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Chapter 1

Introduction

Our overall aim in this project is to check the feasibility of using deep learning ap-
proaches for doing histopathological image classification. We plan to first start off
with a binary classification problem, based on whose success, efforts can be extended
to multi class problems later.

1.1 Data

We are currently working with a collection of histopathological images made avail-
able through the CAMELYON16 website. The training dataset contains:

• Training data: 270 whole slide images (WSIs) of the lymph nodes around the
breast region collected from two independent centers.

– 100 normal and 70 metastasized (tumor containing) lymph node WSIs
from Center 1

– 60 normal and 40 metastasized (tumor containing) lymph node WSIs from
Center 2

• Testing data: A total of 130 whole slide images from the two centers

Whole slide images are storied in a multi-resolution pyramid like structure. In gen-
eral, this is arranged in a 10 level structure with a level 0 indicating the highest
resolution and level 9 indicating the lowest zoomed out version. Each level contains
tiles of images and the file format allows rapid retrieval of these subregions at all
levels.

Slides containing metastases will also have regions which contain only normal
cells, such as in Figure 1.2. The training data also contains this region partition
information made available as binary masks over the image where a mask of 1s
indicate the region contains tumor while 0s indicate no tumor.

1.2 Goals

1. Does the accuracy vary with normalization? If yes, by how much and which
method is the most suitable?

2. What is an ideal sample size for an accuracy of 0.8 or higher?

3. Is a resolution of 20x sufficient? Is 4x too low?

4. Are the probability heatmaps even reliable? (Given we also have the region-
wise segmentation information)

https://camelyon16.grand-challenge.org/data/
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FIGURE 1.1: Arrangement of levels and associated magnification. If
there are 10 levels [0− 9] and level 0 indicates 40x magnification, level
1 will have 20x magnification, level 2 will have 10x magnification and
so nth level will have 40/2nx magnification. (Image courtesy: CAME-

LYON16)

is_tumor count mean std min 25% 50% 75% max sum

False 111 26605 15981 4656 14857 23628 36056 108210 2953199
True 111 2656 5786 6 70 489 1932 36705 294854

TABLE 1.1: Summary statistics of tumor and normal patches present
in tumor slides

5. How many layers do we really need in our Neural Network? Is Inception-v4
the best? Can we tweak it to do better?

The evaluation at each stage happens through a test dataset also made available
through the CAMELYON16 which already has both the label information (metas-
tases vs normal) and the region based segmentation masks for metastatic slides. So,
these evaluation steps do not require us to interact with pathologists.

1.3 Exploratory Analysis

1.3.1 Distribution of number of patches

We developed a library pyvirchow for processing the images which also has multiple
machine learning (including deep learning) methods implmeneted. It is available
here.

The data and code used for figures generated in this Chapter are available in this
notebook .

count mean std min 25% 50% 75% max sum

159 25321 23415 2272 12252 20755 32361 240185 4026196

TABLE 1.2: Summary statistics of normal patches present in normal
slides

https://github.com/saketkc/pyvirchow
https://github.com/saketkc/pyvirchow/blob/master/notebooks/PatchesDFAnalysis.ipynb
https://github.com/saketkc/pyvirchow/blob/master/notebooks/PatchesDFAnalysis.ipynb
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FIGURE 1.2: A low resolution (top left), a mid resolution (top right)
and a high resolution view (bottom) of a metastatic-normal region

boundary (Image courtesy: CAMELYON16)

is_tumor count mean std min 25% 50% 75% max sum

0 False 48 23290 14914 4080 13314 19915 28026 81311 1117920
1 True 48 4858 14165 5 40 258 1718 80717 233184

TABLE 1.3: Summary statistics of normal and tumor patches present
in test slides
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Chapter 2

Color Normalization

We wanted to evaluate if color normalization would affect the downstream accuracy.
Normalization is important since different images can have different illumination
levels and staining pattern. Here we discuss all the normalization methods that we
explored in brief.

2.1 Color transfer

Reinhard et al. (1) developed a simple method to perform color transfer between
images. If all the channels of a natural RGB color are plotted in a three dimensional
setting, they would all appear to fall along a diagonal implying the R, G and B val-
ues are correlated and hence there is dependence between the three channels. If we
perform any transformation in the RGB space, we would need to ensure the trans-
formation is applied to all the channels simultaneously.

2.1.1 Problem definition

Given two images, source (s) and target (t), we want to modify the source image so
that it captures the style characteristics of the target image.

2.1.2 Key Idea

lαβ minimizes the correlation between R,G and B channels for many natural scenes.
This thus allows applying different transformations across the three channels ensur-
ing that the cross channel artifacts would remain minimal.

We carry out operations on a PCA subspace of LMS: l, α, β. The LMS colorspace
is a representation of the color values based on the responsiveness of the the three
types of cones in the human eye at the high, medium and short wavelengths.

In order to emulate the style of ’source’ (s) image on the ’target’ (t) we simply
rely on sufficient statistics: (µ, σ) of each channel.

