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Abstract

Biology’s next big problem is, too much data to handle. With the
advent of Next Generation Sequencing techniques, the rate of data
production far exceeds our ability to make sense out of it. There has
been a shift from the classical hypothesis-driven research to an -omics
based research.

-omics focuses on the global analysis of a system as opposed to a
individual component based analysis as in classical hypothesis driven
research. Besides collecting the -omics data, there is an ever increas-
ing collection of clinical data. The problem no longer lies in getting
the DNA sequenced, but as to what inferences can be drawn from such
a study. -omics and classical hypothesis driven research can comple-
ment each other, only if we overcome the bottleneck of analyzing this
data. Too much data, not be too informative.

Here, we try to tackle a collection of problems from the genomics and
functional genomics domains with an aim to tackle the bottlenecks
by making use of mathematical tools. Mathematics as a science and
as a tool can help mitigate some of these bottlenecks.

We address five different problems here. The first problem discusses
how information from DNA sequencing can be used for characterizing
the nature of mutations in Cancer. A unified workflow is presented
which can aid biologists in prioritizing the damaging nature of these
mutations.

In the second discussion, we demonstrate the earlier known presence
of Human papillomavirus in Cervical cancer datasets.

The third problem presents a case study of benchmarking two align-
ment algorithms.

The fourth problem focuses on obtaining a set of bio-markers, from a
proteomics microarray experiment, that can be used for prognosis of
cancer.

With the fifth problem we present visualisation tools for biological
data, that can be used in next generation sequencing and discovery
domains for data analytics.
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Chapter 1

Introduction

DNA or Deoxyribo Nucleic Acid is a molecule found in all eukaryotes includ-
ing humans that carries hereditary information[5] from one generation to an-
other. Nearly every cell in the human body has the same DNA sequence. DNA
that is passed by the mother to its offspring in mitochondria is referred to as
mtDNA(short for ’mitochondrial DNA’).

DNA is essentially made up of four bases : Adenine(A), Guanine(G) (Purines)
and Thymine(T), Cytosine(C) (Pyrimidines). Every base is attached to a sugar
molecule(deoxyribose sugar) and a phosphate molecule resulting in a nucleotide.
These nucleotides are bound to each other and the sequence of these bonds de-
termines the traits of an individual.

Structurally DNA is a packed as a double stranded helix. The two strands are
complementary. Adenine(A) on one strand always has a corresponding Thymine(T)
on the other strand and similarly Guanine has a corresponding Cytosine on the
other strand. Owing to the naming convention associated with the C(Carbon)
atoms in the nucleotide rings, there is a 5’ (pronounced as ’five prime’) and a
3’(pronounced as ’three prime’) end. Figure 1.1 shows how two complementary
strands are arranged.

5’-ATGCCGTAATTGGCC-3’
3’-TACGGCATTAACCGG-5’

Figure 1.1: Complementary strands of DNA

The biological information in any individual is ’encoded’ by the DNA which is
divided into discrete units called genes. The entire hereditary information stored
in the set of 23 chromosomes besides the mtDNA is called the ’Human Genome’.

The Genome is packaged in the form of chromosomes. Chromosomes are made
up of DNA and proteins and is like a packet containing a chunk of the genome.
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Humans have a set of 22 autosomes and one pair of sex chromosome. Autosomes
are same in males and females while sex chromosomes of an individual determine
the sex. Females have two copies of the X chromosome as XX, while males have
one X and one Y chromosome.

Genes are the instructing machinery for protein manufacturing. Every person
has two copies of gene one inherited from each parent. This can be easily seen
from the fact that during zygote formation one set of chromosome comes from
the father while the other set of the chromosomes comes from the mother.

The largest chromosome of any organism is called Chromosome 1, the next
largest is called Chromosome 2 and so on. Different chromosomes contain different
genes. Each chromosome contains many genes and genes are essentially made up
of DNA and ’code’ for proteins.

Figure 1.2: Chromosome,DNA and genes, http://www.bbc.co.uk/schools/

gcsebitesize/science/add_aqa_pre_2011/celldivision/celldivision1.

shtml

1.1 DNA Sequencing

Deciphering DNA sequences is essential for virtually all branches of biological
research. Determining the sequence of bases gives us insight into the genetic
variations associated. These genetic variations are in turn associated with level
of protein expressions. These level of protein expressions in turn govern the
susceptibility to diseases, the effectiveness of drugs and the probability of passing
diseases down the generation. A better understanding at the molecular level will
ensure specific therapeutic targets.

The Genome of an organism is the blueprint of how an organism functions.
Genome sequencing is a pathway for finding genes more easily and quickly. De-

2
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ciphering the gene map and the basic sequences that govern them correctly, will
aid in early prognosis of diseases besides zeroing down upon a set of specific
therapeutic targets for drug delivery.

1.1.1 Sanger Sequencing

Making use of dideoxy nucleoside triphosphates, Sanger designed an easy and
reliable protocol to sequence the DNA [38]

Nucleoside: Base (A,T,G,C) bound to ribose or deoxyribose sugar. Chain of
nucleosides forms a DNA sequence
Nucleoside Triphosphate: Nucleoside 1.3 bound with three phosphate
molecules

Figure 1.3: Nucleosides, http://www.uic.edu/classes/bios/bios100/

lectures/dna.htm

DNA replication can be initiated in-vivo by providing it with the necessary
dNTPs and a starting sequence called primers, and some enzymes. The en-
zymes(like DNA polymerase) catalyze DNA replication and add new nucleotides
to the end of primer sequences such that the synthesizes strand is complementary
to the original strand.

In Sanger Sequencing, DNA replication is initiated with the help of a DNA
primer, however instead of a dNTP, a ddNTP is used. ddNTP is like regular
DNA sans the 3 Hydroxyl(-OH) group , thus if added to the end of DNA, there is
no way of further extending the chain. The key point lies in the fact that most of

3
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Deoxyribose Nucleoside Triphosphates: Nucleo-
side triphosphates containing the deoxyribose sugars

Figure 1.4: ddNTP and dNTP http://www.uic.edu/classes/bios/bios100/

lectures/techniques.htm

4

http://www.uic.edu/classes/bios/bios100/lectures/techniques.htm
http://www.uic.edu/classes/bios/bios100/lectures/techniques.htm


the nucleotides are normal(dNTPs) and only some of them are ddNTPs. Either
the primer is radio-labeled or the ddTPs are radio-labeled so that they can later
be detected on a gel.

Using restriction enzymes the sequence is fragmented at random positions
and then these sequences are pooled along with dNTPs, ddNTPs and enzymes
required for replication. The first step generally involves PCR amplification of
the DNA. As the DNA fragments are random and the chain may terminate at any
random position, multiple copies of DNA are required. This ensures that each
base site is covered more than once in the short and long fragments or reads, as
we refer to them henceforth.

When we take multiple copies of the sequence and a ddNTP such as T, i.e.
a ddTTP then most sequence will end in a dideoxy T But what is not known is
where this T would be incorporated along the length. The sample will essentially
be a mixture of long and short reads with ’T’ occurring at the ends, at different
lengths based on the site it gets incorporated. This is just an example for ’T’,
same applies for ’A’, ’C’ and ’G’.

As seen from 1.5 all the sequences started with one common primer, but all of
them ended in a ’T’. The position at which each fragments terminates is random.
Say we start with billion PCR fragments, possibly a million of them will end in a
’T’. After annealing the DNA, denaturing it into single strands, a primer is used
with its 3’ end lying next to DNA sequence of interest. Either the primer or the
ddNTP is radio-labeled so that it can be detected later. This sample is then run
on a gel with four different lanes labeled ’G’,’A’,’T’ and ’C’.

The DNA sequence can be read off in the form of a ladder from the gel
starting from the bottom right going to the top left as showing Figure 1.6. We
start from the bottom right since the sequence at the bottom of the gel is the
smallest(lighter) while the one at the top will be the largest(heavier). Since
there are four lanes, each lane will have a sequence terminating in that particular
nucleotide, and hence all fragments will be of different size.

1.1.2 Next Generation Sequencing

The traditional Sanger Sequencing was automated, giving rise to the ’First Gen-
eration Sequencing’ [33] by using fluorescent labeled ddNTPs by labeling the
four ddNTPs with fluorescent dyes of different wavelengths. This method makes
sequencing easier and cheaper.

Next Generation Sequencing is a used to describe a collection set of technolo-
gies that emerged around 2005 which enabled high-throughput sequencing at a
cheap cost [40]. Next Generation Sequencing(here after referred as NGS) are
essentially built on top of the idea of Automated Sanger Sequencing, where thee
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Primer Used : GAATGTCCTTTCTCTAAGTCCTAA

5’-GAATGTCCTTTCTCTAAGTCCTAAT*
3’-CTTACAGGAAAGAGATTCAGGATTCAGGAGGCCTACCATGAAGATC-5’

5’-GAATGTCCTTTCTCTAAGTCCTAAGT*
3’-CTTACAGGAAAGAGATTCAGGATTCAGGAGGCCTACCATGAAGATC-5’

5’-GAATGTCCTTTCTCTAAGTCCTAAGTCCT*
3’-CTTACAGGAAAGAGATTCAGGATTCAGGAGGCCTACCATGAAGATC-5’

5’-GAATGTCCTTTCTCTAAGTCCTAAGTCCTCCGGAT*
3’-CTTACAGGAAAGAGATTCAGGATTCAGGAGGCCTACCATGAAGATC-5’

5’-GAATGTCCTTTCTCTAAGTCCTAAGTCCTCCGGATGGT*
3’-CTTACAGGAAAGAGATTCAGGATTCAGGAGGCCTACCATGAAGATC-5’

5’-GAATGTCCTTTCTCTAAGTCCTAAGTCCTCCGGATGGTACT*
3’-CTTACAGGAAAGAGATTCAGGATTCAGGAGGCCTACCATGAAGATC-5’

5’-GAATGTCCTTTCTCTAAGTCCTAAGTCCTCCGGATGGTACTT*
3’-CTTACAGGAAAGAGATTCAGGATTCAGGAGGCCTACCATGAAGATC-5’

5’-GAATGTCCTTTCTCTAAGTCCTAAGTCCTCCGGATGGTACTTCT*
3’-CTTACAGGAAAGAGATTCAGGATTCAGGAGGCCTACCATGAAGATC-5’

Figure 1.5: Terminating chains with radio-labeled ddNTPs

Figure 1.6: Autoradigram, Source: http://www.bio.davidson.edu/courses/

molbio/molstudents/spring2003/obenrader/sanger_method_page.htm
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DNA to be sequenced is first broken down into a library of small fragments by
cutting the DNA strand at random positions using specific reagents(restriction
enzymes). These small fragments can now be sequenced individually in parallel.
These small fragments are referred to as ’reads’. These reads can then be re-
assembled using a reference genome to get a contiguous original sequence. This
approach is commonly referred to as Shotgun Sequencing [45]

Whole Genome Shotgun Sequencing: Whole Genome is broken down into
small fragments. Since the cleavage takes place at random positions, the short
fragments are resequenced multiple times in order to come up with a consensus se-
quence. It might however happen that certain regions remain un-sequenced(owing
to the fragmentation being random) and will turn out as gaps, as indicated by
Figure 1.7

Figure 1.7: Shotgun Sequencing , Source: http://www.scq.ubc.ca/

genome-projects-uncovering-the-blueprints-of-biology/
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1.2 NGS Data Formats

NGS sequencers generate output as a FastQ file. FastQ file contains raw read
sequences along with a quality score value referred to as the Phred Quality
Score[14]

@HWI-ST1097:104:D13TNACXX:4:1101:1715:2142 1:N:0:CGATGT
GCGTTGGTGGCATAGTGGTGAGCATAGCTGCCTTCCAAGCAGTTAT
+
=<@BDDD=A;+2C9F<CB?;CGGA<<ACEE*1?C:D>DE=FC*0BA

Value String Description
HWI the unique instrument name
ST1097 the run id
D13TNACXX flow cell id
4 flow cell lane
1101 tile number within flow cell
1715 ’x’-coordinate of the cluster within the tile
2142 ’y’-coordinate of the cluster within the tile
1 the member of a pair, 1 or 2

(paired-end or mate-pair reads only)
N Y if the read fails filter (read is bad), N otherwise
0 when none of the control bits are on,

otherwise it is an even number
CGATGT index sequence
Line 1 Read identifier, end and bar-code for the read
Line 2 Read Sequence
Line 3 Marker(Same throughout the file)
Line 4 String of ASCII-encoded base quality scores,

one character per base in the sequence

Figure 1.8: FastQ format, Partially adapted from http://en.wikipedia.org/

wiki/FASTQ_format

As shown in 1.8 for every base there is a corresponding quality score as-
sociated with it. A quality value Q is defined as an integer mapping of the
probability score p , i.e. the probability that the corresponding base is wrong.
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Qsanger = −10log10p (1.1)

where Qsanger = Quality score for Sanger formatted files

Qsolexa = −10log10
p

1− p
(1.2)

where Qsolexa = Quality score for files as received from Solexa sequencer.

