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Given A, B hermitian matrices, Golden-Thompson inequality [1, 2] states that:
tr [exp ((A + B))] < tr [exp ((4)) exp ((B))]
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It is trivial if A, B commute i.e. AB = BA. A quick example would be A = <0 1

> and B =I5, while it
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There have been multiple proofs [3], but they are not so straight forward to follow. Sutter et al. [4]
presented a more intutive proof using spectral pinching. This document summarizes their approach and at
places is slightly more elaborated than the original version that appeared in [4]. We will stick to real matrices
here.

does not hold for A = ((1) ;) and B = < ) as AB # BA.

Spectral Pinching Method
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Consider a square complex matrix A partitioned as a r x r block matrix: A = . . . )

Arl Ar2 e Arr

We can decompose this matrix intro two matrices comprising the diagonal and the off-diagonal elements
respectively.

A=Ap+Ap
An
Az
Ap =
ATT
0 A - Ay
Ayr 0 oo Ay
Ay=1|" o
Arl Ar2 et O

Ap is called a pinching of A. The simplest case is that of A;; being 1 dimensional that we will be using
here.



Any positive semi-definite matrix A can be written as A = Y | A;Py, where \; are n distinct eigen
values of A. Py, are orthogonal projectors such that > ; Py, = I and hence PQi =Py,
The spectral pinching map of A is then given by:

Pa: X ZP,\XPA
A

The entire idea here is to use some form of convex combination resulting in an averaging operation. The
pinching map in turn has the following properties:

(i) Pa[X]A = AP[X]
(i) tr[PA[X]4] = tr[X 4]
(iii) Pa[X]>1X
Lemma 1. PA[X]A = AP4[X]
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Lemma 2. tr{P4[X]A] = tr{X A]
Proof:



tr[Pa[X]A] = tr[> P\, XPy, > APy/]
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Lemma 3. PA[X] > 1 X

Proof:

Proving this part is probably the trickiest among the four lemmata here, but is the entire key behind deduc-
ing the final Golden-Thompson inequality. Consider a unitary matrix U, defined as U, = >_"'_, e2myu/npy
It is easy to verify that U, Uy =T as ;" Py, =I. Also U, >0 and U, =1
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Now once (iii) is proved, the rest of the steps for proving the GT are straightforward. For a semi-positive
definite d x d matrix A, we have the following lemma.

Lemma 4. |spec(A®™)| < O(poly(m))

Proof:

The number of eigen values for A®™ is bounded by the number of the number of possible possible
combinations of a sequence of d sy,bols (the maximum possible distinct eigen values of A) of length m which

is given by (m+d 1) < % = O(poly(m))



Golden Thompson Inequality

Given positive definite matrices A, B and using the facts that exp () and tr[exp ()] are operator monotone:

1
log tr[exp (log A + log B)] = — log tr[exp ( log A®™ 4 1og B®m>]
m

1
< —log trlexp (log Prem [A® ™]|spec(A®™)| + log B®m)] Using Lemma 3
m

e log tr[exp (log Ppem[A®™] + log |spec(A®™)| 4 log B®m>]
m
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— log tr[exp (log Ppem[A®™] + log B®m)] + —|spec(A®™)]
m m

< % log tr[exp (log Pgem| A® ™ + log B®m)] + w Using Lemma 4
1 1

= — log tr[exp <log Ppen[A® m]B®m>] + Olpoly(m)) Using Lemma 1
m m
1 1

— % log tI‘[PB@) . [A® m]B® m] + O(poni’(m))

1 log trA®™B®™] 4 Olpoly(m)) Using Lemma 2
m m

m

= logtr[exp (log A + log B)] < log tr(AB)
= tr[exp (log A + log B)] < tr(AB)
= tr[exp (A + B)] < tr(exp (4) exp (B))
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