HOGSVD and orthogonolization of U

Saket Choudhary saketkc@gmail.com

November 2019

GSVD

Consider two matrices $X_{n_1\times p}$ and $Y_{n_2\times p}$ represented as $X=[x_1,x_2,x_3\ldots x_n]^T$ where $x_{i\in [1...n]}\in\mathbb{R}^{1\times p}$ represents a row vector and similarly $Y_{n_2\times p}=[\bm y_1,\bm y_2\ldots\bm y_n]^T$ where $\bm y_{i\in[1...n]}\in\mathbb R^{1\times p}.$ We consider $n_1>p$ and $n_2 > p$.

GSVD looks for the following decomposition:

$$
\begin{aligned} \boldsymbol{X}_{n_1 \times p} &= \boldsymbol{U}_{n_1 \times p} \boldsymbol{A}_{p \times p} \boldsymbol{T}_{p \times p}^T \\ \boldsymbol{Y}_{n_2 \times p} &= \boldsymbol{V}_{n_2 \times p} \boldsymbol{B}_{p \times p} \boldsymbol{T}_{p \times p}^T \end{aligned}
$$

where A, B are both diagonal elements with diagoal elements $(a_1, a_2 \ldots a_p)$ and $(b_1, b_2 \ldots b_p)$ respectively satisfying $a_j^2 + b_j^2 = 1 \ \forall j \in [1, \dots p]$

 A and B are column orthonormal, *i.e.* $a_ia_i^T=1$. T^T relates the two matrices X and Y .

The rows of matrix \bm{T}^T , *i.e.* the columns of $\bm{T} := [\bm{t}_1, \bm{t}_2 \dots \bm{t}_p]$ can be thought of as an expression of p latent factors or "eigengenes", representative of both the datasets simultaneously. The relative contribution of these factors is captured by the elements in A and B matrix. It is measure as the relative contribution of each eigen gene to each dataset given the ratio of the square of corresponding entry in the matrix A or B with the sum scaled with the norm of the corresponding eigenvector.

$$
R_j^X = \frac{a_j^2 ||\bm{t}_j||}{\sum_{l=1}^p a_l^2 ||\bm{t}_l||} \text{ and } R_j^Y = \frac{b_j^2 ||\bm{t}_j||}{\sum_{l=1}^p b_l^2 ||\bm{t}_l||}, j = 1, 2 \dots p
$$

Once we are able to find matrices U, V, A, B and T, we can find a projection of the n_1 and n_2 genes of X, Y respectively onto the p eigengenes:

$$
\pmb{P}_{n_1\times p}^{\text{X}}=\pmb{U}_{n_1\times p}\pmb{T}_{p\times p} \text{ and } \pmb{P}_{n_1\times p}^{\text{Y}}=\pmb{V}_{n_2\times p}\pmb{T}_{p\times p}
$$

HOGSVD

Consider N matrices $X_1, X_2, \ldots X_N$ such that they have same number of columns, but possibly different number of rows. Higher order GSVD performs the following decomposition:

$$
\begin{aligned} \boldsymbol{X}^{(n_1 \times m)}_1 &= \boldsymbol{U}_1 \boldsymbol{\Sigma}_1 \boldsymbol{V}^T \\ \boldsymbol{X}^{(n_2 \times m)}_2 &= \boldsymbol{U}_2 \boldsymbol{\Sigma}_2 \boldsymbol{V}^T \\ &\vdots \\ \boldsymbol{X}^{(n_N \times m)}_N &= \boldsymbol{U}_N \boldsymbol{\Sigma}_N \boldsymbol{V}^T \end{aligned}
$$

In order to solve for V , we make use of the following relations:

$$
A_i = \mathbf{X}_i^T \mathbf{X}_i,
$$

\n
$$
S_{ij} = \frac{1}{2} \left(A_i A_j^{-1} + A_j A_i^{-1} \right),
$$

\n
$$
\mathbf{S} \equiv \frac{1}{N(N-1)} \sum_{i=1}^N \sum_{j>i} \left(A_i A_j^{-1} + A_j A_i^{-1} \right)
$$