The transformation over target images lt, αt, βt is given by:

lt = lt − l̄t

αt = αt − ᾱt

βt = βt − β̄t

This is then scaled with respect to variances:

https://en.wikipedia.org/wiki/LMS_color_space
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FIGURE 2.1: Example of a color transfer as implemented in Reinhard
et al. (1) and implemented in the following notebook

lt = lt ∗
σs

σt

αt = αt ∗
σα

σα

βt = βt ∗
σβ

σβ

Finally we do the transfer magic:

lt = lt + l̄s

αt = αt + ᾱs

βt = βt + β̄s

An example image with Reinhard’s color transformation is shown in Figure 2.1
The aim of this exercise was to use the same idea for normalizing the histopathol-

ogy images. If one histopathology choosen randomly is declared as the references,
all other images can be normalized based on this reference. However, we did not
use this normalization approach since it was not clear if such a normalization is im-
portant for any of the deep learning architectures we wanted to use downstream.

2.2 Macenko Normalization

Macenko et al. (3) implemented a method for normalizing the histopathology im-
ages, based on this key observation that the color values of each histopathology im-
age is a manifestation of two colors: pink and purple with different concentrations.

2.2.1 Method

Consider Ww×h×3 as the RGB representation of a histopathology image. If I0 is the
intensity of the light illuminating the image, then following the Beer-Lambart law,

https://github.com/saketkc/histopathology-dl-strand/blob/master/notebooks/07.ColorTransfer-Normalization.ipynb
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the intensity of image is given by:

I = I0 exp (−W)

The optical density is defined by:

OD = log (I0)− log (W)

A completely white image will have an OD value of 0.
We can then decompose OD into two constituting matrices: C, S
Cw×h×2 is the concentration matrix S2×3 is the color matrix
Once S has been determined for a target image, it can be used as a basis matrix

for decomposing other source images.
In order to determine C, S, Macenko et al. make use of principle component

analysis.
In order to find the staining vector, The shortest path between two unit-norm

color vectors on the sphere is the geodesic path. This line appears to be curved in
a spherical coordinate decomposition unless it would correspond to change in only
one direction or the other. By finding this specific geodesic direction, we can project
the OD transformed pixels onto it in order to find the endpoints that correspond to
the stain vectors.

Each image is assumed to be composed of two specific stain vectors and the
resulting image is assumed to be composed of linear combination of these stain vec-
tors. The weights of each vector is non-negative and hence each value should exist
between these two vectors (i.e. their span should be complete). The shortest path
between any two vectors on a sphere is the geodesic path. This path will appear
curved in the spherical coordinate, unless both the vectors overlap. We want to find
this path so that the OD values can be projected onto this path in order to locate the
end points of the stain vectors for that corresponding image. In the absence of any
noise the minimum and maximum values found along this direction would consti-
tute the two stain vectors.

In the first step, the plane spanned by the two vectors is determined. This can
be approximated by the plane spanned by the first two vectors corresponding to the
largest two singular values of the SVD of OD values. After projecting the OD values
onto the plane defined by the first two eigen vectors, they are normalized for unit
length and then an angle calculated for each vector with respect to the SVD direction.
Extreme value angles are then trimmed to account for noise. These trimmed values
can then be projected back to obtain the noise free estimates. These steps can be
summarizes as follows:

• Step 1: Convert RGB values to OD OD = −log(I) where I represents individ-
ual channels {R, G, B} and normalized to [0, 1]

• Step 2: Filter out lower values of OD and retain OD > β for some β > 0
(typically 0.15)

• Step 3: Calculate SVD of flattened OD matrix ( (w × h×)3)

• Step 4: Create a plane corresponding to the directions corresponding to eigen
vectors of the largest two eigen values

• Step 5: Project the OD matrix on this plane and renormalize all values to unit
vector
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• Step 6: Calculate angle of each of the projected point from the first SVD direc-
tion vector arctan x

SVD1vector

• Step 8: Find the robust extremes (αth and (1 − α)th percentile of these angular
values which represent the stain vectors

• Step 9: Project the stain vectors back into the RGB domain

This method is implemented in the following file of pyvirchow:

2.3 Vahadane Normalization

Macenko et al. approach inherently assumes that similar proportion of stains are
present in all the image and hence is limited in its performance. Vahadane et al.
(2) instead introduce a Non-Negative Matrix Factorization (NMF) method that per-
forms sparse strain separation by adding sparsity constraints on the stain channels.
This is inspired from the biology of the image itself: each pixel is made of two colors
(pink and blue) mixed in different proportions.

