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Abstract

Motivation: Ribo-seq, a technique for deep-sequencing ribosome-protected mRNA fragments, has enabled
transcriptome-wide monitoring of translation in vivo. It has opened avenues for re-evaluating the coding potential of
open reading frames (ORFs), including many short ORFs that were previously presumed to be non-translating.
However, the detection of translating ORFs, specifically short ORFs, from Ribo-seq data, remains challenging due to
its high heterogeneity and noise.

Results: We present ribotricer, a method for detecting actively translating ORFs by directly leveraging the three-
nucleotide periodicity of Ribo-seq data. Ribotricer demonstrates higher accuracy and robustness compared with
other methods at detecting actively translating ORFs including short ORFs on multiple published datasets across
species inclusive of Arabidopsis, Caenorhabditis elegans, Drosophila, human, mouse, rat, yeast and zebrafish.

Availability and implementation: Ribotricer is available at https://github.com/smithlabcode/ribotricer. All analysis
scripts and results are available at https://github.com/smithlabcode/ribotricer-results.

Contact: andrewds@usc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The process of translating messenger RNA into protein is among the
greatest investments of energy by cells (Russell and Cook, 1995).
Consequently, translation is highly regulated to ensure that each cell
synthesizes the right amount of each protein. Our understanding of
the mechanisms regulating the translational process remains limited,
which has motivated the development of experimental approaches
to profile the translation landscape globally. Ribo-seq (Ingolia et al.,
2009) is a technology that uses deep-sequencing to identify
ribosome-protected fragments, revealing the positions of the entire
pool of ribosomes engaged in translation.

Ribo-seq has led to the surprising discovery of prevalent transla-
tion through open reading frames (ORFs) which were previously
presumed to be non-active (Jackson et al., 2018). Such ORFs include
the upstream ORFs (uORFs) located in the 50 untranslated region,
the downstream ORFs located in the 30 untranslated region, and the
ORFs within presumed non-coding genes (Olexiouk et al., 2018).

Transcriptome-wide searches for pairs of in-frame start and stop
codons defining potential ORFs in human, and mouse genomes re-
veal that the sizes of such ORFs are generally 10–20 fold shorter
(Calvo et al., 2009) than the known protein-coding sequences (CDS)
(Supplementary Fig. S1). Their short size presents challenges in
detecting the resulting peptides through proteomic approaches

(Fälth et al., 2006). However, there is emerging evidence that these
short ORFs, or the products of their translation, serve some function
(Andrews and Rothnagel, 2014; Ingolia, 2016). In particular, the
role of uORFs in regulating the translation of downstream CDS has
been well documented (Barbosa et al., 2013) for individual genes
(Hinnebusch et al., 2016), and they are correlated with substantial
(30–80%) repression of protein production (Calvo et al., 2009). The
same mechanism is also used to encode condition-specific activation:
in integrated stress response, where the repressed state is the default,
uORF-associated repression is released following the stress stimulus
(Andreev et al., 2015).

Ribo-seq has been performed on multiple species ranging from
prokaryotes to mammals. Studies over the years have observed that
the choice of method of translation inhibition (Gerashchenko and
Gladyshev, 2014; Hussmann et al., 2015), the enzyme used for
RNA digestion and its concentration (Aeschimann et al., 2015;
Gerashchenko and Gladyshev, 2017) and rRNA depletion
(Weinberg et al., 2016) can affect the overall signal and reduce its
overall reproducibility (Diament and Tuller, 2016). Moreover, the
presence of amplification bias, non-ribosomal RNA-protein com-
plexes or other non-ribosomal contamination can often result in ap-
parent ribosome-protected mRNA fragments (RPFs) that do not
represent actively translating ribosomes. Some RNAs such as
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telomerase RNA, RNAse P, snRNAs and snoRNAs that are known
to be ‘classical’ non-coding RNAs and are predominantly localized
in the nucleus have also been reported as origin for RPFs (Guttman
et al., 2013). This is an indication that not all RPFs represent active-
ly translating ribosomes. Such fragments could represent non-
ribosomal protected regions, such as those protected by RNA bind-
ing proteins. When drawing any conclusion about translational
regulation from Ribo-seq data it is imperative to focus only on those
fragments that represent actively translating ribosomes. However,
the presence of noise in the data makes the task of identifying active-
ly translated regions challenging. A shorter translation unit means
less total data on average for inference, so detection of short ORFs
in Ribo-seq has remained especially difficult.