A notable point here is that different sequencers encode the Phred Scores dif-
ferently Sanger format can encode a Phred quality score from 0 to 93 (Phred+33)
using ASCII 33 to 126 Starting with Illumina 1.3 and before Illumina 1.8, the
format encoded a Phred quality score from 0 to 62 (Phred+64) using ASCII 64
to 126

It is important to know which platform the reads came from, since the align-
ment algorithm essentially depends on these score values.

A NGS pipeline involves the following steps:

1. Quality Control Checks Before processing starts, it is necessary filter
out reads that are low quality. Pre-processing may also involve trimming
the reads to filter out poly-A tails.

2. Alignment: Pre-processed reads are aligned to a reference sequence. Align-
ment is important from the point of down stream analysis

3. Variant Call: Determine mutations after alignment

4. Post Processing and Annotation Generate re-calibrated mapping scores
and annotate variants to determine the associated genes.

The workflow is summarized in 1.9
The output of a pipeline is a VCF(Variant Call Format)[16] which is a

tab delimited file that lists down the reference and allelic nucleotides at various
chromosome positions.

Most of the analysis in life sciences is dependent on variant calling, and VCF
is a standard format for storing the variants.

1.3 Sequencing: Why?

The Genome of an organism is the blueprint of how an organism functions. If
we are able to decipher the chromosome maps, the basic sequences that govern
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Figure 1.9: NGS Workflow,Adapted from http://cgf.nci.nih.gov/

operations/bioinformatics.html
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them diseases can not only be identified early but at the same time new drugs
and treatments can be discovered.

At the very least Genome sequencing is a pathway for finding genes more
easily and quickly. Locating genes gives insights into the protein expressions
which in turn is related to tumors, drug delivery.
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Chapter 2

Driver mutation identification

2.1 Driver Mutations

A somatic mutation, alternatively referred to as an acquired mutation is the
set of mutations developed post zygote formation. The zygote might itself inherit
mutated DNA from one or both of its parents, these are referred to as germline
mutation.

Cancer is known to develop due to accumulation of somatic mutations [51].
However not all somatic mutations are equally important from the point of pro-
moting tumor growth. Only a small subset of these mutations are directly in-
volved in development and progression of cancer. Driver mutations are known
to confer growth advantages to the cell besides being ’selected’ positively in the
tumor tissue. [46]

The problem of differentiating driver mutations from the somatic mutations
has been studied using the following broad approaches[56]:

1. Prediction of functional impact of the mutation

2. Machine learning approaches; classifier trained on known set of
driver mutations

3. Difference in background mutation frequency of driver and pas-
senger mutations
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Single Nucleotide Variation(SNV): A DNA sequence variation arising due
to the assembled DNA not aligning with the reference DNA, perfectly
. Reference sequence: ATCGTAGGCTA

ATCGTAGGCTA
ATCGC*AGGCTA

At the marked position C occurs instead of an expected T, giving rise to a SNV.
If this SNV inturn causes a different amino acid to be expressed this is referred
to as a non synonymous mutation nsSNV.

Here we briefly discuss few of the approaches for driver mutation identification.

2.2 Polyphen2 [2]

Polyphen 2 [2] relies on functional impact prediction of the variants. Polyphen2
was primarily developed for studying the deleterious effects of non synonymous
mutations. Based on eight sequence-based and three structure-based predictive
feature, it applies a naive-bayes classifier to predict the posterior probability of a
given mutation being a deleterious or damaging mutation. Though the approach
is machine learning based, the set of features considered take into account the
biological/functional impact of the mutations.

Out of initial 19 sequence-based and 13 structure-based features, a set of 11
features(8 sequenced based and 3 structure based) were determined using feature
selection techniques. Feature selection is important as a noisy/irrelevant/redun-
dant feature can affect the performance of the classifier.

Some of these features are:

1. PSIC Score: PSIC score [48] gives likelihood score of observing an amino
acid at a particular position, given the substitution pattern of amino acids
as in BLOSUM62 matrix.

2. Sequence Identity to closest homologue: Degree of closeness to the
homologue carrying any amino acid different from the wild type allele

3. Congruency to MSA: Sequence identity for the amino acid at the given
site with respect to its closest homologue in which this amino acid is ob-
served.

4. CpG context: CpG context of transition matrix

5. Change in hydrophobic propensity
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6. Crystallographic B factor for conformational mobility

7. Alignment Depth

8. Change in amino acid volume

9. Existense of Pfam domain

The steps involved in Polyphen2 are as in 2.2

Figure 2.1: Polyphen2 Steps, Adapted from [2]

2.3 SIFT [26]

SIFT (Sorting Intolerant From Tolerant) uses protein sequence homology to
classify amino acid substitutions arising from non synonymous mutations in the
DNA. Using the PSI-BLAST [3] algorithm SIFT searches for functionally re-
lated proteins in a protein database A multiple sequence alignment(MSA) is
performed for all these proteins. With the MSA output, it is possible to gen-
erate a PSSM(Position Specific Scoring Matrix) where the rows list out all the
available positions in the MSA and the columns list out all the 20 amino acids.
Each position thus has 20 columns associated with each of the 20 amino acids
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having a probability of occurrence associated with it. These rows are each di-
vided by the corresponding maximum value in the row to obtain a SIFT scaled
probability matrix. Given the mutation and hence the amino acid substitution
SIFT can predict the nature of substitution(deleterious/normal) based on the
corresponding probability value being lesser than a threshold. If an amino acid
with higher probability(more conserved) is substituted with an amino acid with
a lower probability value it is generally classified as ”intolerant”.

SIFT does not take into account the protein structure while assigning the
probability and considers only the substitution model. In order to provide con-
fidence values for an MSA with almost similar sequences a conservation value
is assigned to each score such that a position where all the 20 amino acids are
observed gets a zero score while the position where only one amino acid occurs is
assigned a conservation score of log220

2.4 Mutation Assessor [36]

’Causative’ mutations(drivers) are simply not the loss of function mutations. In
general the types of mutations can be classified into the following categories:

• Loss of function: Inactivate tumor suppressor proteins

• Gain of function: Activates normal genes transforming them to oncogenes

• Drug Resistance Mutations: Mutations that have evolved to overcome
the inhibitory effect of drugs

• Switch of function: Intermediate between a loss and a gain of function
mutation

The functional changes affecting a mutated protein sequence can be:

• Change in stability : Mutated protein might be unstable leading to lower
steady state levels

• Change in interaction with other proteins,ligands: A mutated pro-
tein’s interaction with other proteins/ligands is affected too

If a certain mutation confers an advantage to the cell in terms of replication rate,
it is probably going to be selected while all those mutations that reduce its fitness
have a higher chance of being eliminated from the population. This is one of the
explanations behind a certain residue being conserved across MSA of homologous
sequences. The hypothesis is then, of all possible tried combinations of residues
among the population, the homologous
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Mutation assessor algorithm builds upon SIFT algorithm by incorporating 3D
structure of sequence homologs. The fact that a particular sequence has evolved
by natural selection reflects the effects that it had over all levels: molecular, tis-
sue and organ. With this hypothesis, some amino acid residues are classified as
”specificity residues” based on the clustering homologous sequences and analyz-
ing their functional specificity based on conservation of overall function. Thus,
protein sub family MSA represents a model exhibiting likelihoods that a partic-
ular sequence belongs to the family. Some residues will be more frequent than
others at specific positions and hence these probability values can be converted
into a scoring function for predicting the functional impact of any mutation.

The entropy associated with column i is given by[36] Sci :

Sci = ln
N !

Πni(α)
(2.1)

∑
α

= N (2.2)

α=20 amino acids
ni(α)=Number of residues of type α occurring in ith column
For α substituted by β amino acid, the change in entropy value:

δSci (α −→ β) = −lnni(β) + 1

ni(α)
(2.3)

If α residue is conserved across the sequences and β is a point mutation ni(α) >>
ni(β) and hence conservation score δS(α −→ β) would be high. The physi-
cal interpretation of this score is that the physical constraints (protein-protein
interaction, protein-ligand interaction etc) govern the nature of residues at par-
ticular positions and hence it can be assumed that the functional impacts of
these residues substitution is indirectly related to physico-chemical changes. To
extend the assessment of conservation patterns, the sequences are clustered in
order to create protein sub-families to obtain a conservation score at sub-family
level.Clustering creates sub-family groups such that sequence diversity within
subfamilies is minimized and the overall difference between subfamilies at spe-
cific positions is maximized.
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Difference of entropy of substitution in column i of some sub-family m and the
overall entropy of column i(taken as a reference):

δSmi = ln
Nm!

Παnmi (α)
− ln Nm!

Πα〈nmi (α)〉
(2.4)

where nmi (α) : observed frequency of α amino acid at position i, and

〈nmi (α)〉= ni(α)Nm

N
: Expected frequency of α at i

Nm : Number of subsequences in subfamily m
Objective function to be minimized :

δS =
L∑
i=1

M∑
m=1

δSmi (2.5)

Thus, the sub-families are determined using 2.5 and as with conservation score,
a ’specificity score’ can by calculated:

The specificity score associated with column i is given by Smi :

δSmi (α −→ β) = −lnn
p
i (β) + 1

npi (α)
(2.6)

where npi (α), npi (β) are number of α and β residues at position i in submfamily p

Using 2.3 and 2.6 a functional impact score is defined as:

FIS =
δSci + δSmi

2
(2.7)

Higher the FIS 2.7, more is the functional impact of the α −→ β substitution.

2.5 CHASM [8]

Carter et al. [8] describe how genes mutated with high frequency across a cohort
of cancer samples and how analysis of large number of cancer samples can be
helpful in driver mutation prediction. Methods based on mutation frequency can
fail because genes that are mutated in a small fraction of tumors can still act as
drivers.

A driver mutation arises because of intolerable mutation at specific residues,
while passenger mutations are more like non synonymous single nucleotide poly-
morphisms. Passenger mutations are neutral from the point of cancer
cell fitness and hence an impact on protein can be present or absent.
nsSNP with higher minor allele frequency (MAF)have become part of the hu-
man genome and as such should contribute minimally to improving cancer cell
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fitness. Hence the classifier should not be trained with passenger mutations being
classified into a default category of high MAF nsSNPs.

Using Shannon entropy [39], mutual information was calculated for more than
89 predictive features and they were than ranked with feature with maximum
mutual information ranked the first. Shannon entropy was chosen , rather than
simple correlation coefficients as two features are not necessarily linearly associ-
ated. Not all features were selected as redundant features and noisy features can
negatively impact classification.

2.5.1 Feature Selection

Starting with 80 candidate features for driver mutation identification, a list of 49
features were shortlisted to train the Random Forest classifier.
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p(Xi) represents the probability of occurrence of an event Xi Considering a series
of events X1, X2, X3...,Xn analogous ’series of packets’ in communication theory
, the information received at each step can be quantified on a log scale by:

1

log2(Xi)
= −log2(p(Xi)) (2.8)

The expected value of information from a series of events is called shannon en-
tropy: H(X):

H(X) = −
∑
i

p(Xi) log2 p(Xi) (2.9)

Mutual Information between two random variables X, Y is defined as the amount
of information gained about random variable X due to additional information
gained from the second, Y :

I(X, Y ) = H(X)−H(X|Y ) (2.10)

Here:
X: Class Label[Driver/Passenger]
Y: Predictive Feature

and hence I(X, Y ) represents how much information was gained about the class
label Y from knowledge of a feature X

Simplifying :

I(X, Y ) =
∑

p(x, y)log2
p(x, y)

p(x)p(y)
(2.11)

The above formulations will hold true only for predictive features which are
categorical(can be classified into discrete classes e.g 1,2,3,4,5) in nature other-
wise discrete variables are made categorical by classifying them based on thresh-
olds to five equal bins. Each mutation can thus be associated with a class
X=Driver/Passenger and a corresponding feature category(1,2,3...)