If Xw×h×3 represents the w × h, 3 channel RGB, then it can be decomposed as
follows:

We find C, S using: minC,S ||X − CS||F such that C ≥ 0; S ≥ 0 where S2×3 rep-
resents the matrix of two stain vectors and Cw×h×2 represents the associated con-
centration vector. Since concentration and channel values can never be negative, all
values of matrices C, S are non-negative. Thus we solve for:

min
C,S

1
2
||X − CS||2F, such thatC, S ≥ 0

There is one more clever trick that Vahadane et al. use, again inspired from
the biology of the image. Since one type of stain binds only one kind of biological
structure (purple stain binds nuclei only), we can further constrain the matrix S to
be sparse:

min
C,S

1
2
||X − CS||2F + λ

3

∑
j=1

S(:, j), such that C, S ≥ 0

The steps for normalizing then can be summarized as follows:

• Step 1: Convert source and target images to optical densities

• Step 2: Estimate stain and concentration matrix for source: Xs = CsSs

• Step 3: Estimate stain and concentration matrix for target: t = CtSt"

• Step 4: Readjust the range of Hs so tha it is similar to the range of Ht.Call it
Hnorm

• Step 5: Color exchange OD′
s = CsSnorm

• Step 5: Project OD back into RGB space

Vahadane et al’s algorithm in the is implemented in pyvirchow in the following
in the following file.

https://github.com/saketkc/pyvirchow/blob/master/pywsi/normalization/macenko.py
https://github.com/saketkc/pyvirchow/blob/master/pywsi/normalization/vahadane.py
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FIGURE 2.2: An example of Macenko and Vahadane normalization

2.4 Xu Normalization

Xu et al. (4) further impose sparsity constraints on the frobenius norm of C, S:

minC,S
1
2
||X − CS||2F +

α1

2
||C||2F +

α2

2
||S||2F + λ ∑

j=1
3||S(:, j)||2

Xu normalization is implemented in pyvirchow in this file.

2.5 Conclusion

We presented a background for normalizing colors in histopath images with a focus
on three key approaches. In the next Chapter we discuss the process of segmenta-
tion.

https://github.com/saketkc/pyvirchow/blob/master/pywsi/normalization/xu.py
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Chapter 3

Nuclei Segmentation

In order to setup a baseline model, we relied on looking at the histopatholgy images
using clinician’s eye. A pathologist distinguishes between tumor and normal images
based on the following criteria:

• Tumor cells: dark stained, irregularly clumped nucleus; irregular nuclear mem-
brane; less amount of cytoplasm; more variation in shape and size; overlap-
ping nuclei

• Normal cells: round nucleus with regular nuclear membrane; normal staining
chromatin; high cytoplasmic volume

In order to extract this information from the images, we perform segmentation
in order to separate the nuclei from the rest of the image.

3.1 Problem

Given a patch of a whole slide image, segment the image such that the nuclei blobs
can be separated from the rest of the image.

3.2 Approach

Image segmentation is a widely studied subdomain in image processing field. Naively,
the idea is to make use of gradients in intensity values to separate out different ob-
jects in an image. For the rest of the discussion we denote the intensity at x, y coor-
dinate as I(x, y).

3.3 Binarizing image

The first step of segmentation is to perform binarization. Following Al-Koofahi et
al. (5) we implement binarization in two steps, starting with an initial binarization
that is later refined using graph-cut algorithm as in Boykov et al.(6). Boykov et al.
method performs binary segmentation using the max-flow/min-cut algorithm and
requires two probability matrices for background and foreground intensities. These
matrices can be approximated using either poisson deconvolution or gaussian mix-
ture models, the difference in these two approaches essentially being the assumption
of the underlying probability distribution.

Consider the normalized image histogram h(i) where i = intensity of a pixel:
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3.3.1 Poisson Deconvolution

h(i) = P0 × p(i|0) + P1 × p(i|1)

P0 and P1 are prior probabilities of belonging to background and foreground
respectively. For a given threshold t, they can be estimated by:

P0(t) =
t

∑
i=0

h(i)

P1(t) =
Imax

∑
i=t+1

h(i)

µ0(t) =
1

P0(t)

t

∑
i=0

i × h(i)

µ1(t) =
1

P1(t)

Imax

∑
i=t+1

i × h(i)

The optimal threshold t∗ is found by :

t∗ = arg min
t
{µ − P0(t)(ln P0(t) + µ0(t) ln µ0(t))− P1(t)(ln P1(t) + µ1(t) ln µ1(t))

This method is implemented in pyvirchow here.

3.3.2 Gaussian Mixture Models

Gaussian mixture model approach is essentially similar to the poisson deconvolu-
tion method in the above section, except the intentioes are assumed to follow a
gaussian distribution instead of a poisson. We found Gaussian mixture models to
be a better fit for the set of images we had. This is implemented in pyvirchow here

3.4 Refining binarization

Having obtained a primary level of binarization using either poisson deconvolution
or gasussian mixture models, the result of thresholding I(x, y) is further refined by
incorporating spatial constraints. Intuitively, we would want to assign the same
binary label to nearby pixels, thus penalizing such scenarios.