Several methods exist for analyzing Ribo-seq data to determine
the coding potential of the transcribed RNA. FLOSS (Ingolia et al.,
2014), one of the earliest methods, identifies actively translating
ORF by focusing on the read length distribution. The key assump-
tion is that the distribution of sequenced fragments contains both
RPFs and technical noise, and the true RPFs should exhibit a par-
ticular length distribution. FLOSS first learns a reference distribu-
tion of RPF lengths on a set of protein-coding genes likely to
represent active translation, and then compares fragment lengths
through the other regions in the transcriptome to this reference dis-
tribution. The idea of treating different fragment lengths separately
has been adopted in several subsequent methods. Most other meth-
ods can be understood broadly through two paradigms. The first
hypothesizes that the distribution of number of mapped fragments
differs over actively translated regions, and compares this distribu-
tion with some selected null model. The other general approach
exploits the periodic pattern in the mapped fragment profiles to dis-
tinguish actively translating regions.

In the first paradigm of methods, ORFscore (Bazzini et al., 2014)
compares the distribution of reads falling in the three frames to a
uniform distribution. ORF-RATER (Fields et al., 2015) uses a com-
bination of regression and random-forest based classification to pre-
dict actively translating ORFs. It uses a non-negative least squares
fit for regressing Ribo-seq read profile of the transcript against the
profile obtained from known protein-coding genes. A random-forest
classifier then uses these scores to predict the translational status of
the ORF. RiboHMM (Raj et al., 2016), on the other hand, uses a
hidden Markov model to detect translating ORFs. It models the con-
tribution of each fragment length separately and then combines
them to increase sensitivity. The hidden Markov model learns the
distributions of Ribo-seq coverage over the start/stop codons and
the translated CDS; the distributions are then used to predict trans-
lation status for candidate ORFs. Rp-Bp (Malone et al., 2017) uses
probabilistic modeling to estimate if read counts at each position be-
long to an enriched model or a null uniform model. RiboCode (Xiao
et al., 2018) uses a modified Wilcoxon signed-rank test (Wilcoxon,
1945) to assess periodicity by testing for differential enrichment in
one of the frames against the other two.

The second paradigm typically leverages spectral approaches to
examine the periodic pattern in Ribo-seq data. Mapping RPFs from
Ribo-seq onto the mRNA is expected to reveal a ‘high-low-low’ pat-
tern, owing to ribosome’s movement over codons, resulting in a
three-nucleotide periodicity. RiboTaper (Calviello et al., 2016) uses
multi-tapered windows for calculating a Fourier transform to assess
periodicity in the Ribo-seq signal. Based on related principles in sig-
nal processing, SPECtre (Chun et al., 2016) makes use of spectral co-
herence to correlate Ribo-seq signal with the expected ‘high-low-
low’ pattern. RiboWave (Xu et al., 2018) uses a wavelet transform
based method to denoise the RPF profile by extracting the three-
nucleotide periodicity. This denoised RPF profile leads to a better
performance when identifying active translation.

Methods within both paradigms have enabled discovery of ac-
tively translating ORFs. Each method makes assumptions about the
data that are not always satisfied in practice, for different datasets
or different data analysis goals. The detection of short ORFs is an
example of the latter. However, these methods provide a conceptual
foundation that we borrow from to design a simplified method that
is more robust to varying statistical features across datasets, and

that is capable of detecting both short and long ORFs. Our method,
called ribotricer, directly assesses the three-nucleotide periodicity in
Ribo-seq data. Ribotricer can account for read length specific P-site
offsets and sparsity in Ribo-seq data. Its underlying model empha-
sizes consistency in the qualitative profile through each codon while
down-weighting the influence of the magnitude of the individual val-
ues contributing to that profile. This approach helps ribotricer to
overcome the challenge of detecting short ORFs in regions of low
signal to noise ratio.

