
Machine Learning Basics

Saket Choudhary

October 21, 2018

This report summarizes various techniques that are part of almost all learning algorithms, with
a focus on neural networks.

1 Gradient Descent

Given a dataset X we want to develop a model g(θ) that ‘best’ explains the data. In order to gauge
how ‘well’ this model is doing we use a cost function, C(X, g(θ)). Since we want g(θ) to be as close
to X, we would like to minimize this cost function. In principle, we are looking for an estimate θ̂
such that θ̂ = argminθ C(X, g(θ))

Basic Idea: In order for the parameter θ to move towards a local minima (where C(X, g(θ)) is
minimized), we should be able to iteratively adjust it such that it moves in the direction where the
gradient of this cost function is large and negative , to ensure we move downhill the ‘valley’.

Smarter Way of iterating: In iterating over values of θ to arrive at the optimum θopt where
the error is minimized. We can keep on moving at a fixed rate. But, a faster way to do this would
be to move in large steps where the curvature of the cost function is relatively flat and in slower
steps when the curvature is relatively steep.

More formally, the function to be minimized is given by f(θ) = C(X, g(θ)). If fi(xi, θ) represents
the error for the ith data point.

f(θ) =

n∑
i=1

fi(xi, θ)

Examples: fi will generally be mean-square loss fi = (xi − θ)2 for linear regression, and cross
entropy loss fi = xi log(θi) + (1− xi) log(1− θ)

1.1 Simplest Gradient Descent

Define ηt to be learning rate. The gradient descent recipe is then as follows:

• Step 1: Initialize θ to θ0

• Step 2: νt = ηt∆θf(θt)

• Step 3: θt+1 = θt − νt

1

1.2 Gradient Descent vs Newton-Raphson method

Newton-Raphson method uses first order taylor approximation to estimate the value at f(θ + ν).
Let H(θ) be the hessian matrix and ν be the step size:

f(θ + ν) ≈ f(θ) + ∆θf(θ)ν +
1

2
νTH(θ)ν

For an optimum step size νopt, ∆θf(θ + νopt) = 0,

0 = ∆θf(θ) +H(θ)νopt

νopt = −(H(θ))−1∆θf(θ)

This rule can in turn be summarized as:

νt = (H(θ))−1∆θf(θ)

θt+1 = θt − νt

And hence drawing analogy with the Gradient descent rule, the learning rate for Newton’s
method is νt = (H(θ))−1 which is adaptive. How?

For single dimension, this translates to νt =
(∂2f(θ)

∂θ2

)−1
and hence at large curvature, is smaller

and at small curvatures moves very fast.
While Newton’s method is more adaptive, it is not useful:

1. Calculating hessian is expensive!

2. Even if we rely on Quasi-newton methods that do not calculate the Hessian explicittly and use
an approximation, they are memory intensive since each hessian calculation will be required
to store n2 entries.

1.3 Limitations of vanilla Gradient Descent (GD)

1. GD finds local minima

2. It is sensitive to initial conditions

3. Gradient computations are often expensive

4. Very sensitive to learning rates

5. Treats all directions in parameter space uniformly and unlike Newton’s method does not take
large steps in flat directions or smaller steps in steeper directions

6. Can take exponential time to escape saddle points even with random initialization

2

1.4 Stochastic Gradient Descent (SGD)

SGD incorporates stochasticity by incorporating approximating the gradient on a subset of the
whole data called a minibatch. Given n data points and a minibatch size of M , there will be n/M
minibatches.

For k = 1, 2 . . . n/M , define B1, B2, . . . , Bk to be minibatches and for the kth minibatch, define
the mini batch approximation to the gradient by cost function to:

∆θf
MB(θ) =

M∑
i∈Bk

∆θfi(xi, θ)

And the SGD algorithm is given by:

νt = ηt∆θf
MB(θ)

θt+1 = θt − νt

So what is stochastic about a SGD is the choice of datasetBk for which the gradient is calculated.
This is randomly chosen at each step.