If I(x, y) represents the intensity at location (x, y) and L(x, y) represents the label
assigned at that location, we want to be able to minimize the following loss function:

E[L(x, y)] = ∑
(x,y)

D(L(x, y); I(x, y)) + ∑
(x,y)

∑
(x′,y′)∈N(x,y)

V(L(x, y), L(x′, y′))

where
D(L(x, y), I(x, y)) = − ln p(I(x, y)|j = 0, 1)

V(L(x, y), L(x′, y′)) = η(L(x, y), L(x′, y′))× exp
−(I(x′, y′)− I(x, y))

2σ2

η(L(x, y), L(x′, y′)) =

{
1 if L(x, y) = L(x′, y′)
0 otherwise

https://github.com/saketkc/pyvirchow/blob/master/pywsi/segmentation/binary_segmentation.py#L12
https://github.com/saketkc/pyvirchow/blob/master/pywsi/segmentation/binary_segmentation.py#L75
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D(L(x, y), I(x, y)) represents the loss associated with assigning a label to position
(x, y) while the V(L(x, y), L(x′, y′)) term penalizes neighboring points for having
different labels if their intensities is beyond a certain threshold |I(x, y)− I(x′, y′)| <
σ. σ is empirically set to 20 − 30 in most cases. If the image is smooth, σ can be
chosen to be of a lower value. This loss function minimization is done through the
max-flow/min-cut based approach given in Boykov et al. (6)

3.5 Seed detection

Following eh graph-cuts based binarization, the image has been separated into con-
nected clusters of nuclei. We want to separate these clusters of nuclei into individual
nuclei to be able to extract their geometrical properties. This requires identification
of seed points which can then be extended to segment out individual nuclei. How
do we come up with good seed points?

Loss of gaussian (LoG) filters have widely been used for such seed identification
tasks. LoG filter is given by:

LoG(x; y) =
∂2G(x, y; σ)

∂x2 +
∂2G(x, y; σ)

∂y2

where σ refers to the scale value. The expectation is that when this filter is ap-
plied on the input image for different values of σ, at a certain value of σ the location
of the seed centers will be robust to finer textures (say the chromatin pattern) than
the textures imposed by the nuclei themselves.

3.5.1 Method

The content of this section is derived from Lindeberg et al. (7) The scale-space rep-
resentation L : RD × R+ −→ X of any function f is defined as the solution to this
diffusion equation:

∂tL =
1
2

δ2L

=
1
2

D

∑
i=1

∂xixi L

The family of solutions is equivalent to a convolution with a gaussian kernel
L(.; t) = g(. : t) ∗ f (.) where g : RD × R+ −→ Rh is given by:

g(x; t) =
1

(2πt)N/2 exp− x2
1 + x+2 · · ·+ x2

D
2t

Different values of α will cover different scales of details in the original signal
f . Higher values of α will capture the coarser details while smaller values will cap-
ture the finer details. Mathematically, this implies that the amplitude of the spatial
derivatives Lxα(.; t) = ∂xα(.; t) = ∂xα1

1
∂xα2

2
. . . ∂xαD

D
L(.; t) decrease with scale.

Automatic seed detection makes use of this concept of normalized derivatives to
automatically select the scale at which the spatial derivative achieves its maximum.
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We start here with an example based on sine function. f (x) = sin ω0x. The
diffusion equation solution for f (x) is given by:

L(x; t) = e−omega2t/2 sin ω0x

The maximum amplitude is given by Lmax(t) = e−omega2t/2 and decreases expo-
nentially for the mth order smooth derivative.

Lxm,max(t) = ωm
0 e−ω2

0 t/2.
If we introduce a γ − normalized derivative operator:

∂ϵ,γ−norm = tγ/2∂x

equivalent to a change of variable as

ϵ =
x

tγ/2

The mth smooth derivative is then given by:

Lϵm,max(t) = tmγ/2ωm
0 e−ω2

0 t/

which first increases and then decreases and hence has a unique maxima occur-
ring at tmax,Lϵm = γm/ω2

0
Define the scale parameter σ =

√
t and let λ be the wavelength of the signal

given by λ = 2π
ω0

. Then the scale σmax,Lϵm where the amplitude of the γ normalized
derivative achieves its maximum is given by

σmax,L
ϵM =

√
γm

2π
λ0

and the maximum value of the derivative acheived at this scale is given by:

Lϵm,max(tmax ,L
ϵM ) =

(γm)γm/2

eγm/2 ω
(1−γ)m
0

The entire procedure can be thought of a pattern matching where we are trying
to match Gaussian kernels of different size to a given image pattern by using a nor-
malization strategy based on previous matching. γ − normalization gives a one to
one correspondence between the matching response of the Gaussian kernel deriva-
tive and the wavelength of the signal. We want to select that scale of the kernel such
that at that scale the response of the match is the highest.