2 Materials and methods

To detect actively translating ORFs, ribotricer focuses on the char-
acteristic three-nucleotide periodicity in Ribo-seq data. The work-
flow of ribotricer consists of five major steps. Ribotricer first
prepares a candidate set of all potentially translatable ORFs by
searching for pairs of start and stop codons genome-wide but inside
annotated transcription units. This requires providing gene annota-
tions and the reference genome but is only done once for each gen-
ome and gene annotation. Next, ribotricer partitions the mapped
reads based on their length. The rationale for processing reads by
their length is that each length may be associated with a different P-
site offset relative to the 50 end of the mapped fragment. For each
read length, ribotricer generates a metagene profile using 50 ends of
the mapped reads (accounting for strand as appropriate). The meta-
gene profiles are used to infer P-site offsets for different read-lengths
by choosing the offsets that maximize the cross-correlation of these
profiles with the profile for the most abundant read length. The read
profiles corresponding to different read-lengths can then be merged
using the corresponding inferred P-site offsets, an approach taken
previously by Calviello et al. for RiboTaper (Calviello et al., 2016)
and Xiao et al. for RiboCode (Xiao et al., 2018). The previous step
produces a single RPF profile for each candidate ORF. In its final
step, ribotricer assesses the periodicity of the merged RPF profile
using a novel approach to predict its translation status.

Our key contribution is a novel method for assessing the three-
nucleotide periodicity of RPF profile based on 3D to 2D projection
(Fig. 1; Supplementary Fig. S26). Within each codon, we may ob-
serve reads with 50 ends at each of the three nucleotides, providing
three unconstrained count values. These count values can be imag-
ined as vectors in a 3D space with each nucleotide position repre-
senting 1D. We hypothesized that using the absolute read count at
each nucleotide might obscure the signal of an entire profile when
being evaluated for its periodicity. Though genes undergoing trans-
lation are expected to accumulate more reads in total, we hypothe-
sized that for many genes an over-emphasis on total counts might
amplify the effect of unknown artifacts or noise in the data. Actively
translating regions exhibit a distinct ‘high-low-low’ pattern at each
codon irrespective of their absolute read count values. Codons in a
profile, however, might end up with a high abundance of reads be-
cause of the difference in ribosomal decoding speed (Ingolia, 2014),
a ribosomal pause (Buskirk and Green, 2017) or presence of non-
ribosomal fragments (Andreev et al., 2017). Hence, using absolute
read count values at each nucleotide could lead to a non-stationary

0

Fig. 1. Methodology design of ribotricer
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profile. Applying any spectral method would require that the pro-
files satisfy conditions to ensure stationarity. Instead, we rely on
using the qualitative information at each codon in the form of ‘high-
low-low’ or related pattern. This approach discards much of the
quantitative information associated with individual read counts but
also simplifies the problem while eliminating the need to explicitly
model random variation or systematic trend in total read counts
along the RPF profile.

For a given ORF consisting of N codons, let xij denote the num-
ber of P-sites inferred from the reads of Ribo-seq experiment align-
ing to the i-th codon and j-th frame of the ORF, where
i ¼ 1;2; . . . ;N and j ¼ 1, 2, 3. The RPF profile of the ORF can
then be denoted as P ¼ ðx11; x12;x13; . . . ; xN1;xN2; xN3Þ. For each
codon profile xi ¼ ðxi1; xi2; xi3Þ, a 3D vector, we perform the
following transformation to convert it into a 2D unit vector

/i ¼ ðai;biÞT, more specifically, the angle of the unit vector which is
inherently 1D:

/i ¼
wxT

i

jjwxT
i jj
; (1)

where

w ¼
�

1 cosð�2p=3Þ cosð�4p=3Þ
0 sinð�2p=3Þ sinð�4p=3Þ

�
:

With this transformation, the three basis vectors
fð1; 0; 0Þ; ð0; 1; 0Þ; ð0; 0;1Þg are mapped as

ð1;0; 0Þ ! ð1; 0Þ;
ð0; 1;0Þ ! ðcosð�2p=3Þ; sinð�2p=3ÞÞ;
ð0; 0;1Þ ! ðcosð�4p=3Þ; sinð�4p=3ÞÞ:

The three mapped unit vectors lie 2p=3 away from each other to
ensure the direction of the transformed vector /i is equally deter-
mined by reads of each frame. These can be replaced by any three
unit vectors that are equally spaced on the unit circle, and the results
would not change.