1.5 SGD with Momentum

SGD is mostly used in conjunction with the momentum term:

νt = γνt−1 + ηt∆θf(θt)

θt+1 = θt − νt

where 0 ≤ γ ≤ 1. νt is a running average of its previous observation νt−1 weighed by γ. Typical
time scale of the ”memory” where gradient is considered is given by (1−γ)−1. Essentially, this past
”memory” term helps the parameter move towards the optimum faster by making it move faster
along the direction where gradients point in the same directions and prevents it from moving in
directions where gradients are continuously changing directions, avoiding the typical zig-zag motion
in case of SGDs.

1.5.1 Nesterov Accelerated Gradient (NAG)

νt = γνt−1 + ηt∆θf(θt + γνt−1)

θt+1 = θt − νt

As pointed out earlier, we want to be able to move with larger step size along regions of small
curvature and have smaller steps size for regions with relatively large curvature. NAG allows for
larger learning rates, by asking the parameter to jump in the direction of previous gradient and
then performing a correction. In momentum we perform a correction first and then make a jump
in the direction of velocity.

3

1.5.2 RMSprop

RMSprop reduces the learning rate ηt in the direction where the norm of the gradient is consistently
large, by additional keeping track of the second moment of the gradient st = E[g2t]:

gt = ∆θf(θ)

st = βst−1 + (1− β)g2t

θt+1 = θt − ηt
gt√
st + ε

and ε is a small regularization constant.

1.5.3 ADAM

ADAM goes one step beyond by keeping track of the running average of both first and second
moments of the gradient. Additionally, it also performs a bias correction step to account for the
fact that the moments are being estimated from running averages, rather than through a closed
form solution.

gt = ∆θf(θ)

mt = β1mt−1 + (1− β1)gt
st = β2st−1 + (1− β2)g2t
m̂t =

mt

1− β1
ŝt =

st
1− β2

θt+1 = θt − ηt
m̂t√
st + ε

2 Feedforward Neural Networks

The basic unit of a neural net is a neuron that takes a vector of inputs x = (x1, x2 . . . xn) and
produces a scalar output ai(x). Many such stacked units form a neural net. ai(x) is a non-linear
transformation of the linear combination of the weights.

Universality theorem: A neural net with one hidden layer can approximate any continuous
function. The proof is a bit non-trivial. But a visual proof appears in Chapter 4 of Neilsen’s book.

The activation function ai(x) is often modeled as a non-linear sigmoid. ai(x) = σ(zi) where
zi = wixi + bi.

2.1 Why non-linearity matters?

Why have a non-linear function as a choice of activation function at all? Why not just any function?
The purpose of the activation function is to introduce non-linearity into the network. If the

activation is linear, the entire network will act like just one single perceptron with no gradients. A
linear function of a linear function is linear.

4

http://neuralnetworksanddeeplearning.com/chap4.html

Figure 1: Neural Network Architecure. Figure borrowed from [1]

2.2 Basic Neural Networks

2.2.1 Types of activation

2.3 Backpropogation

2.4 Regularizing NNs

2.4.1 SGD and early stopping

SGD provides implicit regularization by providing stochasticity.
The idea of early stopping is straightforward: stop training when the validation error starts to

increase. The validation error will tend to increase when the model begins to overfit.

2.4.2 Dropout

Dropouts prevent overfitting by dropping off neurons randomly in order to reduce spurious corre-
lations between neurons.

More specifically, for each minibatch in the gradient descent, a neuron is dropped with proba-
bility p, the gradient descent is now performed only on the remaining neurons. Thus, on average,
the weights of each neuron are only present a fraction p of the time, so this needs to be accounted
for in the testing stage too. Thus, the testing weights are rescaled wtest = pẇtrain

2.4.3 Batch Normalization

Neural networks are easier to train when the inputs are centered around zero with respect to the
bias, because this prevents neurons from saturating (?)

5

Batch-normalization ensures that the inputs remain bias centered over each minibatch.