Using the mutation dataset p(X,Y) is determined for each combination of
class and feature category and the features are ranked. So if a particular feature
is always associated with a class across the mutations the mutual information is
high as the feature can be alone used to predict the class. For e.g. feature Y
always occurs as a low category(1,2,3) with label X=”Driver” and high(4,5) with
label X=”Passenger” so depending on ”positive” or ”negative” correlation joint
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Table 2.1: Empty Mutation Probability Matrix, C∗pG represents only C nu-
cleotide was mutated in a CpG dinucleotide

C∗pG TpC∗ CpG∗ G∗pA A T G C
A
T
C
G

probability p(X, Y ) = 0 or p(X)

2.5.2 In silico mutations

Synthetic passenger mutations were generated to train the classifier. Using cu-
rated datasets it is possible to come up with a mutation probability matrix as
in 2.1 for different cancer types. This can then be used to generate passenger
mutations where the rows show a multinomial probability distribution for the 8
contexts Passenger mutations are generated by mutating the wild type nucleotide
corresponding to probabilities defined by the matrix

The

2.5.3 Training and Output

The Random Forest classifier was trained using COSMIC [24] database and syn-
thetically simulated mutations.

Null Hypothesis: Mutations are passengers Output of Random Forest
Classifier : Fraction of ’trees’ that vote for the mutation to be under ’passenger’
class, which gets translated into a CHASM score.

2.6 TransFIC [22]

TransFIC(TRANSformed Functional Impact for Cancer) is an ensemble of meth-
ods that combines the SIFT [26], Polyphen2 [2] and Mutation Assessor [36] scores.
The motivation behind TransFIC lies in encompassing the effect of amino acid
substitution ultimately on the functioning of the cell depending on the protein
modification, which possibly confer a selective advantage to cancer cells for pro-
liferation. Since all the nsSNVs that inhibit development has been eliminated by
natural selection, the remaining nsSNVs in any gene define a ’baseline tolerance’
level that survive without affecting the cell fitness and hence minor perturbations
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to the otherwise conserved amino acid sequence needs to be accounted for. Sim-
ply put, he FIS generated by the three tools should be adjusted for the relevance
of the gene/protein in cell operation

Using nsSNVs from 1000 Genomes Project [1], and annotation data Gene
Ontology Biological Process (GOBP) and Molecular Function (GOMF) categories
[4], canonical pathways (CP) [47] and Pfam domain [6], all the mutations were
annotated. Annotation was performed in order to cluster genes into different
groups with common functionality. For each annotation system, the nsSNVs of
genes belonging to a particular cluster(each cluster has a set of functionally related
genes. for e.g. all genes that regulate cell death) is pooled and all three scores
from Polyphen2, SIFT and Mutation assessor are calculated. It was found that
conserved genes belong to least tolerant group. Thus a mutation in an otherwise
conserved gene is harmful from cancer point of view.

So a scaled FIS can be calculated such that two mutations affecting the same
FIS affecting genes two entirely different germline tolerance should result in a
higher FIS for mutation affecting gene with low tolerance. and the scaled score
is given by:

transfic = os−dm
dstd

where
os = original SIFT/Polyphen/MA score
dm = mean score
dstd = Standard deviation of the score
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Chapter 3

Galaxy Toolboxes for Driver
Mutation Discovery

3.1 Galaxy

Galaxy [19] is a web based platform for data intensive biology. With the advent of
Next Generation Sequencing and increased data generation by high throughput
studies, there have been concerns over making analyses, accessible and repro-
ducible. Galaxy provides an open source solution to track and manage data
provenance.

Any software used for drawing conclusions from raw sequencing data might
generate completely different results depending on the parameter values it is
processed with. Simple threshold cut off for P values used to call a mutation a
’driver mutation’ might affect the whole set of results. In order to ensure that
results are reproducible all the steps followed, the command line parameters used
for analysis should be documented properly.

With ’Galaxy workflows’ it is possible to represent the entire data analysis
pipeline in an intuitive graphical interface. These workflows can either be made
public via a URL link or be provided as a supplementary material distributed as
text file which can be ’imported’ into any instance of Galaxy. These workflows
act as ’log files’ ensuring the same ’versions’ and ’parameters’ be used to run the
analysis pipeline, ensuring reproducibility.

Zhang et al point out that there is less overlap between the softwares predicting
driver mutations[56]. While trying to reproduce results from [56], it was non-
trivial to convert the files to different data formats for every new tool used. Most
of tools lacked a Galaxy plugin which would have otherwise taken care of data
formats.

In order to tackle the issue of lack of any tool that can give a comprehensive
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picture of the results of running all these softwares, in one go motivated us to
come up with a set of ’Significant Mutation Toolbox’ for Galaxy.

Here is a brief discussion of various tools used to predict driver mutation. Each
section describes the input format required, and the steps required to convert
VCF [16] file into appropriate input format. VCF file is standard output from a
number of NGS pipelines and hence was chosen as the common input to all the
tools.

3.2 Polyphen2

Polyphen2 is available as a webservice at http://genetics.bwh.harvard.edu/

pph2/bgi.shtml. The server is sent an input file in appropriate format by the
’Polyphen2 Webservice’ tool implemented in Galaxy.

3.2.1 Input Format

chr1:888659 T/C
chr1:1120431 G/A
chr1:1387764 G/A
chr1:1421991 G/A
chr1:1599812 C/T
chr1:1888193 C/A
chr1:1900186 T/C

Figure 3.1: Polyphen2 Input Format, http://genetics.bwh.harvard.edu/

pph2/bgi.shtml

3.2.2 Galaxy Workflow

3.3 SIFT

SIFT toolbox is also implemented in Python and interacts with the webservice
at http://provean.jcvi.org/genome_submit.php
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From the VCF file only the relevant columns are ’cut’ and ’trimmed’ to send a
request to the Polyphen2 webservice

Figure 3.2: Polyphen2 Workflow as implemented in Galaxy

1,888659,T,C
1,1120431,G,A
1,1387764,G,A
1,1421991,G,A
1,1599812,C,T
1,1888193,C,A
1,1900186,T,C

Figure 3.3: SIFT/PROVEAN Input Format, http://provean.jcvi.org/

genome_submit.php
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3.3.1 Input Format

3.3.2 Galaxy Workflow

From the VCF file only the relevant columns are ’cut’ and ’trimmed’ to send a
request to the SIFT webservice

Figure 3.4: SIFT/PROVEAN Workflow as implemented in Galaxy

3.4 Mutation Assessor

Mutation Assessor supports an API http://mutationassessor.org/howitworks.
php which is called from Galaxy. Mutation Assessor explicitly requires the human
genome build[hg18/hg19] to be specified

3.4.1 Input Format

hg19,1,888659,T,C
hg19,1,1120431,G,A
hg19,1,1387764,G,A
hg19,1,1421991,G,A
hg19,1,1599812,C,T
hg19,1,1888193,C,A
hg19,1,1900186,T,C

Figure 3.5: Mutation Assessor Input Format, http://mutationassessor.org
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3.4.2 Galaxy Workflow

From the VCF file some columns are trimmed
while an extra column ’hg19’ is appended

Figure 3.6: Mutation Assessor Workflow as implemented in Galaxy

3.5 TransFIC

TransFIC has an API that can be interacted from command line. PyCurl http:
//pycurl.sourceforge.net/ was used to interact with its API through Galaxy

3.5.1 Input Format

1 888659 888659 C
1 1120431 1120431 A
1 1387764 1387764 A
1 1421991 1421991 A
1 1599812 1599812 T
1 1888193 1888193 A

Figure 3.7: TransFIC Input Format, http://bg.upf.edu/transfic/home
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Figure 3.8: TransFIC Workflow as implemented in Galaxy

3.5.2 Galaxy Workflow

3.6 Condel

Condel and TransFIC have similar API

3.6.1 Input Format

1 888659 888659 C
1 1120431 1120431 A
1 1387764 1387764 A
1 1421991 1421991 A
1 1599812 1599812 T
1 1888193 1888193 A

Figure 3.9: Condel Input Format, http://bg.upf.edu/condel/home

3.6.2 Galaxy Workflow

3.7 Results and Discussion

The motivation behind coming with a Galaxy based tool was to come up with a
comprehensive framework that will allow a user to compare the output of various
tools predicting driver mutation. The set of tools can be run by importing each
one of them to a workflow.
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Figure 3.10: Condel Workflow as implemented in Galaxy

In order to have a visualize the user can choose to generate a ’heatmap’. This
tool has utility in terms of reproducibility of the analysis and at the same time it
is possible to create yet another ensemble of methods by plugging in the outputs
of these tools to a completely new user defined tool. Hence these tools ported
in Galaxy not only make analysis across all the methods available at ’one click’ ,
but also provide a flexible framework to add new tools to refine the analysis.
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Chapter 4

Galaxy Visualisation Toolbox: A
Case study

Motivation

This chapter discusses a case study where we use the Galaxy based toolbox for
assessing the deleteriousness of mutations.

We demonstrate how different scoring mechanisms score differently on the
same set of mutations. The integration with Galaxy, aids the user by providing
a reproducible and user-friendly way to interact with multiple tools at once.

4.1 Data and Method

In order to assess the prediction capability of various driver mutation prediction
algorithms, we use a subset of mutations from the Catalog of Somatic Mutations
in Cancer (COSMIC)[15] database. COSMIC database contains curated set of
mutation data extracted from literatures studies on Cancer.

In order to create a proxy dataset to study the prediction capabilities of
all these tools, we created set of workflows to parse the VCF file as obtained
from COSMIC database. As already discussed, different tools use different input
formats. A workflow based approach through Galaxy gives the end user the
power to run multiple such analysis since the pre-processing is handled by these
workflows itself.

An example workflow is shown in 4.1
Each tool generates it’s score indicating the level of functional impact of each

mutation. These scores carry different interpretations. For examples a Sift score
of 0.05 indicates that the mutation is deleterious whereas a score of -1 on mutation
assessor would indicate the mutation is likely benign. Most of the tool have
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Figure 4.1: A Galaxy based workflow to process VCF files. The VCF files are
converted to transFIC-friendly format

different ranges of scores, with different thresholds for calling a mutation driver
or passenger.

Since the tools use different algorithms for prediction, the results are bound
to be different. It has been reported [18] that these tools have varying accuracies
and a pooled score can be a better predictor than individual scores.

For a particular mutation if all tools prediction is a ’benign’, then the mutaion
is likely benign too. Thus a majority or pooled consensus can help in narrowing
down the disparities that exists. We try to tackle this by the use of a ’heatmap’
integrated into Galaxy with Galaxy’ visualization registry.

A heatmap such as in 4.2 gives an overview of the prediction scores for all the
tools.

Methodology for transforming the scores

Since the scores generated have different ranges, in order to visualize the scores
matrix(where the row represents a mutation and the columns represent scores
from different tools). Thus, ach column represents the scores generated by a
tool, say CONDEL for the input mutations(rows) . We transform these values
by base-shifting the scores in each column by the minimum score in that column,
folllowed by a scaling to bring the values in the range of 0 and 1.

n′ij =
nij −min(nj)

rangej
(4.1)

where min(nj) represents minimum value of th column j, nij represents the
original score for a mutation in ith row given by tool j and rangej represents the
range of values(max-min) as given by the tool j over all possible mutations.
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Figure 4.2: Heatmap representing the outputs of various tools. The framework
is flexible enough to allow visualising output of more tools. The rows represent
”chromosome:position” format. Darker shades of red represent damaging/ high
functional impact mutations, lighter represents benign/low functional impact
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Figure 4.3: Heatmap Zoomed

Since the visual representation might not give insight into the actual score
values, these can be visualized in the zoomed view.

InCHlib plugin of BioJS[21] was used to create these heatmaps. However, we
have now successfully integrated this into Galaxy visualisation registry and hence
visualisation and data processing are now possible from Galaxy itself

Conclusions

We presents a Galaxy based toolbox with visualization support that be a helpful
tool to unify the predictions of different algorithms, thus leading to more true
insights.