\n
$$
\mathbf{S} \mathbf{V} = \mathbf{V} \Lambda,
$$

\n
$$
V \equiv (v_1, \dots v_m), \Lambda = \text{diag}(\lambda_i).
$$

Thus, V can be obtained by eigen decomposition of matrix S . Having obtained S , we now solve for matrices Z_i to obtain U_i :

$$
\begin{aligned}\n\boldsymbol{V} \boldsymbol{Z}_i^{\mathrm{T}} &= \boldsymbol{X}_i^{\mathrm{T}} \\
\boldsymbol{Z}_i &\equiv (z_{i1}, \dots, z_{im}), i \in [1, N] \\
\boldsymbol{\Sigma}_{ik} &= ||z_{ik}||, \\
\boldsymbol{\Sigma}_i &= \text{diag}(\boldsymbol{\Sigma}_{ik}), \\
\boldsymbol{Z}_i &= \boldsymbol{\Sigma}_i \boldsymbol{U}_i\n\end{aligned}
$$

Orthogonalizing U

The HOGSVD algorithm, in general, will not preserve the orthogonality of the U_i matrix. However, orthogonality might be a desired property for some of the applications. In order to make U columnwise orthonormal, we use the decompisition: $U_{\text{ortho}}=U(UU^{\text{T}})^{-1/2}.$ The following theorem proves that such decomposition gives the "nearest" orthogonal matrix to X :

Theorem 1. *Given an* $n \times m$ ($n \geq m$) matrix $A_{n \times m}$ the nearest possible orthogonal matrix Q to A is given by $\bm{Q} = \bm{A}(\bm{A}^{\rm T}\bm{A})^{-\frac{1}{2}}$. \bm{Q} minimises both the frobenius $||\bm{A}-\bm{Q}||_{\rm F}$ and spectral norm $||\bm{A}-\bm{Q}||_2$

Proof:

Minimizing Frobenius Norm:

In order to find an orthonormal Q such that the frobenius norm $||A-Q||_F$ is minimized, we solve the following optimization problem:

$$
\min ||\bm A-\bm Q||_{\rm F} \text{ s.t. } \bm Q^{\rm T}\bm Q=\bm I
$$

$$
||\mathbf{A} - \mathbf{Q}||_{\mathrm{F}}^{2} = \sum_{i=1}^{n} \sum_{j=1}^{m} |A_{ij} - Q_{ij}|^{2}
$$

= tr (($\mathbf{A} - \mathbf{Q}$)^T ($\mathbf{A} - \mathbf{Q}$))

Now,

$$
\min ||A - Q||_{\mathrm{F}}^2 = \min \; \mathrm{tr}\left((A - Q)^{\mathrm{T}} (A - Q) \right)
$$
\n
$$
= \min \; \mathrm{tr}\left(A^{\mathrm{T}} A + Q^{\mathrm{T}} Q - 2A^{\mathrm{T}} Q \right)
$$
\n
$$
= \max \; \mathrm{tr}\left(A^{\mathrm{T}} Q \right)
$$

Now consider the singular value decomposition of $\bm A$ as $\bm A = \bm U \bm \Sigma \bm V^\text{T}.$

$$
\max \text{tr} (A^{\mathrm{T}}Q) = \max \text{tr} (Q^{\mathrm{T}}A) \n= \max \text{tr} (Q^{\mathrm{T}}U\Sigma V^{\mathrm{T}}) \n= \max \text{tr} ((Q^{\mathrm{T}}U\Sigma)V^{\mathrm{T}}) \n= \max \text{tr} ((Q^{\mathrm{T}}U\Sigma)V^{\mathrm{T}}) \n= \max \text{tr} (V^{\mathrm{T}}Q^{\mathrm{T}}U\Sigma) \quad (\because \text{tr}(AB) = \text{tr}(BA))
$$