2.5 Bias Variance tradeoff

Let y be generated from a noisy model:

yi = xi + ε

where ε ∼ N (0, σ2)
We approximate f(x) using f̂(x).
f(xi) here is deterministic and hence the following two relations hold:

E[f] = f

V ar[f] = 0

Our cost function is given by:

C(x, f̂(x)) =

n∑
i=1

(yi − f̂(xi))
2

The expectation E below is taken over datasets Dj

6

E[C(x, f̂(x))] = E[
n∑
i=1

(yi − fi + fi − f̂)2]

= E[
n∑
i=1

(yi − fi)2 + (fi − f̂)2 + 2(yi − fi)(fi − f̂)]

=
n∑
i=1

E[(yi − fi)2] +
n∑
i=1

E[(fi − f̂)2] + 2E[(yi − fi)(fi − f̂)]

=
n∑
i=1

E[(yi − fi)2] +
n∑
i=1

E[(fi − f̂)2]

where the last equality holds because E[(yi − fi)(fi − f̂)] = E[(yi − fi)]E[(fi − f̂)] = 0
Now,

E[(fi − f̂i)2] = E[(fi − E[f̂i] + E[f̂i]− f̂i)2]
= E[(fi − E[f̂i])

2] + E[(E[f̂i]− f̂i)2] + 2E[(fi − E[f̂i])(E[f̂i]− f̂i))]
= E[(fi − E[f̂i])

2] + E[(E[f̂i]− f̂i)2]

where the last equality again holds because the last term is zero since:

E[(fi − E[f̂i])(E[f̂i]− f̂i))] = E[fi − E[f̂i]]E[E[f̂i]− f̂i))]
= 0

Thus,

E[C(x, f̂(x))] =
n∑
i=1

E[(yi − fi)2] + E[(fi − E[f̂i])
2] + E[(E[f̂i]− f̂i)2]

=
n∑
i=1

σ2ε + Bias2 + Variance

where

Bias = E[f − E[f̂]]

Variance = E[(E[f̂i]− f̂i)2]

3 Autoencoders

Autoencoders are a part of the ”Generative modeling” paradigm in Machine learning research,
where the aim is to model the distribution P (X) given datapoints X in some high dimensional
space Rm. They can be thought of neural networks that essentially try to copy the input to output.

More formally, autoencoders consist of an encoding and a decoding layer. Given an input x, the
encoding layer represents the input into its coded form h = f(x) while the decoding layer provides
a reconstruction of the original input r = g(h) = g(f(x)) ≈ x such that a loss L(g(f(x)), x) is
minimized, where L is a loss function that penalizes g(f(x)) for being dissimilar to x. Autoencoders
with dimensions less than the original dimension of input x are called undercomplete autoencoders.

7

3.1 PCA

When the decoding function is linear and the loss is mean squared loss, the undercomplete autoen-
coders is known to span the same subspace as PCA.

3.2 Sparse Autoencoders

Sparse autoencoders are autoencoders with a sparsity penalty Ω(h) on the encoding layer h = f(x).

L(x, g(f(x)) + Ω(h)

The sparsity constraint ensures that the autoencoder learns unique statistical properties of the
data, rather than acting just as a copy-paste function.

3.3 A more intuitive explanation

The overall aim of autoencoders is to be able to model the true probability distribution Ptrue(X) of
a given dataset X. Since Ptrue(X) is unknown, our aim is to learn an alternate distribution P (X)m
such that P (X) is ”close” to Ptrue(X). We want to avoid putting restrictions on the structure of
data and we also want the solution to be tractable (in a computationally expensive context) even
for large datasets.

We will focus on a special category of autoencoders called the ”Variational Autoencoders”
(VAE) for the rest of our sections.

3.4 Sparse Autoencoders and Latent Variables

The sparsity constraint in Sparse Autoencoders can be understood as an approximation of the
maximum likelihood training of a generative model that has latent variables.

3.4.1 Latent Variables

Consider a setting where our dataset includes objects like trees, house, and cat and dog pictures.
We want to be able to generate images which looks the ones in our dataset, but not exactly the
same. If we are able to generate the left half of a tree, then the right half of it will be very different
from the right half of a dog. Before we generate any image, it is useful (and essential) to think
about the kind of image we are going to generate to ensure that the pixels are coherent with the
image we are going to generate.

Before our model generates these images, it will randomly pick up an object z from {tree,house, cat,dog}
and make sure that all pixels in that image are ”coherent” in some sense: you do not expect green
patches to appear on the right. This z is a latent variable. It is latent because given a new gener-
ated image, we do not know which settings of the latent variable generated the final image. z for
example could be the patten of edges in our images.