32



Chapter 5

Errors in Bioinformatics data
analysis and Reproducible
Research

With the availability of NGS at low costs, a lot of data is being generated ev-
eryday. It often is noticed that in pursuit of novel ’discovery’, standardizing
the data analysis pipeline is often ignored. This might not only lead to dubious
conclusions, but will serve as a error prone guideline for further research. Repro-
ducibility is the hallmark of science As Drummon points out in his paper [12],
there are three aspects: Reproducibility, Statistical Replicability and Scientific
Replicability. Reproducibility implies the experiment be replicable to at least an
extent for other similar datasets. Statistical replicability addresses the problem of
results-by-chance that may arise dues to limited data sets and above all Scientific
replicability emphasizes the robustness and generalization of the result. While
analyzing NGS data we noticed two common wrong practices:

• Quality Score Encoding: All the FastQ files were assumed to be en-
coded in Sanger format where the score is stored as (Phred score+33). Such
an assumption will cause reads of lower quality encoded in (Phred+64) for-
mat appear as of high quality. So even though some bases are expected to
not to be considered, blindly assuming the format to be be sanger causes
erroneous analysis at the alignment step itself, which is going to propagate
all the way down till post-processing, possible leading to dubious results

• Ignorance on Quality Assurance of reads: The pre-processing step is
ignored, based on a blind assumption that the data is all fit to be processed
in. The data might however have repeated fragments that might require
grooming.
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To solve the quality score encoding issue, we resort to using a guesser script as
implemented at https://github.com/saketkc/NGS-Stuff/blob/master/guess_
fastq_platform.py and to address the quality assurance and reproducibility at
all stages, the following two system packages were made use of:

1. Galaxy: A web based tool for doing Bioinformatic analysis

2. bcbio-nextgen: A python based NGS pipeline

In order to perform bioinformatics analysis and, Galaxy can be made use of as
to document the steps. Galaxy pages allow embedding of workflows illustratively
that can shared via a simple url accessible publicly. The steps involved in Condel
workflow are published as a Galaxy page in 5.1

Figure 5.1: A published page of steps involved in Condel workflow accessible via
a public URL. The workflow can be directly imported or downloaded too

Results and Discussions

NGS technology has numerous applications in life sciences. For example variant
discovery is used in most of the applications. There are published protocols and
best practice guidelines available[11], but they often are ignored in the haste of
arriving at ’novel discoveries’. It is important that the standard set of protocols be
followed to avoid down stream analysis turning out dubious. Any analysis pipeline
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bcbio-nextgen pre-processes reads to detect any repeated segment among the

reads

Figure 5.2: bcbio-nextgen report on repeated segments

should be benchmarked as in the case of bcbio-nextgen, besides requiring the least
human intervention. At a broader level it is important that any new method
being developed, or a software being used for analysis be properly documented,
what parameters were used, what was the dataset and the results can should be
reproducible. This is the main motivation to shift to Galaxy and bcbio-nextgen
based pipelines.

Some of the guidelines that might help making an analysis ’reproducible’:

• Any code being used for analysis, should be included and archived, either
on the web or as supplementary material in case of a publication

• A log file that lists out all the commands that were run to generate the
results should also be included

• If possible, the code should be available in ready-to-run format, web-based
platforms like Galaxy would be possible options for hosting

• Not everyone is code literate, so emphasis should not be on learning a
software but to understand how it works, what is the ideal set of parameters
depending on the dataset
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bcbio-nextgen reports of the quality profile of bases looking at which the
user might want to trim the reads if quality falls below a threshold

Figure 5.3: bcbio-nextgen report on quality profile of reads
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Chapter 6

Detecting Viral Genomes in
Cancer tumors

Cervical cancers have been proven to be associated with Human Papillomavirus(HPV).
Many of the cervical cancers have been found to contain HPV genomes integrated
, though the sites of integration have been found to be relatively random [55]

Cervical Cancers and NGS

Cancer has been one of the widely studied disease using Next Generation Se-
quencing, the motivation being to tap into the changes at molecular level for a
better understanding at genetic and genome level, and NGS is thus finding a
routine role in diagnosis. [32]

Cervical cancer datasets from Indian women was put through an analysis to
detect :

1. Any possible HPV integration

2. Sites of HPV integration

The motivation for such a study is from a prognosis angle. Instead of whole
genome sequencing, it might be possible to predict onset of cervical cancer by
doing a targeted sequencing at the sites where these virus have been detected in
a cohort of samples, thus speeding up the whole process.

In order to detect viral genomes in the cervical tumors’ dataset, the first
step involves aligning the reads to the human genome. Since there are possible
foreign(viral,bacterial etc) sequences, some of the reads will remain unaligned to
the human genome reference. These unaligned reads can be extracted. Since
the exact nature and origin of the reads is unknown, these were aligned with a
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custom genome built by concatenating all viral genomes known to affect humans
from NCBI[34]

Only a few samples were analyzed before further analysis on this project had
to be abandoned over data privacy issues with the lab to which the data originally
belonged. Alignment of unmapped reads extracted from one of the cervical cancer
tumors is depicted in 6.2

Results and Conclusions

HPV sequences were detected in cervical cancer tissues. Though the project was
discontinued before the exact integration sites of viral genome in human genome
could be determined, such a study would enable targeted sequencing at these
sites and can be used as an easy alternative to whole genome sequencing.
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Figure 6.1: Steps to detect viral genomes in human NGS data
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Figure 6.2: Reads unmapped to the human genome were aligned with custom
built viral genome. All the reads mapping to this genome were then blasted.
Some of the tissues showed an exact identity match between the read origi-
nally unaligned and the HPV16 genome sequence. Screenshots taken from NCBI
BLAST [35]
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Chapter 7

Benchmarking BWA with
BWA-PSSM

BWA [27] is one of the widely used aligners for aligning short and long reads a
given reference genome.

BWA internally uses a quality cut off. It thus ignores bases which have a
quaity score below a certain threshold(-q option in bwa command line). BWA-
PSSM[25] is a modification of the original BWA which takes quality scores into
account while aligning in the form of a Position Specific Scoring Matrix(PSSM).

Consider the following sequence:
@read
ACT
+
III

Assuming Sanger encoded quality scores, all the base positions have a phred score
of (73-33=40) . Given an error model of the sequencing platform, it is possible
to come up with a matrix like:

A T G C
A
T
G
C

for all possible phred scores, which assigns to each possible score and a given
nucleotide a score given by (i,j), emphasizing the probability that an observed
nucleotide by the sequencer is indeed the same nucleotide

In order to benchmark BWA-PSSM against BWA, read pairs were simulated
usinsg wgsim [28]. Using the hg19[NCBI build 37] reference genome, a custom
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genome is simulated with SNPs and INDELS and then using this genome error
free reads are generated and they are mapped to the synthetic genome by both
BWA and BWA-PSSM algorithms.

A ROC 7.1 curve can be plotted since the number of reads that are expected to
match is known apriori, This was done using the wgsimeval.pl script distributed
with wgsim [28]

Figure 7.1: ROC curve for BWA v/s BWA-PSSM mappings

Results

As evident from the ROC, BWA-PSSM has a higher number of incorrectly mapped
reads for the same true positives as BWA. BWA performs better.

BWA-PSSM internally uses the error model that might be optimized for a
particular class of error profiles, which is a possible reason for its poor performance
though in principle it is expected to perform better than BWA. The error model
was not perturbed, which is one possible avenue for improvement.
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Chapter 8

Analysis of Microarray Data

Organisation

This chapter is an introductory overview of the Microarray technology. The
following sections discuss -omics research. The next follow up section describe
the data analysis workflow for pre-processing the raw data. The penultimate
section describes the outcome of this pre-processing work-flow when applied to a
microarray study, followed by a discussion section on the overall recommendations
for running such work-flows.

8.1 Introduction

One of the technologies that matches the scale of sequencing platforms in terms
of the data involved is Microarray technology. Microarrays have been to study
gene expression levels of thousands of genes at once. The other applications of
microarray technology deals with gene variation analysis.

Microarray technology is one of the many techniques that emerged from the
field of ’functional genomics’. ’Functional genomics’ itself is a sub-field of molec-
ular biology that primarily focuses on studying the dynamic aspects of ’genomics’
such as the gene expression values. ’Genomics’ on the other side, deals with the
more static part of genome such as determining the whole sequence of genome.

8.2 -Omics Research

With the advent of the term ’Genomics’, the other -omics terms were created,
subsequently.
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8.2.1 Genomics

The term ’Genomics’ was coined by Dr. Thomas Roderick of the Jackson Labo-
ratory at an international meeting on the feasibility of mapping the entire human
genome, in 1986. [54] Genomics deals with analysis of genome sequences in or-
der to analyse the associated function and structure. A sub-domain of this field
includes functional genomics that focuses on the functional implications of ge-
nomics, thus studying genes and their products at the expression level. Genomics
and Genetics are treated differently, since the latter is understood more from the
point of view of study of genes from the point of view of genetic inheritance.

8.2.2 Proteomics

Proteomics is the functional and structural study of proteins. The scope of insight
from Genomics is limited from a biological point of view, since the focus is on
the static contents of the genome. Proteomics is a functional approach and
hence can be more relevant from a biological point of view, given the focus is on
protein levels. Protein levels determine cell physiology. Unlike genome content,
the proteomic content has a dynamic nature and is constantly changing. One cell
can have totally different proteome levels at different points of time, irrespective
of the state of the cell(whether or not it has been diseased/affected by external
or internal factors)

8.2.3 Transcriptomics

Transcriptome is the net total of all RNA content in a given cell type including
mRNA, tRNA, rRNA, and other non-coding RNA. It is different from exons as ex-
ons consists of DNA transcribed to RNA in any cell type, whereas transcriptome
is the transcribed RNA in a specific cell type. Transcriptomics or expression pro-
filing is the study of these expression levels in a given cell type. High throughput
transcriptomics is called RNA-Seq

8.3 Microarray Technology

8.3.1 Motivation

The motivation behind performing a microarray study is to identify those set of
marker genes that could differentiate two or more conditions. In cancer studies,
any particular insight into which set of genes are up or down regulated in the
tumor tissue as compared to the benign tissues, can lead to potential therapeutic
applications where the drug could be designed to control or repress the specific
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gene’s expression levels. Another potential output of a microarray study could be
a bio-marker, a relatively small panel of marker genes that could be used in the
place of whole microarray as a prognosis kit in order to determine the category of
a particular sample(normal/disease), and hence if the whole expression profile of
this unknown sample would be similar to those known to be suffering from the
disease.

8.3.2 Experimental Design

A DNA microarray is essentially a lab-on-a-chip device with spots of fragments
of DNA sequences attached. These spots contain small fragments of DNA that in
turn would hybridize when exposed to a target. This hybridization is quantifiable
by detection of intensity of fluorescent-dye signals. This signal intensity is pro-
portional to the amount of sample-target bonding. A dual channel experiment
would involve quantification of this intensity for two sets of samples, say normal
and disease, under two different fluorescent signals. For example, the normal tis-
sue could be labeled with a green dye and the tumor tissue with a red dye. These
two samples are further hybridized on the same microarray chip. The relative
intensities given by the red and green signals quantifies the level of difference
between gene expression values across a normal-tumor pair.
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8.3.3 Why Microarray?

Studying which genes are active and which genes are silenced in a diseased tissue
versus the normal tissue can lead to a better understanding of the disease. Instead
of studying each gene individually, microarray technology is a high-throughput
way [44] to study thousand of genes at once. This is a shift from the classical
hypothesis based testing, where the biologist’s focus would have been to inves-
tigate one gene ata a time. This omics based high-throughput method involves
study of thousands of genes at once, the hypothesis in most of the experiments
remains the same: ’Majority of genes are not differentially expressed ’ and as such
the motivation is to identify those set of genes that are differentially expressed. A
differentially expressed gene can either be over-expressed or under-expressed in a
particular cell type, even though the genomic content does not vary between the
cell types. The aim of the study is thus to identify the smaller set of differentially
expressed gene which could either be further studied for a biological point of view
or can in turn be treated as a set of marker to characterize the cell type, which
can thus be used as diagnostic kit, thereby cutting down the need to profile from
thousands of genes to a handful of them.