For the transformation performed, the direction of the resulting
vector is determined by the relative values of xi1; xi2, and xi3. For an
actively translating ORF, we expect to see a ‘high-low-low’ pattern
for each codon. This is equivalent to observing xi1 as the largest
value consistently over all codons. If this holds, we expect the direc-
tions of the resulting unit vectors /i to be consistent across codons.
As indicated above, the motivation behind unit normalization of
each vector is to help ensure that each codon contributes equally to
our assessment of translation status, avoiding bias from the fraction
of codons with an over-abundance of reads. This transformation dis-
regards the total read counts at each of the three positions. For ex-
ample, the two codon profiles (100, 20, 10) and (10, 2, 1) will result
in the same unit vectors when applying Equation (1). Another ex-
ample would be of profiles (100, 99, 99) and (100, 1, 1) which will
both result in the same phase score, even though the difference be-
tween the first and the rest two frames is much higher in the latter.
While this discards quantitative information, it still captures the
qualitative ‘high-low-low’ pattern of the profile. This approach
helps ribotricer handle the heterogeneous nature of Ribo-seq data
where despite of pervasive active translation, different codons could
have completely different coverages either because of the actual dif-
ference in ribosome’s dwell time or because of usage of drugs like
cycloheximide which can alter codon-specific elongation rates
(Hussmann et al., 2015).

The l2-norm of the mean vector of the transformed vectors can
be used to assess the periodicity of RPF profile. More consistent
directions of the vectors would result in a larger l2-norm. The mean
vector of the transformed vectors is

�/ ¼ 1

N

XN
i¼1

/i;

and its l2-norm jj�/jj is

jj�/jj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ai

 !2

þ 1

N

XN
i¼1

bi

 !2
vuut ;

which falls in [0, 1], with a value of 1 if and only if

a1 ¼ a2 ¼ � � � ¼ aN ;
b1 ¼ b2 ¼ � � � ¼ bN ;

in which case the directions for all vectors are the same.
Besides heterogeneity arising from uneven distribution of read

counts across codons (O’Connor et al., 2016), another key challenge
in Ribo-seq data is sparsity leading to profiles with many empty
codons, i.e. codons to which no reads map. We do not use empty
codons for phase-score calculation. For a particular dataset with N
codons, define the set V of non-empty codons as

V ¼ fi ¼ 1;2; . . . ;Njxi 6¼ ð0; 0;0Þg;

and let Nv ¼ jVj. If we define �/
�

as the mean vector including only
non-empty codons, the ratio between jj�/jj and jj �/� jj is

jj�/jj
jj �/� jj

¼ Nv

N
:

With the reasoning outlined above, we use jj �/� jj as our measure
for assessing the periodicity of the RPF profile of an ORF. This score
describes how ‘aligned’ all the vectors are, and is equivalent to meas-
uring how similar the phases are, i.e. the angles created by the result-
ing vectors with respect to the abscissa. We will refer to this score as
the ‘phase score’ hereafter. Note that in theory, a high phase score
may result from strong consistency of some pattern other than the
anticipated ‘high-low-low’. In designing our approach, we hypothe-
sized that the only source of consistency in the signal would be an
active translation. A consistent ‘low-high-low’ or ‘low-low-high’
pattern would most likely result from an inaccurate estimate of the
P-site offsets, in which case our assumptions add a layer of
robustness.

