. More consistent directions of the vectors would result in a larger 𝑙2-norm.

The mean vector of the transformed vectors is

̄𝜙 = 1
𝑁

𝑁
∑
𝑖=1

𝜙𝑖,

and its 𝑙2-norm ‖ ̄𝜙‖ is

‖ ̄𝜙‖ = √( 1
𝑁 ∑𝑁

𝑖=1 𝑎𝑖)
2

+ ( 1
𝑁 ∑𝑁

𝑖=1 𝑏𝑖)
2
,

which falls in [0, 1], with a value of 1 if and only if

𝑎1 = 𝑎2 = ⋯ = 𝑎𝑁 ,

𝑏1 = 𝑏2 = ⋯ = 𝑏𝑁 ,

in which case the directions for all vectors are the same.

Besides heterogeneity arising from uneven distribution of read counts across codons [92],

another key challenge in Ribo-seq data is sparsity leading to profiles with many empty codons,

i.e., codons to which no reads map. Since both actively-translating and non-translating ORFs

can have empty codons, they do not contribute any information about the translation status and

hence need to be handled specially. For a particular data set with 𝑁 codons, define the set 𝑉 of

non-empty codons as

𝑉 = {𝑖 = 1, 2, … , 𝑁 ∣ 𝑥𝑖 ≠ (0, 0, 0)},
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and let 𝑁𝑣 = |𝑉 |. If we define ̄𝜙∗ as the mean vector including only non-empty codons, the ratio

between ‖ ̄𝜙‖ and ‖ ̄𝜙∗‖ is

‖ ̄𝜙‖
‖ ̄𝜙∗‖ = 𝑁𝑣

𝑁 .

With the reasoning outlined above, we use ‖ ̄𝜙∗‖ as our measure for assessing the periodicity of the

RPF profile of an ORF. This score describes how “aligned” all the vectors are, and is equivalent

to measuring how similar the phases are, i.e., the angles created by the resulting vectors with

respect to the abscissa. We will refer to this score as the “phase score” hereafter. Note that in

theory, a high phase score may result from strong consistency of some pattern other than the

anticipated “high-low-low”. In designing our approach, we hypothesized that the only source of

consistency in the signal would be an active translation. A consistent “low-high-low” or “low-

low-high” pattern would most likely result from an inaccurate estimate of the P-site offsets, in

which case our assumptions add a layer of robustness.

The angles made by the resultant vectors when all the codons follow a “high-low-low” pattern

should be concentrated around 0. The distribution we observe for the Ribo-seq data is centered

around 0 (Figures 3.7 and 3.8), which confirms that most codons follow the “high-low-low”

pattern. For the RNA-seq data, the resulting angles follow a multimodal distribution with the

highest peaks at {−2𝜋/3, 0, 2𝜋/3} (Figures 3.7 and 3.8) which corresponds to the three unit

vectors. To interpret the multimodal distribution observed in RNA-seq data, we simulated read

counts using a Poisson distribution. To account for variation in total data between genes, we

simulated means of the Poisson distribution using the per nucleotide coverage from the RNA-seq.
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Figure 3.3
Read length distribution of Ribo-seq and RNA-seq samples from human datasets.
SRA sample accession and total uniquely mapping reads are shown in individual

subplots.
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Figure 3.4
Read length distribution of Ribo-seq and RNA-seq samples from mouse datasets.
SRA sample accession and total uniquely mapping reads are shown in individual

subplots.
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Figure 3.5
Metagene plots for representative read lengths for human Ribo-seq samples. SRA
sample accession, read length and phase score are shown in individual subplots.

34



−20 0 20 40 60 80 100 120 140 160 180
Distance from start codon (nt)

N
o

rm
a

liz
e

d
 m

e
a

n
 r

e
a

d
s

SRX1900396 (30 nt reads)
phase_score: 1.0

SRX2255510 (28 nt reads)
phase_score: 0.99

−20 0 20 40 60 80 100 120 140 160 180
Distance from start codon (nt)

N
o

rm
a

liz
e

d
 m

e
a

n
 r

e
a

d
s

SRX3110803 (30 nt reads)
phase_score: 0.99

SRX1148649 (29 nt reads)

−20 0 20 40 60 80 100 120 140 160 180
Distance from start codon (nt)

N
o

rm
a

liz
e

d
 m

e
a

n
 r

e
a

d
s

SRX026871 (30 nt reads)

0

2

4

6
phase_score: 0.99

−20 0 20 40 60 80 100 120 140 160 180
Distance from start codon (nt)

0.0

2.5

5.0

7.5

10.0

N
o

rm
a

liz
e

d
 m

e
a

n
 r

e
a

d
s phase_score: 0.98

0

2

4

6

−20 0 20 40 60 80 100 120 140 160 180
Distance from start codon (nt)

0

5

10

15

20

N
o

rm
a

liz
e

d
 m

e
a

n
 r

e
a

d
s

0

2

4

6

8

Figure 3.6
Metagene plots for representative read lengths for mouse Ribo-seq samples. SRA
sample accession, read length and phase score are shown in individual subplots.
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Figure 3.7
Distribution of the resulting vector angles for datasets in human. Angles are formed
by projecting the CCDS 3D codon profiles to 2D unit vectors. The left sub-panel
indicates the distribution for Ribo-seq sample; the center sub-panel shows the

distribution for its corresponding RNA-seq sample; the right sub-panel shows the
distribution of angles resulting from a RNA-seq profile simulated from a Poisson

distribution with the mean parameter estimated from the RNA-seq data.
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Figure 3.8
Distribution of the resulting vector angles for datasets in mouse. Angles are formed
by projecting the CCDS 3D codon profiles to 2D unit vectors. The left sub-panel
indicates the distribution for Ribo-seq sample; the center sub-panel shows the

distribution for its corresponding RNA-seq sample; the right sub-panel shows the
distribution of angles resulting from a RNA-seq profile simulated from a Poisson

distribution with the mean parameter estimated from the RNA-seq data.
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The resulting angle distribution of the simulated codon profiles is similar to that obtained from

profiles of the RNA-seq data (Figures 3.7 and 3.8) which explains the observed multimodality.

3.2.1 Obtaining and pre-processing data

We downloaded the raw data (Table 3.4) from NCBI’s Sequence Read Archive (SRA) using

pysradb [93]. We used cutadapt [94] to perform adapter trimming. The specific adapters for

each dataset are either obtained from the corresponding papers or were automatically inferred by

checking for over-represented 𝑘−mers at the 3’end. Sequences of the adapters for each dataset

is documented in Table 3.1. All the Ribo-seq and RNA-seq data were mapped using STAR [95]

by allowing at most two mismatches (--outFilterMismatchNmax 2) and forcing end-to-end

(--alignEndsType EndToEnd) read alignment. Only uniquely mapping reads were retained

(-outFilterMultimapNmax 1). For human and mouse, we relied on the GENCODE [96] GTF

for annotation. For all other species except C. albicans, we used ENSEMBL [97]. For C. albicans,

both the FASTA and the GTF were obtained from the Candida Genomes database [98]. The

assembly and GTF information is summarized in Table 3.2. FASTA is handled using the pyfaidx

package [99].

The strand-specific protocol, either forward stranded, reverse stranded or unstranded, is in-

ferred by checking the first 20, 000 reads from the mapping results. Since most tools we compared

with can only deal with forward stranded protocol, our ten datasets are all forward stranded for

both RNA-seq and Ribo-seq samples. BAM files are processed using pysam, a python interface

to samtools [100].
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Table 3.1
Adapters trimmed from Ribo-seq and RNA-seq samples for each dataset.

SRA Accession Ribo-seq adapter RNA-seq adapter
SRP010679 CTGTAGGCAC CTGTAGGCAC
SRP029589 CTGTAGGCACCATCAAT CTGTAGGCACCATCAAT
SRP063852 None None
SRP098789 CTGTAGGCACCATCAAT CTGTAGGCACCATCAAT
SRP102021 TCGTATGCCGTCTTCTGCTTG None
SRP003554 TCGTATG TCGTATG
SRP062407 TGGAATTCTCGGGTGCCAAGG TGGAATTCTCGGGTGCCAAGG
SRP078005 TGGAATTCTCGGGTGCCAAGG TGGAATTCTCGGGTGCCAAGG
SRP091889 AGATCGGAAGAGCACACGTCT AGATCGGAAGAGCACACGTCT
SRP115915 TGGAATTCTCGGGTGCCAAGG TGGAATTCTCGGGTGCCAAGG
SRP108862 TGGAATTCTCGG AGATCGGAAGAGC
SRP087624 AGATCGGAAGAGC AGATCGGAAGAGC
SRP029587 TCGTATGCCGTCTTCTGCTTG TGGAATTCTCGGGTGCCAAGGAACTCCAGTCAC
SRP059391 TGGAATTCTCGG TGGAATTCTCGG
SRP018118 TGGAATTCTCGG TGGAATTCTCGG
SRP075766 AGATCGGAAGAGC AGATCGGAAGAGC
SRP033499 AGATCGGAAGAGC AGATCGGAAGAGC
SRP028614 AAAAAAAAAAA_AGATCGGAAGAGC AAAAAAAAAAA_AGATCGGAAGAGC
SRP028552 AGATCGGAAGAGC AGATCGGAAGAGC
SRP000637 AAAAAAAA_AGATCGGAAGAGC AAAAAAAA_AGATCGGAAGAGC
SRP056647 AGATCGGAAGAGC AGATCGGAAGAGC
SRP026198 AGATCGGAAGAGC AGATCGGAAGAGC
SRP014427 AGATCGGAAGAGC AGATCGGAAGAGC
SRP010374 AAAAAAA_AGATCGGAAGAGC AGATCGGAAGAGC
SRP108999 AGATCGGAAGAGC AGATCGGAAGAGC
SRP028243 CTGTAGGCACCATCAAT AGATCGGAAGAGC
SRP076919 AGATCGGAAGAGC TGGAATTCTCGG
SRP045475 AGATCGGAAGAGC AGATCGGAAGAGC
SRP056012 AGATCGGAAGAGC AGATCGGAAGAGC
SRP045777 AGATCGGAAGAGC AGATCGGAAGAGC
ERP007231 AGATCGGAAGAGC AGATCGGAAGAGC
SRP034750 AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCACACGTCTGAACTCCAGTCA
SRP010040 ATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAA ATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAA
SRP023492 AGATCGGAAGAGC AGATCGGAAGAGC
SRP032814 AGATCGGAAGAGC AGATCGGAAGAGC
SRP107240 AGATCGGAAGAGC AGATCGGAAGAGC
SRP062129 TGGAATTCTCGG AGATCGGAAGAGC
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Table 3.2
Reference assemblies and GTF for each species

Species Reference assembly GTF
Human GRCh38 Gencode (v94)
Mouse GRCm38 Gencode (v94)
Arabidopsis TAIR10 ENSEMBL (v96)
C.elegans WBcel235 ENSEMBL (v96)
Drosophila BDGP6 ENSEMBL (v96)
Rat Rnor6.0 ENSEMBL (v96)
Zebrafish GRCz11 ENSEMBL (v96)
C. albicans SC5314 Candida Genomes Database (r27)
S. pombe ASM294v2 ENSEMBL (v96)
Chimpanzee Pantro3 ENSEMBL (v96)
Macaque Mmul8 ENSEMBL (v96)

To create fragment length specific metagene profile, we counted the number of 5’ end of

reads at each nucleotide per fragment length. Figures S2 and S3 show the distribution of frag-

ment lengths for Ribo-seq and RNA-seq samples across different datasets in human and mouse,

respectively. Metagene plots for individual fragment lengths which were retained for downstream

analysis for different datasets are shown in Figures 3.5 and 3.6

The specific Ribo-seq and RNA-seq samples used from each dataset for the benchmarking

along with the read lengths and the corresponding P-site offsets used for the Ribo-seq samples

can be found in Table 3.3.

To evaluate the performance of ribotricer and other existing methods, acknowledging the

heterogeneity and appreciable noise levels in Ribo-seq data, we selected five human and five

mouse datasets for performance comparison (Table 3.4). This includes the human HEK293 cells

dataset (SRA accession: SRP063852) [35], which was originally used as a benchmark dataset

when RiboTaper was introduced [35] and subsequently used in other studies. We followed the

strategy previously established by Calviello et al. in assessing RiboTaper [35] and Xiao et al. in

assessing RiboCode [87]. For all the ten datasets, we obtained the RPF profiles for all the CCDS
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Table 3.3
Ribo- and RNA-seq samples used for the benchmarking along with the read lengths

and P-site offsets used for Ribo-seq samples.

SRA Accession Ribo-seq sample Read lengths (nt) P-site offsets (nt) RNA-seq sample Species
SRP010679 SRX118286 28,29,30 12,13,13 SRX118285 Human
SRP029589 SRX345309 29,30,32 12,12,13 SRX345311 Human
SRP063852 SRX1254413 28,29,30 12,12,12 SRX426378 Human
SRP098789 SRX2536421 28,30 12,13 SRX2536426 Human
SRP102021 SRX2647167 28,29,30,31 12,12,12,12 SRX2647164 Human
SRP003554 SRX026871 28,29,30 12,12,12 SRX026872 Mouse
SRP062407 SRX1149649 28,29,30,31 12,12,12,12 SRX1149668 Mouse
SRP078005 SRX1900396 26,27,28,29,30 12,12,12,12,12 SRX1900402 Mouse
SRP091889 SRX2255510 26,27,28,29,30 12,12,12,12,12 SRX2255511 Mouse
SRP115915 SRX3110803 29,30,31,32,33,34 12,12,12,13,13,13 SRX3110807 Mouse
SRP108862 SRX2896566 23 12 SRX2896570 Arabidopsis
SRP087624 SRX2148419 28,29,30,31,32 12,12,12,12,12 SRX2148418 Arabidopsis
SRP029587 SRX345240 26,27 12,12 SRX345251 Arabidopsis
SRP059391 SRX1056790 27,30 12,12 SRX1056791 Arabidopsis
SRP018118 SRX219170 28,29,30,31 11,12,13,13 SRX347226 Arabidopsis
SRP075766 SRX1801603 26,27,28 11,12,13 SRX1801650 Baker’s Yeast
SRP033499 SRX386988 29,30,31 12,12,12 SRX386983 Baker’s Yeast
SRP028614 SRX333052 28,29,30 12,13,13 SRX334053 Baker’s Yeast
SRP028552 SRX332185 28,29,30 11,12,12 SRX332188 Baker’s Yeast
SRP000637 SRX003187 28,29,30,31 12,12,12,12 SRX003191 Baker’s Yeast
SRP056647 SRX971770 28,29,30,31,32 12,12,12,12,12 SRX971774 C. elegans
SRP026198 SRX311784 29,30,31,32 12,12,12,12 SRX311777 C. elegans
SRP014427 SRX160518 28,29,30,31,32 12,12,12,12,12 SRX160149 C. elegans
SRP010374 SRX118118 28,29,30,31,32 12,12,12,12,12 SRX118116 C. elegans
SRP108999 SRX2902857 29,30,31,32 12,13,10,12 SRX2902867 Drosophila
SRP028243 SRX327686 28,29,30,32,33,34 12,12,12,12,12,13 SRX327688 Drosophila
SRP076919 SRX1870218 34 12 SRX1870191 Drosophila
SRP045475 SRX679371 28,29,30,31,32 12,12,12,12,12 SRX679372 Drosophila
SRP056012 SRX915217 29,30,31,32 12,12,13,13 SRX915210 Rat
SRP045777 SRX686499 28,29,30,31 12,12,12,13 SRX686500 Rat
ERP007231 ERX609893 28,29,30,31,32 12,12,12,12,12 ERX609898 Rat
SRP034750 SRX399800 28,29,30,31 12,12,12,12 SRX399817 Zebrafish
SRP010040 SRX113357 27,28,30,31,33,34 12,12,12,12,12,12 SRX113344 Zebrafish
SRP023492 SRX288475 28,29,30 12,12,12 SRX288474 Zebrafish
SRP032814 SRX375317 28,29,30 12,12,12 SRX375318 C. albicans
SRP107240 SRX2825796 28,29,30 12,13,13 SRX2825805 S. pombe
SRP062129 SRX1135820 28,29,30 12,12,12 SRX333018 (SRP028612) Chimpanzee
SRP062129 SRX1135825 28,29,30 12,12,12 SRX333023 (SRP028612) Macaque
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from the results generated by RiboTaper and used the expressed CCDS profiles from Ribo-seq

data as true positives and the corresponding CCDS profiles from RNA-seq data as true negatives.

Since RiboTaper was designed and benchmarked for detecting active translation at the exon

level, we split the existing methods for active translation detection into two groups; those that

support detection at the exon level and those that only allow detection at the transcript level.

We compared the performance of ribotricer at both the exon and transcript levels.

3.2.2 Learning cutoff of phase score

The phase score is indicative of how consistent the profile is through a defined region. We re-

quire some cutoff to distinguish phase scores that differentiate active from non-active translation,

with the latter representing either some form of noise or inactive translation. Our approach is

to learn this cutoff empirically using ten published datasets (Table 3.4) with an assumed ground

truth set for regions of active translation and regions lacking active translation. Taking this

strategy, we used RPF profiles of expressed Consensus Coding Sequence (CCDS) [101] exons

from Ribo-seq data as the true positives, and mapped read profiles from RNA-seq data for a

negative control, as previously described [35, 87]. In order to choose the best cutoff, we relied

on maximizing the F1 score statistic. F1 score represents the harmonic mean of precision and

recall and is considered a more realistic measure of a classifier’s performance than precision or

recall in isolation. The chosen cutoff should apply universally across all Ribo-seq datasets and

hence should remain independent of our choice of the datasets. The ten datasets we chose in

human and mouse (Table S1) might not necessarily be representative of all Ribo-seq datasets.

Hence, we performed a bootstrap [102] analysis with 50, 000 bootstraps using selected datasets,
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defining the bootstrap statistic as the phase score that maximizes the F1 score resulting in a

95% confidence interval of (0.419, 0.469) (Figure 3.10). This resulted in a mean cutoff score of

0.444. However, for our benchmarking at the exon and the transcript level, we wanted to take

the most conservative approach avoiding any bias that might arise from learning this cutoff on

all the ten datasets. Hence, we used only two human and two mouse datasets (SRA accession:

SRP010679 [103], SRP098789 [1], SRP003554 [104], and SRP115915 [105]), to learn the cutoff

(0.428) and used the remaining six datasets to assess the performance. Note that this chosen

cutoff still resides in the 95% confidence interval of our bootstrap analysis and hence can be

applied universally for all other datasets.

3.3 Results

3.3.1 Ribotricer accurately detects translating ORFs at the exon level

We evaluated the performances of methods that support exon-level detection of translation,

including ORFscore [85], RiboTaper [35], and RiboCode [87], and compared their performance

with that of ribotricer.

We first compared the ability of each method to distinguish Ribo-seq profiles from RNA-seq

using the area under the receiver operating characteristic (ROC) and precision-recall (PR) curve.

For human HEK293 cells dataset (SRA accession: SRP063852) [35], ribotricer achieved an area

under the ROC (AUROC) of 0.97. The second best one was achieved by RiboCode with an

AUROC of 0.93. RiboTaper and ORFscore achieved an AUROC of 0.88 and 0.87, respectively

(Figure 3.15A). For the mouse liver tissue dataset (SRA accession: SRP078005) [108], ribotricer

achieved an AUROC of 0.99 while RiboCode, RiboTaper, and ORFscore achieved AUROC of 0.97,
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Table 3.4
List of datasets.

SRA Accession Species Cell type Treatment Citation
SRP010679 Human PC3 100 �g/ml cycloheximide [103]
SRP029589 Human HeLa cycloheximide [25]
SRP063852 Human HEK293 100 �g/ml cycloheximide [35]
SRP098789 Human HeLa 100 �g/ml cycloheximide [1]
SRP102021 Human H1933 100 �g/ml cycloheximide [106]
SRP003554 Mouse neutrophils 100 �g/ml cycloheximide [104]
SRP062407 Mouse hippocampal neurons 100 �g/ml cycloheximide [107]
SRP078005 Mouse liver 200 �g/ml cycloheximide [108]
SRP091889 Mouse ESC cycloheximide [109]
SRP115915 Mouse liver 200 �g/ml cycloheximide [105]
SRP108862 Arabidopsis inflorescences unavailable unpublished
SRP087624 Arabidopsis leaf tissue 50 �g/ml cycloheximide [110]
SRP029587 Arabidopsis whole seedlings 50 �g/ml cycloheximide [111]
SRP059391 Arabidopsis leaf tissue 100 �g/ml cycloheximide [112]
SRP018118 Arabidopsis etiolated seedling 100 �g/ml cycloheximide [113]
SRP075766 Baker’s Yeast strain by4743 100 �g/ml cycloheximide [114]
SRP033499 Baker’s Yeast strain: by4741 0.1 mg/ml cycloheximide [115]
SRP028614 Baker’s Yeast strain: by4176 cycloheximide [116]
SRP028552 Baker’s Yeast strain: s288 cycloheximide [117]
SRP000637 Baker’s Yeast strain: by4741 100 �g/ml cycloheximide [118]
SRP056647 C. elegans strain: n2 100 �g/ml cycloheximide [119]
SRP026198 C. elegans strain: n2 100 �g/ml cycloheximide [120]
SRP014427 C. elegans strain: n2 cycloheximide [121]
SRP010374 C. elegans strain: n2 cycloheximide [122]
SRP108999 Drosophila body wall muscle 100 �g/ml cycloheximide [123]
SRP028243 Drosophila embryo 20 �g/ml emetine [124]
SRP076919 Drosophila oocytes 100 �g/ml cycloheximide [125]
SRP045475 Drosophila S2 cell 100 �g/ml cycloheximide [126]
SRP056012 Rat PC12 Cells 100 �g/ml streptomycin [127]
SRP045777 Rat Pheochromocytoma streptomycin [128]
ERP007231 Rat strain: bn/shr 0.1 mg/ml cycloheximide [129]
SRP034750 Zebrafish strain: tuab 100 �g/ml cycloheximide [32]
SRP010040 Zebrafish strain: tuab 100 �g/ml cycloheximide [130]
SRP023492 Zebrafish strain: tuab 50 �g/ml cycloheximide [131]
SRP032814 C. albicans strain: sc5314 10 �g/mL Blasticidin S [132]
SRP107240 S. pombe strain: WT 0.15 �g/ml tunicamycin [133]
SRP062129 Chimpanzee Lymphoblastoid cell line flash freezing [134]
SRP062129 Macaque Lymphoblastoid cell line flash freezing [134]
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Table 3.5
Datasets used to learn ribotricer phase score cutoffs.