3.6 Clustering

Having performed automatic seed detection based segmentation as in the previous
section, the resulting segmentation could still have two or more nuclei grouped in
one label as a single large blob. In order to avoid such scenarios, the scale parameter
requires more fine tuning. Al-Koafhi et al. (5) devised a novel strategy to handle this
by making use of Euclidean distance maps also known as distance transform that
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FIGURE 3.1: A tumor patch with segmented nuclei

represents for each pixel the distance to the nearest obstacle pixel (which in this case
refers to a different label)

• Step 1: Perform LoG(x,y;σ) at multiple values of σ = [σmin, . . . σmax]

• Step 2: Use the Euclidean distance map D(x, y) to constraint the maximum
scale values. Euclidean distance map gives for each pixel value the length of
the shortest path from this pixel to the boundary. The distance map constraints
the scale value at each point resulting in a response curve R(x, y) that can be
thought of as a topography with its peaks indicating seed centers of the nu-
clei. The response surface R(x, y) is given by arg maxσ∈[σmin,σmax ]{LoG(x, y; σ) ∗
I(x, y)} where σmax = max{σmin, min{σmax, 2D(x, y)}}.

• Step 3: Perform local max clustering on seed centers which uses a resolution
parameter r to club nearby clusters into one.

For further details of the algorithm we refer the reader to (5). The max-clustering
algorithm is present in pyvirchow here.

https://github.com/saketkc/pyvirchow/blob/master/pywsi/segmentation/max_clustering.py


18 Chapter 3. Nuclei Segmentation

FIGURE 3.2: A tumor patch with segmented nuclei applied only to
the H-channel (purple) image after Vahadane et al. (2) based channel
separation. Applying color normalization enhances the segmentation

results.
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Chapter 4

Classification Approaches and
Results

In this Chapter we describe all the approaches we took and the corresponding re-
sults.

4.1 Existing Approaches

Histopathological image classification has been explored in multiple publications
across the literature. The first large scale study to the best of our knowledge was
through the CAMELYON16 challenge. CAMELYON16 dataset included the follow-
ing:

• Training data: 270 whole slide images (WSIs) of the lymph nodes around the
breast region collected from two independent centers.

– 100 normal and 70 metastasized (tumor containing) lymph node WSIs
from Center 1

– 60 normal and 40 metastasized (tumor containing) lymph node WSIs from
Center 2

• Testing data: A total of 130 whole slide images from the two centers

Each tumor slide in the training and test dataset has manual annotations indicating
the tumor regions.

CAMELYON16 winners indicated a patch level accuracy of 98.4% using a 22
layer convolutional neural network (8).

Liu et al. (9) used Inception model (10) achieving an overall patch-level accuracy
of ≥ 98% with 48 layers. Li and Ping (11) made use of neural networks followed by
conditional random fields to achieve an overall patch-level accuracy of 93.48%.

4.2 Our Approach: Dataset

We extracted around 2.5 million normal and 2.5 million tumor patches from the en-
tire pool of training sites. The associated function is available in this python method.

4.3 Our Approach 1: CNN

Inspired from the architecture of Long et al. (12), we came up with a similar arrange-
ment for pixel level classification of patches which is implemented in pyvirchow

here.

https://camelyon16.grand-challenge.org
https://github.com/saketkc/pyvirchow/blob/master/pywsi/cli.py#L850
https://github.com/saketkc/pyvirchow/blob/master/pywsi/deep_model/model.py
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Batch of Patches 32x256x256x3

FIGURE 4.1: A sample batch of 32 images that is fed to the 8 layer
CNN

Batch of Truth Masks 32x256x256x1

FIGURE 4.2: Masks corresponding to the 32 images in Figure 4.1.
Black denotes normal and white denotes tumor regions
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tumor normal

FIGURE 4.3: Example of a whole slide image with tumor and normal
regions annotated

In order to verify that such an architecture was capable of learning the difference
between tumor and normal patches, we first tested this on only one slide image,
training on 20k patches and testing on remaining 10k patches. This gave as an over-
all accuracy of ∼ 98%.

Though the eight layer model was successful in learning on one slide only it fails
to generalize.

4.4 Our Approach 2: Autoencoders

Autoencoders are a great tool for reducing the dimensionality of high-dimensional
data while retaining the most significant features such that the data can be recon-
structed using these reduced dimensions to a great extent. The details of autoen-
coders appear in Appendix A. The relevant python functions are available in this
notebook.

We input 256 × 256 size image into autoencoder reducing it to just 100 dimen-
sions and then using a random forest on these dimensions. Though we perform

https://github.com/saketkc/pyvirchow/blob/master/notebooks/Autoencoder_nlatent100.ipynb
https://github.com/saketkc/pyvirchow/blob/master/notebooks/Autoencoder_nlatent100.ipynb
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FIGURE 4.4: Prediction of our 8 layer CNN model when trained using
20 patches and predicted on the remaining 10k patches.