3.4.2 Model

For the model to be representative of the data X, there should be at least on configuration of the
latent variable z such that the data generated resembles all data points in X.

8

More formally, the distribution P (X) is modeled using a generative process conditioned on
the latent variable Z and we want to maximize P (X). We have a way of sampling Z using some
distribution P (z) and this a deterministic function f(z; θ) parameterized by θ. We wish to optimize
θ, such that f(z; θ) generates samples that look like X

We want to maximize P (X) for each X in the training set, to be able to hope that this model
will be able to generate ”similar” samples.

P (X) =

∫
P (z)P (X|z; θ)dz

where P (X|z; θ) = f(z; θ).
In VAEs, the choice of this function P (X|z; θ) = N (X|f(z; θ), σ2I), but this is not a hard

requirement. If X is binary, P (X|z; θ) could be bernoulli. It can be any distribution other than a
dirac-delta, as long as it is computable.

VAEs solve this problem of ”generative modeling” by telling us what our choice of latent variable
z should be and how to overcome the integral involved over all such values of z.

Before our model starts generating any images, it needs to make some decisions. It needs to first
decide what image it will be generating, than decide the angles, stroke width etc. We want to avoid
deciding such properties by hand and we also want to avoid describing any sort of dependencies this
latent variable should capture (the house images for example, always has more edges). VAEs take a
very unintuitve approach of dealing with this by imposing a gaussian distribution on z ∼ N (0, σ2I).
How does that work?

Any distrbution in d dimensions can be generated by taking a set of d gaussian random variables
and passing them through some non-linear transformation. For example we can generate a 2D ring
starting with a 2D multivariate gaussian using this transformation: g(z) = z/α + z/||z|| where
z ∼ N(0, σ2I) and α is a shrinkage parameter.

An example is given below:

3.5 Objective function

For most choices of z P (X|z) will be close to zero. So VAEs tend to sample only those values of z
which are more probably of generating X. So we are interested in a function Q(z|X) that takes the
data X and gives us a distribution over z that are likely to produce X. Ideally, the space spanned
by Q(z|X) is much smaller than the ”prior” distribution P (z).

KL(Q(z)||P (z|X)) = Ez∼Q[logQ(z)− logP (z|X)]

P (z|X) =
P (X|z)P (z)

P (X)

KL(Q(z)||P (z|X)) = Ez∼Q[logQ(z) + logP (X)− logP (X|z)− logP (z)]

KL(Q(z)||P (z|X)) = Ez∼Q[logQ(z)− logP (z)] + logP (X)− Ez∼Q[logP (X|z)]
KL(Q(z)||P (z|X)) = KL(Q(z)||P (z)) + logP (X)− Ez∼Q[logP (X|z)]

logP (X)−KL(Q(z)||P (z|X)) = Ez∼Q[logP (X|z)]−KL(Q(z)||P (z))

9

Figure 2: It is possible to transform a gaussian (left) to look like a ring (right)

We want to maximize the quantity on left hand side because we want to maximize log(P (x)),
however we alos want to penalize Q(z) if it does not resemble the ”true” unknown distribution
P (z|X) Alternatively, our loss function for performing gradient descent is given by:

KL(Q(z)||P (z))− E[logP (X|z)]

where the first term denotes the information lost in representing P (z) as Q(z) and the second
term denotes the reconstruction loss

So we want KL(Q(z)||P (z|X)) to be minimized. If we find a magic function Q(z) which can
approximate P (z|X) perfectly, KL(Q(z)||P (z|X)) = 0.

3.6 What should be ideal Q(z—X)?

Answer: Q(z|X) = N (z|X,
∑

) just works.
To perform gradient descent on the right hand side, we take one sample of z and treat one

sample of that as an approximation of E[logP (X|z)], this is performed over all datapoints, say D

EX∼D[logP (X)−KL(Q(z)||P (z|X))] = EX∼D[Ez∼Q[logP (X|z)]−KL(Q(z)||P (z))]

We can just take the gradient of this equation and everything looks okay. However, during back-
propogation, we will encounter a layer that is sampling z from Q(z|X) which is itself a stochastic
unit. In order to be able to sample from Q(z|X) ∼ N (µ(X),

∑
(X)) we first sample ε ∼ N (0, I)

and then compute z = µ(X) +
∑1/2(X)ε. This is called the reparameterization trick.