SRA Accession Species Used to learn cutoff
SRP010679 Human Yes
SRP029589 Human No
SRP063852 Human No
SRP098789 Human Yes
SRP102021 Human No
SRP003554 Mouse Yes
SRP062407 Mouse No
SRP078005 Mouse No
SRP091889 Mouse No
SRP115915 Mouse Yes
SRP108862 Arabidopsis No
SRP087624 Arabidopsis No
SRP029587 Arabidopsis No
SRP059391 Arabidopsis Yes
SRP018118 Arabidopsis Yes
SRP075766 Baker’s Yeast Yes
SRP033499 Baker’s Yeast No
SRP028614 Baker’s Yeast No
SRP028552 Baker’s Yeast Yes
SRP000637 Baker’s Yeast No
SRP056647 C. elegans No
SRP026198 C. elegans Yes
SRP014427 C. elegans No
SRP010374 C. elegans Yes
SRP108999 Drosophila Yes
SRP028243 Drosophila Yes
SRP076919 Drosophila No
SRP045475 Drosophila No
SRP056012 Rat Yes
SRP045777 Rat No
ERP007231 Rat Yes
SRP034750 Zebrafish Yes
SRP010040 Zebrafish Yes
SRP023492 Zebrafish No
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Figure 3.9
Learning the cutoff for phase scores for human datasets. The optimum cutoff for

distinguishing actively translating regions from non-active translation was learned by
maximizing the F1 score. The profiles from expressed CCDS exons in Ribo-seq data
were treated as positives and corresponding profiles from RNA-seq were treated as
negatives. Two datasets in human (SRA accession: SRP010679, SRP098789) were

used for learning this cutoff.
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Figure 3.10
Learning the cutoff for phase scores for mouse datasets. The optimum cutoff for

distinguishing actively translating regions from non-active translation was learned by
maximizing the F1 score. The profiles from expressed CCDS exons in Ribo-seq data
were treated as positives and corresponding profiles from RNA-seq were treated as

negatives. Two datasets in mouse (SRA accession: SRP003554, and
SRP115915)were used for learning this cutoff.
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0.92, and 0.92, respectively (Figure 3.15A). Ribotricer also outperformed the other three methods

consistently under the PR metric (Figure 3.15A). Ribotricer displayed the best performance on

almost all the datasets at both ROC and PR metrics (Figures 3.35 and 3.36).

Next, we compared the performance of ribotricer, ORFscore, RiboTaper, and RiboCode by

contrasting the number of true positives detected by each method while controlling the false

positive rate at 0.1. We calibrated the cutoffs for each method so that the number of false

positives reported by each method is 10% of the number of negatives. For human HEK293 cell

dataset (SRA accession: SRP063852), ribotricer recovered 39, 517 truly translating exons, while

RiboCode recovered 33, 665. RiboTaper, and ORFscore recovered 28, 333 and 26, 486 translating

exons, respectively (Figure 3.15B). For mouse liver tissue dataset (SRA accession: SRP078005),

ribotricer recovered 46, 380 truly translating exons, RiboCode recovered 43, 332, while RiboTaper

and ORFscore recovered 35, 746 and 36, 120 translating exons, respectively (Figure 3.15B). We

observed a similar performance for the other eight datasets where ribotricer consistently recovered

more truly translating exons compared to the other three methods ( Figures S12).

Longer ORFs have a higher chance of accumulating more ribosomes which leads to richer

features when analyzing the associated RPF profiles. In order for ribotricer to be capable of

detecting both short and long ORFs, the phase scores generated should be independent of the

length of the ORF assessed. We investigated the effect of ORF length on the scores or the

p-values generated by each method. The phase score generated by ribotricer is unaffected by

the length of ORF while RiboCode, RiboTaper, and ORFscore generate a higher score or more

significant P value as the ORF gets longer (Figure 3.14).

Finally, we compared the performance of ribotricer with other methods in terms of F1 score

using the default cutoff for each method. Since we learned the cutoff for ribotricer from four
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Figure 3.11
ROC plots and Precision-Recall plots for human datasets for exon level classification.
Performance of ribotricer for detecting translating ORFs at exon level is compared
with RiboCode, RiboTaper and ORFscore. The profiles of expressed CCDS exons in
Ribo-seq data were treated as true positive and the corresponding RNA-seq profile as

true negative.
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Figure 3.12
ROC plots and Precision-Recall plots for mouse datasets for exon level classification.
Performance of ribotricer for detecting translating ORFs at exon level is compared
with RiboCode, RiboTaper and ORFscore. The profiles of expressed CCDS exons in
Ribo-seq data were treated as true positive and the corresponding RNA-seq profile as

true negative.

50



X 10 
4

C
C

D
S

 e
x
o

n
s
 N

u
m

.

0

1

2

3

4

SRP003554X 10 
4SRP010679

0

1

2

3

SRP063852
X 10 

4

C
C

D
S

 e
x
o

n
s
 N

u
m

.

0

1

2

3

4

0

2

4

6

8

0

2

4

6

8

10

0

1

2

3

4

5

6

7

0

1

2

3

0

1

2

3

4

5

X 10 
4

C
C

D
S

 e
x
o

n
s
 N

u
m

.

0

1

2

3

4

5

X 10 
4

C
C

D
S

 e
x
o

n
s
 N

u
m

.

0

1

2

3

X 10 
4

C
C

D
S

 e
x
o

n
s
 N

u
m

.

X 10 
4

X 10 
4

X 10 
4

X 10 
4

SRP102021

SRP098789

SRP029589

SRP115915

SRP091889

SRP078005

SRP062407

R
ib
ot
ric

er

O
R
Fs

co
re

R
ib
oT

ap
er

R
ib
oC

od
e

R
ib
ot
ric

er

O
R
Fs

co
re

R
ib
oT

ap
er

R
ib
oC

od
e

BA

Figure 3.13
Number of translating exons recovered when controlling the false positive rate to be
the same. Performance of ribotricer is compared with RiboCode, RiboTaper, and
ORFscore when the false positive rate is controlled to be 0.1. The number of truly
translating exons are shown for both human (A) and mouse (B) datasets. The

profiles of expressed CCDS exons in Ribo-seq data were treated as true positive and
the corresponding RNA-seq profile as true negative.
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real datasets, we summarized the performance of ribotricer on the remaining six datasets that

were not used to learn the empirical cutoff ( Figure S14-S17). Notably, for human HeLa cell

dataset (SRA accession: SRP029589) [25], all methods achieved relatively low F1 score with the

best one to be 0.67 achieved by ribotricer. We checked the angle distribution of the 3D to 2D

projection described earlier for this dataset (Figure 3.7), and found that it displays high noise

level compared to other datasets analyzed, which indicates low data quality. Consequently, we

excluded this dataset from further analysis. For the other two human datasets, ribotricer achieved

an average F1 score of 0.91, and RiboCode achieved an average F1 score of 0.84. RiboTaper

and ORFscore achieved an average F1 score of 0.73 and 0.12, respectively. For the three mouse

datasets, ribotricer achieved an average F1 score of 0.93, and RiboCode achieved an average

F1 score of 0.90. RiboTaper and ORFscore achieved an average F1 score of 0.85 and 0.55,

respectively.

3.3.2 Ribotricer accurately detects translating ORFs at the transcript

level

ORF-RATER [33], RibORF [34], Rp-Bp [36] and RiboWave [90] only detect translating ORFs

at the full transcript level. To evaluate ribotricer against these methods we use a similar to the

comparison strategy as used for exon-level benchmarking. For transcript level comparison, we first

used the area under ROC/PR curves to assess the ability of different methods to distinguish Ribo-

seq profiles from those from RNA-seq data. For human HEK293 cell dataset (SRA accession:

SRP063852), ribotricer correctly distinguished Ribo-seq profiles from the simulated RNA-seq

profiles with an AUROC of 1.0, while both Rp-Bp and RibORF achieved an AUROC of 0.96.
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Figure 3.15
Comparison of performance on detecting translating exons. The performance of
ribotricer is compared with that of RiboCode, RiboTaper, and ORFscore. (A) The
ROC and precision recall curves summarizing performance of ribotricer, RiboCode,

RiboTaper and ORFscore on one human and one mouse dataset. (B) The number of
translating exons recovered when controlling the false positive rate to be the same.
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Figure 3.16
ROC plots and Precision-Recall plots on transcript level for human datasets.
Performance of ribotricer for detecting translating ORFs at transcript level is
compared with RpBp, ribORF and RiboWave. The profiles of expressed CCDS
transcripts in Ribo-seq data were treated as true positive and the corresponding

RNA-seq profile as true negative.
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Figure 3.17
ROC plots and Precision-Recall plots on transcript level for mouse datasets.
Performance of ribotricer for detecting translating ORFs at transcript level is
compared with RpBp, ribORF and RiboWave. The profiles of expressed CCDS
transcripts in Ribo-seq data were treated as true positive and the corresponding

RNA-seq profile as true negative.

56



RiboWave achieved an AUROC of 0.90 (Figure 3.26A). For human HeLa cell dataset (SRA

accession: SRP098789) [1], ribotricer again perfectly distinguished Ribo-seq profiles from the

simulated RNA-seq ones with an AUROC of 1.0, and Rp-Bp achieved an AUROC of 0.91. RibORF

and RiboWave achieved an AUROC of 0.96 and 0.83, respectively (Figure 3.26A). Ribotricer also

consistently outperformed other methods under the PR metric (Figure 3.26A). The complete

results for all human and mouse samples can be found in Figure 3.16 and 3.17. It is worth

mentioning that RibORF [34] uses a classification based method which trains its model by selecting

one-third of the CDS profiles as true positives which might give it an extra advantage in this

comparison. Notably, here we excluded ORF-RATER from the comparison because it always

reports around half the number of detected ORFs compared with other methods, as noticed by

Xiao et al. previously [87].
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Figure 3.18
Comparison of F1 score (exon level) of ribotricer with RiboCode, RiboTaper, and
ORFscore. Performance of ribotricer is compared with RiboCode, RiboTaper, and

ORFscore in terms of F1 score when the default threshold score is used for each tool.
Results are shown for human (A) and mouse (B) datasets. The profiles of expressed
CCDS exons in Ribo-seq data were treated as true positive and the corresponding

RNA-seq profile as true negative.

Next, we compared the performances of different methods by checking the number of truly

translating transcripts recovered when controlling the false positive rate to be the same as 0.1.
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Figure 3.19
Comparison of sensitivity (exon level) of ribotricer with RiboCode, RiboTaper, and
ORFscore. Performance of ribotricer is compared with RiboCode, RiboTaper, and
ORFscore in terms of sensitivity when the default threshold score is used for each
tool. Results are shown for human (A) and mouse (B) datasets. The profiles of
expressed CCDS exons in Ribo-seq data were treated as true positive and the

corresponding RNA-seq profile as true negative.
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Figure 3.20
Comparison of specificity (exon level) of ribotricer with RiboCode, RiboTaper, and
ORFscore. Performance of ribotricer is compared with RiboCode, RiboTaper, and
ORFscore in terms of specificity when the default threshold score is used for each
tool. Results are shown for human (A) and mouse (B) datasets. The profiles of
expressed CCDS exons in Ribo-seq data were treated as true positive and the

corresponding RNA-seq profile as true negative.
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Figure 3.21
Comparison of precision (exon level) of ribotricer with RiboCode, RiboTaper, and
ORFscore. Performance of ribotricer is compared with RiboCode, RiboTaper, and

ORFscore in terms of precision when the default threshold score is used for each tool.
Results are shown for human (A) and mouse (B) datasets. The profiles of expressed
CCDS exons in Ribo-seq data were treated as true positive and the corresponding

RNA-seq profile as true negative.

For the human HEK293 cell dataset (SRA accession: SRP063852), ribotricer recovered 577

truly translating transcripts, while Rp-Bp, RibORF, and RiboWave recovered 508, 542, and 459

translating transcripts, respectively (Figure 3.26B). For the human HeLa cell dataset (SRA acces-

sion: SRP098789), ribotricer recovered 2, 251 truly translating transcripts, and Rp-Bp recovered

1, 730. RibORF and RiboWave recovered 2, 130 and 1, 308 truly translating transcripts, respec-

tively (Figure 3.26B).

Finally, we used the F1 score to assess the performance of ribotricer in detecting actively-

translating transcripts in comparison with other tools. For the two human samples, ribotricer

achieved an average F1 score of 0.99, and Rp-Bp achieved an average F1 score of 0.89. RibORF

and RiboWave achieved an average F1 score of 0.91 and 0.75, respectively. For the three mouse

samples, ribotricer achieved an average F1 score of 0.99, and Rp-Bp achieved an average F1 score

of 0.87. RibORF and RiboWave achieved an average F1 score of 0.97 and 0.69, respectively

(Figure 3.23).
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Figure 3.22
Number of translating transcripts recovered when controlling the false positive rate
to be the same. Performance of ribotricer is compared with RpBp, ribORF, and

RiboWave when the false positive rate is controlled to be 0.1. The number of truly
translating transcripts are shown for both human (A) and mouse (B) datasets. The
profiles of expressed CCDS transcripts in Ribo-seq data were treated as true positive

and the corresponding RNA-seq profile as true negative.
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Performance of different methods on transcript level measured using F1 score.

Performance of ribotricer is compared with RpBp, ribORF, and RiboWave in terms of
F1 score when the default threshold score is used for each tool. The profiles of

expressed CCDS transcripts in Ribo-seq data were treated as true positive and the
corresponding RNA-seq profile as true negative.

AUROC, F1 scores, and p-values for AUROC difference were calculated using the pROC [135]

package in R. For calculating p-values, we used the bootstrap method and set alternative=`greater'.

3.4 Ribotricer’s phase score remains stable on truncated

ORFs

In order to test the ability of ribotricer to correctly predict the translation status of an ORF

whose length has been shortened due to truncation we performed a simulation where for all

candidate ORFs which have atleast 50% of non-empty codons, i.e. codons with non-zero reads,

we truncated it from 3’ end such that the truncated length was 10 − 100% of the original length.

For each such truncated ORF, we calculated ribotricer’s phase score and compared it with the

corresponding RiboCode generated p-value. It is worth mentioning, that among the tools of
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Figure 3.24
Effect of number of codons on ribotricer’s phase score in human dataset. Mean
absolute difference and standard deviation between original phase score using all

codons and the one with down-sampled number of codons. The plot was generated
on human dataset (SRA accession: SRP063852) using 5K genes with at least 50%
valid codons, the down-sampling is repeated 100 times for each gene. Similar trend

is observed for other human datasets.
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Figure 3.25
Effect of number of codons on ribotricer’s phase score in mouse dataset. Mean
absolute difference and standard deviation between original phase score using all

codons and the one with down-sampled number of codons. The plot was generated
on mouse dataset (SRA accession: SRP003554) using 5K genes with at least 50%
valid codons, the down-sampling is repeated 100 times for each gene. Similar trend

is observed for other mouse datasets.
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Figure 3.26
Comparison of performance on detecting translating transcripts.The performance of
ribotricer is compared with that of RibORF, RiboWave, and Rp-Bp. (A) The ROC

and precision recall curves summarizing performance of ribotricer, RibORF, RiboWave
and Rp-Bp on one human and one mouse dataset. (B) The number of translating

transcripts recovered when controlling the false positive rate to be the same.

capable of performing exon level classification, we were able to benchmark ribotricer against only

RiboCode and ORFscore as RiboTaper requires bam files of both RNA-seq and Ribo-seq samples.

Ribotricer’s score for the truncated ORF is negligibly different from the original ORF with

a maximum difference of ±0.05 (Figure 3.27 and 3.28) as demonstrated using a human (SRA

accession: SRP063852) and a mouse dataset (SRA accession: SRP003554). On the other hand,

the RiboCode generated p-values show a clear dependence on the ORF length with the deviation

from original score being as high as ± 100. It is worth mentioning that the differences between
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truncated and original profile for RiboCode are calculated on a log10 scale as it outputs p-values,

while for both ribotricer and ORFscore, the differences are calculated on the same scale as the

scores.

3.4.1 Ribotricer can detect ORFs as short as 20 codons

In order to determine the minimum length of ORF that can be detected by ribotricer we

performed a simulation using the Ribo-seq profiles of genes with total codons > 100 and with at

least 50% non-empty codons. We then randomly sampled 10 − 100 codons, without maintaining

their order explicitly, and generated a “downsampled” profile. The mean absolute difference

between the original phase score calculated using the full length profile versus the “downsampled”

profile with 20 or more codons is smaller than 0.05 and does not change after increasing the

number of codons (Figures 3.24 and 3.25).

3.4.2 Learning species-specific cutoffs

Ribo-seq’s protocol was initially developed to profile the translational landscape in yeast [24],

but it has been widely used to profile the translational status of ORFs in multiple species [136,

137]. We benchmarked ribotricer first using human and mouse datasets where we have access

to CCDS annotated regions as a high confidence ground truth for known protein coding status

(Figures 3.13-3.23). In order to further benchmark ribotricer against other methods, we used

additional public Ribo-seq datasets from Arabidopsis, C. elegans, Drosophila, rat, yeast, and

zebrafish ( Table 3.4). Unlike human and mouse, CCDS annotations are not available for these

species. Hence, for such species, we considered the Ribo-seq profile of annotated CDS regions as
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Figure 3.27
Effect of truncating an ORF on ribotricer’s phase score, RiboCode’s p-values and
ORFscore in human dataset. Mean difference and standard deviation between

original phase score using full length ORF and the ones after truncating it from the
3’ end. The plot was generated on human dataset (SRA accession: SRP063852)
using 5K genes with at least 50% valid codons and truncating it to have indicated

percentage (X-axis) of codons.The differences between truncated and original profile
for RiboCode are calculated on a log10 scale as it outputs p-values, while for both
ribotricer and ORFscore, the differences are calculated on the same scale as the

scores.

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Percentage retained codons

−0.2

−0.1

0.0

0.1

M
ea

n 
+/

- S
D

ribotricer

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Percentage retained codons

−100

−80

−60

−40

−20

0

M
ea

n 
+/

- S
D

RiboCode
10

%
20

%
30

%
40

%
50

%
60

%
70

%
80

%
90

%
10

0%

Percentage retained codons

0

2

4

6

M
ea

n 
+/

- S
D

ORFscore

Figure 3.28
Effect of truncating an ORF on ribotricer’s phase score, RiboCode’s p-values and

ORFscore in mouse dataset. Mean difference and standard deviation between original
phase score using full length ORF and the ones after truncating it from the 3’ end.
The plot was generated on mouse dataset (SRA accession: SRP003554) using 5K
genes with at least 50% valid codons and truncating it to have indicated percentage

(X-axis) of codons. The differences between truncated and original profile for
RiboCode are calculated on a log10 scale as it outputs p-values, while for both
ribotricer and ORFscore, the differences are calculated on the same scale as the

scores.
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the true positive and the corresponding RNA-seq profile as the true negative. In order to establish

if we needed to re-adjust our phase score cutoff for each species separately, we summarized the

phase scores for both Ribo-seq and RNA-seq samples from multiple public datasets (Figure 3.33).

We observed that phase scores of both RNA-seq and Ribo-seq samples vary across species (Figures

3.30, 3.31, and 3.32) with higher variation arising from the Ribo-seq samples. The variation in

phase scores for RNA-seq samples in the same species is limited, though it also exhibits a species

related trend (Figure 3.32). Ribo-seq samples on the other hand exhibit higher intra-species

and across-species heterogeneity. Hence, in order to capture this species-specific differences in

RNA-seq and Ribo-seq scores, we learned cutoffs for each species separately (Table 3.5 and 3.6;

Figure 3.34). It is worth noting that, human and mouse samples that we previously used for

our benchmark exhibit similar variation in RNA-seq and Ribo-seq phase scores besides having

higher Ribo-seq phase scores as compared to all other species. On the other hand, the difference

between Ribo- and RNA-seq phase scores appears to be particularly low in Drosophila datasets

(Figure 3.32).

3.4.3 Learning dataset-specific cutoffs

In studies where both Ribo-seq and RNA-seq experiment are available, it is possible to fine-

tune the phase-score cutoff to be dataset-specific. The Ribo-seq and RNA-seq samples within

the same species can show variation in terms of their phase score (Figure 3.32) and hence, it is

possible that learning dataset-specific cutoffs leads to an overall better performance (Figures 3.38-

3.42). To learn the dataset-specific cutoffs, we calculated the median difference between phase

scores of Ribo-seq and RNA-seq profiles for each dataset over only protein-coding regions. Using a
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Figure 3.29
Example of phase scores for an active and a non-active ORF. Phase score generated

by ribotricer for two different profiles.
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Figure 3.30
Summarized median phase score for RNA-seq and Ribo-seq for all datasets. For each
dataset, the median phase score was calculated for all the candidate ORFs for both

Ribo-seq and the corresponding RNA-seq sample.
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Figure 3.31
Median phase score for RNA-seq and Ribo-seq and their differences across multiple

species. For each dataset, the median phase score was calculated for all the
candidate ORFs for both Ribo-seq and the corresponding RNA-seq sample. Same as
Figure 3.30 except that the RNA- and Ribo-seq samples have been separated into

individual panels.
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Figure 3.32
Distribution of median phase scores for RNA-seq and Ribo-seq samples and their

differences across multiple species. For each species, medians were calculated on the
collection of merged datasets for that species.
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Figure 3.33
Distribution of individual RNA-seq and Ribo-seq samples’ phase scores across

species. For each dataset phase scores were calculated for all candidate ORFs. For
human and mouse, Ribo-seq CCDS profiles were treated as true positive and the
corresponding RNA-seq profile was treated as true negative. For all other species
Ribo-seq profile of annotated CDS regions were treated as true positive and the

corresponding RNA-seq profile treated as true negative.
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sampling strategy where a one-third fraction of protein-coding profiles were used to determine the

median difference between Ribo-seq and RNA-seq profiles with replacement (𝑛bootstraps = 10000)

[102], the dataset-specific cutoff was assigned to be the median of these differences. It is worth

mentioning that this approach is only viable for studies where both Ribo-seq and RNA-seq samples

are available. The dataset-specific cutoffs result in ribotricer achieving higher F1 scores in some

but not all datasets (Tables 3.9-3.11; Figures 3.38-3.42). In all our datasets, a median difference

of 0.25 or more between Ribo-seq and RNA-seq protein-coding profiles results in an F1 score

greater than 0.73 (Figure 3.41). Given a set of Ribo-seq and RNA-seq mapped files (BAM), the

dataset-specific cutoffs can be determined by using ribotricer learn-cutoff.

Table 3.6
Species specific recommended phase score cutoffs for ribotricer. A “#” indicates the
cutoff for the species is taken to be the median phase score difference between CDS

annotated Ribo-seq and RNA-seq profiles since they only had one dataset each.

Species Cutoff
Arabidopsis 0.330
Baker’s Yeast 0.318
C. elegans 0.249
Drosophila 0.181
Human 0.440
Mouse 0.418
Rat 0.453
Zebrafish 0.249
C. albicans# 0.228
S. pombe# 0.409
Chimpanzee# 0.334
Macaque# 0.321

3.4.4 Running ribotricer on a new species

We provide a list of recommended phase score cutoffs (Table 3.6) for most species where there

are at least three or more public Ribo-seq datasets (Table 3.4). The cutoffs for each species were
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Table 3.7
Species wise mean, median and standard deviation of difference of Ribo-seq and

RNA-seq phase scores. SD = Standard Deviation. A “#” indicates that the median
phase score difference for these species is also considered as cutoff for ribotricer,

since they only had one dataset each.

species number of samples mean dif-
ference
phase score

median
difference
phase score

SD

Arabidopsis 5 0.308 0.365 0.252
Baker’s Yeast 5 0.309 0.287 0.225
C.elegans 4 0.232 0.273 0.235
Drosophila 4 0.048 0.054 0.221
Human 5 0.385 0.428 0.240
Mouse 5 0.468 0.528 0.230
Rat 3 0.260 0.303 0.253
Zebrafish 3 0.325 0.388 0.309
C. albicans# 1 0.228 0.225 0.151
S. pombe# 1 0.380 0.409 0.176
Chimpanzee# 1 0.328 0.334 0.233
Macaque# 1 0.285 0.321 0.218

Ar
ab

id
op

sis

Ba
ke

r's
 Y

ea
st

C.
el

eg
an

s

Dr
os

op
hi

la

Hu
m

an

M
ou

se Ra
t

Ze
br

af
ish

0.00

0.15

0.30

0.45

0.60

ph
as

e 
sc

or
e 

cu
to

ff

Maximizing F1 score

Ar
ab

id
op

sis

Ba
ke

r's
 Y

ea
st

C.
el

eg
an

s

Dr
os

op
hi

la

Hu
m

an

M
ou

se Ra
t

Ze
br

af
ish

0.00

0.15

0.30

0.45

0.60
Median Ribo-RNA difference

Figure 3.34
Distribution of median difference between Ribo-seq and RNA-seq sample as
determined using only two datasets per species. For each species all possible

combinations of two datasets were chosen and median difference between phase
scores of Ribo-seq and RNA-seq determined.
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Table 3.8
Best and second to best performing methods at AUROC metric for each dataset.