The angles made by the resultant vectors when all the codons fol-
low a ‘high-low-low’ pattern should be concentrated around 0. The
distribution we observe for the Ribo-seq data is centered around 0
(Supplementary Figs S6 and S7), which confirms that most codons
follow the ‘high-low-low’ pattern. For the RNA-seq data, the result-
ing angles follow a multimodal distribution with the highest peaks
at f�2p=3; 0; 2p=3g (Supplementary Figs S6 and S7) which corre-
sponds to the three unit vectors. To interpret the multimodal distri-
bution observed in RNA-seq data, we simulated read counts using a
Poisson distribution. To account for variation in total data between
genes, we simulated means of the Poisson distribution using the per
nucleotide coverage from the RNA-seq. The resulting angle distribu-
tion of the simulated codon profiles is similar to that obtained from
profiles of the RNA-seq data (Supplementary Figs S6 and S7) which
explains the observed multimodality.

2.1 Learning cutoff of phase score
The phase score is indicative of how consistent the profile is through
a defined region. We require some cutoff to distinguish phase scores
that differentiate active from non-active translation, with the latter
representing either some form of noise or inactive translation. Our
approach is to learn this cutoff empirically using published datasets
(Supplementary Table S1) with an assumed ground truth set for
regions of active translation and regions lacking active translation.
Taking this strategy, we used RPF profiles of expressed consensus
coding sequence (CCDS) (Pruitt et al., 2009) exons from Ribo-seq
data as the true positives, and mapped read profiles from RNA-seq
data for a negative control for human and mouse datasets, as previ-
ously described (Calviello et al., 2016; Xiao et al., 2018). In order to
choose the best cutoff, we relied on maximizing the F1 score statis-
tic. F1 score represents the harmonic mean of precision and recall
and is considered a more realistic measure of a classifier’s perform-
ance than precision or recall in isolation. Since the CCDS annotated
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regions serve as a high confidence ground truth, we first focused on
human and mouse datasets for learning the cutoff and benchmark-
ing ribotricer against other methods. The 10 datasets (five in human
and five in mouse) are described in Supplementary Tables S1–S5.
We envisioned a cutoff that is applicable even if there is no matching
RNA-seq sample available. The median phase scores of Ribo-seq
samples, however, appear to vary across species (Supplementary
Table S7 and Figs S27–S30), and so, we decided to learn the cutoffs
in a species-specific manner. Using two arbitrary datasets in human
[SRA accession: SRP010679 (Hsieh et al., 2012) and SRP098789
(Lintner et al., 2017)], and two arbitrarily chosen datasets in mouse
[SRA accession: SRP003554 (Guo et al., 2010) and SRP115915
(Mariotti et al., 2017)] we determined the human-specific and
mouse-specific cutoff as 0.441 and 0.418, respectively
(Supplementary Table S6 and Figs S8, S9 and S31). We use these
cutoffs for the remaining three datasets in each species to assess ribo-
tricer’s performance. One might expect that learning a cutoff within
each dataset would yield better performance. We found this not al-
ways to be the case (Supplementary Tables S10 and S11 and Figs
S35–S39). Here we focus on results using species-specific cutoffs.
We also benchmarked ribotricer using species- and dataset-specific
cutoffs in Arabidopsis, Caenorhabditis elegans, Drosophila, rat,
yeast and zebrafish (Section 3.3).

3 Results

To evaluate the performance of ribotricer and other existing meth-
ods, acknowledging the heterogeneity and appreciable noise levels in
Ribo-seq data, we first selected five human and five mouse datasets
for performance comparison (Supplementary Tables S1–S5 and Figs
S2–S5). This includes the human HEK293 cells dataset (SRA acces-
sion: SRP063852) (Calviello et al., 2016), which was originally used
as a benchmark dataset when RiboTaper was introduced (Calviello
et al., 2016) and subsequently used in other studies. The phase
scores of Ribo-seq samples show larger variation as compared to
RNA-seq samples (Supplementary Figs S27–S30).

We followed the strategy previously established by Calviello
et al. in assessing RiboTaper (Calviello et al., 2016) and Xiao et al.
in assessing RiboCode (Xiao et al., 2018). For all the 10 datasets,
we obtained the RPF profiles for all the CCDS from the results gen-
erated by RiboTaper and used the expressed CCDS profiles from
Ribo-seq data as true positives and the corresponding CCDS profiles
from RNA-seq data as true negatives. Since RiboTaper was designed
and benchmarked for detecting active translation at the exon level,
we split the existing methods for active translation detection into
two groups; those that support detection at the exon level and those
that only allow detection at the transcript level. We compared the
performance of ribotricer at both the exon and transcript levels.