8.4 Microarray: A data science problem

There is an analogy between treating a microarray experiment to a classical clin-
ical study. The traditional clinical study involved thousands to ten thousand
cases with around 100 variables. A microarray study is just the transpose of this.
Given the large number of variables involved , the system is largely undetermined.
Given this sort of high dimensionality with the number of variables far exceeding
the number of observations and hence there is a need to to get rid of this curse
of dimensionality

8.5 Data Analysis

An output of a microarray experiment is a text file, (.gpr in case of Genepix
platform). This file stores spot intensities as ready by the scanner. A foreground
is determined by the image processing software after the spots has been aligned
by a gridding software. Due to the intermediate steps involved the color intensity
recorded by the software is prone to noise and probably bias. Bias may arise due
to various other factors:

• Variation between chips arising due to manufacturing defects
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Figure 8.1: Traditional clinical studies
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Figure 8.2: Curse of dimensionality with microarray and most other high
throughput data
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• Amount of dye used might differ between various samples, hence leading to
certain chips showing an overall high/low intensity

• In case of dual channel experiments, there have been reports of a gene-
specific dye bias [30]

• Measurement errors, arising from the scanner being either sensitive to cer-
tain regions of the chip or having different sensitivity for different intensity
ranges

Most of these errors can be controlled via good a replication design.

Replication

Given that the experiments are always subject to random noise, mostly arising
due to various environmental factors(for example room temperature might effect
hybridization efficiency [29]), replication can be a good tool to adjust for the as-
sociated variations. Replication is possible at two levels:

• Biological : A biological replicate comes from a new biological sample. The
aim of a microarray experiment to define the set of differentially expressed
genes between two or more cohorts and as such the interest lies in the
average behavior of the genes across the two cohorts. These two cohorts
should be representative of their respective population and hence requires
that more members of the population be made part of the study as biological
replicates. Even though there are chances of higher variation arising due to
more subjects, the results will tend to be less biased.

• Technical: Technical replication involves repeating the same subject. So
multiple samples are created from the same subject. Though technical
replicates can help reduce the variations involved due to random noise, the
results however might be too specific for the cell line replicated and may
not be true for the population.

Microarray Experiments: Inherent assumptions and myths

Myth: Gene expression values on a chip follow Gaussian distribution

Gene expression values on a single chip do not follow a Gaussian distribution.
In fact given that microarray experiments can involve any subset of genes from
the organism, it does not make sense to even assume that those genes will follow
any kind of probability distribution.
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A probability distributions assignment is to any process with repetitive mea-
surements of the same instance of experiment. Hence though the gene expression
values on a single chip experiment may define a distribution but not a probability
distribution.

It can however be assumed that the gene expression values follow a normal
distribution across arrays. This is an important assumption, which we encounter
whilst performing parametric tests in order to identify the (statistically) differ-
ential expressed genes [17]

Microarray data analysis involves several steps, which can broadly be divided
into the following steps:

• Exploratory Data Analysis and Quality Assessment: This is often
an essential step to determine which methods should be employed to pre-
process the raw data and gauge the overall quality of data.

• Background Correction: Involves separation of foreground signals from
the background

• Normalization: Adjustment for within-array and between-array bias that
might arise due to different experimental conditions, dye-bias etc.

8.6 Exploratory Data Analysis

Before performing any sort of normalization it is often helpful to plot the raw
intensities so that they can be compared post-processing. The most often explored
values are the foreground and background intensities. A lot of background signal
in one of the samples might be an indicative of a faulty array.

8.7 Background Correction

The background intensities arise irrespective of true(foreground) intensities, often
due to non specific binding of the dye to the spot, irrespective of the presence of
the probe. Background correction involves subtracting the background intensities
from the foreground intensities. The background intensity can in fact not be
measured at the spot directly and is read from the spots nearby.

8.7.1 standard

A näive approach to obtain the true signal intensity is to subtract the foreground
intensity from the background intensity. This however can result into final inten-
sities being negative.
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Figure 8.3: log2 transformed foreground intensities of 17 control and 16 Grade II
GBM patients

An observed intensity can be modeled as an additive of two intensities, the
true intensity T and the residual background signal B, besides Sb, the additive
background signal:

S = B + T + Sb (8.1)

8.7.2 normexp method

The normexp method [41] models the background intensity to be normally dis-
tributed:

B ∼ N(m,σ2) (8.2)

and the True signal is modelled as an exponential:
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Figure 8.4: log2 transformed background intensities of 17 control and 16 Grade
II GBM patients

T ∼ 1

α
exp
−t
α

(8.3)

The noise B and true signal T can be assumed to be independent random
variables and hence the joint distribution of B and T is given by:

fB,T (b, t;µ, σ, α) =
1

α
exp
−t
α
N(t;m,σ2) (8.4)

Consider the random variable X = S−Sb which is essentially the background
subtracted intensity[foreground-background]. The joint distribution of X,S is
given by [42]:

fX,T (x, t;µ, σ, α) =
1

α
exp(

σ2

2α2
− x− µ

σ
)N(t;µX,T , σ

2) (8.5)
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µX,T = x− µ− σ2

α
(8.6)

On integrating and dividing the joint by marginal:

fS|X(s|x;µ, σ, α) =
N(t;µX,T , σ

2)

1−N(0;µX,T , σ2)
(8.7)

The estimated signal given the observed intensity x is given by:

E(T |X = x) = µX,T +
σ2N(0;µX,T , σ

2)

1−N(0;µX,T , σ2)
(8.8)

normexp produces positive intensities.

8.7.3 normexp+offset

normexp method can be stabilised for variance effects by shifting the baseline by
adding a small offset to move the corrected intensities from zero.

8.7.4 edwards

Edwards method [13] by subtracting the background from the foreground only
when the difference is larger than a threshold. Otherwise, it is replaced by a
smooth monotonic function

8.7.5 rma

The RMA(Robust Multi-Array Average) method works by partitioning the dis-
tribution of smoothed intensities around its mode. The rma-75 and rma-mean
estimators [31] aim at correcting for the bias created by the rma algorithm.

8.8 Between Array Normalization

Between array normalization is important if the box plots of the arrays are not
consistent throughout width-wise. We obtain the following boxplot after per-
forming ’normexp+offset ’ background correction. The choice of this particular
background correction comes from the discussion given in Ritchie et al. [37].
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MA plots

For dual channel arrays, visualising the intensity difference between the Red and
Green channel, would generally involve a scatter plot of the R and G channel
intensities. The expected behaviour of this scatter plot is a diagonal. A slight
modification of this strategy is to plot, M and A:

Mi = log2(
Ri

Gi

) (8.9)

Ai =
1

2
log2(RiGi) (8.10)

Thus plotting Mi versus Ai should in principle return a 45 degree rotated plot.
Since the underlying hypothesis of a Microarray experiment is that majority of
genes are not differentially expressed, hence a MA-plot would involve just a single
line passing through x-axis, since the expected intensity of red and green channels
are expected to bye similar. There are however points scattered around this line,
depicting under and over expressed genes, potentially differentially expressed.

For a single channel the R is analogous to the single channel intensity

8.8.0.1 cyclicloess

Loess is a non-parametric methods used for smoothing scatter plots based on a
locally weighted regression [10]. It involves fitting a polynomial to a subset of
data at each point in the data set. The fitting in turn is based on weighted least
squares. This involves a user specified input with n the degree of polynomial to
fit and a smoothing factor α. Values of α determines the proportion of dataset
to be used for fitting the polynomial of degree n.

The polynomial fitting procedure gives most weight to the points lying closest
to the point at which the polynomial estimation is taking place.

A polynomial f(Ai) can be fit , using loess. The residuals are given by:

M̄i = Mi − f(Ai) (8.11)

Āi = Ai (8.12)

These residuals will constitute a normalized MA plot. In terms of Mi and Ai:

log2(Ri) = Āi + M̄i/2 (8.13)

log2(Gi) = Āi − M̄i/2 (8.14)
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For single channel arrays the MA plots involve plotting the different M , (equiv-
alent to the background corrected intensity) versus a redefined A, where A can
be taken to be average of all arrays, or be obtained from a pairwise comparison
everytime. The ’cyclic’ in cyclicloess arises because this loess procedure is run
over every possible pair of array chip comparisons.

8.8.1 Quantile Normalization

Quantile Normalization normalizes the value in two or more datasets by essen-
tially making the distribution of the probe intensities identical statistically. This
in turn is motivated by the concept of Q-Q plot. A Q-Q plot is a graphical
method to compare the values of two probability distributions. Given a case
of plotting values of the reference dataset as the abscissa and those of the test
dataset as the ordinate, the graph depict a diagonal line, given that the test and
reference dataset have identical probability distributions. This is simple to imag-
ine since the highest value in the test dataset would correspond to the highest
value in the reference dataset, and so on .

Quantile normalization thus makes the distribution of the test dataset iden-
tical to that of the reference dataset by associating the highest value in the test
dataset to the highest value in the reference dataset, the next highest value in
the test dataset to the second highest value in the reference dataset and so on.
However there is no such reference dataset in any microarray dataset.

The problem of performing quantile normalization where there is no reference
dataset can be tackled by going back to the motivation of Q-Q plot. Extending
the concept of Q-Q plots to n-dimensions, if all the n data vectors have identical
distribution, a Q-Q plot would generate a straight line with its direction vector
as:

d = ( 1√
n
, 1√

n
, ..., 1√

n
)

Thus it is possible to make a set of data have identical distribution if it is projected
along this diagonal d.

Consider kth quantile data vector qk = (qk1, qk2, ..., qkn) for k = 1, 2, 3, ...m
for m spots on n arrays. A linear transformation of this vector given by:

Q = (qk.d).d

Q = ( 1
n

n∑
j=1

qmj, ...,
1
n

n∑
j=1

qmj)

Thus the reference dataset is created by extracting the mean quantile values
from the given data vector. Typical steps to perform quantile normalization for
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1 5 6 7
2 1 4 2
3 3 5 5
4 2 3 8

Table 8.1: Original Data

1 1 3 2
2 2 4 5
3 3 5 7
4 5 6 8

Table 8.2: Data with sorted columns

a given m spots on n arrays:

1. Create a mxn matrix say X

2. Sort the columns in X so that the 1st row has the highest values across all
columns, 2nd has the second highest values across all rows and so on.Call
this array Xsort

3. Calculate the row wise means of the sorted array Xsort

4. RearrangeXsort replacing the rearranged values by the corresponding means
calculated above.

A short example demonstrating the approach:
Sorted columns:

8.9 Differential Expression

After the pre-processing, the next step is to identify the set of genes that are
differentially expressed. This step essentially involves performing statistical tests

1 1 3 2 2.75
2 2 4 5 3.25
3 3 5 7 4.5
4 5 6 8 5.75

Table 8.3: Row means
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1 2.75
2 3.25
3 4.5
4 5.75

Table 8.4: Rank Mappings

1 4 4 3
2 1 2 1
3 3 3 2
4 2 1 4

Table 8.5: Rank Matrix:

on the pre-precessed data and assigns rank to the genes based on them. Dif-
ferentially expressed genes are the genes whose expression levels are outliers to
standard state that the other genes exhibit. The underlying hypothesis, to test
of gene i is differentially expressed or not is:

H0 = Gene i is not differentially expressed
H1 = Gene i is differentially expressed

Test statistics are used to summarize the evidence in the data underlying H0

8.9.1 Fold Change

Let xCi and xDi represent the log2 expression levels of the gene i in Control and
Disease sample respectively. One definition of log Fold Change is given by [52]:

FCratio = x̄i
C

x̄iD

where x̄i
C and x̄i

D represents the mean expression level of gene i among Controls
and Disease samples respectively. However fold changes have also been calculated
as : [23]

2.75 5.75 5.75 4.5
3.25 2.75 3.25 2.75
4.5 4.5 4.5 3.25
5.75 3.25 2.75 5.75

Table 8.6: Normalised Matrix
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FCdifference = x̄i
C − x̄iD

Fold Change cut off is a naive approach used to determine differentially expressed
genes. The genes following a fold change above a certain threshold, generally
between 1.8 and 3.0 are regarded as differentially expressed. Biologists tend
to prefer this method of short-listing, even though there are serious problems
with this approach. A fold change based cut off ignores the inherent variance
that might exists in the short-listed genes, and considers only mean values of
expression. Thus, genes with larger values of variance will often tend to be short-
listed, just because of the noise involved. Other way round, the highly expressed
genes will not be shortlisted because of the lower variability involved and hence
lower chances of showing [9]. It is however been suggested that the decision to
use a fold change based cut off is biological [53]. The choice of a fold change
can be justified if large absolute changes are indeed relevant to that particular
experiment, ignoring the underlying noise.