10

3.7 KL divergence between two gaussians (Used above for calculating losses)

Assume q ∼ N (µ0, σ
2
0) and p ∼ N (µ1, σ

2
1):

KL(q||p) =

∫
q(x)(log(q(x)− log(p(x))dx

q(x) = (2πσ20)−
1
2 exp

−(x− µ)2

2σ20

log q(x) = −1

2
log 2π − log(σ0)−

−(x− µ)2

2σ20

KL(q||p) =

∫
q(log

σ1
σ0

+
(x− µ1)2

2σ21
− (x− µ0)2

2σ20
)dx∫

q
(x− µ0)2

2σ20
dx =

1

2σ20∫
q

(x− µ1)2

2σ21
dx =

1

2σ21
(

∫
x2qdx+

∫
qµ21 −

∫
2µ1xqdx)

=
EX2 + µ21 − 2µ1EX

2σ21

=
σ20 + µ20 + µ21 − 2µ1µ0

2σ21

=
σ20 + (µ1 − µ0)2

2σ21

KL(q||p) = log
σ1
σ0
− 1

2σ20
+
σ20 + (µ1 − µ0)2

2σ21

This section was written with the help of material from the following papers: [2] and [3].

4 Neural Networks and CNNs

A neural net receives input at the input layer, transforms it through the hidden layer through a
non-linear transformation before outputting the final outcomes at the output layer. The hidden
layer is made of neurons that are ”fully connected” to the previous layer.

Fully Connected: This type of connection implies neurons between two adjacent layers are
fully pairwise connected, but neurons within a single layer are not.

4.1 Activation functions

4.1.1 sigmoid

σ(x) = 1
1+exp−x squeezes the values in (−∞,∞) to [0, 1] (negative numbers become 0 and positive

numbers become 1).
sigmoid saturation: Sigmoid outputs saturate near zero or one. And hence the gradients will

be zero. This will often lead to limited learning.

11

sigmoid outputs are not zero centered: This causes the neurons in later layers (following
a sigmoid output) to receive non-zero centered input. This can create issues as if the data coming
in is always positive, the last few layers will have only positive or negative gradients. This gives
rise to a zig-zag dynamics

tanh activation: tanh(x) = e2x−1
e2x+1

= 2σ(2x) − 1 It also has the same saturated gradient
problem, but its output is zero-centered and hence is preferred over sigmoid

ReLu: max(0, x) helps get rid of the vanishing gradients problem, speeds up stochastic gradient
descent. However ReLUs are suspectible to death because of say a large negative bias term which
will always output 0. Leaky ReLUs exist to get rid of this problem (y = 0.01x for x < 0) so that
the gradients have a chance to recover in the long run because of the positive gradient at x < 0.

Choosing Kernel Sizes

This is arbitrary, mostly. The only thumb rule is larger kernel sizes are slower to train, give more
granularity on the number of features that can be learned.

5 Why CNN for images?

Regular neural nets will not scale for images. Images are three dimensional entities. An image of
size 32x32x3 (where 3 = number of channels) will have 32x32x3 = 3078 weights to learn. This will
blowup for a deeper layer and/or a larger image size.

CNNs take the advantage of images having a third dimension. So ConvNets also have three
dimensions: width height and depth. The ”depth” here is not the depth of the network, but the
depth of the channels.

Each convolution layer consists of a set of learnable filters. The ”filter” is a 2D matrix whose
cell matrices represent the weights we want to learn. It extends all the way along the depth of the
input volume (the number of channels). A filter of size 5x5x3 will have a height and width of 5 and
has 3 channels, same as the number of channels in input image. Convolution involves sliding this
filter over the image and taking the dot products between the entries of the filter and the input. If
we start with 10 filters, we will have a stack of 10 2D activation maps. These can then be stacked
to produce the output.