Test input Reconstruction

Test input Reconstruction

Test input Reconstruction

Test input Reconstruction

Test input Reconstruction

Test input Reconstruction

Test input Reconstruction

FIGURE 4.5: Reconstructed images from an autoencoder
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0.0 0.1

solidity
moments_hu_1

nuclei_intensity_over_entire_image
compactness

eccentricity
extent

inertia_tensor_eigvals_1
texture

mean_intensity
nuclei

moments_central_11
max_intensity

mean_intensity_entire_image
moments_hu_2

total_nuclei_area

Feature importances

FIGURE 4.6: Feature importance for Approach 3

better in this case as compared to our Approach 1, the accuracy is still limited to
around 70%.

4.5 Approach 3: Segmentation followed by Random Forest

In our third approach we make use of the methods we discussed in Chapters 2 and
3 to segment the nuclei from the image and then extract features from these nuclei.
We then make use of a random forest classifier on these features.

Surprisingly our this approach outperforms the other two approaches and we
achieve close to 85% accuracy. The totality of features used in this apporach appear
as a table in this notebook.

4.6 Conclusions

We tried multiple approaches for classifying histopathological images into tumor
and normal classes. A baseline method using features of the nuclei outperformed
the other neural network approaches. However, different groups have attained a
superior accuracy with a deep neural network approach in the literature. These
deep networks also require significant training time and we did not spend enough
time towards replicating their results. Our simpler deep neural network of eight
layers was not sufficiently deep to learn the intricacies of the entire dataset though it
achieved higher accuracy when trained using data from one slide only. In hindsight,
we would recommend the following:

• The architecture in (8; 9; 11) are not hard to implement as the underlying mod-
els are essentially already available. It should be possible to emulate their re-
sults given sufficient compute resources and time.

• Our Approach 3 of random forests appears to have lot of correlated features
that all appear to rank high (such as solidity and compactness), probably ran-
dom forest is not the best choice of algorithm here. Pruning features to a more
non-correlated subset, might lead to higher accuracy

https://github.com/saketkc/pyvirchow/blob/master/notebooks/RFSegmentation-fixed-allfeatures.ipynb
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FIGURE 4.7: Comparison of AUC for three different approaches. Ap-
proach 3 (RF) outperforms other approaches achieving a maximum

accuracy of 85%.

• Though the eight layer network didn’t end up with a high accuracy, it might
still be possible to gain higher accuracy by increasing the total number of layers
(and hence the parameters)
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Appendix A

Autoencoders

This document summarizes our current understanding of Autoencoders. The first
section acts as a short introduction to Variational Inference which forms the back-
bone of Autoencoders. In section two we summarize the theory behind autoen-
coders and discuss VAEs in detail. The two sections may appear to be disconnected
at first, so we reintroduce the

A.1 Variational Inference

A common problem in modern statistics is to be able to approximate difficult to com-
pute probability distributions. The most common use of this in bayesian inference
where the aim is to infer the unknown quantities using a posterior distribution.

Variational Inference converts the problem of inferring this probability distribu-
tion to an approximation problem. It can be thought of as an alternate to MCMC,
but is faster and scales easily to larger datasets.

Consider we have a probability distribution p(x). z = z1, z2, z3 . . . zm are m latent
variables and x = x1, x2 . . . xn are n observed random variables. Assume we have
large number of datapoints.

p(x) =
∫

p(z)p(x|z)dz

A.1.1 Why not MCMC?

Our aim is to infer p(z|x). In an MCMC setting, we would create an ergodic markov
chain on z, whose stationary distribution is p(z|x). We would then sample from this
chain to collect samples from the stationary distribution and the posterior will be
estimated empirically from a subset of these collected samples.

We need a faster way than MCMC to be able to do this, especially given our
assumption of large dataset. So we will replace the slow step of sampling with opti-
mization.

MCMC and Variational Inference (VI) essentially solve the same problem. MCMC
samples a markov chain while VI solves an optimization problem. MCMC approxi-
mates the posterior of the chain while VI approximates through optimization.

A.1.2 Variational Inference

Let Q represent a family of approximate densities over the latent variables z. We
want to find a member q∗z such that the KL divergence between this family and the
posterior p(z|x) is minimized:
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q∗(z) = argminq(z)∈Q KL(q(z)||p(z|x))

Hence our original inference problem has been converted to an optimization
problem. The complexity of this optimization problem depends on how complex
is our choice of family of distribution Q. We want Q to be flexible enough so that
p(z|x) can be approximated closely but simple enough so that the problem is still
tractable.

Our goal is to be able to approximate a conditional density of the latent variables
p(z|x) given observed variables x.