8.9.2 t test

8.9.2.1 Welch’s t test

The Welch’s t-test uses the following statistic:

zi =
x̄i
C − x̄iD

si
(8.15)

where si is the non-pooled variance:

si =

√
sc2
i

NC

+
sd2

i

ND

(8.16)

where sci and sd2 are the standard deviations with sample sizes NC and ND

for the control and disease respectively. zi has degrees of freedom df given by:

df = (ac+ad)2

a2c
Nc−1

+
a2
d

Nd−1

where :

ac =
sc2i
Nc

This zi statistic follows a t-distribution:
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zi ∼ ti

the associated p-value is given by:

p− value = 2 ∗ P (ti ≥ |zi|)

8.9.2.2 Pooled variance t-test

For pooled variance t-test, the assumption is that the control and disease samples
have the equal population variance and hence si is given by:

si =
√

(NC−1)sc2i +(ND−1)sd2i
NC+ND−2

and zi has NC +ND − 2 degrees of freedom.

8.9.3 Linear Models for Microarray

Smyth et al. [43] suggested linear models for modeling microarray experiments.
Consider N set of samples in total with the gene g’s expression values in the n
samples given by:

yTg = (yg1, yg2, ..., ygn)

yTg contains the normalized log2 pre-processed intensities. Then,let the ex-
pectation of ygbe given by:

E(yg) = Xαg

Where X is the design matrix and αg is an unknown coefficient vector. The
variance of yg is given by:

var(yg) = Wgσ
2
g

where Wg is a weight matrix, and σ2
g represents unknown gene wise variance.

Consider βg as the log-fold change for gene g. Instead of classical hypothesis
testing where the test is H0 : βg = 0 versus H1 = βg 6= 0, the test is conducted
on thresholded values H0 : |βg| ≤ τ versus H1 : |βg| > τ , where τ is pre-specified
log-fold change.

Assume the contrast to be tested is βg = cTαg where cT is a contrast matrix
like X. Since αg is unknown, given the response vectors and X it is possible to
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fit a linear model to obtain an estimate of coefficient vector as α̂g such that the
covariance is given by:

var(α̂g) = Vgσ
2
g

where Vg is independent from σ2
g and is positive definite.

Thus the estimate of βg is given by β̂g = cTαg Assuming β̂g to be normally

distributed without forcing the normal distribution on yg. β̂g is assumed to be
normally distributed with mean βg and can be approximated as :

β̂g|βg, σ2
g ∼ N(βg, vgσ

2)

where

vg = cTVgc

the variance s2
g is assumed to follow a scaled χ2 distribution.

s2
g|σ2

g ∼
σ2
g

dg
χ2
dg

where dg represents the residual degrees of freedom for gene g.
Under the above assumptions, the statistic tg follows a t-distribution with dg

degrees of freedom:

tg = β̂g
sg
√
vg

8.9.4 Correcting for multiple comparison

Determining the set of differentially expressed genes involves multiple hypothesis
testing, where the null hypothesis H0 states that the gene is not differentially
expressed. Thus for each gene, the test statistic tests H0,since these tests are
performed on 1000 or more genes. This potentially leads to an increased chance
of false positives.

Considering a sample of 1000 genes with 30 of them differentially expressed.
A p− value is the probability of obtaining a result that is equal or more than the
actually observed given that the null hypothesis H0 is true. The significance of a
smaller p−value lies in the fact that it implies that the observed values might be
very rare given H0 is true or H0 is not true at all. Let the pre-defined threshold
for the p− value be α where we reject H0 falsely with a probability of α.
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With a p value cut off of 0.05, this would also imply of the remaining 1000−
30 = 970 non-differentially expressed genes,0.05x970 = 49 are false positives Thus
the number off positives are greater than the truly expressed genes.

In order to avoid this bias, arising due to over-fitting, the levels of significance
can be adjusted for multiple testing. The Bonferroni correction corrects this error
by reducing the level of significance by a factor of n, the total samples.

8.10 Materials and Methods

Datasets

Though DNA based microarrays are more common, here we tackle analysis of
microarray from a proteomics study.

The data for the study was obtained from Glioblastoma multiforme(or GBM)
patients. GBM is known to arise from the glial cells responsible for homeostasis.
Homeostasis(biological homeostasis) is a property of the human body via which
the body regulates the levels of certain variables in order to ensure that the
internal metabolic reactions can be carried out in the right set of conditions.
Regulation of blood’s pH at a value of 7.365 is thus a result of homeostasis.

Clinicians, classify GBM into two broad categories:

• Low Grade[Grade II]: Cells are non-anaplastic and the tumor is benign.
The current methods of diagnosis reply MRI scans

• High Grade[Grade III and Grade IV] Cells are anaplastic and hence are
dividing rapidly forming malignant tissues.

The data was collected from the following samples:

1. Controls: A set of 17 control samples, collected from normal patients. It
is worth noting that the definition of Controls itself is a bit subjective.
While comparing the gene expression levels with the disease samples, we
assume these set of controls to be ’healthy’, and a representative sample
of the healthy population

2. Grade II: A set of 16 samples with Grade II glioma.

3. Grade III: A set of 16 samples with Grade III glioma.

4. Grade IV: A set of 16 samples with Grade IV glioma.

The assignment of grades to the diseased samples was an outcome of the
Clinician’s analysis of the MRI and related tests. GenePix platform and software
were used to
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Defining the Question

Before performing any data analysis, it is very important to clearly define the
question to be answered. The motivation behind performing this data analysis
was:

1. Determine the set of differentially expressed genes in Grade II, Grade III
and Grade IV samples with respect to the healthy controls

2. Compare the set of differentially expressed genes via a pairwise comparison
between (Grade II, Grade III), (Grade III, Grade IV) and (Grade II, Grade
IV)

3. Determine a smaller panel of marker genes that can potentially be used to
differentiate the various Grades of GBM from control and possibly amongst
themselves

Exploratory Data Analysis

One of the key ideas, that needs to be taken care of is that the pre-processing
steps should be run on all the datasets at once, rather than running them on
any two cohorts taken together. This is important for any inferences that can be
drawn out after the downstream analysis.

Consider the box plots for foreground and background intensities. Though a
background intensity is always expected, subtraction of this background inten-
sity from the foreground should yield a similar looking boxplot across all arrays.
However as evident from 8.4, this does not seem to be the case and this is the
motivation to perform a normalization across all arrays

Normalization

The underlying hypothesis in a microarray study is that the expression levels of
most of the genes are expected to be constant. Thus, a box plot with these expres-
sion values, should thus exhibit a behavior such that the mean expression levels
across the samples remain the same. We employ ’quantile’ based normalization
here.

With normalization, the pre-processing work-flow is complete for the next
downstream analysis for finding differentially expressed genes.

Differentially expressed genes

One of the good ways to visualize the set of differentially expressed genes is a
Volcano plot. The plot plots log odd scores versus the log fold change. Thus
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for a gen to be differentially expressed, just being above a certain fold change
threshold is not sufficient s it must satisfy must have higher log odd score too.

8.11 Discussion

This chapter discusses the individual components of a pre-processing workflow,
besides discussing the Mathematics, behind most of the methods. As a small
case study, we present the list of differentially expressed genes in Grade-2 of
GBM samples as compared to the Controls, after required pre-processing.

Though the list of differentially expressed genes, the purpose of the problem
defined in the beginning of this Chapter is not met yet. Had the question being
asked just focussed on identifying those set of genes that show a marked be-
havior between Control and Disease samples, the list of differentially expressed
gene would be a close answer. However we are also interested in finding if these
expression profiles can be used to differentiate these cohorts. These set of dif-
ferentially expressed genes could themselves be large in number. From the point
of biomarker design, a long list of these genes would not solve the process. The
näive solution of selecting the first few differentially expressed genes, doe not
work either because these top ranking genes might be part of single pathway and
hence a change in an upstream gene will trigger the expression of the following
downstream genes in the pathway. Hence even though these genes are the top
ranked in differential expression, they might collectively be unable to differentiate
the control and disease samples, since the information gain from such a list might
be minimal.

The next chapters discuss the approach we take to potentially come up with
such a bio-marker.
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Figure 8.5: Boxplots after background correction using ’normexp+offset’. Off-
set=100
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Figure 8.6: Boxplots after ’quantile’ normalisation of background corrected raw
values using ’normexp+offset’

64



Figure 8.7: Raw foreground log2 transformed intensities across negative control
spots
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Figure 8.8: Raw foreground log2 transformed intensities across all spots
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Figure 8.9: Foreground intensities post quantile normalization and background
correction
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Figure 8.10: Volcano plot highlighting the statistically significant genes

68



Figure 8.11: Expression levels of the top 10 differentially expressed genes
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Chapter 9

Correspondence analaysis

Motivation

The set of differentially expressed gene might be large on it’s own. A large list of
genes though may hemp in differentiating the samples[class wise], but may not
be an economical design. As we discussed earlier, a list of top ranked such genes
might be too uninformative and might not give a solution our problem.

The shortlist of these differentially expressed is not short itself. In order
to reduces this dimensionality, we employ a dimensionality reduction technique.
The aim is to project the data in higher dimensions to lower dimensions, without
affecting the overall relationships.

Correspondence analysis is one such dimensionality reduction method. The
aim in such methods is not to come with a classifier that might organize data
into two separate classes, but to come up with a projection in a lower-dimension,
where more relevant features can be further shortlisted.

The shortlist coming from a correspondence analysis can be treated as a set of
markers whose values are associated with the classes in a statistically significant
way rather than by mere chance. Hence there is strong reason to believe that this
further shortlisting will help make the set of markers smaller, while at the least
retaining the accuracy, if not improving.

9.1 Introduction

Correspondence Analysis is a multivariate statistical technique applied to nominal
variables [7].

Let N = IxJ denote the data matrix. Converting the N matrix to P such
that:
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P =
N∑

i

∑
j nij

(9.1)

The row masses are represented by:

ri =
J∑
j=1

pij (9.2)

The column masses are represented by:

cj =
I∑
i=1

pij (9.3)

For row and column masses, the diagonals are given by:

Dr = diag(r) (9.4)

Dc = diag(c) (9.5)

Algorithm

Distance between two rows i and i′ is given by:

d2(i, i′) =
J∑
j=1

1

cj
(
pij
ri
− ni′j

r′i
)2 (9.6)

Column wise distance can be defined similarly.
These distances are not euclidean distances, but euclidean distances weighted

by the inverse of the corresponding frequency. This kind of weighting ensures
that the distances are standardized variance-wise. Thus, for larger proportions or
smaller proportions, the differences are standardized.

Even if the rows i and i′ are replaced by their sum of rows, then distances
between columns would not change. The same holds for the columns being re-
placed by their column sum. The data table can now be though of as a cloud
of points.Cloud of points N(I) is the set of elements i ∈ I with mass = ri and
similarly cloud of points N(J) is the set of elements j ∈ J with mass =cj.These
both clouds of points have masses adding up to one each. Distances can also be
defined for both the set of cloud of points as shown above. The inertia for ith row
profile is thus defined as:

Rowinertia = Rowmass ∗ Squareofdistancefromthecentroidoftherows (9.7)
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9.1.0.1 The significance of Chi-squared distance

The underlying hypothesis for CA is that the rows and columns are independent.
In a contingency table the theoretical value of a cell at (i, j) is given by, assuming
the abov hypothesis is true :

Ei,j = ri ∗ cj (9.8)

However the observed value at (i, j) is pij. Thus the Chi-square distance is
alculated as :

χ2 = n
J∑
j=1

I∑
i=1

(pij − ricj)2

ricj
(9.9)

Consider the centroi z of the row vector points:

z = [c1, c2, ...., cJ ] (9.10)

The distance between any ith row and it’s centroid is given by, using the
distance relation between rows from above:

d2
iz =

J∑
j=i

(
pij
ri
− cj)2

cj
(9.11)

which can be rewritten in terms of the centroid µij = ricj as:

d2
iz =

1

ri

J∑
j=i

(pij − µij)2

µij
(9.12)

Thus row inertia:

rid
2
iz =

J∑
j=i

(pij − µij)2

µij
(9.13)

The column inertia can be defined similarly.
Consider the residual matrix S:

Sij = |pij − µij√
µij

| (9.14)

In order to decompose S to lower dimensions consider SVD decomposition of
S:

S = UDαV
T (9.15)
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where U,V are orthonormal V V T = 1 and UUT = 1 and Dα is a diagonal
matrix with entries in descending order as λ1, λ2,....