The spatial extent(height and width) of the filter is called receptive field.
Example: If the input image is size 32x32x3 and the filter size is 5x5x3 , we have 5x5x3 = 75

+ 1 (bias) = 76 parameters to learn.

5.1 Parameter Sharing

Consider input image of size 227x227x3. Consider the filter size to be F = 11, stride to be S = 4
and padding to be P = 0. Assume K = 96 is the depth of this convnet. So the resulting volume
will be 227−11

4 + 1 = 55. So we have a total of 55x55x96 = 290, 400. Each of these neurons are
connected to a image window of size 11x11x3 and neuron along the depth of 96 covers one single
region of size 11x11x3.

Each neuron has 11x11x3 = 363 + 1(bias) = 364 weights that are unknown. But if learn these
weights for 55x55x96 = 290, 400 neurons, it blows up to 290, 400x364 which is too large.

However, if we think about what’s being learned through these filters is features. If a feature
is important to be learned at some spatial location (x1, y1) it should also be important at (x2, y2)

12

Figure 3: All 5 neurons along the depth capture the same spatial region and have different set of
parameters.

and hence we don’t need to learn separate weights for all neurons that are in the same level. More
intuitively, if detecting edge at one location is important, it should be important to do so at other
location too and thatcan be done using the same filter. So all 55x55 neurons in each depth slice
(out of 96) share the same set of parameters (weights and biases), so we end up learning only
96x11x11x3 = 34848 parameters.

5.2 Summary of a Conv Layer

• Accepts a volume of size W1 ×H1 ×D1

• Hyper parameters:

– Number (Depth) of filters: K

– Spatial extent (width=height): F

– Stride: S

– Zero Padding: P

• Results in an output volume of W2 ×H2 ×D2

13

– D2 = K

– W2 = H2 = W1−F+2P
S + 1

• With parameter sharing, there are only (F ×F ×D1)×K weights and K biases learned where
the weights are shared over each W2 ×H2 sized area slice for depth D1

• In the output volume the values at the dTh slice of area W2 ×H2 is obtained by performing
convolution using the dth kernel

•

5.3 Pooling layer

Pooling reduces the spatial size of the representation thus reducing the amount of parameters and
making the entire operation translation indepedent of the input. Larger size of pooling kernel is
destructive. most common is F = 2, S = 2 or F = 3, S = 2.

• Accepts a volume of size W1 ×H1 ×D1

• Two hyperparameters:

– Stride S

– Spatial extent F

• Produces a volume of size W2 ×H2 ×D2

– W1 = H2 = W1−F
S + 1

– D2 = D1

6 AlexNet and related papers

Used dropouts for preventing overfitting. TODO.

Figure 4: AlexNet

14

7 Variational Inference

A common problem in modern statistics is to be able to approximate difficult to compute probability
distributions. The most common use of this in bayesian inference where the aim is to infer the
unknown quantities using a posterior distribution.

Variational Inference converts the problem of inferring this probability distribution to an ap-
proximation problem. It can be thought of as an alternate to MCMC, but is faster and scales easily
to larger datasets.

Consider we have a probability distribution p(x). z = z1, z2, z3 . . . zm are m latent variables and
x = x1, x2 . . . xn are n observed random variables. Assume we have large number of datapoints.

p(x) =

∫
p(z)p(x|z)dz

7.1 MCMC and Why not MCMC?

Our aim is to infer p(z|x). In an MCMC setting, we would create an ergodic markov chain on z,
whose stationary distribution is p(z|x). We would then sample from this chain to collect samples
from the stationary distribution and the posterior will be estimated empirically from a subset of
these collected samples.

We need a faster way than MCMC to be able to do this, especially given our assumption of
large dataset. So we will replace the slow step of sampling with optimization.

MCMC and Variational Inference (VI) essentially solve the same problem. MCMC samples a
markov chain while VI solves an optimization problem. MCMC approximates the posterior of the
chain while VI approximates through optimization.