The p-values were calculated using pROC [135] package using bootstrap method and
alternative=`greater'. AUROC (B) and AUROC (SB) denotes area under ROC for
the best and the second to best methods respectively. A ∗ indicates the dataset was
later used to learn the ribotricer cutoffs by maximizing the F1 score. The AUROC

values however do not depend on any cutoff.

SRP Species Best (B) Second Best (SB) AUROC (B) AUROC (SB) p-value
SRP018118∗ Arabidopsis ribotricer RiboCode 0.982 0.923 < 2.2 × 10−16

SRP029587 Arabidopsis ribotricer RiboCode 0.897 0.594 < 2.2 × 10−16

SRP059391∗ Arabidopsis ribotricer ORFscore 0.690 0.632 < 2.2 × 10−16

SRP087624 Arabidopsis ribotricer RiboTaper 0.697 0.523 < 2.2 × 10−16

SRP108862 Arabidopsis ribotricer RiboCode 0.732 0.607 < 2.2 × 10−16

SRP000637 Baker’s Yeast ribotricer RiboCode 0.921 0.837 < 2.2 × 10−16

SRP028552∗ Baker’s Yeast ribotricer RiboCode 0.986 0.951 < 2.2 × 10−16

SRP028614 Baker’s Yeast ribotricer RiboCode 0.966 0.846 < 2.2 × 10−16

SRP033499 Baker’s Yeast ribotricer RiboCode 0.947 0.783 < 2.2 × 10−16

SRP075766∗ Baker’s Yeast ribotricer RiboCode 0.996 0.962 < 2.2 × 10−16

SRP010374∗ C. elegans ribotricer RiboCode 0.867 0.776 < 2.2 × 10−16

SRP014427 C. elegans ORFscore ribotricer 0.927 0.920 3.774 × 10−14

SRP026198∗ C. elegans ORFscore ribotricer 0.956 0.908 < 2.2 × 10−16

SRP056647 C. elegans RiboCode RiboTaper 0.745 0.745 0.247
SRP028243∗ Drosophila ribotricer RiboCode 0.725 0.587 < 2.2 × 10−16

SRP045475 Drosophila ORFscore RiboTaper 0.633 0.522 < 2.2 × 10−16

SRP076919 Drosophila ORFscore ribotricer 0.638 0.465 0.317
SRP108999∗ Drosophila ribotricer RiboTaper 0.884 0.727 0.068
SRP010679∗ Human ribotricer RiboCode 0.944 0.849 < 2.2 × 10−16

SRP029589 Human ribotricer RiboCode 0.846 0.701 < 2.2 × 10−16

SRP063852 Human ribotricer RiboCode 0.969 0.930 < 2.2 × 10−16

SRP098789∗ Human ribotricer RiboCode 0.975 0.908 < 2.2 × 10−16

SRP102021 Human ribotricer RiboCode 0.961 0.927 < 2.2 × 10−16

SRP003554∗ Mouse RiboCode ribotricer 0.974 0.972 2.045 × 10−6

SRP062407 Mouse RiboCode ORFscore 0.986 0.981 < 2.2 × 10−16

SRP078005 Mouse ribotricer RiboCode 0.989 0.968 < 2.2 × 10−16

SRP091889 Mouse ribotricer RiboCode 0.981 0.966 < 2.2 × 10−16

SRP115915∗ Mouse ribotricer RiboCode 0.926 0.923 1.095 × 10−11

ERP007231∗ Rat RiboTaper RiboCode 0.955 0.953 3.321 × 10−9

SRP045777 Rat ribotricer RiboCode 0.793 0.746 < 2.2 × 10−16

SRP056012∗ Rat ORFscore RiboCode 0.971 0.872 < 2.2 × 10−16

SRP010040∗ Zebrafish ribotricer ORFscore 0.658 0.562 < 2.2 × 10−16

SRP023492 Zebrafish ribotricer ORFscore 0.970 0.958 < 2.2 × 10−16

SRP034750∗ Zebrafish ribotricer RiboCode 0.995 0.977 < 2.2 × 10−16

SRP032814 C. albicans ribotricer RiboCode 0.953 0.842 < 2.2 × 10−16

SRP062129 Chimp ribotricer ORFscore 0.918 0.883 < 2.2 × 10−16

SRP107240 S. pombe ribotricer RiboCode 0.972 0.939 < 2.2 × 10−16

SRP062129 Macaque ribotricer ORFscore 0.904 0.854 < 2.2 × 10−16
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Table 3.9
Best and second to best performing methods at F1 score metric for each dataset

using dataset-specific cutoff. F1 (B) and F1 (SB) denotes the F1 scores for the best
and the second to best methods respectively. An asterisk (∗) indicates that the

dataset was used to learn the cutoffs by maximizing the F1 score. A # indicates the
ribotricer phase score cutoff for the dataset is taken to be the median phase score

difference between CDS annotated Ribo-seq and RNA-seq profiles.

SRP Species Best (B) Second Best (SB) F1 (B) F1 (SB)
SRP018118∗ Arabidopsis ribotricer RiboCode 0.937 0.848
SRP029587 Arabidopsis ribotricer RiboCode 0.645 0.176
SRP059391∗ Arabidopsis ribotricer RiboCode 0.562 0.361
SRP087624 Arabidopsis ribotricer ORFscore 0.675 0.338
SRP108862 Arabidopsis ribotricer RiboCode 0.628 0.333
SRP000637 Baker’s Yeast RiboCode ribotricer 0.680 0.503
SRP028552∗ Baker’s Yeast ribotricer RiboCode 0.964 0.859
SRP028614 Baker’s Yeast ribotricer RiboCode 0.855 0.738
SRP033499 Baker’s Yeast RiboCode RiboTaper 0.747 0.705
SRP075766∗ Baker’s Yeast ribotricer RiboTaper 0.951 0.877
SRP010374 C. elegans ribotricer RiboCode 0.799 0.517
SRP014427 C. elegans ribotricer RiboCode 0.826 0.776
SRP026198∗ C. elegans ribotricer RiboCode 0.828 0.636
SRP056647 C. elegans ribotricer RiboCode 0.690 0.634
SRP028243∗ Drosophila ribotricer RiboCode 0.693 0.562
SRP045475 Drosophila ribotricer RiboCode 0.561 0.391
SRP076919 Drosophila ribotricer RiboCode 0.667 0.125
SRP108999∗ Drosophila ribotricer RiboCode 0.769 0.400
SRP010679∗ Human ribotricer RiboCode 0.877 0.773
SRP029589 Human ribotricer RiboCode 0.651 0.599
SRP063852 Human ribotricer RiboCode 0.919 0.854
SRP098789∗ Human ribotricer RiboCode 0.932 0.824
SRP102021 Human ribotricer RiboCode 0.890 0.835
SRP003554∗ Mouse RiboTaper ribotricer 0.901 0.899
SRP062407 Mouse RiboTaper ribotricer 0.930 0.910
SRP078005 Mouse ribotricer RiboCode 0.951 0.901
SRP091889 Mouse ribotricer RiboCode 0.938 0.900
SRP115915∗ Mouse ribotricer RiboCode 0.853 0.842
ERP007231∗ Rat ribotricer RiboTaper 0.879 0.874
SRP045777 Rat RiboCode ribotricer 0.618 0.511
SRP056012∗ Rat ribotricer RiboCode 0.787 0.786
SRP010040∗ Zebrafish ribotricer RiboCode 0.670 0.377
SRP023492 Zebrafish RiboCode ribotricer 0.838 0.826
SRP034750∗ Zebrafish RiboCode ribotricer 0.920 0.894
SRP032814# C.albicans ribotricer RiboCode 0.883 0.752
SRP062129# Chimp ribotricer RiboCode 0.865 0.436
SRP062129# Macaque ribotricer RiboCode 0.842 0.635
SRP107240# S. pombe ribotricer RiboCode 0.913 0.869 75



Table 3.10
Best and second to best performing methods at F1 score metric for each

dataset-specific cutoff. F1 (B) and F1 (SB) denotes the F1 scores for the best and
the second to best methods respectively. The cutoff was learned independently for
each dataset as the median difference between Ribo-seq and RNA-seq phase scores

over protein coding ORFs.

SRP Species Best (B) Second Best (SB) F1 (B) F1 (SB)
SRP018118 Arabidopsis ribotricer RiboCode 0.920 0.848
SRP029587 Arabidopsis ribotricer RiboCode 0.846 0.176
SRP059391 Arabidopsis ribotricer RiboCode 0.678 0.361
SRP087624 Arabidopsis ribotricer ORFscore 0.671 0.338
SRP108862 Arabidopsis ribotricer RiboCode 0.695 0.333
SRP000637 Baker’s Yeast ribotricer RiboCode 0.850 0.680
SRP028552 Baker’s Yeast ribotricer RiboCode 0.928 0.859
SRP028614 Baker’s Yeast ribotricer RiboCode 0.923 0.738
SRP033499 Baker’s Yeast ribotricer RiboCode 0.904 0.747
SRP075766 Baker’s Yeast ribotricer RiboTaper 0.935 0.877
SRP010374 C.elegans ribotricer RiboCode 0.798 0.517
SRP014427 C.elegans ribotricer RiboCode 0.868 0.776
SRP026198 C.elegans ribotricer RiboCode 0.846 0.636
SRP056647 C.elegans ribotricer RiboCode 0.716 0.634
SRP028243 Drosophila ribotricer RiboCode 0.679 0.562
SRP045475 Drosophila ribotricer RiboCode 0.667 0.391
SRP076919 Drosophila ribotricer RiboCode 0.667 0.125
SRP108999 Drosophila ribotricer RiboCode 0.818 0.400
SRP010679 Human ribotricer RiboCode 0.878 0.773
SRP029589 Human ribotricer RiboCode 0.765 0.599
SRP063852 Human ribotricer RiboCode 0.919 0.854
SRP098789 Human ribotricer RiboCode 0.922 0.824
SRP102021 Human ribotricer RiboCode 0.900 0.835
SRP003554 Mouse ribotricer RiboTaper 0.919 0.901
SRP062407 Mouse ribotricer RiboTaper 0.936 0.930
SRP078005 Mouse ribotricer RiboCode 0.944 0.901
SRP091889 Mouse ribotricer RiboCode 0.924 0.900
SRP115915 Mouse ribotricer RiboCode 0.863 0.842
ERP007231 Rat RiboTaper RiboCode 0.874 0.867
SRP045777 Rat ribotricer RiboCode 0.722 0.618
SRP056012 Rat RiboCode ribotricer 0.786 0.738
SRP010040 Zebrafish ribotricer RiboCode 0.668 0.377
SRP023492 Zebrafish ribotricer RiboCode 0.918 0.838
SRP034750 Zebrafish ribotricer RiboCode 0.937 0.920
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Table 3.11
Ribotricer’s performance at F1 score when considering species-specific or

dataset-specific cutoff F1 (SS) and F1 (DS) denotes the F1 scores for ribotricer
when using species-specif and dataset-specific cutoffs respectively. Ribo-RNA

indicates the median difference between phase score of protein coding ORFs in Ribo-
and RNA-seq samples. ‘sampled’ indicates the median was calculated using 30% of
protein coding ORFs per dataset with resampling (𝑛bootstraps = 10000) while ‘all’

indicates the median was calculated using the complete list of protein coding ORFs.

SRP species F1 (SS) F1 (DS) Ribo-RNA (sampled) Ribo-RNA (all)
SRP018118 Arabidopsis 0.937 0.920 0.455 0.447
SRP029587 Arabidopsis 0.645 0.846 0.206 0.191
SRP059391 Arabidopsis 0.562 0.678 0.109 0.104
SRP087624 Arabidopsis 0.675 0.671 0.233 0.145
SRP108862 Arabidopsis 0.628 0.695 0.181 0.154
SRP000637 Baker’s Yeast 0.503 0.850 0.186 0.179
SRP028552 Baker’s Yeast 0.964 0.928 0.383 0.382
SRP028614 Baker’s Yeast 0.855 0.923 0.267 0.263
SRP033499 Baker’s Yeast 0.573 0.904 0.204 0.194
SRP075766 Baker’s Yeast 0.951 0.935 0.694 0.671
SRP010374 C.elegans 0.799 0.798 0.224 0.222
SRP014427 C.elegans 0.826 0.868 0.343 0.334
SRP026198 C.elegans 0.828 0.846 0.322 0.316
SRP056647 C.elegans 0.690 0.716 0.141 0.135
SRP028243 Drosophila 0.693 0.679 0.109 0.098
SRP045475 Drosophila 0.561 0.667 -0.019 -0.020
SRP076919 Drosophila 0.667 0.667 -0.025 -0.034
SRP108999 Drosophila 0.769 0.818 0.363 0.360
SRP010679 Human 0.878 0.878 0.421 0.404
SRP029589 Human 0.651 0.765 0.234 0.223
SRP063852 Human 0.919 0.919 0.522 0.498
SRP098789 Human 0.932 0.922 0.526 0.514
SRP102021 Human 0.891 0.900 0.427 0.417
SRP003554 Mouse 0.900 0.919 0.542 0.526
SRP062407 Mouse 0.910 0.936 0.588 0.568
SRP078005 Mouse 0.951 0.944 0.603 0.591
SRP091889 Mouse 0.939 0.924 0.509 0.497
SRP115915 Mouse 0.854 0.863 0.372 0.361
ERP007231 Rat 0.879 0.863 0.403 0.388
SRP045777 Rat 0.511 0.722 0.176 0.173
SRP056012 Rat 0.787 0.738 0.264 0.247
SRP010040 Zebrafish 0.670 0.668 0.136 0.108
SRP023942 Zebrafish 0.826 0.918 0.512 0.502
SRP034750 Zebrafish 0.894 0.937 0.660 0.649
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Figure 3.35
Distribution of area under ROC (AUROC) across multiple species. For each Ribo-seq

and RNA-seq pair in a dataset, area under ROC was calculated for exon level
classification using Ribotricer, Ribotaper, RiboCode and ORFScore.
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Figure 3.36
Distribution of F1 scores across species using species-specific cutoff. For each species

two datasets were used to learn the cutoff score of ribotricer for that species.

79



0.5

0.6

0.7

0.8

0.9

1.0

AU
RO

C

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

Median RNA-seq phase score (RNA)

0.5

0.6

0.7

0.8

0.9

F1
 sc

or
e

0.
24

0.
32

0.
40

0.
48

0.
56

0.
64

0.
72

0.
80

Median Ribo-seq phase score (RIBO) −0
.1 0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Difference (RIBO-RNA)
Arabidopsis
Baker's Yeast

C.elegans
Drosophila

Human
Mouse

Rat
Zebrafish

Figure 3.37
Performance of ribotricer at AUROC and F1 scores metrics across species at different
median phase scores of RNA-seq and Ribo-seq samples using species-specific cutoff.
For each dataset, median phase score was calculated for both RNA-seq and Ribo-seq

samples for the same list of candidate ORFs.
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Figure 3.38
Distribution of F1 scores across species using dataset-specific cutoff. For each

dataset, the cutoff was learned by determining the median phase score difference
between Ribo-seq and RNA-seq profiles by sampling one-third of the total

protein-coding transcripts 𝑛bootstrap = 10000 times.
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Figure 3.39
Difference in performance of ribotricer using species-specific or dataset-specific

cutoffs. Species-specific cutoffs were learned by maximizing the F1 scores for two
datasets per species while dataset-specific cutoffs were learned per dataset using the
median difference of phase score of Ribo-seq and RNA-seq protein coding profiles.
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Figure 3.40
Summarized performance of ribotricer using species-specific and dataset-specific

strategies. Species-specific cutoffs were learned by maximizing the F1 scores for two
datasets per species while dataset-specific cutoffs were learned per dataset using the
median difference of phase score of Ribo-seq and RNA-seq protein coding profiles.

Species-specific and dataset-specific cutoffs only apply to ribotricer.
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Figure 3.41
Distribution of ribotricer’s F1 scores with respect to median phase score difference of

Ribo-seq and RNA-seq, using species-specific and dataset-specific cuoffs.
Species-specific cutoffs were learned by maximizing the F1 scores for two datasets
per species while dataset-specific cutoffs were learned per dataset using the median
difference of phase score of Ribo-seq and RNA-seq protein coding profiles. The

dashed red lines indicate a median difference of 0.25 between Ribo-seq and RNA-seq
phase scores results in a F1 score of 0.73 and above.
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Effect of Ribo-seq and RNA-seq phase scores on species-specific and dataset-specific

based F1 performance. F1 (DS-SS) indicates difference in F1 scores using
species-specific (SS) or dataset-specific (DS) cutoff. Each single data point

represents one dataset. Median phase scores were calculated using all the candidate
ORF profiler of either RNA-seq or Ribo-seq sample.
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learned empirically by using Ribo-seq and RNA-seq samples from two datasets and maximizing

the F1 score by treating the Ribo-seq profiles of CCDS/CDS regions as ground true positive and

the corresponding RNA-seq profiles as true negatives (Figure 3.34; Table 3.5). However, this

approach is only best suited for species where there are multiple datasets available. For a new

species where there are only few or none datasets available and hence the cutoff cannot be learned

empirically, we recommend using the median score difference between the profiles of annotated

CDS regions of a Ribo-seq and the corresponding RNA-seq sample. This strategy is also used by

RibORF [34] which tunes the parameters of its model by selecting one-third of the CDS profiles

as true positives. We followed this strategy of using the median phase score difference as the

phase score cutoff for each of the four species: C. albicans, chimpanzee, macaque and S. pombe.

Except for S. pombe, all other species have only one public dataset available to the best of our

knowledge (Table S1).

We first generated candidate ORF list for each species using ribotricer over transcripts with

annotated CDS regions. Phase scores were then calculated for each RNA-seq and Ribo-seq sample

over these CDS annotated candidate ORFs (Figure 3.45). The median differences in Ribo-seq

and RNA-seq phase scores for C. albicans, chimpanzee, macaque and S. pombe is summarized

at the end of Table 3.7. We used these differences as species-specific cutoffs for benchmarking

ribotricer against other methods.

Ribotricer results in the best AUROC for all the four species with the difference between

ribotricer and the second best method statistically significant in all the cases (Figure 3.43; Table

3.8). It is worth mentioning that the AUROC metric is not dependent on the choice of the learned

cutoff. Furthermore, ribotricer is also the best method using the F1 score metric (Figure 3.44;

Table 3.9).
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We recommend using the species-specific cutoffs for all the species as listed in Table 3.6. For

any new species, we recommend using median phase score differences on ribotricer generated

candidate ORFs over CDS annotated transcripts between Ribo-seq and RNA-seq samples (Figure

3.45). This can be determined by ribotricer itself, using the learn-cutoff subcommand.

3.5 Using ribotricer

In order to use ribotricer, the following three files are required:

• GTF: genome annotation file in GTF format (ENSEMBL/Gencode/others)

• FASTA: reference genome file in FASTA format

• BAM: alignment file in BAM format

Henceforth, we use the boldface acronyms above to refer to these files as such.

3.5.1 Preparing candidate ORFs list

ribotricer prepares a candidate list of ORFs given a GTF and FASTA file. For any species,

given a reference and a fixed version of GTF, this step only needs to be done once. Ribotricer by

default searches for ORFs defined by an ‘AUG’ start and an in-frame stop codon (‘UAG’, ‘UAA’,

and ‘UGA’) and are a minimum of 60 nucleotides long. It is possible to expand the definition

of ORF by supplying a list of all start codons using the --start_codons parameter. It is also

possible to change the minimum length of an ORF by using the --min_orf_length option. If

multiple potential in-frame start codons exist upstream of a stop codon, we always choose AUG

if it exists, otherwise, we take the most upstream one as the start codon.
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Figure 3.43
Distribution of area under ROC in the independent datasets. For each Ribo-seq and

RNA-seq pair in a dataset, area under ROC was calculated for exon level
classification using Ribotricer, Ribotaper, RiboCode and ORFScore.
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ribotricer prepare-orfs --gtf {GTF} \

--fasta {FASTA} \

--prefix {RIBOTRICER_INDEX}

The command above will create a list of candidate ORFs at the RIBOTRICER_INDEX location.

For this study, we used a total of ten codons with a maximum of one nucleotide difference

from “ATG” as potential start codons including ATA, ATC, ATT, AAG, ACG, AGG, ATG, CTG,

GTG, TTG. Note that we use ’T’ as a nucleotide here instead of ‘U’ as the reference FASTA

almost always contains DNA sequences.

3.5.2 Detecting actively translating ORFs using ribotricer

Ribotricer’s ORF list as created above can then be used along with the BAM to define the

translation status of these ORFs:

ribotricer detect-orfs --bam {BAM} \

--ribotricer_index {RIBOTRICER_INDEX}_candidate_ORFs.tsv \

--prefix {OUT_PREFIX}

For each ORF in the candidate ORFs list, ribotricer calculates the phase score on the read

profiles after performing read length appropriate offset shifts. These offsets are determined by

maximizing the cross-correlation of these profiles with the profile for the most abundant read

length. Additionally, ribotricer automatically infers the sequencing protocol (forward/reverse) and

only uses unique mapping reads that conform to the strand orientation in the GTF. For example,

a read uniquely mapping to a gene defined on the negative strand for a forward stranded protocol,

will be discarded.
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In order to assign ‘non-translating’ or ‘translating’ status, ribotricer, by default, uses a cutoff

threshold of 0.428. ORFs with phase score above 0.428 are marked as translating as long as

they have at least five codons with non-zero read count. Ribotricer does not take coverage into

account for predicting an ORF to be translating or not-translating. Apart from these two criteria,

there is no other requirement for an ORF to be active. Though, a region with higher overall

coverage as defined by number of reads per unit codon might be a more confident ‘hit’ for active

translation, our method is designed to find evidence of active translation based on the qualitative

pattern of “high-low-low” and hence our rankings are purely based on phase scores.

The default cutoff (0.428) was learned using public human and mouse Ribo-seq datasets,

where the gap between Ribo- and RNA-seq phase scores is the highest amongst other species

(Table 3.7) and hence, it is a conservative cutoff for detecting active translation. We provide a list

of species-specific recommended cutoffs (Table 3.6), optimized for F1 score based performance.