Our strategy would be to use a family of densities over the latent variables,
parametrizing them "free" variational parameters. Optimization will find the mem-
ber of this family with the setting of these parameters that is closest in KL divergence
to p(z|x)

A.1.3 Evidence Lower Bound

Consider the KL divergence equation:

KL(q(z)||p(z|x)) =
∫

q(z) log(
q(z)

p(z|x) )

= E[log(q(z))]− E[log(p(z|x))]

= E[log(q(z))]− E[log(
p(x, z)
p(x)

)]

= E[log(q(z))]− E[log(p(x, z))] + E[log p(x)]
= E[log(q(z))]− E[log(p(x, z))] + log p(x)

However the above equation is intractable because log(p(x)) is intractable. So
we optimize an alternate function: ELBO(q)

ELBO(q) = Eq[log(p(x, z))]− Eq[log q(z)]
= Eq[log(p(z|x)p(x))]− Eq[log q(z)]
= Eq[log(p(z|x))] + Eq[log(p(z))]− Eq[log q(z)]
= Eq[log(p(x|z))] + Eq[log(p(z))]− Eq[log q(z)]
= −KL(q(z)||p(z)) + Eq[log p(x|z)]

ELBO lower bounds the (log) evidence. Assuming we have proven that KL di-
vergence is non-negative KL(q(z)||p(z)) ≥ 0, we get log(p(x)) ≥ ELBO(q)

So instead we maximize this ELBO(q) function. The first term of the last equation
implies we are penalizing q(z) to be different from p(z) and at the second term im-
plies we are trying to maximize the expected log likelihood of observing x through
p(x|z).

The first term in the original ELBO(q) equation is trying to maximize the ex-
pected complete log likelihood, which would generally involve an EM solution.
When q(z) = p(z|x) then the ELBO is simply log(p(x)). So in a traditional EM
setup, the E step would involve computing p(z|x) assuming it is tractable unlike in
variational inference.
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A.2 Autoencoders

Autoencoders are a part of the “Generative modeling" paradigm in Machine learn-
ing research, where the aim is to model the distribution P(X) given datapoints X
in some high dimensional space Rm. They can be thought of neural networks that
essentially try to copy the input to output.

More formally, autoencoders consist of an encoding and a decoding layer. Given
an input x, the encoding layer represents the input into its coded form h = f (x)
while the decoding layer provides a reconstruction of the original input r = g(h) =
g( f (x)) ≈ x such that a loss L(g( f (x)), x) is minimized, where L is a loss function
that penalizes g( f (x)) for being dissimilar to x. Autoencoders with dimensions less
than the original dimension of input x are called undercomplete autoencoders.

A.2.1 PCA

When the decoding function is linear and the loss is mean squared loss, the under-
complete autoencoders is known to span the same subspace as PCA.

A.2.2 A more intuitive explanation

The overall aim of autoencoders is to be able to model the true probability distribu-
tion Ptrue(X) of a given dataset X. Since Ptrue(X) is unknown, our aim is to learn
an alternate distribution Q(X) such that Q(X) is "close" to Ptrue(X). We want to
avoid putting restrictions on the structure of data and we also want the solution to
be tractable (in a computationally expensive context) even for large datasets.

A.2.3 Sparse Autoencoders

Sparse autoencoders are autoencoders with a sparsity penalty Ω(h) on the encoding
layer h = f (x).

L(x, g( f (x)) + Ω(h)

The sparsity constraint ensures that the autoencoder learns unique statistical
properties of the data, rather than acting just as a copy-paste function.

We will focus on a special category of autoencoders called the “Variational Au-
toencoders" (VAE) for the rest of our sections.

A.2.4 Sparse Autoencoders and Latent Variables

The sparsity constraint in Sparse Autoencoders can be understood as an approxi-
mation of the maximum likelihood training of a generative model that has latent
variables.

Latent Variables

Consider a setting where our dataset includes objects like trees, house, and cat and
dog pictures. We want to be able to generate images which looks the ones in our
dataset, but not exactly the same. If we are able to generate the left half of a tree,
then the right half of it will be very different from the right half of a dog. Before we
generate any image, it is useful (and essential) to think about the kind of image we
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are going to generate to ensure that the pixels are coherent with the image we are
going to generate.

Before our model generates these images, it will randomly pick up collection
of pixels z from {tree, house, cat, dog} and make sure that all pixels are coherent in
some sense. For example to generate a dog’s image, you do not expect lot of green
patches that would resemble a tree. This z is a latent variable. It is latent because
given a new generated image, we do not know which settings of the latent variable
generated the final image. z for example could be the patten of edges in our images.

A.2.5 Model

For the model to be representative of the data X, there should be at least on configu-
ration of the latent variable z such that the data generated resembles all data points
in X.

More formally, the distribution P(X) is modeled using a generative process con-
ditioned on the latent variable Z and we want to maximize P(X). We have a way
of sampling Z using some distribution P(z) and this a deterministic function f (z; θ)
parameterized by θ. We wish to optimize θ, such that f (z; θ) generates samples that
look like X

We want to maximize P(X) for each X in the training set, to be able to hope that
this model will be able to generate "similar" samples.

P(X) =
∫

P(z)P(X|z; θ)dz

where P(X|z; θ) = f (z; θ).
In VAEs, the choice of this function P(X|z; θ) = N (X| f (z; θ), σ2 I), but this is

not a hard requirement. If X is binary, P(X|z; θ) could be bernoulli. It can be any
distribution other than a dirac-delta, as long as it is computable.