The scores of the rows is then given by:

F = D
−1
2
r UDα (9.16)

and the column scores are given by:

G = D
−1
2
c V Dα (9.17)

The dimension of these score matrices is min(I − 1, J − 1) and essentially
represent the coordinates of these row vectors in the higher-dimensional subspace.
The points in this space are so arranged that the euclidean distances between two
points corresponds to the Chi-square distance in the original matrix. Even though
these scores are representative of the original rows, in terms of the Chi-square
distance, visualizing graphically is possible only in 2 or 3 dimensions. Hence we
consider only the first two components of each row to visualize them on a 2D
surface. The distance between the points on the graph is a close estimate of the
original Chi-square distance.

In order to quantify the amount of inertia represented by this plot, we con-
sider the following score:

φ2 =
I∑
i=1

rid
2
iz (9.18)

and the amount of inertia captured by he first two principal axes is given by:

λ2
1 + λ2

2

φ2
(9.19)

The row and column scores can be plotted in one 2D graph after proper scaling
and is called as a CA biplot. On such a biplot the relationships between the row
points and column points can be inferred the following way:

• Given a row point X and a column point Y, if the angle between line joining
the centroidorigin of the 2D plot and line joining Y and centroid is acute, it
essentially points that association between X and Y is high. A right angle
denotes zero association and an obtuse angle denotes negative association

• The distance on biplot are proportional to χ2 distances in the original higher
dimension

• The farther away a point is from the centroid, the higher is that row’s
contribution to the value of statistic
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Discussions

We make use of correspondence analysis to find genes that are associated strongly
with either the Controls or the disease(GBM) samples, treating one grade at a
time.

Figure 9.1: Correspondence Analysis of Grade4 samples as compared to Controls.
The genes located along the diagonals have association with the Grade4/Control
samples. Association can be negative or positive. Control and Grade4 samples
are separated along the second axis. However the separation is not distinct.
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Figure 9.2: Hierarchical clustering with Average linkage for Grade4 and Control
samples. Though there are two distinct clusters, there is an intermixing of groups
too
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Chapter 10

Classification of Microarray Data

Problem

Given the datasets have already been classified into two classes: Control and
Grade II. The focus of the underlying problem is to come up with a marker set of
genes, which can be used to differentiate new samples into Control and Disease.
This belongs to the class of supervised learning problems, where the classes to
which each sample should belongs to is available. Another class of problems deals
with unsupervised learning, where the focus is to discover the classes to which the
data can be classified into. An example of this would be classifying the disease
samples into further sub-categories(Grade II, Grade III, Grade IV). We tackle
the former here.
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We follow the approach as shown in to solve our problem:

10.1 Curse of Dimensionality : Feature Selec-

tion

Given the large number of attributes associated with a microarray study with
often a small number of observations, it becomes difficult to classify, since large
number of observations are required for several combinations of attribute values.

In order to prevent the curse of dimensionality, the set of genes can be re-
stricted. The rationale behind using correspondence analysis was to reduce the
set of attributes to those genes which have been found to have strong association
with the ’control’ or ’disease’ classes. Thus rather than feeding the set of 500
different attributes, we consider only 100 genes which are shown to have strong
association with the control and disease samples. These set of 100 attributes are
thus fed to a SVM classifier to build a binary classifier model.

However it is till necessary to determine which set(s) of genes are the most
relevant for building a classifier model. The best features can be selected either
by employing filter methods such as signal to noise ratio [20] or wrapper methods
such as recursive feature elimination(RFE). We discuss RFE in detail here.

Recursive Feature Selection

RFE is based on a simple principle of eliminating those wi that have low magni-
tude, since the contribution of such elements contribute less to the classification
function. For a linearly separable dataset, this procedure is executed by first
calculating the weights of all attributes :

Sj = |wj| (10.1)

These weights are then sorted in descending order and one or more features are
removed from the bottom of the list. Using the shorter set of attributes, a SVM
is re-trained. And this procedure is repeated till we settle down to a pre-decided
length of features.

10.2 SVM Classification

Support Vector Machines are binary classifiers. Given a training set of (points,labels)
(xi, yi) where xi ∈ R and y ∈ −1, 1] . The idea is to search for a hyperplane that
would separate the points with yi = 1 from yi = −1. There could be multiple
hyperplanes like that, the focus is however only on the hyperplane that with
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maximum-margins(on both sides). Any such hyperplane satisfies:

w.x− b = 0 (10.2)

If the data is linearly separable, two hyperplanes can be found :

w.x− b = 1 (10.3)

w.x− b = −1 (10.4)

The distance between the two hyperplanes is 2
||w|| . Thus minimizing ||w||

would yield the required the hyperplane.
In order to prevent misclassification, the following constraints are required:

(w.xi − b) ≥ 1forxibelongingtoclass1 (10.5)

and
(w.xi − b) ≤ −1forxibelongingtoclass− 1 (10.6)

which can be combined as:

yi(w.xi − b) ≥ 1 (10.7)

and the objective function to be minimised under this constraint is : ||w||

10.3 Cross Validation and SVM

Given the small set of observations, coming up with a predictor and testing it
on the same dataset will present a rosy but a wrong picture. This is the clas-
sical problem of over-fitting where the prediction function work with maximum
accuracy on the training dataset, however will often perform not so well for an
entirely new dataset (validation dataset). In problem like the microarray experi-
ments where the training data is limited, it is often difficult to define a separate
validation dataset. Thus in order to avoid over-fitting, part of the training data
set is with held as test dataset. Consider k-fold validation. the model is trained
using k-1 observables of the dataset and the remaining 1 dataset serves as the
test dataset. This performance is averaged over all possible values of the k-1
substitutes of the data.

The SVM employed uses a linear kernel. The choice of a linear kernel over
other non-linear kernels is justified, since the data matrix is till in higher dimensions[49]
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10.4 Results and Discussions

We used RFE to select a list of 30 genes that could potentially be used as a set
of biomarker for prognosis.

These set of proteins are:

A detailed table is present in Appendix 1.
Here we focus on the pattern of classification, rather than the classifiers them-

selves. The ’Brier’ score measure the accuracy of probabilistic predictions. It
measures the mean squared error between the predicted probability and the ac-
tual observation. Thus, a smaller score indicates a more accurate classifier.

A pattern worth noticing is how, a larger number of features does not al-
ways guarantee a lower brier score and hence a higher accuracy. This may look
paradoxical, but the paradox is resolvable.

The argument goes like this.: A new gene included in the shortlisted set might
not be equally informative as the rest. In many cases in fact introduction of a
new gene as an attribute leads to poor classification accuracy as the gene is noisy.
This discussion is part of Golub et. al [20] where the coefficient used for ranking
the genes is given by:

wi =
µi(+)− µi(−)

σi(+)− σi(−)
(10.8)

where µi represents the mean and σi represents the standard deviation of
gene i expression values for two class of samples, + and −. Larger wi represents
stronger association of gene i with class +. As a first step towards selecting
the best features, one could shortlist the gene with larger wi or lower wi. The
intermediate values of wi do not led to informative features.

However in the above discussion an implicit assumption has been that the
features are orthogonal (independent) to each other. Each gene i is ranked in-
dividually , assuming complete independence of the genes. Thus neglecting any
kind if co-relation that might exist between two or more genes, possibly due to
them being part of the same pathway.

The RFE method of feature selection tackles this issue by assigning weights
to each attribute, tackling all the attributes at once. The genes are then ranked
with the genes with maximum weights being ranked at the top. There is no
implicit or explicit orthogonality assumption here.

A note on the results

The shortlisted gene list after pre-processing are all summarized in Appendix 1,
append 2 and Appendix 3.
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”Number of features” Brier Specificity Sensitivity
1 0.427 0.067 0.971
2 0.449 0.000 1.000
3 0.355 0.200 0.882
4 0.269 0.667 0.853
5 0.176 0.867 0.941
6 0.140 0.867 0.941
7 0.180 0.867 0.941
8 0.204 0.667 0.941
9 0.138 0.800 0.941

10 0.134 0.800 0.941
11 0.123 0.867 0.971
12 0.125 0.800 0.971
13 0.121 0.800 0.971
14 0.114 0.800 0.971
15 0.149 0.867 0.882
16 0.171 0.733 0.941
17 0.175 0.800 0.912
18 0.173 0.800 0.882
19 0.151 0.800 0.941
20 0.124 0.867 0.971
21 0.118 0.800 0.941
22 0.109 0.933 0.941
23 0.119 0.933 0.941
24 0.133 0.867 0.941
25 0.155 0.800 0.941
26 0.167 0.800 0.912
27 0.141 0.933 0.941
28 0.146 0.800 0.941
29 0.148 0.867 0.941
30 0.152 0.867 0.941

Figure 10.1: Features and their Brier scores for Control v/s Grade4

81



However, there has been no step of validation involved either experimentally
or a through a thorogh literature search to verify if the shortlisted sets of genes are
known to be associated in any way. A naive approach would have been to lookup
which categories of MeSH [http://www.nlm.nih.gov/mesh/meshhome.html ] do
the articles citing this fall under. This would essentially point out if there has
ben an earlier study on these sets of genes related to cancer. However, we decided
against such an approach.
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Chapter 11

Visualisation tools for
Bioinformatics

Need/Rationale

With the advent of Next Generation Sequencing, there has been a boom in the
amount of data being generated. This vast amount of biological data presents a
great challenge from the point of understanding and interpretation. Availability
of visualization tools can act as a possible solution by utilizing the bandwidth of
human vision for interpretation[50].

11.1 Phred Score Viewer

Phred scores are the quality scores assigned to the nucleotides as sequenced by
automated sequencers. Phred scores are an indicator of the quality of the fastq
files. See Chapter 2 for a discussion on fastq files and phred scores.

11.1.1 Implementation details

The phred score viewer is a pure javascript based implementation. Thus, it can
be used to render box plots of the quality scores via web browsers, independent
of the platform of the user.The user can draw conclusions about the distribution
of the scores by looking at the box plots.

11.2 Human Genetic Variation Viewer

No two humans are genetically identical,even though there sequences are 99.9%
similar. The genetic difference arise at various sites and are common both within
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Figure 11.1: Box plot plotted using a javascript based phredscore plotter, for a
100-read based sequence

and among populations. A study of these genetic variations has both evolutionary
and medical significance and can essentially help in deciphering the impacts of
variations across populations.

Most of these variations have now been cataloged into databases such as the
dbSNP, which is a catalog of the human single nucleotide polymorphisms. How-
ever, the amount of data is too large and too scattered to draw any conclusion
from it.

Human genetic variation viewer, is an effort that tackles this very problem.
With a visual map of genetic variations, it is not only easy to visualize all the
genetic variations at once, but at the same time draw inferences. the user can
configure the viewer to load a certain protein and can visualize variants which have
been scored for their impacts, for example via SIFT and Polyphen algorithms.
These values indicate the deleteriousness of a certain variant position.

11.2.1 Implementation details

Human genetic variation viewer is also a javascript based implementation that
fetches the list of variants from a web service, given the Entrez ID. The map is
a stacked bar chart highlighting the damaging, benign and intermediate variants
at the protein level.

11.2.2 Conclusion

Given the platform independence and scalability of the tools, they can add utility
to biological data visualization, making it simple to infer quality scores and study
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Figure 11.2: Stacked bar charts showing the frequency of damaging(red), be-
nign(green) and intermediate(yellow) mutations in a protein

the impact of various mutations. The tools are designed to be configurable by
the end user, and hence are user-friendly.
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Chapter 12

Conclusions

Over the course of this project we demonstrated the presence of HPV in Cervical
cancer patients, by computational techniques. The knowledge about sites of
integration could be potentially be used as a therapeutic target.

We also benchmarked two algorithms for aligning next generation sequenc-
ing whole(exome) sequencing data. BWA shows better performance over BWA-
PSSM, possibly because BWA-PSSM models the rror qualities that are not ap-
plicable in general.

We built a toolbox using a set of pre-existing tools for predicting driver and
passenger mutations. These set of tools are thus available to use now, through
Galaxy. We also built a set of workflows that allow the conversion of VCF files
to each tool’s required input format. The user can thus run multiple tools on
the same dataset without the need of pre-processing every time. This whole
framework also provides a heatmap visualization of the output, thus making the
whole analysis more easily interpretable.

The microarray problem required a small set of markers that could potentially
be used to differentiate the various stages of glioma. For each stage, we generate
such a list using recursive feature elimination and k-fold cross validation. We
however, do not re-validate our findings by checking the biological significance of
these genes.