The main output of the above command is a tab separated file consisting for each candidate

ORF, its translation status, the corresponding transcript and gene and the ORF type. Different

ORF types defined by ribotricer are described below:

• annotated: CDS annotated in the provided GTF file

• super_uORF: upstream ORF of the annotated CDS, not overlapping with any CDS of

the same gene

• super_dORF: downstream ORF of the annotated CDS, not overlapping with any CDS of

the same gene

• uORF: upstream ORF of the annotated CDS, not overlapping with the main CDS
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• dORF: downstream ORF of the annotated CDS, not overlapping with the main CDS

• overlap_uORF: upstream ORF of the annotated CDS, overlapping with the main CDS

• overlap_dORF: downstream ORF of the annotated CDS, overlapping with the main CDS

• novel: ORF in non-coding genes or in non-coding transcripts of coding genes

3.5.3 Filtering actively translating ORFs using multiple criteria

In order to assign ‘non-translating’ or ‘translating’ status, ribotricer by default uses a cutoff

threshold of ‘0.428’. ORFs with phase score above ‘0.428’ are marked as translating as long as

they have at least five codons with non-zero read count. By default, ribotricer does not take

coverage or count information explicitly into account for predicting an ORF to be translating or

not-translating. However, this behavior can be changed by following filters:

• --min_valid_codons (default=5): Minimum number of codons with non-zero reads for

determining active translation

• --min_valid_codons_ratio (default=0): Minimum ratio of codons with non-zero reads

to total codons for determining active translation

• --min_reads_per_codon (default=0): Minimum number of reads per codon for deter-

mining active translation

• --min_read_density (default=0.0): Minimum read density (total reads/length) over an

ORF total codons for determining active translation

For each of the above filters, an ORF failing any of the filters is marked as ‘non-translating’.
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For example, to ensure that each ORF has at least 3/4 of its codons non-empty, we can

specify

--min_valid_codons_ratio to be 0.75:

ribotricer detect-orfs --bam {BAM} \

--ribotricer_index {RIBOTRICER_INDEX}_candidate_ORFs.tsv \

--prefix {OUTPUT_PREFIX}

--min_valid_codons_ratio 0.75

It might also often be desired to have some minimum density of reads over an ORF. The

read density here is defined as the ratio of total number of reads over an ORF to its length. For

example to ensure that each ‘translating’ ORF has at least a read density of 10, we will specify

--min_read_density to be 10.

ribotricer detect-orfs --bam {BAM} \

--ribotricer_index {RIBOTRICER_INDEX}_candidate_ORFs.tsv \

--prefix {OUTPUT_PREFIX}

--min_read_density 10.0

The above filters can be combined to give ORFs that have high read density as well as have

have reads present over most of the codons in the profile. Note that increasing the value of any

of the four filters will usually result in a smaller list of ORFs marked ‘translating’.

3.5.4 Downstream ranking and filtering

It is also possible to filter actively-translating ORFs after running ribotricer. Ribotricer pro-

duces a tab separated file with columns that include read-density, number and ratio of valid
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codons to total codons in the ORF besides the phase score. As such, filtering can be performed

downstream using awk or any other programming language. Here we provide an example of

filtering and sorting the output of a ribotricer run using Python using the pandas library:

Listing 3.1
Filtering ORFs using python. The function returns a filtered list of translating ORFs
which have a read density of at least 2.5; a total read count of atleast 50; and the

ratio of non-empty codons to total codons atleast 0.75.

import pandas as pd

def f i l t e r e d _ d f ( d f ) :

d f _ f i l t e r e d = d f . l o c [ d f . s t a t u s==’ t r a n s l a t i n g ’ ]

d f _ f i l t e r e d = d f . l o c [ ( d f [ ’ r e a d_d e n s i t y ’ ] >=2.5) & \

( d f [ ’ r ead_count ’ ]>=50) & \

( d f [ ’ v a l i d _ c o d o n s_ r a t i o ’ ] >=0.75) ]

d f_ s o r t e d = d f _ f i l t e r e d . s o r t _ v a l u e s ( by=[ ’ pha s e_s co r e ’ ,

’ r e a d_d e n s i t y ’ ] ,

a s c e n d i n g =[ Fa l s e ,

F a l s e ] )

return d f_ s o r t e d

# read r i b o t r i c e r ou tpu t

r i b o t r i c e r _ o u t p u t _ d f = pd . r ead_csv ( ’ / path / to / t r a n s l a t i n g_ORFs . t s v ’ , s ep= ’ \ t ’ )

# f i l t e r and s o r t r i b o t r i c e r ou tpu t
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r i b o t r i c e r _ f i l t e r e d _ d f = f i l t e r e d _ d f ( r i b o t r i c e r _ o u t p u t _ d f )

3.5.5 Learning cutoff empirically from data

Ribotricer can learn cutoff empirically from the data. Given at least one Ribo-seq and one

RNA-seq BAM file, ribotricer learns the cutoff by running one iteration of the algorithm on the

provided files with a pre-specified cutoff (--phase_score_cutoff, default: 0.428) and then uses

the generated output to find the median difference between Ribo-seq and RNA-seq phase scores

of only candidate ORFs with transcript_type annotated as protein_coding:

ribotricer learn-cutoff --ribo_bams ribo_bam1.bam,ribo_bam2.bam \

--rna_bams rna_1.bam \

--prefix ribo_rna_prefix \

--ribotricer_index {RIBOTRICER_ANNOTATION}

By default, ribotricer searches for ORFs that are at least 60 nucleotides or 20 codons long

to build the candidate list but this minimum length can be set to a user-defined value. We

arrived at the default value of 20 codons by performing a simulation using the Ribo-seq profiles

of genes with total codons > 100 and with at least 50% non-empty codons. In the simulation, we

randomly sampled 10 − 100 codons and generated a “downsampled” profile. The mean absolute

difference between the original phase score calculated using the full length profile versus the

“downsampled” profile with 20 or more codons is smaller than 0.05 and does not change after

increasing the number of codons (Figs. 3.24 and 3.25).

Ribotricer enables discovery of both short and long ORFs that will deepen our understanding

of translational regulation across various biological contexts. We envision ribotricer’s phase score
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to become a commonly used quality control metric for assessing the quality of Ribo-seq datasets,

especially for novel datasets in species where no prior datasets exist.
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Chapter 4

Translational landscape of morphological changes in

Candida albicans

4.1 Introduction

Environmental human pathogens have evolved the ability to survive in diverse environmental

conditions. Fungal diseases have remained an important public health problem since the early

1980s [138]. Candidemia and other forms of invasive candidasis remain one of the most prevalent

mycoses [139] and Candida albicans (C. albicans) remains the most common species respon-

sible for it [140]. C. albicansis a fungal pathogen that inhabits the mucosal surfaces of most

healthy individuals as human commensals. Though mostly asymptomatic, C. albicansis an op-

portunistic pathogen known to causes disease in individuals with a debilitated immune system or

a disruption in the host’s microbiome [141]. It normally manifests as a commensal in the human

gastrointestinal tract, oral and vaginal cavities. Immunocompromised individuals such as organ

transplant patients, patients undergoing cytotoxic or immunosupressive therapies, and HIV/AIDS

patients are particularly at higher risk of infection [142]. Candida infections are associated with
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considerable mortality and morbidity [139, 143, 144]. C. albicans’s virulence arises because of

its ability to 1) form true hyphae 2) resist phagocytosis 3) adhere to the host surfaces, and 4)

secrete proteinase [141].

C. albicans are aerobic yeasts yet can grow anaerobically [145] and have a diploid genome. It

adheres to the host cells epithelial surface via the molecular adhesins located in its cellular enve-

lope. They are capable of undergoing a reversible morphological transition from single budding

yeasts to a continuously branching filaments via a transitory psuedohyphal state. This ability of

C. albicans to undergo reversible filamentous transition is one of the key reasons responsible for

its virulence [146]. The yeast to filament transition in C. albicans occurs in a variety of conditions,

but most importantly in the presence of serum at body temperature (37°C). Understanding the

transcriptional and translational mechanisms behind this morphological transition can provide a

better understanding of its pathogenesis. It can also help in the development of new anti-fungal

drugs that can prevent infections in immunocompromised patients. Here, we provide a compre-

hensive study of the changes in transcriptional and translational landscape using deep sequencing

Ribo-seq and RNA-seq in yeast and filamentous like growth conditions.

4.2 Results

4.2.1 Deep RNA sequencing and Ribosome profiling of C. albicans

under yeast and filamentous like growth conditions

In order to study the transcriptional and translational landscape changes involved in yeast

to filamentous transition, we performed deep sequencing of mRNA and ribosome bound mRNA
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fragments in C. albicans cells growing at 30° C and 37°C in the presence of serum (Figure 4.2).

While cells at 30°C undergo yeast like growth, the cells at 37°C in the presence of serum show

filamentous growth. From all experiments, we obtained a total of 246.2 million reads with a

median of 6.25 million reads for Ribo-seq and 20.5 million reads for RNA-seq experiments (Figure

4.1).

4.2.2 Changes in the transcriptional landscape

In order to study changes that occur at the transcriptional level during yeast to filamen-

tous transition, we performed differential expression analysis between the two conditions. Using

DESeq2 [147], we identified a total of 498 genes that are up-regulated (log2 fold change > 1;

adjusted p < 0.05) and 385 that are down-regulated (log2 fold change < −1; adjusted p < 0.05).

A gene ontology analysis reveals, that while the up-regulated genes show enrichment in filamen-

tous growth, nuclear periphery, and cellular bud neck besides other terms (Figure 4.4A). On the

other hand, the down-regulated genes are involved in translation, ribosome and rRNA synthesis

(Figure 4.4B). Table 4.1 highlights some of the genes that are transcriptionally induced dur-

ing the morphological transition, have virulence-related properties and show significantly reduced

translational efficiency (TE).

4.2.3 Translational landscape changes

In order to identify changes at the translational landscape, we sequenced the ribosome pro-

tected fragments (RPFs) in the two conditions following the protocol of Ingolia et al. [148]. RPFs

are enriched in the range of 28-32 nucleotides as expected (Figure 4.2A). There is high correlation
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Distribution of total reads segregated by read length in Ribo-seq and RNA-seq

experiments. Total read counts are displayed in parenthesis.

100



●
● ●

●

●

●

−10

−5

0

5

10

−20 −10 0 10 20

PC1: 57% variance

P
C

2
: 

1
7

%
 v

a
ri

a
n

c
e

●

●

30°C

37°C + Serum

RNA-seq

Ribo-seq

●

10 15 20 25 30 35 40 45 50

0

150K

300K

450K

600K

750K

900K

1.1M

1.2M

Mapped read length (nt)

N
u

m
b

e
r 

o
f 

re
a

d
s

log2(1+TPM) RNA-seq

Figure 4.2
Ribosome profiling in Candida albicans. A) Read length distribution in a 30 ° C

sample. B) Principle component analysis of Ribo-seq and RNA-seq samples in 30° C
and 37° + Serum samples. C) Correlation between read counts measured as mapped
transcripts per million (TPM) between a RNA-seq and the corresponding Ribo-seq
sample. D) Metagene plot of a ribosome protected fragments (RPF) and RNA-seq

fragments.

101



0 1 0

log2 (1+TPM) Ribo 30°C #1

0

5

1 0

1 5
lo

g
2
 (

1
+

T
P

M
) 

R
ib

o
 3

0
°C

 #
2

0 1 0

log2 (1+TPM) Ribo 37°C + Ser #1

0

5

1 0

1 5

lo
g

2
 (

1
+

T
P

M
) 

R
ib

o
 3

7
°C

 +
 S

e
r 

#
2

0 5 10
log2 (1+TPM) RNA 30°C #1

0

5

10

lo
g

2
 (

1
+

T
P

M
) 

R
N

A
 3

0
°C

 #
2

0 5 1 0

log2 (1+TPM) RNA 37°C + Ser #1

0

5

1 0

lo
g

2
 (

1
+

T
P

M
) 

R
N

A
 3

7
°C

 +
 S

e
r 

#
2

Figure 4.3
Correlation between replicates across conditions. Each row indicates pairwise

correlation between the three replicates belonging to A) 30°C and B) 37° C + Serum
conditions across RNA-seq and Ribo-seq.

102



●

●
●

●

translation regulator activity

translation
structural molecule activity

ribosome

mitochondrion

●

●

●
●

●

RNA binding

nucleolus

ribosome biogenesis RNA metabolic process

nucleus

A

0.05 0.1 0.15 0.2
Gene Ratio

cell adhesion

cell wall organization

biofilm formation

extracellular region

cell wall

pathogenesis

carbohydrate metabolic process

interspecies interaction between organisms

filamentous growth

response to stress

Count

15
40
70
100

●

●

●

●

●

●

●

●

●

●

cell adhesion

cell wall organization

biofilm formation

extracellular region

cell wall

pathogenesis

carbohydrate metabolic process

interspecies interaction between organisms

filamentous growth

response to stress

B

0.05 0.1 0.15 0.2 0.25 0.3
Gene Ratio

translation regulator activity

translation

ribosome

structural molecule activity

RNA binding

nucleolus

mitochondrion

ribosome biogenesis

RNA metabolic process

nucleus

Reduced DE Increased DE

Count

15
40
70
100

Count

10
40
60

120

Count

10
40
60

120

Figure 4.4
Differential expression analysis between 37° C + Serum and 30° C samples. Gene

ontology of A) down-regulated and B) up-regulated genes.

103



A B

T
E

D
E

-R
ib

o

D
E

-R
N

A

-4

-2

0

2

4

6

8

log2 fold change

0

1

2

3

6 3 0 3 6

log2 fold change

-l
o

g
1

0
P

increased TENSreduced TE

Figure 4.5
Differential translational efficiency between 37°𝐶 + Serum and 30°C samples. A)
Volcano plot showing the fold change in translational efficiency (TE) and the
associated p-value. Differential TE genes are defined with the criteria log2 fold
change > 1 (red, increased TE) or < −1 (green, reduced TE) and 𝑃 < 0.05. B)

Heatmap showing fold changes at the TE, RNA-seq and Ribo-seq levels for the genes
highlighted in A.

104



Gene name Ref. # Description Fold
change
(mRNA)

Fold
change
(TE)

C3_07980C orf19.6192 protein of unknown function; Plc1-
regulated

7.6 -
109.1

TLO1 orf19.7544 member of TLO gene family 15.0 -22.8
C3_05990C orf19.7380 protein of unknown function 17.8 -13.9
TLO34 orf19.2661 member of TLO gene family 21.4 -7.3
ECE1 orf19.3374 candidalysin, cytolytic peptide

toxin essential for mucosal infec-
tion

388.0 -5.5

HWP1 orf19.1321 hyphal wall protein, adhesin, host
transglutaminase substrate mimic

362.0 -5.4

SKN7 orf19.971 Putative response regulator in
phophorelay signal transduction;
required for H2O2 resistance

3.7 -4.9

DDR48 orf19.4082 immunogenic stress-associated pro-
tein

22.2 -4.5

HXK1 orf19.2154 GlcNAc kinase; required for hyphal
growth and virulence

4.2 -4.3

RBT1 orf19.1327 cell wall protein similar to Hwp1;
required for virulence

64.4 -2.7

SFU1 orf19.4869 GATA-type transcriptional regula-
tor of iron-responsive genes; pro-
motes gastrointestinal commensal-
ism

2.0 -2.3

SFL2 orf19.3969 transcriptional regulator of mor-
phogenesis

2.0 -2.3

SLK19 orf19.6763 Alkaline-induce plasma membrane
protein important for cell wall; re-
quired for virulence

2.2 -2.1

Table 4.1
Genes transcriptionally induced during the C. albicans morphological transition and

involved in pathogenesis and/or virulence-related properties show significantly
reduced translational efficiency (TE)
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(> 0.8, p-value < 0.05) between Ribo-seq and RNA-seq normalized read counts (Figure 4.2B and

4.3) while the metagene plots are periodic indicating the samples are representative of actively

translation (Figure 4.2D).

We used ribotricer [149] to filter out actively translating fragments for all Ribo-seq exper-

iments. Ribotricer exploits the periodicity information in Ribo-seq data to separate out the

actively-translating from non-actively translating fragments. In order to identify changes in the

translational landscape, we focused on genes showing differential translational efficiency. Trans-

lational efficiency is a measure of the rate of mRNA translation into proteins and can be approx-

imated as the ratio of Ribo-seq to the corresponding RNA-seq normalized read counts. We used

riborex [150] to identify genes that are differentially translationally efficient during the morpho-

logical transition. Gene ontology analysis reveals the genes showing higher translational efficiency

are involved in pathogenesis and hyphael growth (Figure 4.5). Some of the key genes showing

increased translational efficiency are highlighted in Table 4.2 while Table 4.1 highlights some key

genes that are transcriptionally induced but show reduced translational efficiency.

4.2.3.1 Re-annotating the C. albicans transcriptome

The transcriptome annotation made available through the Candida Genomes Database (CGD)

(http://www.candidagenome.org/) only contains the genomic coordinates of exons and coding

domain sequences. The 5’ and 3’ untranslated regions (UTRs) are currently not annotated in the

annotation file (GTF) made available through CGD website. However, Bruno et al. [151] provide

coordinates for both 5’ UTRs and 3’ UTRs for Assembly 21.

We expanded the current annotation of exons and coding sequences by also adding UTR

coordinates made available by Bruno et al. [151]. Since the annotation were made using
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Gene name Ref. # Description Fold change (TE)
AAP1 orf19.2810 putative amino acid permease; fungal-specific 40.5
FET3 orf19.4213 multicopper oxidase 33.8
SAP98 orf19.852 GPI-anchored aspartic endopeptidase 32.7
CDC14 orf19.4192 Protein involved in exit from mitosis and morphogenesis 26.2
SAP7 orf19.756 pepstatin A-insensitive secreted aspartyl protease 22.5
HGT20 orf19.1587 putative glucose transporter of the major facilitator su-

perfamily
13.3

MED8 orf19.4497 ortholog of RNA Polymerase II Mediator complex com-
ponent

12.3

GNP3 orf19.7565 putative high-affinity glutamine permease; fungal-
specific

9.8

UEC1 orf19.4646 protein required for oral epithelial cell damage, hyphal
growth and stress resistance

8.7

MAL31 orf19.3981 putative high-affinity maltose transporter 8.5
SSU1 orf19.7313 protein similar to S. cerevisiae Ssu1 sulfite transporter;

important for filamentous growth
5.9

LIP6 orf19.4823 secreted lipase 5.8
BMT8 orf19.860 putative 𝛽-mannosyltransferase 5.7
ALG6 orf19.1843 putative glucosyltransferase involved in cell wall mannan

biosynthesis
4.8

HGT5 orf19.6005 putative glucose transporter of the major facilitator su-
perfamily

4.7

PSA2 orf19.4943 mannose-1-phosphate guanyltransferase 4.6
MNN24 orf19.1995 𝛼-1,2-mannosyltransferase; required for normal cell wall

mannan content
4.3

CHS7 orf19.2444 Protein required for chitin synthase III activity 4.1
HYR1 orf19.4975 GPI-anchored hyphal cell wall protein; important for re-

sistance to killing by neutrophils, azoles
4.1

HMS1 orf19.921 hLh domain Myc-type transcription factor required for
morphogenesis

3.6

TPO5 orf19.151 putative polyamine transporter 3.5
OPT8 orf19.5770 oligopeptide transporter 3.5
CEK1 orf19.2886 ERK-family protein kinase; required for yeast-hyphal

switch, mating efficiency and virulence
3.5

PTC8 orf19.4698 predicted type 2C protein phosphatase; required for hy-
phal growth

3.1

RPD3 orf19.2834 histone deacetylase; regulates white-opaque switching 3.1
BEM1 orf19.4645 protein required for budding, hyphal growth and viru-

lence
2.6

RAX2 orf19.3765 plasma membrane protein involved in establishment of
bud sites and linear direction of hyphal growth

2.4

SMF12 orf19.2270 manganese transporter 2.4
Table 4.2

Selected genes showing significantly increased translational efficiency (TE) during the
C. albicans morphological transition. 108
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Figure 4.7
Ribo-seq enables novel ORF discovery. A) Workflow for re-annotating transcriptome
of Candida albicans. B) Distribution of regions in the final annotation as obtained
from workflow in A. Novel indicates exons that were not annotated in the original
annotation. C) Distribution of sizes of 5’ UTR, 3’UTR, CDS and novel exons. D)

Distribution of distances of novel exons (purple, dashed) to known exons and known
exons to other known exons (red). E) A novel exon with active transcription and
translation in both 30°C and 37°C + Serum samples. F) A novel exon with active

transcription with a strong Ribo-seq signal at a stop codon.

Assembly 21 while the current Assembly is 22, we lifted over the coordinates to the latest assembly

using the liftOver [152] tool. The chain file was obtained from CGD. The lifted over candidates

were further filtered to ensure there was no overlap between the existing coding domain sequences.

This resulted in a total of 9084 5’ UTRs, 5464 3’ UTRs for a total of 12389 coding domain

sequences for the diploid assembly (Figure 4.7B).
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4.2.4 Detecting novel exons and potential ORFs

We hypothesized that using our deep-sequenced Ribo-seq and RNA-seq samples we could

potentially discover “novel” exons and open reading frames given that the transcriptome anno-

tation of C. albicans is currently incomplete. In order to discover novel exons, we performed

a guided denovo assembly using our RNA-seq and Ribo-seq samples across the two conditions

(Figure 4.7A). In particular, we used StringTie [153] along with the annotation file from CGD

(r27 GTF) as the guide annotation (-G ref.GTF). For each input, StringTie outputs a new GTF

which represents a super-set of transcripts and exons annotated in the guide GTF consisting of

additional exons that are unannotated in the guide GTF. We then created a consensus catalogue

of novel exons by looking for overlapping regions of the novel exons from all the new GTFs.

Using our strategy we were able to discover additional 71 exons (Figure 4.7) that were previously

unannotated.

The novel exons have smaller size distribution as to the previously annotated with the median

length of novel exons being 315 nucleotides while that of previously annotated exons around

1187 nucleotides (Figure 4.7C). It is possible that the novel exons remained unannotated because

they are smaller in size and hence harder to detect through any technique that relies on relative

abundance of transcripts for annotating regions. It was also likely that these novel exons were

essentially an extension of the previously known exons which could happen if the previously

annotated exons were shorter than the actual exons. In order to rule out such a scenario, we

calculated the distance of these novel exons to the previously unannotated exons. The distribution

of these distances is similar to the distance of any known exon to any other known exon (Figure

4.7D).
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Next, we used ribotricer to detect translation in novel exons. All of the 71 exons found have

a potential open reading frame (ORF). Though all the ORFs show an accumulation of RPFs,

ribotricer is able to find evidence of active translation in only one of them (Figure 4.8D).

4.2.5 Detecting pausing sites

Translation elongation is the most dynamic stage of translation when the ribosome scans

one codon at a time and decodes it, resulting in a new amino acid that gets added onto the

nascent peptide chain. Translation progresses at the speed of ∼ 6 amino acids per second

[154, 74], but this speed is not constant. Ribosomes may slow down or speed up at certain codons

during elongation to regulate protein synthesis. There is emerging evidence for the elongation

process to be regulatory. In particular, it has been shown to be critical for early development

[155], functioning of neurons [156, 157] and cancer [158]. Ribo-seq [24] provides nucleotide-

level resolution of the ribosomes attached to mRNA. It has been used to demonstrate the slow

elongation rates at proline [74, 64] , translation inhibition caused by a drug compound inducing

sequence dependent stalling [1] and heat shock induced pausing [28].