7.2 Variational Inference

Let Q represent a family of approximate densities over the latent variables z. We want to find a
member q∗z such that the KL divergence between this family and the posterior p(z|x) is minimized:

q∗(z) = argminq(z)∈Q KL(q(z)||p(z|x))

Hence our original inference problem has been converted to an optimization problem. The com-
plexity of this optimization problem depends on how complex is our choice of family of distribution
Q. We want Q to be flexible enough so that p(z|x) can be approximated closely but simple enough
so that the problem is still tractable.

Our goal is to be able to approximate a conditional density of the latent variables p(z|x) given
observed variables x.

Our strategy would be to use a family of densities over the latent variables, parametrizing them
”free” variational parameters. Optimization will find the member of this family with the setting of
these parameters that is closest in KL divergence to p(z|x)

15

7.3 Evidence Lower Bound

is carried ou Consider the KL divergence equation:

KL(q(z)||p(z|x)) =

∫
q(z) log(

q(z)

p(z|x)
)

= Eq[log(q(z))]− Eq[log(p(z|x))]

= Eq[log(q(z))]− Eq[log(
p(x, z)

p(x)
)]

= Eq[log(q(z))]− Eq[log(p(x, z))] + Eq[log p(x)]

= Eq[log(q(z))]− Eq[log(p(x, z))] + log p(x)

However the above equation is intractable because log(p(x)) is intractable. So we optimize an
alternate function: ELBO(q)

ELBO(q) = Eq[log(p(x, z))]− Eq[log q(z)]

= Eq[log(p(z|x)p(x))]− Eq[log q(z)]

= Eq[log(p(z|x))] + Eq[log(p(z))]− Eq[log q(z)]

= Eq[log(p(x|z))] + Eq[log(p(z))]− Eq[log q(z)]

= −KL(q(z)||p(z)) + Eq[log p(x|z)]

Why the name ELBO? It Lower BOunds the (log) Evidence. Assuming we have proven that
KL divergence is non-negative KL(q(z)||p(z)) ≥ 0, we get log(p(x)) ≥ ELBO(q)

So instead we maximize this ELBO(q) function. The first term of the last equation implies
we are penalizing q(z) to be different from p(z) and at the second term implies we are trying to
maximize the expected log likelihood of observing x through p(x|z).

The first term in the original ELBO(q) equation is trying to maximize the expected complete
log likelihood, which would generally involve an EM solution. When q(z) = p(z|x) then the ELBO
is simply log(p(x)). So in a traditional EM setup, the E step would involve computing p(z|x)
assuming it is tractable unlike in variational inference.

8 Updating mean and variance

Given a large collection of vectors, we want to calculate its mean and variance repeatedly. In
particular, we don’t want to store things as a matrix for later calculation but want to do these two
calculations

16

µn =
1

n

n∑
i=1

xi

=
1

n
(xn +

n−1∑
1=1

xi)

=
1

n
(xn + (n− 1)µn−1)

= µn−1 +
1

n
(xn − µn−1)

8.1 Identities

xn − µn−1 = n(µn − µn−1)
xn − µn = n(µn − µn−1) + µn−1 − µn

= (n− 1)(µn − µn−1)

8.2 Updating Varinace

Consider

σ2 =
1

n

n∑
i=1

(xi − µn)2

=
1

n

n∑
i=1

(x2i + µ2n − 2xiµn)

=
1

n

n∑
i=1

(x2i − 2nµ2n + nµ2n)

=
1

n

n∑
i=1

x2i − µ2n

Define: Sn = nσ2n =
∑n

i=1 x
2
i − nµ2n

Then,

17

Sn − Sn−1 =
n∑
i=1

x2i − nµ2n −
n∑
i=1

x2i + (n− 1)µ2n−1

= x2n − nµ2n + (n− 1)µ2n−1

= x2n − µ2n−1 − n(µ2n − µ2n−1)
= x2n − µ2n−1 − n(µn − µn−1)(µn + µn−1)

= x2n − µ2n−1 − (xn − µn−1)(µn + µn−1)

= x2n − µ2n−1 − (xnµn + xnµn−1 − µn−1µn − µ2n−1)
= x2n − xnµn − xnµn−1 + µn−1µn

= (xn − µn)(xn − µn−1)
Sn = Sn−1 + (xn − µn)(xn − µn−1)