We also develop two visualization tools for visualizing phred scores in a fastq
file and human genetic variations.

All the code for the project has been Open Sourced:

• NGS Scripts: https://github.com/saketkc/NGS-Stuff

• Microarray Scripts: https://bitbucket.org/saketkc/proteomics_analysis

• Galaxy Toolbox : https://github.com/saketkc/galaxy_tools
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Appendix 1: Analysis of GBM

Grade4 samples vs Control
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Grade4vsControl
Saket Choudhary

Wednesday 25 June 2014
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## NULL
## [1] "NM_031966.2" "NM_002867.2" "NM_001827.1" "BC075842.1"
## [5] "BC041037.1" "NM_018379.3" "NM_001005465.1" "BC065370.1"
## [9] "NM_024928.3" "NM_148910.2" "NM_002767.2" "NM_018584.4"
## [13] "NM_198086.1" "XM_290842.4" "NM_006541.1" "NM_021810.3"
## [17] "BC037876.1" "NM_001003892.1" "NM_014372.3" "NM_001033515.1"
## [21] "NM_024745.2" "NM_017924.2" "NM_032347.1" "NM_001001394.2"
## [25] "BC018747.1" "NM_032328.1" "NM_001025266.1" "BC013992.1"
## [29] "NM_031304.2" "NM_021979.2" "NM_000689.3" "BC013009.2"
## [33] "BC015738.1" "BC025985.1" "NM_000184.2" "NM_006857.1"
## [37] "NM_001157.2" "NM_178815.3" "NM_001549.2" "NM_139204.1"
## [1] "NM_031966.2" "NM_000884.2" "NM_002867.2"
## [4] "NM_001827.1" "NM_006541.2" "ENST00000362035"
## [7] "BC075842.1" "BC041037.1" "NM_018379.3"
## [10] "BC065370.1" "NM_018584.4" "XM_290842.4"
## [13] "NM_006541.1" "NM_021810.3" "BC037876.1"
## [16] "NM_001003892.1" "NM_014372.3" "NM_001033515.1"
## [19] "NM_017924.2" "BC009561.1" "BC018747.1"
## [22] "NM_001155.3" "NM_001025266.1" "BC013992.1"
## [25] "BC010450.1" "BC013186.1" "NM_000689.3"
## [28] "NM_001801.2" "BC000846.2" "BC121798"
## [31] "BC067254.1" "NM_024815.3" "NM_000184.2"
## [34] "NM_001157.2" "BC032665.1" "NM_001008491.1"
## [37] "BC000446" "NM_178815.3" "NM_001549.2"
## [40] "NM_139204.1"
##
##
## | NF| Brier|FeatureList |
## |--:|------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
## | 1| 0.4272|NM_021810.3 |
## | 2| 0.4494|NM_021810.3 BC037876.1 |
## | 3| 0.3546|NM_021810.3 BC037876.1 BC009561.1 |
## | 4| 0.2694|NM_021810.3 BC037876.1 BC009561.1 NM_006541.1 |
## | 5| 0.1758|NM_021810.3 BC037876.1 BC009561.1 NM_006541.1 BC000846.2 |
## | 6| 0.1398|NM_021810.3 BC037876.1 BC009561.1 NM_006541.1 BC000846.2 NM_002867.2 |
## | 7| 0.1798|NM_021810.3 BC037876.1 BC009561.1 NM_006541.1 BC000846.2 NM_002867.2 NM_018584.4 |
## | 8| 0.2037|NM_021810.3 BC037876.1 BC009561.1 NM_006541.1 BC000846.2 NM_002867.2 NM_018584.4 NM_001033515.1 |
## | 9| 0.1380|NM_021810.3 BC037876.1 BC009561.1 NM_006541.1 BC000846.2 NM_002867.2 NM_018584.4 NM_001033515.1 NM_001157.2 |
## | 10| 0.1335|NM_021810.3 BC037876.1 BC009561.1 NM_006541.1 BC000846.2 NM_002867.2 NM_018584.4 NM_001033515.1 NM_001157.2 BC018747.1 |
## | 11| 0.1232|NM_021810.3 BC037876.1 BC009561.1 NM_006541.1 BC000846.2 NM_002867.2 NM_018584.4 NM_001033515.1 NM_001157.2 BC018747.1 BC121798 |
## | 12| 0.1254|NM_021810.3 BC037876.1 BC009561.1 NM_006541.1 BC000846.2 NM_002867.2 NM_018584.4 NM_001033515.1 NM_001157.2 BC018747.1 BC121798 NM_032328.1 |
## | 13| 0.1209|NM_021810.3 BC037876.1 BC009561.1 NM_006541.1 BC000846.2 NM_002867.2 NM_018584.4 NM_001033515.1 NM_001157.2 BC018747.1 BC121798 NM_032328.1 BC013186.1 |
## | 14| 0.1141|NM_021810.3 BC037876.1 BC009561.1 NM_006541.1 BC000846.2 NM_002867.2 NM_018584.4 NM_001033515.1 NM_001157.2 BC018747.1 BC121798 NM_032328.1 BC013186.1 NM_018379.3 |
## | 15| 0.1493|NM_021810.3 BC037876.1 BC009561.1 NM_006541.1 BC000846.2 NM_002867.2 NM_018584.4 NM_001033515.1 NM_001157.2 BC018747.1 BC121798 NM_032328.1 BC013186.1 NM_018379.3 NM_006541.2 |
## | 16| 0.1707|NM_021810.3 BC037876.1 BC009561.1 NM_006541.1 BC000846.2 NM_002867.2 NM_018584.4 NM_001033515.1 NM_001157.2 BC018747.1 BC121798 NM_032328.1 BC013186.1 NM_018379.3 NM_006541.2 NM_006857.1 |
## | 17| 0.1751|NM_021810.3 BC037876.1 BC009561.1 NM_006541.1 BC000846.2 NM_002867.2 NM_018584.4 NM_001033515.1 NM_001157.2 BC018747.1 BC121798 NM_032328.1 BC013186.1 NM_018379.3 NM_006541.2 NM_006857.1 ENST00000362035 |
## | 18| 0.1734|NM_021810.3 BC037876.1 BC009561.1 NM_006541.1 BC000846.2 NM_002867.2 NM_018584.4 NM_001033515.1 NM_001157.2 BC018747.1 BC121798 NM_032328.1 BC013186.1 NM_018379.3 NM_006541.2 NM_006857.1 ENST00000362035 NM_031304.2 |
## | 19| 0.1515|NM_021810.3 BC037876.1 BC009561.1 NM_006541.1 BC000846.2 NM_002867.2 NM_018584.4 NM_001033515.1 NM_001157.2 BC018747.1 BC121798 NM_032328.1 BC013186.1 NM_018379.3 NM_006541.2 NM_006857.1 ENST00000362035 NM_031304.2 NM_000689.3 |
## | 20| 0.1244|NM_021810.3 BC037876.1 BC009561.1 NM_006541.1 BC000846.2 NM_002867.2 NM_018584.4 NM_001033515.1 NM_001157.2 BC018747.1 BC121798 NM_032328.1 BC013186.1 NM_018379.3 NM_006541.2 NM_006857.1 ENST00000362035 NM_031304.2 NM_000689.3 BC013992.1 |
## | 21| 0.1176|NM_021810.3 BC037876.1 BC009561.1 NM_006541.1 BC000846.2 NM_002867.2 NM_018584.4 NM_001033515.1 NM_001157.2 BC018747.1 BC121798 NM_032328.1 BC013186.1 NM_018379.3 NM_006541.2 NM_006857.1 ENST00000362035 NM_031304.2 NM_000689.3 BC013992.1 NM_178815.3 |
## | 22| 0.1085|NM_021810.3 BC037876.1 BC009561.1 NM_006541.1 BC000846.2 NM_002867.2 NM_018584.4 NM_001033515.1 NM_001157.2 BC018747.1 BC121798 NM_032328.1 BC013186.1 NM_018379.3 NM_006541.2 NM_006857.1 ENST00000362035 NM_031304.2 NM_000689.3 BC013992.1 NM_178815.3 NM_000184.2 |
## | 23| 0.1192|NM_021810.3 BC037876.1 BC009561.1 NM_006541.1 BC000846.2 NM_002867.2 NM_018584.4 NM_001033515.1 NM_001157.2 BC018747.1 BC121798 NM_032328.1 BC013186.1 NM_018379.3 NM_006541.2 NM_006857.1 ENST00000362035 NM_031304.2 NM_000689.3 BC013992.1 NM_178815.3 NM_000184.2 BC025985.1 |
## | 24| 0.1325|NM_021810.3 BC037876.1 BC009561.1 NM_006541.1 BC000846.2 NM_002867.2 NM_018584.4 NM_001033515.1 NM_001157.2 BC018747.1 BC121798 NM_032328.1 BC013186.1 NM_018379.3 NM_006541.2 NM_006857.1 ENST00000362035 NM_031304.2 NM_000689.3 BC013992.1 NM_178815.3 NM_000184.2 BC025985.1 NM_031966.2 |
## | 25| 0.1555|NM_021810.3 BC037876.1 BC009561.1 NM_006541.1 BC000846.2 NM_002867.2 NM_018584.4 NM_001033515.1 NM_001157.2 BC018747.1 BC121798 NM_032328.1 BC013186.1 NM_018379.3 NM_006541.2 NM_006857.1 ENST00000362035 NM_031304.2 NM_000689.3 BC013992.1 NM_178815.3 NM_000184.2 BC025985.1 NM_031966.2 NM_139204.1 |
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## | 26| 0.1671|NM_021810.3 BC037876.1 BC009561.1 NM_006541.1 BC000846.2 NM_002867.2 NM_018584.4 NM_001033515.1 NM_001157.2 BC018747.1 BC121798 NM_032328.1 BC013186.1 NM_018379.3 NM_006541.2 NM_006857.1 ENST00000362035 NM_031304.2 NM_000689.3 BC013992.1 NM_178815.3 NM_000184.2 BC025985.1 NM_031966.2 NM_139204.1 NM_024928.3 |
## | 27| 0.1409|NM_021810.3 BC037876.1 BC009561.1 NM_006541.1 BC000846.2 NM_002867.2 NM_018584.4 NM_001033515.1 NM_001157.2 BC018747.1 BC121798 NM_032328.1 BC013186.1 NM_018379.3 NM_006541.2 NM_006857.1 ENST00000362035 NM_031304.2 NM_000689.3 BC013992.1 NM_178815.3 NM_000184.2 BC025985.1 NM_031966.2 NM_139204.1 NM_024928.3 BC015738.1 |
## | 28| 0.1457|NM_021810.3 BC037876.1 BC009561.1 NM_006541.1 BC000846.2 NM_002867.2 NM_018584.4 NM_001033515.1 NM_001157.2 BC018747.1 BC121798 NM_032328.1 BC013186.1 NM_018379.3 NM_006541.2 NM_006857.1 ENST00000362035 NM_031304.2 NM_000689.3 BC013992.1 NM_178815.3 NM_000184.2 BC025985.1 NM_031966.2 NM_139204.1 NM_024928.3 BC015738.1 BC041037.1 |
## | 29| 0.1477|NM_021810.3 BC037876.1 BC009561.1 NM_006541.1 BC000846.2 NM_002867.2 NM_018584.4 NM_001033515.1 NM_001157.2 BC018747.1 BC121798 NM_032328.1 BC013186.1 NM_018379.3 NM_006541.2 NM_006857.1 ENST00000362035 NM_031304.2 NM_000689.3 BC013992.1 NM_178815.3 NM_000184.2 BC025985.1 NM_031966.2 NM_139204.1 NM_024928.3 BC015738.1 BC041037.1 NM_001025266.1 |
## | 30| 0.1522|NM_021810.3 BC037876.1 BC009561.1 NM_006541.1 BC000846.2 NM_002867.2 NM_018584.4 NM_001033515.1 NM_001157.2 BC018747.1 BC121798 NM_032328.1 BC013186.1 NM_018379.3 NM_006541.2 NM_006857.1 ENST00000362035 NM_031304.2 NM_000689.3 BC013992.1 NM_178815.3 NM_000184.2 BC025985.1 NM_031966.2 NM_139204.1 NM_024928.3 BC015738.1 BC041037.1 NM_001025266.1 NM_001549.2 |

## Using ID as id variables

 Eigenvalues 
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 d = 0.05 
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