Let $Z = V^{\mathrm{T}} Q^{\mathrm{T}} U$ where V,Q,U are all orthonormal matrices and so is Z , *i.e* $Z^{\mathrm{T}} Z = I$ *.*

$$
\operatorname{tr}\left(\boldsymbol{V}^{\mathrm{T}}\boldsymbol{Q}^{\mathrm{T}}\boldsymbol{U}\boldsymbol{\Sigma}\right) = \operatorname{tr}(\boldsymbol{Z}\boldsymbol{\Sigma})
$$
\n
$$
= \sum_{i=1}^{n} Z_{ii} \boldsymbol{\Sigma}_{ii}
$$
\n
$$
\leq \sum_{i=1}^{n} \boldsymbol{\Sigma}_{ii} \qquad (\boldsymbol{\Sigma}_{ii} \geq 0 \text{ and } |Z_{ii}| \leq 1)
$$

Thus, $\boldsymbol{Z} = \boldsymbol{I}$ and $\boldsymbol{Q} = \boldsymbol{U}\boldsymbol{V}^{\text{T}}$. **Minimizing spectral Norm**:

In order to minimize the spectral norm $||\bm A-\bm Q||_2=\max_{||x||=1}||\bm A-\bm Qx||,$ we again rely on the the singular value decomposition of $\bm A = \bm U \bm \Sigma \bm V^\mathrm{T}.$ Also, $||\bm A||_2 \le ||\bm A||_\mathrm{F}.$

Then, $\boldsymbol{U}^\mathrm{T}\boldsymbol{A}\boldsymbol{V}=\boldsymbol{\Sigma}, \boldsymbol{U}^\mathrm{T}\boldsymbol{Q}\boldsymbol{V}=\boldsymbol{R}, \boldsymbol{R}^\mathrm{T}\boldsymbol{R}=\boldsymbol{I}.$

$$
\begin{aligned} \min ||A-Q||_2^2 &= \min ||U^T(A-Q)V^2 \\ &= \min ||\Sigma - R||_2^2 \\ &= \min ||\Sigma - I + I - R||_2^2 \\ &= \min ||\Sigma - I - (R-I)||_2^2 \\ &= \min \max_{||\bm{x}||=1} ||\left(\Sigma - I - (R-I)\right) \bm{x}^{\text{T}}|| \end{aligned}
$$

Consider $||\Sigma - R||$:

$$
(\Sigma - R)^{\mathrm{T}}(\Sigma - R) = (\Sigma - I - (I - R))^{\mathrm{T}}(\Sigma - I - (I - R))
$$

= (\Sigma - I)^{\mathrm{T}}(\Sigma - I) - (\Sigma - I)^{\mathrm{T}}(R - I) - (R - I)^{\mathrm{T}}(\Sigma - I) + (R - I)^{\mathrm{T}}(R - I)
= (\Sigma - I)^{\mathrm{T}}(\Sigma - I) + \Sigma(I - R) + (I - R^{\mathrm{T}})\Sigma + (R - I)^{\mathrm{T}}(R - I)

Without loss of generality we consider $x = e$ such that $e = (1, 0, 0, \ldots, 0)$.

$$
\min \max_{||\mathbf{x}||=1} ||(\mathbf{\Sigma} - \mathbf{I} - (\mathbf{R} - \mathbf{I})) \mathbf{x}^{\mathrm{T}}||^2 = e(\mathbf{\Sigma} - \mathbf{R})^{\mathrm{T}} (\mathbf{\Sigma} - \mathbf{R}) e^{\mathrm{T}}
$$

\n
$$
\geq e(\mathbf{\Sigma} - \mathbf{I})^{\mathrm{T}} (\mathbf{\Sigma} - \mathbf{I}) e^{\mathrm{T}} \quad (\because \text{diag}(\mathbf{I} - \mathbf{R}) \geq 0 \text{ and } \text{diag}(\mathbf{I} - \mathbf{R}^{\mathrm{T}}) \geq 0)
$$

The minima for the ultimate inequality is obtained when $\boldsymbol{R} = \boldsymbol{I}$ implying $\boldsymbol{Q} = \boldsymbol{U}\boldsymbol{V}^\mathrm{T}.$

 $Q = \boldsymbol{U} \boldsymbol{V}^{\rm T}$ is equivalent to taking the SVD of \boldsymbol{A} and setting all its singular values to be 1. Alternatively, $\boldsymbol{Q} = \boldsymbol{A} \left(\boldsymbol{A}^{\text{T}} \boldsymbol{A}\right)^{-\frac{1}{2}}$