8.2.1 Aliter

Sn =

n∑
i=1

(xi − µn)2

=

n∑
i=1

((xi − µn−1)− (µn − µn−1))2

=

n∑
i=1

(xi − µn−1)2 +

n∑
i=1

(µn − µn−1)2 − 2

n∑
i=1

(xi − µn−1)(µn − µn−1)

Consider individual terms,

n∑
i=1

(xi − µn−1)2 = (xn − µn−1)2 +

n−1∑
i=1

(xi − µn−1)2

= (xn − µn−1)2 + Sn−1

= n2(µn − µn−1)2 + Sn−1

n∑
i=1

(xi − µn−1)2 = n(µn − µn−1)2

18

n∑
i=1

(xi − µn−1)(µn − µn−1) = (µn − µn−1)
n∑
i=1

(xi − µn−1)

= (µn − µn−1)(xn − µn−1 +
n−1∑
i=1

(xi − µn−1))

= (µn − µn−1)(xn − µn−1 − (n− 1)µn−1 +
n−1∑
i=1

xi)

= n(µn − µn−1)2

Thus,

Sn = Sn−1 + n(n− 1)(µn − µn−1)2

9 PCA/ICA/CA

Given data points {x1, x2, . . . , xN} in and RD space, where N > D. We want to represent these
datapoints in a reduced dimension M < D such that the variance represented in this domain is
maximized.

Let’s take the simplest case when M = 1. We are hence looking for a direction u1, such that
u1u

T
1 = 1’
So we have the following information:
Original point: xD×1
Projected point: uT1 x where u1 is D × 1
Define x̄ = 1

N

∑N
i=1 xi

Variance =
1

N

N∑
i=1

(uT1 xi − uT1 x̄)2

=
1

N

N∑
i=1

(uT1 xi − uT1 x̄)(uT1 xi − uT1 x̄)T

= uT1 Su1

S =
1

N

N∑
i=1

(xi − x̄)(xi − x̄)T

Since we want to maximize variance, it is equivalent to maximizing TODO

10 UMAP

UMAP [4] is another dimensionaloty reduction technique. In gist, the topological structure of the
pictured data is an approximately homotopy to the manifold from where the data weas sampled.
In topology two continuous functions are homotopic if one can be continuously deformed into the

19

other, For example, a donut can be deformed into a cup. In a more non-prceise manner, this means
the connected componets are connected on the manifold too and the disconnected components are
disconnected on the manifold.

On KL divergence and its asymmetricness

References

[1] P. Mehta, M. Bukov, C.-H. Wang, A. G. R. Day, C. Richardson, C. K. Fisher, and D. J. Schwab,
“A high-bias, low-variance introduction to Machine Learning for physicists,”

[2] C. Doersch, “Tutorial on Variational Autoencoders,”

[3] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,”

[4] L. McInnes and J. Healy, “UMAP: Uniform Manifold Approximation and Projection for Di-
mension Reduction,” 00004.

20

	Gradient Descent
	Simplest Gradient Descent
	Gradient Descent vs Newton-Raphson method
	Limitations of vanilla Gradient Descent (GD)
	Stochastic Gradient Descent (SGD)
	SGD with Momentum
	Nesterov Accelerated Gradient (NAG)
	RMSprop
	ADAM

	Feedforward Neural Networks
	Why non-linearity matters?
	Basic Neural Networks
	Types of activation

	Backpropogation
	Regularizing NNs
	SGD and early stopping
	Dropout
	Batch Normalization

	Bias Variance tradeoff

	Autoencoders
	PCA
	Sparse Autoencoders
	A more intuitive explanation
	Sparse Autoencoders and Latent Variables
	Latent Variables
	Model

	Objective function
	What should be ideal Q(z|X)?
	KL divergence between two gaussians (Used above for calculating losses)

	Neural Networks and CNNs
	Activation functions
	sigmoid

	Why CNN for images?
	Parameter Sharing
	Summary of a Conv Layer
	Pooling layer

	AlexNet and related papers
	Variational Inference
	MCMC and Why not MCMC?
	Variational Inference
	Evidence Lower Bound

	Updating mean and variance
	Identities
	Updating Varinace
	Aliter

	PCA/ICA/CA
	UMAP