We developed a new method to identify transcriptome-wide stalling sites using Ribo-seq data.

Briefly, the method relies on smoothing the Ribo-seq profile and then locates peak pileups in the

smooth profile (See methods). Applying this method to our data revealed stalling in two genes:

an adhesion protein ALS1 and the 60S ribosomal protein RPL11 (Figure 4.8). Both the pausing

sites are reproducible across all the three replicates of both the conditions.
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Figure 4.8
Pausing in Candida albicans. A) A reproducible pausing site in both 30°C and 37°C +

Serum conditions. A) ALS1 and B) RPL11.

4.3 Methods

4.3.1 RNA-seq and Ribo-seq data analysis

The quality of raw sequences reads from RNA-Seq and Ribo-Seq datasets were assessed

using FastQC [159]. Adaptor sequences and low-quality score (phred quality score < 5) bases

were trimmed from RNA-Seq and Ribo-Seq datasets with TrimGalore (v0.4.3) [160]. Trimmed

sequences from RNA-seq and Ribo-seq were both mapped using STAR (v.2.5.2b) [95] using

Assembly 22 fasta as the reference and GTF r27 from CGD allowing a mismatch of at most

two positions. All the reads mapping to rRNA and tRNA sequences were filtered out before

downstream analysis.
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4.3.2 Differential expression and translational efficiency analysis

Differential expression analysis was performed using DESeq2 [147]. We filtered out genes

with at least one read per replicate before doing the library size normalization and running the

moderated t-statistic test. Genes are said to be differentially expressed if their absolute fold-

change on log2 scale is at least 1 and the FDR adjusted p-value is at least 0.05. Gene ontology

analysis was performed using clusterProfiler [161] using GO slim ontology file available from CGD.

Differential translational efficiency was performed using riborex [150]. Only genes that had a

a read count of at least one per replicate were used as input to riborex. We define genes to be

exhibiting differential translational efficiency if their absolute fold-change on log2 scale is at least

1 and the non-adjusted p-value is less than 0.05.

4.3.3 Detecting pausing sites

In Ribo-seq data, stalling site appears as sharp peaks [58]. However, the heterogeneity and the

sparsity in data deems this task particularly challenging. A näive approach of identifying pausing

sites using 𝑍-scores [60] results in too many high-positives. In scenarios where ribosomal pausing

leads to queuing up of ribosomes near the start codon site, the downstream profile might end up

with fewer ribosomes due to some ribosomes getting dropped off at the paused site [28]. The

𝑍−score approach ignores the trend effects that could arise from such scenarios besides ignoring

the heterogeneity of the data. Moreover, the thresholds are arbitrarily defined (25 in [74] and 2

in [162]). In our experiments with real data, the 𝑍−score distribution of the normalized RPF

counts appears to be long-tailed (Figure 4.9b).
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(a)
RPF profile of PCSK9

(b)
𝑍−scores

Figure 4.9
RPF profile of PCSK9 gene from data in Lintner et al. [1]. (a) The pausing signal

observed at around 65th codon in the form of a sharp peak is a true pausing site. (B)
The associated 𝑍− score has a long tailed distribution, thus arbitrary thresholds leads

to lot of false positives.

Given the heterogeneous nature of read counts in Ribo-seq profile, we considered smoothing

the read counts based on adjacent read counts, the motivation being reducing the heterogeneity

by pooling observations. The smoothed counts can then be passed onto a peak finding method

such as even the 𝑍−score based approach, provided the resulting distribution is near gaussian.

We propose using a de-noising approach using Savitzky–Golay filter [163] that has been applied

to a wide range of problems involving signals of similar nature [164]. Savitzky-Golay filter finds

a low-degree polynomial fit over adjacent points by the method of linear least squares. Post

filtering, we use 𝑍−scores to identify peaks at sub-codon resolution.

Savitzky-Golay filter is a digital filter that acts as a low-pass filter for smoothing the data.

It increases the signal to noise ratio without distorting the signal overall. This is achieved by

convolution, where in sub-sets of adjacent data points are fitted with a low-degree polynomial by

the method of linear least squares. An analytical solution exists for finding the solution to least-

squares problem if the data points are equally spaced in the form of “convolution coefficients”.
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Let 𝑌1∶𝑇 = {𝑦1, 𝑦2 … , 𝑦𝑇 } represent the profile of read counts over 𝑇 codons. On treating

them with 𝑚 convolution coefficients the transformed points are

𝑦′
𝑡 =

𝑚−1
2

∑
𝑗= 1−𝑚

2

𝐶𝑗𝑦𝑡+𝑖
𝑚 − 1

2 ≤ 𝑡 ≤ 𝑇 − 𝑚 − 1
2

The coefficients 𝐶𝑗 are analytically derived as follows. Consider a modified variable 𝑧 such

that given codons {1, 2, … , 𝑇 } such that 𝑧 = 𝑡 − ̄𝑡 where ̄𝑡 = (𝑇 +1)
2 .

Fitting a polynomial of degree 𝑘,

𝑦 = 𝑎0 + 𝑎1𝑧 + 𝑎2𝑧2 + ⋯ + 𝑎𝑘𝑧𝑘.

The coefficients 𝑎𝑖 are solved using least-squares approximation,

a = (J𝑇 J)−1J𝑇 𝑦,

where 𝑖th row of J is given by (1, 𝑧𝑖, 𝑧2
𝑖 , … , 𝑧𝑘

𝑖 ). Hence the coefficients 𝐶𝑗 above are given by

C = (J𝑇 J)−1J𝑇 .

For each possible ORF and the corresponding Ribo-seq profile as obtained from ribotricer,

we apply the Savitzky-Golay filter to this profile. Peaks are then called such that the called site

has a signal to noise ratio above 2.5 where the noise is estimated by fitting a single variance

parameter for the entire profile. For each such peak the corresponding p-value is calculated a

gaussian distribution whose mean and variance are empirically estimated from the given profile.

The p-values are corrected for multiple testing using Benjamini-Hochberg procedure [165].
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Chapter 5

Integrated analyses of early responses to radiation in

glioblastoma

5.1 Introduction

Glioblastoma is the most common intracranial malignant brain tumor with an aggressive

clinical course. Standard of care entails maximally safe resection followed by radiotherapy with

concomitant and adjuvant temozolomide. Nonetheless, the median overall survival remains ap-

proximately 16 months [166, 167], and the recent addition of tumor-treating fields to the standard

of care has only increased median overall survival to 20.5 months [166]. Recurrence occurs in

part because glioblastoma uses sophisticated cellular mechanisms to repair DNA damage from

double-stranded breaks caused by ionizing radiation, specifically homologous recombination and

non-homologous end-joining. Thus, the repair machinery confers a mechanism for resistance to

radiation therapy. Ionizing radiation can also cause base damage and single-strand breaks, which

are repaired by base excision and single-strand break repair mechanisms, respectively [168]. A
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comprehensive analysis of molecular mechanisms driving resistance to chemotherapy and radiation

is required to surpass major barriers and advance treatments for glioblastoma.

The Cancer Genome Atlas (TCGA) was instrumental in improving the classification and iden-

tification of tumor drivers [169], but its datasets provide limited opportunities to investigate

radiation response. Thus, studies using cell and murine models are still the best alternatives to

evaluate radiation response at the genomic level. The list of biomarkers associated with radi-

ation resistance in glioblastoma is still relatively small. Among the most relevant are FOXM1

[170, 171], STAT3 [171], L1CAM [172], NOTCH1 [173], RAD51 [174], EZH2 [175], CHK1/ATR

[176], COX-2 [177], and XIAP [178]. Dissecting how gene expression is altered by ionizing radia-

tion is critical to identify possible genes and pathways that could increase radio-sensitivity. A few

genomic studies [179, 180, 181] have explored this question, but these analyses were restricted

to describing changes in transcription.

Gene expression is regulated at multiple levels, and RNA-mediated mechanisms such as splic-

ing and translation are particularly relevant in cancer biology. A growing number of inhibitors

against regulators of splicing and translation are being identified [182]. Splicing alterations are a

common feature across cancer types and affect all hallmarks of cancer [183]. Numerous splicing

regulators display altered expression in glioblastoma (e.g. PTBP1, hnRNPH, and RBM14) and

function as oncogenic factors [184]. Importantly, a genome-wide study using patient-derived

models revealed that transformation-specific depended on RNA splicing machinery. The SF3b-

complex protein PHF5A was required for glioblastoma cells to survive, but not neural stem cells

(NSCs). Moreover, genome-wide splicing alterations after PHF5A loss appear only in glioblas-

toma cells [185]. Translation regulation also plays a critical role in glioblastoma development.

Many translation regulators such as elF4E, eEF2, Musashi1, HuR, IGF2BP3, and CPEB1 promote
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oncogenic activation in glioblastoma, and pathways linked to translation regulation (e.g., mTOR)

promote cancer phenotypes [186].

To elucidate expression responses to radiation, we conducted an integrated study in U251

and U343 glioblastoma cell lines covering transcription (mRNAs and lncRNAs), splicing, and

translation. We determined that the downregulation of FOXM1 and members of the E2F family

are likely the major drivers of observed alterations in cell cycle and DNA replication genes upon

radiation exposure. Genes involved in RNA regulatory mechanisms were particularly affected at the

transcription, splicing, and translation levels. In addition, we identified several oncogenic factors

and genes associated with poor survival in glioblastoma that displayed increased expression upon

radiation exposure. Importantly, many have been implicated in radio-resistance, and therefore,

their inhibition in combination with radiation could increase therapy efficacy.

5.2 Methods

5.2.1 Cell culture and radiation treatment

U251 and U343 cells were obtained from the University of Uppsala (Sweden) and main-

tained in Dulbecco’s Modified Eagle Medium (DMEM, Hyclone) supplemented with 10% fetal

bovine serum, 1% Penicillin/Streptomycin at 37∘C in 5% CO2-humidified incubators and were

sub-cultured twice a week. Cells were plated after appropriate dilution, and ionizing radiation

treatment was performed on the next day at a dose of 5 Gray (Gy). A cabinet X-ray system

(CP-160 Cabinet X-Radiator; Faxitron X-Ray Corp., Tucson, AZ) was used. After exposure to

ionizing radiation, cells were cultured for 1 and 24 hours (hrs).
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Figure 5.2
Fragment length distribution of ribosome footprints of glioblastoma cell lines.

Fragment lengths distribution was obtained using ribotricer.
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Figure 5.3
The ribosome density profiles of glioblastoma cell lines. The metagene distribution

was obtained using ribotricer.
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5.2.2 RNA preparation, RNA-seq and Ribosome Profiling (Ribo-seq)

RNA was purified using a GeneJet RNA kit from Thermo Scientific. The TruSeq Ribo Profile

(Mammalian) kit from Illumina was used to prepare material for ribosome profiling (Ribo-seq).

RNA-seq and Ribo-seq samples were prepared according to Illumina protocols and sequenced at

UTHSCSA Genome Sequencing Facility.

5.2.3 Overall strategy to identify gene expression alterations upon radiation

To identify the most relevant expression alterations in the early response to radiation, we

analyzed samples from U251 and U343 cells collected at 0 (T0), 1 (T1), and 24 (T24) hours

post-radiation. To capture the progressive dynamics of expression alterations, we compared T0

to T1 samples and T1 to T24 samples. Our strategy to identify the most relevant alterations

in expression with maximal statistical power was to combine all samples and use a design matrix

with cell type defined as a covariate with time points (Figure S1).

5.2.4 Sequence data pre-processing and mapping

The quality of raw sequences reads from RNA-Seq and Ribo-Seq datasets were assessed using

FastQC [159]. Adaptor sequences and low-quality score (phred quality score < 5) bases were

trimmed from RNA-Seq and Ribo-Seq datasets with TrimGalore (v0.4.3) [160]. The trimmed

reads were then aligned to the human reference genome sequence (Ensembl GRCh38.p7) using

STAR aligner (v.2.5.2b) [95] with GENCODE [187] v25 as a guided reference annotation, allowing

a mismatch of at most two positions. All the reads mapping to rRNA and tRNA sequences were

filtered out before downstream analysis. Most reads in the Ribo-seq samples mapped to the

122



coding domain sequence (CDS). The distribution of fragment lengths for ribosome footprints

was enriched in the 28-30 nucleotides range, as expected (Figure S2). The ribosome density

profiles exhibit high periodicity as within the CDS, as expected since ribosomes traverse three

nucleotides at a time (Figure S3). The periodicity analysis was performed using ribotricer [149].

The number of reads assigned to annotated genes included in the reference genome was obtained

by htseq-count [188].

5.2.5 Differential gene expression analysis

For differential expression analysis, we performed counting over exons for the RNA-seq sam-

ples. For translational efficiency analyses, counting was restricted to the CDS. A Principal Com-

ponent Analysis (PCA) was then performed on RNA-Seq and Ribo-Seq data from U251 and

U343 cells. Most variation was explained by the cell type along the first principal component,

and radiation time-related changes were captured along the second principal component (Sup-

plementary Figure S1B). Differential gene expression analysis was performed by employing the

DESeq2 package [147], with read counts from both U251 and U343 cell samples as inputs. We

adjusted p-values controlling for the false discovery rate (adjusted p-value) using the Benjamini

and Hochberg (BH) procedure [165]. Differentially expressed genes were defined with an adjusted

p-value < 0.05

5.2.6 Weighted gene co-expression network analysis

Weighted Gene Co-expression Network Analysis

(WGCNA) [189] uses pairwise correlations on expression values to identify genes significantly
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co-expressed across samples. We used this approach to identify gene modules with significant

co-expression variations as an effect of radiation. The entire set of expressed genes, defined

here as those with one or higher transcripts per million higher (TPM), followed by variance

stabilization) from U251 and U343 samples were clustered separately using the signed network

strategy. We used the 𝑍summary [190] statistic as a measure of calculating the degree of module

preservation between U251 and U343 cells. 𝑍summary is a composite statistic defined as the

average of the density and connectivity based statistic. Thus, both density and connectivity are

considered for defining the preservation of a module. Modules with 𝑍summary > 5 were considered

as significantly preserved. The expression profile of all genes in each co-expression module can be

summarized as one “eigengene”. We used the eigengene-based connectivity (kME) defined as the

correlation of a gene with the corresponding module eigengene to assess the connectivity of genes

in a module. The intramodular hub genes were then defined as genes with the highest module

membership values (kME >0.9). All analysis was performed using the R package WGCNA. The

protein-coding hub genes were then selected for gene ontology enrichment analysis.

5.2.7 Translational efficiency analysis

We used Riborex [150] to perform differential translational efficiency analysis. The underlying

engine selected was DESeq2 [147]. DESeq2 estimates a single dispersion parameter per gene.

However, RNA-Seq and Ribo-Seq libraries can have different dispersion parameters owing to

different protocols. We estimated the dispersion parameters for RNA-Seq and Ribo-Seq samples

separately and found them to be significantly different (mean difference = 0.04, p-value <

2.2𝑒−16). This leads to a skew in translational-efficiency p-value distribution since the estimated
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null model variance for the Wald test is underestimated. To address this issue, we performed

a p-value correction using fdrtool [191] that re-estimates the variance using an empirical bayes

approach.

5.2.8 Alternative splicing analysis

Alternative splicing analysis was performed using rMATS [192]. All reads were trimmed using

cutadapt [193] with parameters (-u -13 -U -13) to ensure trimmed reads had equal lengths

(138 bp). rMATs was run with default parameters in paired end mode (-t paired) and read length

set to 138 bp (-len 138) using GENCODE GTF (v25) and STAR index for GRCh38.

5.2.9 Gene ontology (GO) and pathway enrichment analysis

To classify the functions of differentially enriched genes, we performed GO enrichment, and

the Reactome pathway [194] analysis using Panther [195]. For both analyses, we considered terms

to be significant if BH adjusted p-values weree < 0.05, and fold enrichment is > 2.0. Further,

we used REVIGO [2] to reduce redundancy of the enriched GO terms and visualize the semantic

clustering of the identified top-scoring terms. We used STRING database (v10) [3] to construct

protein-protein interaction networks and determine associations among genes in a given dataset.

The interactions are based on experimental evidence procured from high-throughput experiments

text-mining, and co-occurrence. Only high-confidence (0.70) nodes were retained.
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5.2.10 Expression correlation analysis

Gene expression correlation analysis was done using Gliovis [4] using glioblastoma samples

(RNAseq) from the TCGA. To select correlated genes, we used Pearson correlation, 𝑅 > 0.3,

and p-value < 0.05. A list of genes affecting survival in glioblastoma was downloaded from

GEPIA [196]. A list of long non-coding RNAs (lncRNAs) implicated in glioma development was

obtained from Lnc2Cancer [197]. Drug-gene interactions were identified using the Drug-Gene

Interaction Database [198].

5.2.11 Availability of data and materials

The processed data of read abundance matrices is available through GEO accession GSE141013.

Scripts for differential expression analysis and translational efficiency analysis are available at

https://github.com/saketkc/2019_radiation_gbm

• Table S1

• Table S2

• Table S3

• Table S4

• Table S5

• Table S6

• Table S7

• Table S8
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Figure 5.4
Global view of glioblastoma cell lines transcription and translation profiles after

radiation. A) Differentially expressed genes (left) and the number of genes whose
translation efficiency is differentially regulated (right) after radiation exposure at
different time points. B) Volcano plots showing the expression and transition

alterations of genes at 24 hr compared to 1 hr after radiation exposure. Blue dots
indicate upregulated genes (adjusted p-value < 0.05, log2 fold change < 0), and

orange dots indicate downregulated genes. (adjusted p-value < 0.05, log2 fold change
< 0). C) Sizes of gene modules found in U251 and U343 cell lines. D) Preservation
Median Rank and 𝑍summary for all modules. A lower median rank indicates the module
is preserved, and the corresponding modules in U251 and U343 cell lines share a high

number of genes. A 𝑍summary score of 2-10 indicates weak preservation, while a
𝑍summary >10 indicates high preservation.
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5.3.1 Changes in global transcriptome profile in response to radiation

We first conducted an integrated analysis to evaluate the early impact of radiation [1 hour

(T1) and 24 hours (T24)] on the expression profile of U251 and U343 GBM lines. A relatively

small number of genes displayed altered expression at T1 (Supplementary Figures S4A and S4B).

Downregulated genes are mainly involved in transcription regulation and include 18 zinc finger

transcription factors displaying high expression correlation in glioblastoma samples from TCGA

(Table S1). Upregulated sets contain genes implicated in cell cycle arrest, apoptosis, and stress

such as ZFP36, FBXW7, SMAD7, BTG2, and PLK3 (Table S1).

Since many alterations were observed when comparing the T1 vs. T24 time points (Table S1),

we opted to focus on genes showing the most marked changes (𝑙𝑜𝑔2 fold-change > 1.0 or < −1.0

and adjusted p-value < 0.05) to identify biological processes and pathways most affected at the

T24 time point. Top enriched GO terms and pathways among downregulated genes include

chromatin remodeling, cell cycle, DNA replication, and repair (Figure 5.5A). Additionally, we

identified several GO terms associated with mRNA metabolism, decay, translation, and ncRNA

processing, suggesting active participation of RNA-mediated processes in radio-response (Figure

5.5B). Network analysis indicated the set of genes in these categories is highly interconnected

(Figure 5.5C and Table S2).

To expand the expression analysis, we employed WGCNA [189] to identify gene modules with

significant co-expression variation as an effect of radiation. All identified modules, along with

the complete list of genes in each module, are shown in Supplementary Figures S4C and S4D

and Table S3. Seven modules were identified (𝑍summary > 5) as tightly regulated, independent
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Figure 5.5
Characteristics of downregulated genes at 24 hours (T24) after radiation exposure in

glioblastoma cell lines. A) Enriched gene ontology related to cell cycle, DNA
replication, and repair among downregulated genes. B) RNA-related Gene Ontology
(GO) terms enriched among downregulated genes summarized using REVIGO [2]. C)
Protein-protein interaction network, according to STRING [3] showing downregulated
genes associated with RNA-related functions. Gene clusters based on the strength of
connection and gene function are identified by color. Lines colors indicate the type of
association: light green indicates an association based on literature findings; blue

indicates gene co-occurrence; magenta indicates experimental evidence.
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of the cell line (Figure S4D). Among modules with the highest significant correlation (0.8, p-

value< 1𝑒−7), module 2 contains genes downregulated in T24, with many involved in cell cycle,

metabolism mRNA metabolism, processing, splicing, and transport (Table S3), corroborating

results described above.
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Figure 5.6
E2Fs and FOXM1 in glioblastoma. A) Correlation of E2F1, E2F2, E2F8, and

FOXM1 with target genes involved in cell cycle. B) Expression levels of E2F1, E2F2,
E2F8, and FOXM1 in gliomas grades II, III, and IV in TCGA samples. C) E2F1,
E2F2, E2F8, and FOXM1 expression correlation in glioblastoma (TCGA samples)

using Gliovis [4]. *** p-value < 0.0001.

Next, we investigated downregulated genes with the gene set enrichment analysis (GSEA)

tool Enrichr [199] and conducted expression correlation analysis with Gliovis [4]. Based on their

genomic binding profiles and effect of gene expression, FOXM1 and the E2F family of transcription

factors emerged as potential regulators of a large group of cell cycle/DNA replication-related
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genes in the affected set (Figure 5.6A, Table S4). In agreement, E2F1, E2F2, E2F8, and FOXM1

displayed a significant decrease upon radiation. FOXM1 and E2F factors have been previously

implicated in chromatin remodeling, cell cycle regulation, DNA repair, and radio-resistance [200,

201]. All four factors are highly expressed in glioblastoma with respect to low-grade glioma.

Importantly, they display high expression correlation with a large set of downregulated genes

implicated in cell cycle and DNA replication and among themselves in glioblastoma samples in

TCGA (Figure 5.6B-C).
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Global view of upregulated genes at T24 post-radiation in glioblastoma cells. A)

Gene ontology analysis of upregulated genes B) Protein-protein interaction networks
according to STRING [3] showing genes associated with extracellular matrix

organization and response to interferon. Gene clusters based on the strength of
connection and gene function are identified by color. Lines colors indicate type of

association: light green, association based on literature findings; blue indicates gene
co-occurrence; magenta indicates experimental evidence.

Upregulated genes at T24 are preferentially associated with the extracellular matrix recep-

tor interaction pathway, extracellular matrix organization, axonogenesis, and response to type I

interferon (Figure 5.7A, and Table S2). With respect to the extracellular matrix, we observed

changes in the expression levels of several collagens (types II, IV, V, and XI), glycoproteins of
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the laminin family (subunits 𝛼, 𝛽, and𝛾), and also integrins (subunits 𝛼, and 𝛽) (Figure 5.7B,

and Table S1). Collagen type IV is highly expressed in glioblastoma and implicated in tumor

progression [202]. In addition, it has been observed that the activation of two integrins, ITGB3

and ITGB5, contributes to radio-resistance [203].

Radiation treatment also induced the expression of genes involved in neuronal differenti-

ation and axonogenesis. Some key genes in these categories include SRC, VEGFA, EPHA4,

DLG4, MAPK3, BMP4, and several semaphorins. These genes can have very different effects on

glioblastoma development, with some factors activating oncogenic programs and others behaving

as tumor suppressors. Similarly, type I interferon’s effects on treatment are varied. For instance,

interferon inhibited proliferation of glioma stem cells and their sphere-forming capacity and in-

duced STAT3 activation [204]. On the other hand, chronic activation of type I IFN signaling has

been linked to adaptive resistance to therapy in many tumor types [205].

