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GSVD

Consider two matrices Xn1×p and Yn2×p represented as X = [x1,x2,x3 . . .xn]T where xi∈[1...n] ∈ R1×p

represents a row vector and similarly Yn2×p = [y1,y2 . . .yn]T where yi∈[1...n] ∈ R1×p. We consider n1 > p and
n2 > p.

GSVD looks for the following decomposition:

Xn1×p = Un1×pAp×pT
T
p×p

Yn2×p = Vn2×pBp×pT
T
p×p

where A,B are both diagonal elements with diagoal elements (a1, a2 . . . ap) and (b1, b2 . . . bp) respectively sat-
isfying a2j + b2j = 1 ∀j ∈ [1, . . . p]

A and B are column orthonormal, i.e. aia
T
i = 1. T T relates the two matrices X and Y .

The rows of matrix T T , i.e. the columns of T := [t1, t2 . . . tp] can be thought of as an expression of p latent
factors or "eigengenes", representative of both the datasets simultaneously. The relative contribution of these
factors is captured by the elements in A and B matrix. It is measure as the relative contribution of each eigen
gene to each dataset given the ratio of the square of corresponding entry in the matrix A or B with the sum
scaled with the norm of the corresponding eigenvector.

RX
j =

a2j ||tj ||∑p
l=1 a

2
l ||tl||

and RY
j =

b2j ||tj ||∑p
l=1 b

2
l ||tl||

, j = 1, 2 . . . p

Once we are able to find matrices U ,V ,A,B and T , we can find a projection of the n1 and n2 genes of
X,Y respectively onto the p eigengenes:

PX
n1×p = Un1×pTp×p and PY

n1×p = Vn2×pTp×p

HOGSVD

ConsiderN matrices X1,X2, . . .XN such that they have same number of columns, but possibly different number
of rows. Higher order GSVD performs the following decomposition:
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X
(n1×m)
1 = U1Σ1V

T

X
(n2×m)
2 = U2Σ2V

T

...

X
(nN×m)
N = UNΣNV T

In order to solve for V , we make use of the following relations:

Ai = XT
i Xi,

Sij =
1

2

(
AiA

−1
j +AjA

−1
i

)
,

S ≡ 1

N(N − 1)

N∑
i=1

∑
j>i

(
AiA

−1
j +AjA

−1
i

)
SV = V Λ,

V ≡ (v1, . . . vm),Λ = diag(λi).

Thus, V can be obtained by eigen decomposition of matrix S. Having obtained S, we now solve for matrices
Zi to obtain Ui:

V ZT
i = XT

i

Zi ≡ (zi1, . . . , zim), i ∈ [1, N ]

Σik = ||zik||,
Σi = diag(Σik),

Zi = ΣiUi

Orthogonalizing U

The HOGSVD algorithm, in general, will not preserve the orthogonality of the Ui matrix. However, orthogonality
might be a desired property for some of the applications. In order to make U columnwise orthonormal, we use
the decompisition: Uortho = U(UUT)−1/2. The following theorem proves that such decomposition gives the
"nearest" orthogonal matrix to X:

Theorem 1. Given an n ×m (n ≥ m) matrix An×m the nearest possible orthogonal matrix Q to A is given by
Q = A(ATA)−

1
2 . Q minimises both the frobenius ||A−Q||F and spectral norm ||A−Q||2

Proof:
Minimizing Frobenius Norm:
In order to find an orthonormal Q such that the frobenius norm ||A−Q||F is minimized, we solve the following

optimization problem:

min ||A−Q||F s.t. QTQ = I

||A−Q||2F =

n∑
i=1

m∑
j=1

|Aij −Qij |2

= tr
(
(A−Q)T(A−Q)

)
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Now,

min ||A−Q||2F = min tr
(
(A−Q)T(A−Q)

)
= min tr

(
ATA + QTQ− 2ATQ

)
= max tr

(
ATQ

)
Now consider the singular value decomposition of A as A = UΣV T.

max tr
(
ATQ

)
= max tr

(
QTA

)
= max tr

(
QTUΣV T

)
= max tr

(
(QTUΣ)V T

)
= max tr

(
(QTUΣ)V T

)
= max tr

(
V TQTUΣ

)
(∵ tr(AB) = tr(BA))

Let Z = V TQTU where V ,Q,U are all orthonormal matrices and so is Z, i.e ZTZ = I.

tr
(
V TQTUΣ

)
= tr(ZΣ)

=

n∑
i=1

ZiiΣii

≤
n∑

i=1

Σii (Σii ≥ 0 and |Zii| ≤ 1)

Thus, Z = I and Q = UV T.
Minimizing spectral Norm:
In order to minimize the spectral norm ||A−Q||2 = max||x||=1 ||A−Qx||, we again rely on the the singular

value decomposition of A = UΣV T. Also, ||A||2 ≤ ||A||F.
Then, UTAV = Σ,UTQV = R,RTR = I.

min ||A−Q||22 = min ||UT (A−Q)V 2

= min ||Σ−R||22
= min ||Σ− I + I −R||22
= min ||Σ− I − (R− I) ||22
= min max

||x||=1
|| (Σ− I − (R− I))xT||

Consider ||Σ−R||:

(Σ−R)T(Σ−R) = (Σ− I − (I −R))
T

(Σ− I − (I −R))

= (Σ− I)T(Σ− I)− (Σ− I)T(R− I)− (R− I)T(Σ− I) + (R− I)T(R− I)

= (Σ− I)T(Σ− I) + Σ(I −R) + (I −RT)Σ + (R− I)T(R− I)
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Without loss of generality we consider x = e such that e = (1, 0, 0, . . . , 0).

min max
||x||=1

|| (Σ− I − (R− I))xT||2 = e(Σ−R)T(Σ−R)eT

≥ e(Σ− I)T (Σ− I)eT (∵ diag(I −R) ≥ 0 and diag(I −RT) ≥ 0)

The minima for the ultimate inequality is obtained when R = I implying Q = UV T.
Q = UV T is equivalent to taking the SVD of A and setting all its singular values to be 1. Alternatively,

Q = A
(
ATA

)− 1
2
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