VAEs solve this problem of “generative modeling" by telling us what our choice
of latent variable z should be and how to overcome the integral involved over all
such values of z.

Before our model starts generating any images, it needs to make some decisions.
It needs to first decide what image it will be generating, than decide the angles,
stroke width etc. We want to avoid deciding such properties by hand and we also
want to avoid describing any sort of dependencies this latent variable should cap-
ture (the house images for example, always has more edges). VAEs take a very
unintuitive approach of dealing with this by imposing a gaussian distribution on
z ∼ N (0, σ2 I). How does that work?

Any distribution in d dimensions can be generated by taking a set of d gaussian
random variables and passing them through some non-linear transformation. For
example we can generate a 2D ring starting with a 2D multivariate gaussian using
this transformation: g(z) = z/α + z/||z|| where z ∼ N(0, σ2 I) and α is a shrinkage
parameter.

An example is given below:

A.2.6 Objective function

For most choices of z P(X|z) will be close to zero. So VAEs tend to sample only
those values of z which are more probably of generating X. So we are interested in
a function Q(z|X) that takes the data X and gives us a distribution over z that are
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FIGURE A.1: It is possible to transform a gaussian (left) to look like a
ring (right)

likely to produce X. Ideally, the space spanned by Q(z|X) is much smaller than the
"prior" distribution P(z).

KL(Q(z)||P(z|X)) = Ez∼Q[log Q(z)− log P(z|X)]

P(z|X) =
P(X|z)P(z)

P(X)

KL(Q(z)||P(z|X)) = Ez∼Q[log Q(z) + log P(X)− log P(X|z)− log P(z)]
KL(Q(z)||P(z|X)) = Ez∼Q[log Q(z)− log P(z)] + log P(X)− Ez∼Q[log P(X|z)]
KL(Q(z)||P(z|X)) = KL(Q(z)||P(z)) + log P(X)− Ez∼Q[log P(X|z)]

log P(X)− KL(Q(z)||P(z|X)) = Ez∼Q[log P(X|z)]− KL(Q(z)||P(z))

We want to maximize the quantity on left hand side because we want to maxi-
mize log(P(x)), however we also want to penalize Q(z) if it does not resemble the
"true" unknown distribution P(z|X) Alternatively, our loss function for performing
gradient descent is given by:

KL(Q(z)||P(z))− E[log P(X|z)]

where the first term denotes the information lost in representing P(z) as Q(z)
and the second term denotes the reconstruction loss

So we want KL(Q(z)||P(z|X)) to be minimized. If we find a magic function Q(z)
which can approximate P(z|X) perfectly, KL(Q(z)||P(z|X)) = 0.

A.2.7 What should be ideal Q(z|X)?

Answer: Q(z|X) = N (z|X, ∑) just works.
To perform gradient descent on the right hand side, we take one sample of z and

treat one sample of that as an approximation of E[log P(X|z)], this is performed over
all datapoints, say D
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EX∼D[log P(X)− KL(Q(z)||P(z|X))] = EX∼D[Ez∼Q[log P(X|z)]− KL(Q(z)||P(z))]

We can just take the gradient of this equation and everything looks okay. How-
ever, during backpropogation, we will encounter a layer that is sampling z from
Q(z|X) which is itself a stochastic unit. In order to be able to sample from Q(z|X) ∼
N (µ(X), ∑(X)) we first sample ϵ ∼ N (0, I) and then compute z = µ(X)+∑1/2(X)ϵ.
This is called the re-parameterization trick. This was the main contribution of the
original VAE paper (13).

A.2.8 KL divergence between two gaussians (Used above for calculating
losses)

Assume q ∼ N (µ0, σ2
0 ) and p ∼ N (µ1, σ2

1 ):

KL(q||p) =
∫

q(x)(log(q(x)− log(p(x))dx

q(x) = (2πσ2
0 )

− 1
2 exp

−(x − µ)2

2σ2
0

log q(x) = −1
2

log 2π − log(σ0)−
−(x − µ)2

2σ2
0

KL(q||p) =
∫

q(log
σ1

σ0
+

(x − µ1)
2

2σ2
1

− (x − µ0)2

2σ2
0

)dx

∫
q
(x − µ0)2

2σ2
0

dx =
1

2σ2
0∫

q
(x − µ1)

2

2σ2
1

dx =
1

2σ2
1
(
∫

x2qdx +
∫

qµ2
1 −

∫
2µ1xqdx)

=
EX2 + µ2

1 − 2µ1EX
2σ2

1

=
σ2

0 + µ2
0 + µ2

1 − 2µ1µ0

2σ2
1

=
σ2

0 + (µ1 − µ0)2

2σ2
1

KL(q||p) = log
σ1

σ0
− 1

2σ2
0
+

σ2
0 + (µ1 − µ0)2

2σ2
1

This section borrows a lot of its contents from these papers: (14) and (13).
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