Activation of oncogenic signals post-radiation could counteract treatment effects and later

contribute to relapse. We searched the set of highly up-regulated genes post-radiation for previ-

ously identified radio-resistance genes in glioblastoma, oncogenic factors and genes whose high

expression is associated with poor prognosis (Table S5). In Table 5.1, we list these genes accord-

ing to their molecular function. Since several of these genes have never been characterized in

the context of glioblastoma, our results open new opportunities to prevent radio-resistance and

increase treatment efficiency. Importantly, there are inhibitors available against several of these

proteins (Table S4).
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Table 5.1
List of oncogenic factors, genes whose high expression is associated with poor

survival and genes previously associated with radio-resistance in GBM that showed
increased expression upon radiation. Genes are listed according to molecular function.

Function Genes
Membrane protein AQP1, ARHGEF2, BAALC, CSF1R, CSPG4, EPS8L2,

ERBB3, FGFR4, FYN, GPM6A, ITGB3, JUP
Protein kinase ANKK1, CDKN1A, CSF1R, ERBB3, FAM20C, FGFR4,

FYN, IKBKE, MERTK, PDGFRB, SRC, TEC
Gene expression regula-
tion

ARID3A, ASAH1, BCL3, BCL6, CBX7, CEBPB, ELF3,
FAM20C, FEZF1, HOXA1, HOXB9, JUP, KDM5B, LMO1,
LMO2, MACC1, MAF, MSI1, MUC1, NKX2-1, PML,
PRDM6, RORC, SATB1, SREBF1, TP53BP1, ZMYM2

Enzymatic activity ACSS2, AGAP2, APIP, ARHGEF2, C1R, CARD16,
CD24, CDKN1A, CEBPB, CSF1R, CSPG4, CTSZ,
CUL7, CYTH4, EPS8L2, ERBB3, FAM20C, FGFR4,
FTH1, FUCA1, FYN, GHDC, IDO1, IKBKE, ITGB3,
JUP, KDM5B, MCF2, MERTK, MFNG, MRAS, NKX2-
1,PDE6G,PDGFRB, PML, QPRT, RRM2B, SERPINA5,
SFN, SGSH, SRC, SREBF1, TEC, TGFB1, ZMYM2

Phosphotransferase CSF1R, ERBB3, FAM20C, FYN, IKBKE, MERTK,
PDGFRB, SREBF1, TEC

Cell surface receptor BMP7, CSF1R, ERBB3, FGFR4, FYN, ITGB3, ITGB5,
LRIG2, MCF2, MERTK, MFNG, PDGFRB, PRDM6, SRC,
TEC, TRPM8

Metabolism regulation ACSS2, APIP, BCL3, BCL6, BTG2, CEBPB,CRTC1,
CSPG4, CTSZ, ELF3, FUCA1, IDO1, ITGB3, JUP,
MAF, MFNG, NKX2-1, PARP3, PRDM6, PTGES, QPRT,
RRM2B, SGSH, TGFB1, TP53BP1, TRPM8, USP9X,
VEGFA, ZMYM2
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5.3.2 Changes in lncRNA profile in response to radiation

lncRNAs have been implicated in the progression of glioblastoma [206], but their role in re-

sponse to ionizing radiation is still poorly understood. We identified 161 lncRNAs with expression

alterations in T1 vs. T24 comparisons. Analysis of this set with LnC2Cancer [197] identifiedden-

tified several lncRNAs aberrantly expressed in cancer and with relevance to prognosis (Table S1).

We also detected significant downregulation of MIR155HG, whose high expression is associated

with glioma progression and poor survival [207]. Another downregulated lncRNA with relevance

to prognosis is linc000152, whose increased expression has been observed in multiple tumor types

[208, 208]. On the other hand, we observed a significant upregulation of two “oncogenic” lncR-

NAs, NEAT1 and FTX. NEAT1 is associated with tumor growth, grade, and recurrence rate

in gliomas [209], while FTX promotes cell proliferation and invasion through negatively regu-

lating miR-342-3p [210]. Thus, if further studies corroborate NEAT1 and FTX as players in

radio-resistance, targeting these lncRNAs should be considered to improve treatment response.

5.3.3 Effect of radiation on splicing

Alternative splicing impacts genes implicated in all hallmarks of cancer [211] and is an impor-

tant component of changes in expression triggered by ionizing radiation [212]. All types of splicing

events (exon skipping, alternative donor, and acceptor splice sites, multiple exclusive exons, and

intron retention) were affected similarly upon exposure to radiation (Table S7). At T24, we

observed that transcripts associated with RNA-related functions (especially translation), showed

the most splicing alterations. Affected transcripts encode ribosomal proteins, translation initia-

tion factors, regulators of translation, and genes involved in tRNA processing and endoplasmic
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Figure 5.8
Impact of radiation on the splicing profile of glioblastoma cells. A) GO-enriched

terms among genes showing changes in splicing profiles at T24. GO-enriched terms
are summarized using REVIGO [2]. B) Protein-protein interaction networks according
to STRING [3] showing genes associated with RNA-related functions whose splicing

profiles displayed alterations at T24. Gene clusters based on the strength of
connection and gene function are identified by color. Lines color indicate type of
association: light green, an association based on literature findings; blue indicates

gene co-occurrence; magenta indicates experimental evidence.
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reticulum. Other enriched GO terms include mRNA and ncRNA processing, mRNA degradation,

and modification. Catabolism is another process associated with several enriched terms, sug-

gesting that splicing alterations in genes involved in catabolic routes could ultimately contribute

to apoptosis (Figure 5.8A-B, and Table S7). Changes in the splicing profile are likely driven by

an alteration in the expression of splicing regulators. In Table 5.2, we show a list of splicing

factors displaying strong expression alterations. Among those previously connected to glioblas-

toma development upon radiation, LGALS3 is the most extensively characterized. LGALS3 is a

galactosidase-binding lectin and non-classic RNA binding protein implicated in pre-mRNA splicing

and regulation of proliferation, adhesion, and apoptosis; LGALS3 also is a marker of the early

stage of glioma [213].

Table 5.2
Splicing regulators showing changes in expression 24 hours post-radiation. Factors
showing an increase in the expression are shown in red, while factors showing a

decrease in the expression are represented in blue.

Gene ID Gene name Function
AHNAK2 Protein AHNAK2 splicing regulation
ESRP1 Epithelial splicing regulatory protein 1 regulation of mRNA splicing
LGALS3 Galectin-3 signaling receptor binding
NOVA2 RNA-binding protein Nova-2 alternative splicing regulation
SNRPN Small nuclear ribonucleoprotein N spliceosomal snRNP assembly
ALYREF THO complex subunit 4 RNA binding
DDX39A ATP-dependent RNA helicase DDX39A RNA helicase
GEMIN4 Gem-associated protein 4 rRNA processing
HNRNPL Heterogeneous nuclear ribonucleoprotein L alternative splicing regulation
LSM2 U6 snRNA-associated Sm-like protein LSm2 U6 snRNA-associated Sm-like protein
MAGOHB Mago nashi homolog 2 exon-exon junction complex
PPIH Peptidyl-prolyl cis-trans isomerase H ribonucleoprotein complex binding
RBMX RNA-binding motif protein, X chromosome regulation of mRNA splicing
SNRPD1 Small nuclear ribonucleoprotein Sm D1 spliceosomal snRNP assembly
SNRPE Small nuclear ribonucleoprotein E spliceosomal snRNP assembly
SRSF2 Serine/arginine-rich splicing factor 2 regulation of mRNA splicing
SRSF3 Serine/arginine-rich splicing factor 3 regulation of mRNA splicing
TTF2 Transcription termination factor 2 transcription regulation
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5.3.4 Differential translational efficiency

We used Ribo-seq [31] to identify changes in translation efficiency triggered by radiation.

Translation, protein localization, and metabolism appear as top enriched terms among downregu-

lated genes in T1 vs. T24 comparisons (Tables S8-S9). In particular, several ribosomal proteins,

along with translation initiation factors and mTOR, showed a significant decrease in translation

efficiency (Figure 5.9A-B). Overall, these results indicate repression of the translation machin-

ery post-radiation exposure and its strong auto-regulation. Since changes in components of the

translation machinery are occurring at all levels (transcription, splicing, and translation) at T24,

we expect that major translational alterations take place in later stages of post-radiation.

In the upregulated set, we highlight three genes FTH1, APIP, and LRIG2 that could potentially

counteract the impact of radiation (Table S10). FTH1 encodes the heavy subunit of ferritin,

an essential component of iron homeostasis [214]. Pang et al., 2016 [215] reported that H-

ferritin plays an important role in radio-resistance in glioblastoma by reducing oxidative stress

and activating DNA repair mechanisms. The depletion of ferritin causes down-regulation of

ATM, leading to increased DNA sensitivity towards radiation. APIP is involved in the methionine

salvage pathway and has a key role in various cell death processes. It can inhibit mitochondria-

mediated apoptosis by directly binding to APAF-1 [216]. LRIG2 is a member of the leucine-rich

and immunoglobulin-like domain family [217], and its expression levels are positively correlated

with the glioma grade and poor survival. LRIG2 promotes proliferation and inhibits apoptosis of

glioblastoma cells through activation of EGFR and PI3K/Akt pathway [218].
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Figure 5.9
Impact of radiation on the translation profile of glioblastoma cells. A) GO-enriched
terms among genes showing changes in translation efficiency at T24. GO-enriched
terms are summarized using REVIGO [2]. B) Protein-protein interaction network,
according to STRING [3] showing genes whose translation efficiency decreased at
T24. Gene clusters based on the strength of connection and gene function are
identified by color. Line colors indicate the type of association: light green, an

association based on literature findings; blue indicates gene co-occurrence; magenta
indicates experimental evidence.
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5.3.5 Crosstalk between regulatory processes

Parallel analyses of transcription, splicing, and translation alterations in the early response

to radiation provided an opportunity to identify crosstalk between different regulatory processes.

The datasets showed little overlap, with just a few genes showing alterations in two different

regulatory processes. However, we identified several shared GO terms when comparing the results

of alternative splicing, mRNA levels, and translation efficiency (Table S10). These terms show

two main groups of biological processes. The first group indicates that the expression of genes

involved in DNA and RNA synthesis and metabolism is particularly compromised. The second

group is related to translation initiation. Ribosomal proteins were particularly affected (Figures

5.8 and 5.9). There is growing support for the concept of specialized ribosomes. According to this

model, variations in the composition of the ribosome due to the presence or absence of certain

ribosomal proteins or alternative isoforms could ultimately dictate which mRNAs get preferentially

translated [219]. Therefore, these alterations could later lead to translation changes of a specific

set of genes.

5.4 Discussion

We performed the first integrated analysis to define global changes associated with the early

response to radiation in glioblastoma. Our approach allowed the identification of “conserved”

alterations at the transcription, splicing and translation levels and defined possible crosstalk

between different regulatory processes. Alterations at the level of transcription were dominant,

but changes affecting genes implicated in RNA mediated regulation were ubiquitous; they indicate
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that these processes are important components in radio-response and suggest that more robust

changes in splicing and translation might take place later.

5.4.1 E2F1, E2F2, E2F8, and FOXM1 as major drivers

We observed marked changes in the mRNA levels of genes implicated in cell cycle, DNA

replication, and repair 24 hours (T24) after radiation. Downregulation of several transcription

factors, most of them members of the zinc finger family, was observed at one hour post-radiation.

This group displays high correlations in expression within glioblastoma samples from TCGA,

suggesting that they might work together to regulate gene expression. Unfortunately, most are

poorly characterized, and the lack of information has prevented establishing further connections

to changes in the cell cycle and DNA replication that we observed at T24.

GSEA and expression correlation analysis suggested that the downregulation of members of

the E2F family is likely responsible for several of the expression changes we observed at T24.

E2Fs have been defined as major transcriptional regulators of the cell cycle. The family has eight

members that could act as activators or repressors depending on the context, and are known

to regulate one another. They are upregulated in many tumors due to overexpression of cyclin-

dependent kinases (CDKs), inactivation of CDK inhibitors, or RB Transcriptional Corepressor 1

(RB1) and are linked to poor prognosis. Alterations in E2F genes can induce cancer in mice

[220, 221]. Specifically, we found that three E2F members showed decreased expression upon

radiation: E2F1, E2F2, and E2F8, all of which have been previously implicated in glioblastoma

development.
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E2F1 is probably the best-characterized member of the E2F family. Besides its known ef-

fect on cell cycle regulation and DNA replication, it is also a positive regulator of telomerase

activity, binding the TERT promoter [222]. Recent studies show that lncRNAs and miRNAs

function in an antagonistic fashion to regulate E2F1 expression, ultimately affecting cell prolif-

eration, glioblastoma growth, and response to therapy [223, 224, 225]. E2F2 has been linked

to the maintenance of glioma stem cell phenotypes and cell transformation [226, 227]. Several

tumor suppressor miRNAs (let7b, miR-125b, miR-218, and miR-138) decrease the proliferation

and growth of glioblastoma cells by targeting E2F2 [226, 228, 229, 230]. Although still poorly

characterized in the context of glioblastoma, E2F8 drives an oncogenic phenotype in glioblas-

toma. Its expression is modulated by HOXD-AS1, which serves as a sponge and prevents the

binding of miR-130a to E2F8 transcripts [231]. FOXM1 is another potential regulator of the

group of cell cycle and DNA replication genes affected by radiation. FOXM1 is established as an

important player in chemo- and radio-resistance and a contributor to glioma stem cell phenotypes

[170, 171, 232, 233, 234, 235, 236, 237]. FOXM1 and E2F protein have a close relationship

and share target genes [238]. Additionally, FOXM1- and E2F2-mediated cell cycle transitions are

implicated in the malignant progression of IDH1 mutant glioma [239].

E2F and FOXM1 targeting could be considered as an option to increase radio-sensitivity.

Since the development of transcription factor inhibitors is very challenging, an alternative to be

considered is the use of BET (bromodomain and external) inhibitors. BET is a family of proteins

that function as readers for histone acetylation and modulates the transcription of oncogenic

programs [240]. Recent studies in glioblastoma with a new BET inhibitor, dBET6, showed

promising results and established that its effect on cancer phenotypes comes via disruption of the

transcriptional program regulated by E2F1 [241].
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5.4.2 RNA processing and regulation as novel categories in radio-response

Besides the expected changes in expression of cell cycle, DNA replication and repair genes,

radiation affected preferentially the expression of genes implicated in RNA processing and regu-

lation. Additionally, we identified a co-expression module containing multiple genes associated

with translation initiation, rRNA and snoRNA processing, RNA localization, and ribonucleoprotein

complex biogenesis.

Many regulators of RNA processing are implicated in glioblastoma development, and splicing

alterations affect all hallmarks of cancer [242]. Radiation-induced changes in the splicing patterns

of oncogenic factors and tumor suppressors such as CDH11, CHN1, CIC, EIF4A2, FGFR1, HN-

RNPA2B1, MDM2, NCOA1, NUMA1, RPL22, SRSF3, TPM3, APC, CBLB, FAS, PTCH1, and

SETD2. We also observed changes in expression of four RNA processing regulators previously

identified in genomic/functional screening for RNA binding proteins contributing to glioblastoma

phenotypes: MAGOH, PPIH, ALYREF, and SNRPE [243].

5.4.3 Potential new targets to increase radio-sensitivity and prevent

relapse

Activation of oncogenic signals is an undesirable effect of radiation that could influence treat-

ment response and contribute to relapse. We observed increased expression or translation and

splicing alterations of a number of pro-oncogenic factors, genes whose high expression is associ-

ated with poor survival and genes previously implicated in radio-resistance.

Among genes with the most marked increase in expression upon radiation, we identified

members of the Notch pathway (HES2, NOTCH3, MFNG, and JAG2). Notch activation has been
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linked to radio-resistance in glioblastoma, and Notch targeting improves the results of radiation

treatment [244, 245]. We also identified several genes associated with the PI3K-Akt, Ras, and

Rap1 signaling pathways that increased expression levels upon radiation exposure. Targeting these

pathways has been explored as a therapeutic option in glioblastoma [246, 244]. Other oncogenic

factors relevant to glioblastoma that had increased expression after radiation exposure include

SRC, MUC1, LMO2, PML, PDGFR𝛽, BCL3, and BCL6.

Anti-apoptotic genes (BCL6, RRM2B, and IDO1) also showed increased expression upon

radiation. BCL6 is a member of the ZBTB family of transcription factors, which functions as

a p53 pathway repressor. The blockage of the interaction between BCL6 and its cofactors has

been established as a novel therapeutic route to treat glioblastoma [247]. RRM2B is an enzyme

essential for DNA synthesis and participates in DNA repair, cell cycle arrest, and mitochondrial

homeostasis. The depletion of RRM2B resulted in ADR-induced apoptosis, growth inhibition, and

enhanced sensitivity to chemo- and radiotherapy [248]. IDO1 is a rate-limiting metabolic enzyme

involved in tryptophan metabolism that is highly expressed in numerous tumor types [249]. The

combination of radiation therapy and IDO1 inhibition enhanced therapeutic response [250].

Among genes whose high expression correlates with decreased survival in glioblastoma, we

identified several components of the “matrisome” and associated factors (FAM20C, SEMA3F,

ADAMTSL4, ADAMTS14, SERPINA5, and CRELD1). The core of the “matrisome” con-

tains ECM proteins, while associated proteins include ECM-modifying enzymes and ECM-binding

growth factors. This complex of proteins assembles and modifies extracellular matrices, contribut-

ing to cell survival, proliferation, differentiation, morphology, and migration [251]. In addition,

several genes of the proteinase inhibitor SERPIN family (SERPINA3, SERPINA12, SERPINA5,
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and SERPINI1) implicated in ECM regulation [252] were among those with high levels of expres-

sion upon radiation.

In conclusion, our results generated a list of candidates for combination therapy. Contracting

the effect of oncogenic factors and genes linked to poor survival could increase radio-sensitivity

and treatment efficiency. Importantly, there are known inhibitors against several of these pro-

teins (Table S5). Moreover, RNA processing and translation were determined to be important

components of radio-response. These additional vulnerable points could be explored in therapy,

as many inhibitors against components of the RNA processing and translation machinery have

been identified [253, 254].
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Chapter 6

Ribopod: A database of uniformly processed Ribo-seq

datasets

6.1 Introduction

Even after 20 years of the Human Genome Project, there appears to be a no consensus on

the number of protein coding genes [255]. The ENSEMBL [256] gene prediction process is based

on alignments of protein and cDNA sequences, which is claimed to produce a low rate of false

positives. The consensus coding sequence project (CCDS) [101] represents a consensus model

which is defined as protein-coding regions that agree at the start codon, stop codon and splice

junctions such that the prediction meets certain quality assurance benchmarks. These benchmarks

involve finding consensus between CCDS regions and SWISS-PROT [257] proteins and ensuring

CCDS regions satisfy genomic conservation criterion. Ribo-seq data provided exact information

on regions that are being actively translated. The availability of public Ribo-seq datasets across

different physiological and pathological contexts across different species has made it possible to

learn new biology, particularly of mechanisms that are shared across the conditions. This has
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motivated the development of Ribo-seq databases which provide access to processed Ribo-seq

data.

There have been multiple attempts at creating a database for Ribo-seq studies including

GWIPS-Viz [258], RPFdb [259], and HRPDViewer [260]. GWIPS-Viz [258] provides a database

of Ribo-seq coverages across multiple species. It provides global aggregates of analyzed public

datasets as UCSC genome browser tracks. HRPDViewer [260] allows visualization of transcript

level profiles for different datasets. RPF-db [259] provides a visualization interface for read count

summaries across multiple r egions of the transcriptome as a summary statistic for quality.

While largely useful, these databases do not systematically handle the intricacies of Ribo-seq

data. Not all the fragments in Ribo-seq data represent active translation [85, 68] and hence any

data downloaded from these datasets needs to be pre-processed to obtain actively translating

fragments before performing any downstream analysis. We aim to bridge this gap by developing

a new database, ribopod, that provides a visualization interface for assessing the quality scores of

a public Ribo-seq dataset besides providing access to de-noised Ribo-seq profiles. Ribopod aims

bridge the gap in leveraging the existing public datasets to understand translational regulation.

6.2 Ribopod: a database of de-noised Ribo-seq datasets

We developed a database of uniformly processed public Ribo-seq data while paying attention

to the intricacies of Ribo-seq data. We use our method ribotricer to filter out non-active fragments

and pay attention to the library protocols, track and store cell/tissue type, treatment and, other

related metadata as obtained from NCBI’s Sequence Reach Archive (SRA) or Gene Expression

Omnibus (GEO).
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6.2.1 Obtaining metadata

The NCBI Sequence Read Archive (SRA) is the primary archive of next-generation sequencing

datasets including Ribo-seq datasets. However, methods to programmatically access this data

are limited. We needed a way to automatically extract all metadata of each Ribo-seq project to

minimize manual curation. We developed pysradb package [93] that provided a simple and user-

friendly command-line interface for querying metadata and downloading datasets from. Metadata

for all SRA projects in ribopod is obtained using pysradb. Retrieving metadata for any SRA ac-

cession is done using:

$ pysradb metadata SRP010679 --desc --expand
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... [truncated]

run_accession cell_line sample_type source_name treatment

SRR403882 pc3 polya rna pc3 human prostate cancer cells vehicle

SRR403883 pc3 ribosome protected rna pc3 human prostate cancer cells vehicle

SRR403884 pc3 polya rna pc3 human prostate cancer cells rapamycin

SRR403885 pc3 ribosome protected rna pc3 human prostate cancer cells rapamycin

SRR403886 pc3 polya rna pc3 human prostate cancer cells pp242

SRR403887 pc3 ribosome protected rna pc3 human prostate cancer cells pp242

SRR403888 pc3 polya rna pc3 human prostate cancer cells vehicle

SRR403889 pc3 ribosome protected rna pc3 human prostate cancer cells vehicle

SRR403890 pc3 polya rna pc3 human prostate cancer cells rapamycin

SRR403891 pc3 ribosome protected rna pc3 human prostate cancer cells rapamycin

SRR403892 pc3 polya rna pc3 human prostate cancer cells pp242

SRR403893 pc3 ribosome protected rna pc3 human prostate cancer cells pp242

Ribopod’ provides a visualization interface for visualizing the metagene plots, fragment length

distribution and the phase scores generated by ribotricer. Each sample in an SRA accession is

described separately on all the three metrics (Figure 6.1).

6.2.2 Workflow

After obtaining metadata and raw data from SRA, the raw sequences are mapped to the

transcriptome using STAR [95] using a transcriptome annotation from ENSEMBL [256]. We
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Figure 6.1
Ribopod’s visualization interface. The top panel shows a heatmap of ribotricer phase

scores for each fragment length. The bottom left shows the fragment length
distribution plots for each sample with the corresponding metagene plot on the right.

See http://ribopod.usc.edu.

allow for a maximum of two bases mismatches while mapping and only uniquely mapping reads

are retained. Next, the uniquely mapped reads are processed through ribotricer to assess them for

periodicity. Ribotricer outputs de-noised profiles retaining only the actively translating Ribo-seq

reads (Figure 6.2).

6.3 Results

Ribotricer’s phase score [149] can be used as a quality control metric to asses the quality of

Ribo-sseq data. We processed multiple Ribo-seq projects from different species including human,

mouse, rat, zebrafish, fruitfly, C. elegans, S. cerevisiae, and S. pombe. A detailed list of datasets

and the associated data is available on this link: https://bit.ly/ribopod-datasets. The

code used to analyze the datasets is available at https://github.com/saketkc/re-ribo-smk

and the code for the database is available at https://github.com/saketkc/ribopod.
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Figure 6.2
Workflow of ribopod

We analyzed hundreds of libraries from different species and assessed their phase score as

calculated using ribotricer. As seen in Figure 6.3, the phase score of Ribo-seq datasets are

highly variable. They also appear to be dependent on the species. The species-specific effect

have two likely sources or origin: 1) biological difference 2) technological difference. However,

it is difficulty to quantify their relative contribution. One striking observation of this effect is in

Drosophila datasets in which all the Ribo-seq libraries seem to have a low phase-score overall.

This effect is not necessarily related to a biological difference arising from Drosophila samples,

since the C. elegans and Zebrafish, the two nearby species seem to have higher phase scores.

6.4 Conclusion

Ribopod provides a readily accessible database of processed Ribo-seq datasets that have

been processed to filter only actively-translating fragments. Since each dataset is accompanied
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Figure 6.3
Phase score distribution for datasets present in ribopod. Phase scores were

calculated over annotated protein-coding regions only.
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with an associated phase score, ribopod can be used to perform novel analysis on high quality

datasets. The availability of de-noised Ribo-seq profiles across both protein-coding and upstream

open reading frames (uORFs) can serve as the key resource for discovering the role of uORFs in

different physiological and pathological contexts.
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Chapter 7

Conservation of uORF mediated regulation across species

7.1 Introduction

The term expression in “gene expression”, a colloquial term in biology, refers to the process by

which the gene synthesizes functional products, most often in the form of proteins. Gene expres-

sion is modulated by both transcriptional and post-transcriptional regulation. In all organisms,

the synthesis of protein requires two key steps: transcription and translation. The expression

itself is regulated at multiple steps spanning transcription, post-transcription, translation and

post-translation [19, 20]. Upstream open reading frames (uORFs) are a major regulatory element

located in the 5’ leader sequences that play a role in regulating translation. uORFs are defined by

a start codon and an in-frame stop codon and are located upstream of the main coding sequence

in the 5’ untranslated region (5’ UTR) [261, 262, 27]. uORFs have been suggested to conform

to Kozak sequence rules [57]. Kozak sequence rules define a ‘favorable’ context required for

initiating translation. However, this hypothesis in the context of uORFs has also been contested
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[263]. uORFs have been hypothesized to play a role of down-regulating the expression of corre-

sponding CDS [264, 265, 266]. Around 50% transcripts in human, mouse, and Zebrafish have

been hypothesized to have potential uORFs [267, 261, 262, 29].

In eukaryotes, the process of translation may itself regulate gene expression independent of

the encoded peptide [268]. The uORFs are unlikely to code for functional peptide products be-

cause their peptide sequences are not conserved, even if the presence in 5’ region itself might be

conserved [265]. But they play dual roles of i) allowing downstream re-initiation and ii) capturing

some fraction of the pre-initiation complex thus reducing the translation of protein-coding region.

A well studied example of the first role is demonstrated by the first uORF in activating transcrip-

tion factor 4 (ATF4) transcript that is constitutively translated, and then ribosomes re-initiate at

either the second uORF or the CDS [79, 269]. Stress induces phosphorylation of the 𝛼 subunit

of eukaryotic translation initiation factor 2 (eIF2). The phosphorylated eIF2 inhibits the action

of eIF2B which in turn attenuates the formation of eIF2-GTP-tRNAmet
i ternary complex. This

prevents recycling of eIF2 between different runs of the protein synthesis cycle and overall global

translation initiation thus leading to an overall decrease in protein levels [270]. Paradoxically, in

ATF4, the stress-induced phosphorylation of eIF2 increases the translation which in turn activates

the integrated stress response (a pro-survival pathway). ATF4 has two conserved uORFs, uORF1

and uORF2. In unstressed condition, lower levels of eIF2𝛼 phosphorylation favor the ribosomes

to re-initiate translation at uORF2. When phoshorylated, the formation of eIF2-GTP-tRNAmet
i is

sequestered which reduces the probability that the ribosomes terminating at uORF1 will be able

to acquire enough concentration of this complex to re-initiate translation at uORF2. However,

they they may acquire them in the process of scanning the downstream AUG corresponding to the

CDS, thus up-regulating the translation. For the second example, where uORFs are inhibitory to
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the main CDS. uORF translation can thus affect the expression of downstream CDS in a global

[266] or a local [271] setting.

uORFs have been known to play a role in myriad of human diseases [272, 273, 274, 79, 275].

In particular, loss of function mutations in uORF of kinases is known to be associated with

malignancies [276], uORFs serve as a source of tumor antigen [277] and in neurodegenerative

diseases [278]. Preotemics based analyses have also linked uORFs to lower protein levels [279].

While much is known about the regulatory role of uORFs in the context of individual genes [273,

274], a global analysis on their translation status across different physiological and pathological

contexts is currently missing. We utilize public Ribo-seq studies across eight species including

human, mouse, rat, zebrafish, fruitfly, C. elegans, S. cerevisiae, and S. pombe across different

physiological and pathological contexts to discover uORFs that are always under active translation

and analyze their sequence context and its conservation across the species.

7.2 Results

In order to decipher the regulatory role of uORFs and to asses if it is conserved across species

we analyzed multiple public Ribo-seq datasets as made available through ribopod (Chapter 6).

Our results are organized in two parts. In the first part we establish the regulatory activity of

uORFs across three species (human, chimp, and macaque) using matched Ribo-seq and RNA-

seq data. In the second part we analyze datasets from eight species including four vertebrates:

human, mouse, rat, and zebrafish and four invertebrates: fruitfly, C. elegans, baker’s yeast, and

S. pombe. to establish the conservation of uORFs across species. The datasets spanning these

species have been performed in a variety of physiological and pathological contexts. The total
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Figure 7.1
Distribution of phase scores and the number of libraries

number of libraries and their corresponding ribotricer generated phase scores [149] are summarised

in Figure 7.1.

7.2.1 uORFs have a repressive effect on translational efficiency

To first characterize the regulatory role of uORFs, we analyzed Ribo-seq data available from

Wang et al. [280] (SRA accession SRP062129). The dataset consists of Ribo-seq performed in

lymphoblastoids in human, macaque and chimpanzee. A matched RNA-seq study is available for

this dataset from Khan et al. [281] (SRA accession SRP028612) which we utilize for calculating

translational efficiency. Translational efficiency of a gene is reflective of the density of ribosomes

attached to the mRNA for every transcript. We processed mapped Ribo-seq datasets through

ribotricer and only retained actively-translating fragments. Translational efficiency was calculated
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as the ratio of Ribo-seq to RNA-seq counts over a gene. uORFs were also searched using ribotricer

(See Methods).

To asses the regulatory impact of uORFs on translational efficiency, we compared the trans-

lational efficiency of all genes with different number of actively translating uORFs (0, 1, 2, 3,

and above) and plotted its cumulative distribution across all the three species (Figure 7.2).

Genes with higher number of uORFs tend to have reduced translational efficiency as compared

to transcripts with lesser number of uORFs across human, macaque and chimpanzee. We tested

using a Mann Whitney test. Genes with no actively translating uORFs have significantly higher

translational efficiency as compared to the genes with 1 or more ORFs.

Among the orthologous genes, human and chimpanzee have 180 translationally efficient genes

(𝑝 < 0.05) while 475 genes are translationally efficient between human and macaque. These

numbers are in line with our expectation based on phylogenetic relationship between the three

species.

We also wanted to assess if the uORF mediated regulatory activity is conserved across these

species. To this end, we compared the distribution of uORF translational efficiency to coding

domain sequence (CDS) translational efficiency between human and chimpanzee and between

human and macaque using one to one orthologous genes. The uORF activity is correlated across

species with the correlation between human and chimpanzee as 0.45 (Figure 7.3a) and between

human and macaque as 0.33 (Figure 7.3b), thus capturing the phylogenetic relationship between

the two species.
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Figure 7.2
Higher number of actively translating uORFs result in down-regulation of the main
ORF in (a) human (b) chimpanzee, and (c) macaque. (d) Number of differential
translationally efficient genes in chimpanzee and macaque with respect to human.

7.2.2 uORFs are present across species

We characterized the prevalence of uORFs, by searching for “complete” ORFs in the 5’

UTRs. A “complete” ORF is defined by the presence of a start codon (AUG) with an in-frame

stop codon (UAG, UAA, and UGA). There is also evidence that translation can be initiated at

non-AUG start codons in the uORFs can initiate at non-AUG start codons [282, 283]. However,

unless the Ribo-seq experiment was prepared with a translation initiation inhibitor, it is difficult

to determine the translation initiation site using Ribo-seq data alone. Thus, we took the more

conservative approach of using only AUG start codons. We defined ‘dORFs’ (downstream ORFs)

to be analogous of uORFs that are located in the 3’ UTR. Not much is known about the regulatory

role of the dORFs.
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(a)
Chimpanzee

(b)
Macaque

Figure 7.3
Correlation between translational efficiency of CDS and uORF in orthologous regions
of human, chimpanzee and macaque indicate the phylogenetic distances. Correlation

values are indicated in the legend

We searched for start codons (AUG) in the 5’ UTR and the first in-frame stop-codon to define

the uORFs. Analogously, we searched for AUGs and the first in-frame stop codon in the 3’ UTRs

to define the dORFs. Since such uORFs and dORFs can overlap with coding domain sequences

(CDS), we categorized them into different categories based on their overlap status (Table 7.1).

For the rest of our discussion, we use ‘uORFs’ to refer to ‘super_uORFs’ which do not overlap

with any CDS of any of the possible isoforms.

The relative distribution of dORFs is higher as compared to uORFs across species (Figure

7.4). Most genes have just one most upstream uORF or most downstream dORF present (Figure

7.5). The annotated CDS appear to be the longest regions, while the size distribution of uORFs

and dORFs are similar and are around four times shorter than the annotated CDS (Figure 7.6).
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Figure 7.4
Distribution of number of known and potential ORFs. ORFs were searched using

ribotricer [149]. super_uORF and super_dORF describe uORFs and dORFs that do
not overlap with any CDS in any of the isoforms. The description of each ORF is

given in Table 7.1.

ORF type Description
annotated CDS annotated in the provided GTF file
super_uORF upstream ORF of the annotated CDS, not overlapping with any CDS of the same gene
super_dORF downstream ORF of the annotated CDS, not overlapping with any CDS of the same gene
uORF upstream ORF of the annotated CDS, not overlapping with the main CDS
dORF downstream ORF of the annotated CDS, not overlapping with the main CDS
overlap_uORF upstream ORF of the annotated CDS, overlapping with the main CDS
overlap_dORF downstream ORF of the annotated CDS, overlapping with the main CDS
novel ORF in non-coding genes or in non-coding transcripts of coding genes

Table 7.1
ORF types and their description. ORFs for each species were determined using

ribotricer [149]
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Figure 7.5
Distribution of number of different ORF types per annotated CDS. For each

annotated CDS number uORFs and dORFs were searched using ribotricer by looking
for a start codon and an in-frame stop codon in the 5’UTR and 3’UTR regions

respectively.

Figure 7.6
Distribution of lengths of different ORF types. Kernel density estimates of the length

of each ORF type on 𝑙𝑜𝑔2 scale across species.
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Figure 7.7
Distribution of phase scores in uORF, CDS and dORF. Phase scores were calculated

using ribotricer across all the datasets available on bit.ly/ribopod-datasets.

7.2.3 More uORFs than dORFs show active translation

We calculated the phase score of each ORF generated through ribotricer [149]. The phase

score is a reflective of the active-translation status of an ORF being translated based on the

periodicity in its Ribo-seq profile. A higher phase score indicates active-translation. Across all the

species, CDS has the highest phase scores followed by uORFs and dORFs (Figure 7.7). Though

the abundance of dORFs is higher as compared to uORFs (Figure 7.4), the uORFs seem to be

translated more often. There is a modest positive correlation (𝑟 = 0.33, 𝑝 < 1𝑒 − 6) between

phase scores of CDS and uORFs implying a uORF translation does not necessarily shutdown the

translation of the downstream CDS and a modest negative correlation (𝑟 = −0.26, 𝑝 < 1𝑒 − 6)

between phase scores of CDS and dORFs (Figures 7.10 and 7.10).
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Figure 7.8
Distribution of percentage of uORFs and dORFs under active translation with
respected to coding genes. Proportion of uORFs and dORFs with respect to

annotated CDS regions that are almost always translating.
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Figure 7.9
Distribution of uORFs and dORFs that are always translating with respect to coding
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Correlation between uORF and CDS phase scores.
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Correlation between dORF and CDS phase scores.
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7.2.4 uuORFs - uORFs that are almost always translating

Having characterized the translational status of uORFs across species in different physiological

and pathological contexts we focused on uORFs that are ‘almost always’ under active translation.

The definition of ‘almost always’ here is relative to the protein-coding regions. Because of the

inherent heterogeneity in the Ribo-seq data itself and given that the datasets are chosen across

multiple physiological and pathological contexts, even the high-confidence protein coding regions

are not translating always. First, following [149], we learned the species specific for all the datasets

cutoff for determining if an ORF is actively-translating. We determined ribotricer generated phase

score for each annotated CDS and designated the median of this score calculated across all CDS

spanning all datasets as the species-specific cutoff (Table 7.2).

Most of the CDS regions are actively translating in do not exhibit translation in around

60 − 70% of the CDS regions (Figure 7.12). The proportion of samples in which all the pro-

tein coding regions are actively-translating, i.e. they meet the minimum phase score cutoff for

the corresponding species follows a bimodal distribution (Figure 7.12 and 7.13). We use the

proportion corresponding to these peaks to classify any ORF as ‘always’ translating and ‘never’

translating. In particular, we use a gaussian mixture model to resolve the mean and variance

parameters of the two mixtures for each species. The higher mean gaussian (𝒩(𝜇1, 𝜎1)) will

be used to define the ‘always’ translating and the lower the mean gaussian (𝒩(𝜇0, 𝜎0)) will be

used to define the ‘never‘ translating regions. We focus on the 100(1 − 𝛼)%, where 0 < 𝛼 < 1

quantile of 𝑋1 ∼ 𝒩(𝜇1, 𝜎1) and let 𝑧1 be such that 𝑃(𝑋 ≤ 𝑧1) = 1 − 𝛼 or equivalently,

𝑃(𝑋 ≥ 𝑧1) = 𝛼 . This defines our universal set - this value of the proportion determines

the universality of an ORF. We now call an uORF to be universal as long as the proportion
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assembly mean median std. dev
Human 0.355 0.348 0.299
Mouse 0.286 0.255 0.295
Rat 0.327 0.379 0.282
Zebrafish 0.323 0.272 0.335
Drosophila 0.190 0.117 0.255
C. elegans 0.364 0.336 0.270
S. cerevisiae 0.411 0.436 0.225
S. pombe 0.467 0.467 0.149

Table 7.2
Species-specific cutoffs for active translation. The mean median and standard

deviation of ribotricer generated phase score as calculated using only protein coding
regions for all datasets used in this study. Any ORF in a species is labelled as
actively-translating only if its phase score exceeds the median value for the

corresponding sites.

of samples which meet the threshold is higher than 𝑧1. This is the most conservative way of

defining them, given that this represents the extreme tails of the distribution of CDS which are

believed to be actively translating with a higher probability than uORFs. Similarly, for defining

the ‘never’ translating regions, we rely on the middle most values of the gaussian with lower

mean 𝑋0 ∼ 𝒩(𝜇0, 𝜎0) ensuring we sample similar proportion. In particular, we look for a value

of 𝑑, such that 𝑃 (𝜇0 − 𝑑 ≤ 𝑋0 ≤ 𝜇0 + 𝑑) = 𝛼. We then sample this region from the uuORFs

distribution to define ‘never’ translating regions. We use 𝛼 = 0.95 for this study.

7.2.5 Conservation of uuORFs across species

To identify uuORFs that are conserved across any two species, we translated the uORFs to

their corresponding amino acid sequences. Considering one species as the reference, we used

BLAST [284] to search for conserved uuORFs. In particular, the references species’ uuORFs are

treated as the target database for blast and then the amino acid sequence of each species is used
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Figure 7.12
Distribution of phase scores of CDS regions that are above the minimum score

required for active translation. Kernel density estimates of the phase scores of CDS
regions that are above the threshold phase score required for the ORF of the

corresponding species to be labelled as active translation.
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Figure 7.13
Determining thresholds for ‘always active’ translation.
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Figure 7.14
Percentage of conserved uuORFs. Human is used as the reference sequence. A

uuORF is said to be conserved if there is a unique hit for the corresponding amino
acid sequence in the database of human uuORFs.

as the query sequence. We restrict our search to unique hits ( -max_target_seqs 1 , -evalue

1e-3) to define ‘orthologous’ uuORFs. Around 45% of uuORFs are conserved between human

and mouse, 40% are conserved between human and rat, 30% is conserved between zebrafish and

human and 13% is conserved between human and fruitfly (Figure 7.14).

Next, we hypothesized that the upstream sequence context of these uuORFs might give them

a preferential context for translation initiation. The Kozak consensus sequence is a nucleic acid

sequence that is present upstream of the start codon [55]. It is considered as the optimum

sequence required to be present upstream to initiate translation in vertebrates. In prokaryotes,

a similar sequence is present around eight bases upstream referred to as the Shine-Dalgarno

sequence [285]. We hypothesized that the uuORFs might have a similar sequence context. Chew

et al. [286] indeed found evidence for a Kozak like sequence context responsible for increased

effect on the translational efficiency of the main CDS.
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Upstream sequence context of CDS in vertebrates.
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Upstream sequence context of CDS in invertebrates.
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Sequence similarity of upstream sequence contexts of always and never translating
uORFs in vertebrates. Clustering was performed using pearson correlation coefficient

on the position frequency matrix [287].
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Sequence similarity of upstream sequence contexts of always and never translating

uORFs in invertebrates. Clustering was performed using pearson correlation
coefficient on the position frequency matrix [287].
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We determined the 13 nucleotides sequence present upstream of the uuORFs across all species.

Our null set is formed by the upstream sequence of those uORFs that are never translating. The

sequence context of the never translating uORFs is different from that of the never translating

uORFs indicating that the different sequence context might be responsible for initiating transla-

tion in the uuORFs (Figures 7.17 and 7.18). Furthermore, the sequence contexts in vertebrates

is different from the Kozak sequence context (Figure 7.17) while the sequence context in in-

vertebrates is A and T rich, distinct from both the Kozak and vertebrates’ uuORF sequence

context.

Next, we investigated if the sequence contexts are similar across species. We make use of

the pearson correlation coefficient [287] to quantify the similarity between two sequence motifs.

Given two column vectors 𝑋 and 𝑌 representing the frequencies of base frequencies of bases A,

C, T and G, Pearson correlation coefficient (PCC) is defined as:

𝑃𝐶𝐶(𝑋, 𝑌 ) =
∑𝑎∈𝒜(𝑋𝑎 − �̄�)(𝑌𝑎 − ̄𝑌 )

√∑𝑎∈𝒜(𝑋𝑎 − �̄�)(𝑌𝑎 − ̄𝑌 )
,

�̄� = 1
|𝒜| ∑

𝑎∈𝒜
𝑋𝑎,

̄𝑌 = 1
|𝒜| ∑

𝑎∈𝒜
𝑌𝑎.

A high PCC value between two sequence motifs reflects their similarity. In order to assess the

similarity of the uuORFs motifs we performed hierarchical clusterintg using PCC as the similarity

metric. The uuORFs are similar across vertebrates and across invertebrates (Figure 7.19 and
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Figure 7.19
Sequence similarity of upstream sequence contexts of always and never translating
CDS. Clustering was performed using pearson correlation coefficient on the position

frequency matrix [287].

7.20). The uuORFs also show higher similar similarity to the sequence motifs upstream of CDS

that are always translating both in vertebrates and in invertebrates (Figure 7.19 and 7.20).

7.3 Discussion

uORFs have been known to play role in regulating translation initiation of the coding domain

sequence. Most of the studies thus far have focused on potential uORFs, based on their sequence
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Sequence similarity of upstream sequence contexts of always and never translating
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Species cutoff
(never)

cutoff (al-
ways)

mean
(never)

sigma
(never)

mean
(always)

sigma (al-
ways)

Human 0.194-
0.234

0.698-1 0.214 0.159 0.604 0.073

Mouse 0.080-
0.104

0.680-1 0.092 0.098 0.550 0.101

Rat 0.111-
0.151

0.806-1 0.131 0.158 0.685 0.094

Zebrafish 0.178-
0.219

0.790-1 0.199 0.164 0.684 0.0826

Drosophila 0.009-
0.012

0.631-1 0.010 0.011 0.383 0.193

C. elegans 0.177-
0.212

0.769-1 0.195 0.138 0.637 0.103

Yeast 0.408-
0.474

0.564-1 0.441 0.264 0.501 0.05

S. pombe 0.205-
0.229

0.901-1 0.217 0.094 0.738 0.127

Table 7.3
Thresholds for defining universal uORFs The cutoffs are learned as the value

corresponding to 95 percentile

Species Status Motif
Human Always translating CGGGGCCTGA_ATG_GTGGCGGCCG
Human Never translating ATAATAATAA_ATG_GCGATGGCGG
Mouse Always translating GGGCGGCGGG_ATG_GCGGGGGCCG
Mouse Never translating ATAATAATAA_ATG_AATATTTTTA
Rat Always translating GGCCGGCTGA_ATG_GCGGCCCCCC
Rat Never translating ATGATGATAA_ATG_GGTGTGATCG
Zebrafish Always translating GCTCCGGAGA_ATG_CGCTGTATTA
Zebrafish Never translating ATAATAATAA_ATG_AATATTATTA
Drosophila Always translating CTCACAATAA_ATG_TGTACAACTA
Drosophila Never translating ATAATAATAA_ATG_AAAAAAAATA
C. elegans Always translating TCAACGGACA_ATG_TGCCTGAAAA
C. elegans Never translating ATAATAATAA_ATG_TTAATTTTTA
Yeast Always translating TATAGTTTAA_ATG_GTTAAAAAGA
Yeast Never translating AGAATAAGAA_ATG_GAATTTACCG
S. pombe Always translating TTAATATTAA_ATG_TCGAAGATTT
S. pombe Never translating ATAATAATAA_ATG_ATTATAATTA

Table 7.4
Sequence context of uuORFs Start codon is shighlighed in bold.
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Species Status Motif
Human Always translating CGCCGCCACC_ATG_GCGGAGGTGG
Human Never translating CGCCGCCACC_ATG_GCGCTCGTGG
Mouse Always translating GGCGGCCAAC_ATG_GCGGCGGTGG
Mouse Never translating AATTAAAAAC_ATG_GAGAACATGA
Rat Always translating CGCGGCCACC_ATG_GCGGCGGCGG
Rat Never translating CATCGACAAC_ATG_GAGATCATCA
Zebrafish Always translating AGAAGTCAAC_ATG_GCGGAGGAGG
Zebrafish Never translating TATAGTAAAG_ATG_GATATTATGA
Drosophila Always translating AAACAACAAA_ATG_GCCAACAACG
Drosophila Never translating AAAAATAAAA_ATG_ACTATCATTA
C. elegans Always translating TATTGTAAAA_ATG_GCTGTCGTCG
C. elegans Never translating TATTTTAAAA_ATG_ATTATTATTA
Yeast Always translating AAAAAAAAAA_ATG_TCTAAAAAAA
Yeast Never translating AAAAAAAAAA_ATG_AATAATAATA
S. pombe Always translating ATTAATCAAA_ATG_GCTGATAATA
S. pombe Never translating TTTTTTTAAA_ATG_GATAATAATA

Table 7.5
Sequence context of CDS. Start codon is surrounded by underscores.

context. We bridge this gap by providing a catalogue of uORFs with their translation status

across different contexts using public Ribo-seq datasets across multiple species. We use this

learned information to investigate the conservation of regulatory roles of uORFs across species

which further led to us characterizing uuORFs - uORFs that are almost always translating across

different physiological and pathological conditions.

The upstream sequence context of uuORFs in vertebrates is different from the well char-

acterized Kozak sequence context [55] required for translation initiation in vertebrates. The

Kozak sequence is given by GCCGCC(A/G)CCAUGG and was initially assumed to be a univer-

sal signal required for initiating translation. Later, however, it was found that the sequence

context is species dependent. Amongst the characterized species, the sequence context is

ACAACCAAAAUGGC for Drosophila, AAAAAAAAAAUGTC for Saccharomyces cerevisiae, and

UAAAT(A/C)AACAUG(A/G)C for other invertebrates [54]. Our observations with respect to
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the sequence context of CDS are consistent with previous findings (Figures 7.15 and 7.16 and

Table 7.5). We find that the sequence contexts of uuORFs have a similar context as the CDS

of the corresponding species and are conserved within vertebrates and invertebrates (Tables 7.4

and 7.5). Though the consensus sequence is different from the respective expected sequence,

we believe the translation initiation at uORFs might have a different mechanism than the corre-

sponding CDS as has been observed previously [272]. The characterization of uuORFs and their

associated upstream sequence context enables us to characterize the functional role of the short

polypeptides. Our study provides a rich catalogue of these uuORFs which can be further used to

investigate their functional implications by proteomics-based or other related approaches.

181



Chapter 8

Conclusions

Translational control is an integral part of the chain of processes that are employed in the

gene to regulate the expression level of protein. The development of assays such as Ribo-seq have

provided us with a window to peek into the transcriptome of the cell which is actively engaged

by the ribosome thus enabling us to decipher the various modes by which a gene is regulated at

the translational level. Ribo-seq has been used to understand translational regulation in a myriad

of physiological and pathological contexts across species. The availability of these datasets with

different contexts has presented us with avenues of discovering new biological phenomena that

are conserved across different species.

The aim of my research was to understand the regulatory role of short open reading frames

located in the 5’ UTR called upstream open reading frames (uORFs). uORFs have been known to

play a repressive role in translation. The previous research in this field is based on the assumption

that a mere presence of an ORF characterized by an in-frame start and stop-codon, can be called

an uORF. Ribo-seq provides actual evidence if such a potential ORF is actually an uORF, since

it allows to evaluate its translation status. The length distribution of uORFs is similar to that
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of coding exons and being a region of low signal to noise ratio, detecting active translation in

uORFs using Ribo-seq data has remained challenging.

In Chapter 3, I developed a novel method, ribotricer, for identifying active translating in

both short and long open reading frames using Ribo-seq data. Our method takes an approach

of evaluating the inherent periodicity in the Ribo-seq data through the ‘high-low-low’ pattern

exhibited by an actively-translating ribosome as it traverses the mRNA. This approach overcomes

the two key problems inherently present in almost all Ribo-seq datasets: uneven coverage and

sparsity. While uneven coverage arises because the ribosome moves non-uniformly over the codons

and hence is more of biological nature in its origin, sparsity is more of a technical limitation in a lot

of experiments. Our approach of transforming the counts information to asses the consistency of

qualitative ‘high-low-low’ pattern gives the highest accuracy on multiple datasets across different

species.

In Chapter 4, I use our method, ribotricer, to learn the changes in the translational landscape

of a fungal pathogen Candida albicans during its morphological transition from yeast-like to

filamentous growth. Using deep sequenced Ribo-seq and RNA-seq samples, I first re-learned the

transcriptome of C. albicans since the available annotation is incomplete. Through this process, I

discovered unannotated exons that are also engaged actively by the ribosome implying that these

could be genes that were unannotated. I also discover hundreds of genes whose translational

efficiency gets upregulated during the morphological transition. These genes could serve as

potentially good targets anti-fungal drugs.

In Chapter 5, by an integrated analysis in two glioblastoma cell lines, I mapped the changes

that occur in gene expression at three levels of transcription, alternative splicing , and translation

in response to ionizing radiation by utilizing Ribo-seq and RNA-seq data. Glioblastoma is the
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most common intracranial malignant brain tumor with an aggressive clinical course. High-dose

radiation is the main component of glioblastoma therapy. By characterizing the alterations at

all three levels, I identified new biological processes that lead to altered expression of various

oncogenic factors. I also suggested new target options that can increase radiation sensitivity and

prevent relapse.

I reanalyzed public Ribo-seq datasets from multiple species to distinguish ORFs that are under

active translation from those that are not, using our tool ribotricer. In Chapter 6, I introduce a

database of the reanalyzed public Ribo-seq projects that provides users direct access to de-noised

Ribo-seq datasets.

Finally, in Chapter 7, I utilized the resource developed in Chapter 6 to study upstream open

reading frame (uORF) mediated regulation across eight species. I first establish that uORFs

play a repressive role on the translational efficiency of the downstream protein coding regions.

I characterized uuORFs - universal uORFs that are ‘almost always’ translating within a species

given the diverse physiological and pathological contexts of the public datasets that were used

to characterize them. Further more, I characterize that the upstream sequence context of these

uORFs is similar to the upstream sequence context of the coding domain sequences within the

species. The uuORFs are conserved across species with total conservation inversely proportional to

the divergence time. The sequence context is conserved within the vertebrates and invertebrates.

The characterization of uuORFs is the first step towards deciphering their functional role. The

short polypetides synthesized from these uuORFs could also be potential regulators of house-

keeping operations in the regulatory system. Thus, one focus of future studies should be on

characterizing their functional role, given that they are almost always present.
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Appendix A

pysradb: A Python package to query next-generation

sequencing metadata and data from NCBI Sequence Read

Archive

A.1 Introduction

Several projects have made efforts to analyze and publish summaries of DNA- [288] and RNA-seq

[289, 290] datasets. Obtaining metadata and raw data from the NCBI Sequence Read Archive

(SRA) [291] is often the first step towards re-analyzing public next-generation sequencing datasets

in order to compare them to private data or test a novel hypothesis. The NCBI SRA toolkit [292]

provides utility methods to download raw sequencing data, while the metadata can be obtained by

querying the website or through the Entrez efetch command line utility [293]. Most workflows

analyzing public data rely on first searching for relevant keywords in the metadata either through
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the command line utility or the website, gathering relevant sample(s) of interest and then down-

loading these. A more streamlined workflow can enable the performance of all these steps at once.

In order to make querying both metadata and data more precise and robust, the SRAdb [294]

project provides a frequently updated SQLite database containing all the metadata parsed from

SRA. SRAdb tracks the five main data objects in SRA’s metadata: submission, study, sample,

experiment and run. These are mapped to five different relational database tables that are made

available in the SQLite file. The metadata semantics in the file remain as they are on SRA.

The accompanying package, SRAdb [295], made available in the R programming language [296],

provides a convenient framework to handle metadata queries and raw data downloads by utilizing

the SQLite database. Though powerful, SRAdb requires the end user to be familiar with the R

programming language and does not provide a command-line interface for querying or download-

ing operations.

The pysradb package [297] builds upon the principles of SRAdb, providing a simple and

user-friendly command-line interface for querying metadata and downloading datasets from SRA.

It obviates the need for the user to be familiar with any programming language for querying and

downloading datasets from SRA. Additionally, it provides utility functions that will further help a

user perform more granular queries, which are often required when dealing with multiple datasets

on a large scale. By enabling both metadata search and download operations at the command-

line, pysradb aims to bridge the gap in seamlessly retrieving public sequencing datasets and the

associated metadata.
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pysradb [297] is written in Python [298] and is currently developed on GitHub under the

open-source BSD 3-Clause License. To simplify the installation procedure for the end-user, it is

also available for download through PyPI and bioconda [299].

A.2 Methods

A.2.1 Implementation

pysradb [297] is implemented in Python and uses pandas [300] for data frame based opera-

tions. Since downloading datasets can often take a long time, pysradb displays progress for long

haul tasks using tqdm [301]. The metadata information is read in the form of an SQLite [302]

database, made available by SRAdb [294].

Each sub-command of pysradb contains a self-contained help string that describes its pur-

pose and usage example. The help text can be accessed by passing the ‘–help’ flag. There is

also additional documentation available for the sub-commands on the project’s website. We also

provide example Jupyter [303] notebooks that demonstrate the functionality of the Python API.

pysradb’s development primarily occurred on GitHub and the code is tested continuously

using Travis CI webhook. This monitors all incoming pull requests and commits to the master

branch. The testing happens on Python version 3.5, 3.6, and 3.7 on an Ubuntu 16.04 LTS

virtual machine, while testing webhooks on the bioconda channel provide additional testing on
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Mac-based systems. Nevertheless, pysradb should run on most Unix derivatives.

A.2.2 Operation

pysradb [297] can be run on either Linux- or Mac-based operating systems. It supports

Python 3.5, 3.6 and 3.7. Requiring just two additional dependencies, pysradb can be easily

installed using either a pip- or conda- based package manager via the bioconda [299] channel.

An earlier version of this article can be found on bioRxiv https://doi.org/10.1101/578500

A.3 Use cases

pysradb [297] provides a chain of sub-commands for retrieving metadata, converting one acces-

sion to other and downloading. Each sub-command is designed to perform a single operation by

default, while additional operations can be performed by passing additional flags. In the following

section we demonstrate some of the use cases of these sub-commands.

pysradb uses SRAmetadb.sqlite, a SQLite file produced and made available by SRAdb

[294] project. The file itself can be downloaded using pysradb as:
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$ pysradb srametadb

The SRAmetadb.sqlite file is required for all other operations supported by pysradb. This

file is required for all the sub-commands to function. By default, pysradb assumes that the

file is located in the current working directory. Alternatively, it can supplied using the ‘–db

path/to/SRAmetadb.sqlite’ argument. The SRAmetadb.sqlite that is required for all under-

lying operations of pysradb is available at: https://s3.amazonaws.com/starbuck1/sradb/

SRAmetadb.sqlite.gz or alternatively at https://gbnci-abcc.ncifcrf.gov/backup/SRAmetadb.

sqlite.gz. The examples here were run using SRAmetadb.sqlite with schema version 1.0 and

creation timestamp 2019-01-25 00:38:19.

A.3.1 Search

Consider a case where a user is looking for Ribo-seq [148] public datasets on SRA. These datasets

will often have ‘ribosome profiling’ appearing in the abstract or sample description. We can search

for such projects using the ‘search’ sub-command:

$ pysradb search `"ribosome profiling"' | head
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study_accession experiment_accession sample_accession run_accession

DRP003075 DRX019536 DRS026974 DRR021383

DRP003075 DRX019537 DRS026982 DRR021384

DRP003075 DRX019538 DRS026979 DRR021385

DRP003075 DRX019540 DRS026984 DRR021387

DRP003075 DRX019541 DRS026978 DRR021388

DRP003075 DRX019543 DRS026980 DRR021390

DRP003075 DRX019544 DRS026981 DRR021391

ERP013565 ERX1264364 ERS1016056 ERR1190989

The results here list all relevant ‘ribosome profiling’ projects.

A.3.2 Getting metadata for a SRA project

Each SRA project (accession prefix ‘SRP’) on SRA consists of single or multiple experiments

(accession prefix ‘SRX’) which are sequenced as single or multiple runs (accession prefix ‘SRR’).

Each experiment is carried out on an individual biological sample (accession prefix ‘SRS’).

pysradb metadata can be used to obtain all the experiment, sample, and run accessions asso-

ciated with a SRA project as:

$ pysradb metadata SRP010679 | head
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study_accession experiment_accession sample_accession run_accession

SRP010679 SRX118285 SRS290854 SRR403882

SRP010679 SRX118286 SRS290855 SRR403883

SRP010679 SRX118287 SRS290856 SRR403884

SRP010679 SRX118288 SRS290857 SRR403885

SRP010679 SRX118289 SRS290858 SRR403886

SRP010679 SRX118290 SRS290859 SRR403887

SRP010679 SRX118291 SRS290860 SRR403888

SRP010679 SRX118292 SRS290861 SRR403889

SRP010679 SRX118293 SRS290862 SRR403890

SRP010679 SRX118294 SRS290863 SRR403891

SRP010679 SRX118295 SRS290864 SRR403892

SRP010679 SRX118296 SRS290865 SRR403893

However, this information by itself is often incomplete. We require detailed metadata asso-

ciated with each sample to perform any downstream analysis. For example, the assays used for

different samples and the corresponding treatment conditions. This can be done by supplying the

‘–desc’ flag:

$ pysradb metadata SRP010679 --desc | head -5
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study_accession experiment_accession sample_accession run_accession sample_attribute

SRP010679 SRX118285 SRS290854 SRR403882 source_name: PC3 hu-

man prostate cancer

cells || cell line: PC3

|| sample type: polyA

RNA || treatment: ve-

hicle

SRP010679 SRX118286 SRS290855 SRR403883 source_name: PC3 hu-

man prostate cancer

cells || cell line: PC3 ||

sample type: ribosome

protected RNA || treat-

ment: vehicle

SRP010679 SRX118287 SRS290856 SRR403884 source_name: PC3 hu-

man prostate cancer

cells || cell line: PC3

|| sample type: polyA

RNA || treatment: ra-

pamycin

SRP010679 SRX118288 SRS290857 SRR403885 source_name: PC3 hu-

man prostate cancer

cells || cell line: PC3 ||

sample type: ribosome

protected RNA || treat-

ment: rapamycin
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This can be further expanded to reveal the data in ‘sample_attribute’ column into separate

columns via ‘–expand’ flag. This is most useful for samples that have associated treatment or

cell type metadata available.

$ pysradb metadata SRP010679 --desc --expand

... [truncated]

run_accession cell_line sample_type source_name treatment

SRR403882 pc3 polya rna pc3 human prostate cancer cells vehicle

SRR403883 pc3 ribosome protected rna pc3 human prostate cancer cells vehicle

SRR403884 pc3 polya rna pc3 human prostate cancer cells rapamycin

SRR403885 pc3 ribosome protected rna pc3 human prostate cancer cells rapamycin

SRR403886 pc3 polya rna pc3 human prostate cancer cells pp242

SRR403887 pc3 ribosome protected rna pc3 human prostate cancer cells pp242

SRR403888 pc3 polya rna pc3 human prostate cancer cells vehicle

SRR403889 pc3 ribosome protected rna pc3 human prostate cancer cells vehicle

SRR403890 pc3 polya rna pc3 human prostate cancer cells rapamycin

SRR403891 pc3 ribosome protected rna pc3 human prostate cancer cells rapamycin

SRR403892 pc3 polya rna pc3 human prostate cancer cells pp242

SRR403893 pc3 ribosome protected rna pc3 human prostate cancer cells pp242

Any SRA project might consist of experiments involving multiple assay types. The assay

associated with any project can be obtained by providing --assay flag:

$ pysradb metadata SRP000941 --assay | tr -s ' ' | cut -f5 -d ' ' | tail -n +2 | sort | uniq

-c
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999 Bisulfite-Seq

768 ChIP-Seq

121 OTHER

353 RNA-Seq

28 WGS

A.3.3 Getting SRPs from GSE

The Gene Expression Omnibus database (GEO) [304] is the NCBI data repository for functional

genomics data. It accepts array and sequence-based data from gene profiling experiments. For

sequence-based data, the corresponding raw files are deposited to the SRA. GEO assigns a

dataset accession (accession prefix ‘GSE’) that is linked to the corresponding accession on the

SRA (accession prefix ‘SRP’). It is often necessary to interpolate between the two accessions.

gse-to-srp sub-command allows converting GSE to SRP:

$ pysradb gse-to-srp GSE24355 GSE25842

study_alias study_accession

GSE24355 SRP003870

GSE25842 SRP005378

It can be further expanded to obtain the corresponding experiment and run accessions:
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$ pysradb gse-to-srp --detailed --expand GSE100007 | head

study_alias study_accession experiment_accession sample_accession experiment_alias sample_alias

GSE100007 SRP109126 SRX2916198 SRS2282390 GSM2667747 GSM2667747

GSE100007 SRP109126 SRX2916199 SRS2282391 GSM2667748 GSM2667748

GSE100007 SRP109126 SRX2916200 SRS2282392 GSM2667749 GSM2667749

GSE100007 SRP109126 SRX2916201 SRS2282393 GSM2667750 GSM2667750

GSE100007 SRP109126 SRX2916202 SRS2282394 GSM2667751 GSM2667751

GSE100007 SRP109126 SRX2916203 SRS2282395 GSM2667752 GSM2667752

GSE100007 SRP109126 SRX2916204 SRS2282396 GSM2667753 GSM2667753

GSE100007 SRP109126 SRX2916205 SRS2282397 GSM2667754 GSM2667754

GSE100007 SRP109126 SRX2916206 SRS2282400 GSM2667755 GSM2667755

A.3.4 Getting a list of GEO experiments for a GEO study

Any GEO study (accession prefix ‘GSE’) will involve a collection of experiments (accession pre-

fix ‘GSM’). We can obtain an entire list of experiments corresponding to the study using the

gse-to-gsm sub-command from pysradb:

$ pysradb gse-to-gsm GSE41637 | head
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study_alias experiment_alias

GSE41637 GSM1020640_1

GSE41637 GSM1020641_1

GSE41637 GSM1020642_1

GSE41637 GSM1020643_1

GSE41637 GSM1020644_1

GSE41637 GSM1020645_1

GSE41637 GSM1020646_1

GSE41637 GSM1020647_1

GSE41637 GSM1020648_1

However, a list of GSM accessions is not useful if one is performing any downstream analysis,

which essentially requires more detailed information about the metadata associated with each

experiment. This relevant metadata associated with each sample can be obtained by providing

gse-to-gsm additional flags:

$ pysradb gse-to-gsm --desc GSE41637 | head
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study_alias experiment_alias sample_attribute

GSE41637 GSM1020640_1 source_name: mouse_brain || strain: DBA/2J || tissue: brain

GSE41637 GSM1020641_1 source_name: mouse_colon || strain: DBA/2J || tissue: colon

GSE41637 GSM1020642_1 source_name: mouse_heart || strain: DBA/2J || tissue: heart

GSE41637 GSM1020643_1 source_name: mouse_kidney || strain: DBA/2J || tissue: kidney

GSE41637 GSM1020644_1 source_name: mouse_liver || strain: DBA/2J || tissue: liver

GSE41637 GSM1020645_1 source_name: mouse_lung || strain: DBA/2J || tissue: lung

GSE41637 GSM1020646_1 source_name: mouse_skm || strain: DBA/2J || tissue: skeletal muscle

GSE41637 GSM1020647_1 source_name: mouse_spleen || strain: DBA/2J || tissue: spleen

GSE41637 GSM1020648_1 source_name: mouse_testes || strain: DBA/2J || tissue: testes

The metadata information can then be parsed from the sample_attribute column. To

obtain more structured metadata, we can use an additional flag ‘--expand’:

$ pysradb gse-to-gsm --desc --expand GSE41637 | head

study_alias experiment_alias source_name strain tissue

GSE41637 GSM1020640_1 mouse_brain dba/2j brain

GSE41637 GSM1020641_1 mouse_colon dba/2j colon

GSE41637 GSM1020642_1 mouse_heart dba/2j heart

GSE41637 GSM1020643_1 mouse_kidney dba/2j kidney

GSE41637 GSM1020644_1 mouse_liver dba/2j liver

GSE41637 GSM1020645_1 mouse_lung dba/2j lung

GSE41637 GSM1020646_1 mouse_skm dba/2j skeletal muscle
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A.3.5 Getting SRR from GSM

gsm-to-srr allows conversion from GEO experiments (accession prefix ‘GSM’) to SRA runs

(accession prefix ‘SRR’):

$ pysradb gsm-to-srr GSM1020640 GSM1020646

experiment_alias run_accession

GSM1020640_1 SRR594393

GSM1020646_1 SRR594399

A.3.6 Downloading SRA datasets

pysradb enables seemless downloads from SRA. It organizes the downloaded data following the

NCBI hiererachy: ‘SRP => SRX => SRR’ of storing data. Each ‘SRP’ (project) has multiple

‘SRX’ (experiments) and each ‘SRX’ in turn has multiple ‘SRR’ (runs). Multiple projects can be

downloaded at once using the download sub-command:
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$ pysradb download -p SRP000941 -p SRP010679

download also allows Unix pipes-based inputs. Consider our previous example of the project

SRP000941 with different assays. However, we want to be able to download only ‘RNA-seq’

samples. We can do this by subsetting the metadata output for only ‘RNA-seq’ samples:

$ pysradb metadata SRP000941 --assay | grep `study|RNA-Seq' | pysradb download

This will only download the ‘RNA-seq’ samples from the project.

A.4 Summary

pysradb [297] provides a command-line interface to query metadata and download sequencing

datasets from the SRA. It enables seamless retrieval of metadata and conversion between different

accessions. pysradb is written in Python 3 and is available on Linux and Mac OS. The source

code is hosted on GitHub and licensed under BSD 3-clause license. It is available for installation

through PyPI and bioconda.

A.5 Data availability

Underlying data
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Dataset from DDBJ Sequence Read Archive, Accession number DRP003075: https://identifiers.

org/insdc.sra/DRP003075

Dataset from EMBL-EBI Sequence Read Archive, Accession number ERP013565: https://

identifiers.org/insdc.sra/ERP013565

Dataset from Gene Expression Omnibus, Accession number GSE24355: https://identifiers.

org/geo/GSE24355

Dataset from Gene Expression Omnibus, Accession number GSE25842: https://identifiers.

org/geo/GSE25842

Dataset from Gene Expression Omnibus, Accession number GSE100007: https://identifiers.

org/geo/GSE100007 [305]

Dataset from Gene Expression Omnibus, Accession number GSE41637: https://identifiers.

org/geo/GSE41637 [306]

Dataset from NCBI Sequence Read Archive, Accession number SRP010679: https://identifiers.

org/insdc.sra/SRP010679 [103]

Dataset from NCBI Sequence Read Archive, Accession number SRP000941: https://identifiers.

org/insdc.sra/SRP000941 [307]

A.6 Software availability

Software available from: https://pypi.org/project/pysradb/.
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Source code available from: https://github.com/saketkc/pysradb.

Archived source code at time of publication: https://doi.org/10.5281/zenodo.2579446

[297].

License: BSD 3-Clause
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