3.1 Ribotricer accurately detects translating ORFs at the

exon level
We evaluated the performances of methods that support exon-level
detection of translation, including ORFscore (Bazzini et al., 2014),
RiboTaper (Calviello et al., 2016) and RiboCode (Xiao et al.,
2018), and compared their performance with that of ribotricer.

We first compared the ability of each method to distinguish
Ribo-seq profiles from RNA-seq using the area under the receiver
operating characteristic (ROC) and precision-recall (PR) curve. For
human HEK293 cells dataset (SRA accession: SRP063852)
(Calviello et al., 2016), ribotricer achieved an area under the ROC
(AUROC) of 0.97. The second best one was achieved by RiboCode
with an AUROC of 0.93. RiboTaper and ORFscore achieved an
AUROC of 0.88 and 0.87, respectively (Fig. 2A). For the mouse liver
tissue dataset (SRA accession: SRP078005) (Fradejas-Villar et al.,
2017), ribotricer achieved an AUROC of 0.99 while RiboCode,
RiboTaper and ORFscore achieved AUROC of 0.97, 0.92 and 0.92,
respectively (Fig. 2A). The difference between AUROC achieved by
ribotricer and the next best method is statistically significant
(P < 0.001, Supplementary Table S8). Ribotricer also outperformed
the other three methods consistently under the PR metric (Fig. 2A).

Ribotricer displayed the best performance on almost all the 10 data-
sets at both ROC and PR metrics (Supplementary Figs S10, S11, S32
and S33 and Table S8).

Next, we compared the performance of ribotricer, ORFscore,
RiboTaper and RiboCode by contrasting the number of true posi-
tives detected by each method while controlling the false positive
rate at 0.1. We calibrated the cutoffs for each method so that the
number of false positives reported by each method is 10% of the
number of negatives. For human HEK293 cell dataset (SRA acces-
sion: SRP063852), ribotricer recovered 39 517 truly translating
exons, while RiboCode recovered 33 665. RiboTaper, and
ORFscore recovered 28 333 and 26 486 translating exons, respect-
ively (Fig. 2B). For mouse liver tissue dataset (SRA accession:
SRP078005), ribotricer recovered 46 380 truly translating exons,
RiboCode recovered 43 332, while RiboTaper and ORFscore recov-
ered 35 746 and 36 120 translating exons, respectively (Fig. 2B). We
observed a similar performance for the other eight datasets where
ribotricer consistently recovered more truly translating exons com-
pared to the other three methods (Supplementary Fig. S12).

Short ORFs (<100 codons) (Basrai et al., 1997) are known to be
abundant in mammals, insects, fungi and plants (Frith et al., 2006;
Mat-Sharani and Firdaus-Raih, 2019). However, they are often
overlooked by proteomic approaches (Fälth et al., 2006). Ribo-seq
data provide us with an avenue to bridge this gap. However, the
length of shorter ORFs implies less total data on average for infer-
ence, making their detection particularly challenging. In order for
ribotricer to be capable of detecting both short and long ORFs, the
phase scores generated should be minimally dependent on the ORF
length. We investigated the effect of ORF length on the scores or the
P-values generated by each method. The phase score generated by
ribotricer is unaffected by the length of ORF while RiboCode,
RiboTaper and ORFscore generate a higher score or more signifi-
cant P-value as the ORF gets longer (Supplementary Fig. S13).
Ribotricer’s phase score remains stable even if the original ORF is
truncated to just 10% of its original length, whereas RiboCode and
ORFscore show large deviations (Supplementary Figs S24 and S25).
Moreover, the difference between ribotricer’s phase score of a pro-
file against a ‘downsampled’ profile with fewer codons is negligible
(Supplementary Figs S22 and S23) with as few as 20 codons (see
Section 4 and Supplementary Section 5).

Finally, we compared the performance of ribotricer with other
methods in terms of F1 score using the default cutoff for each
method (Supplementary Fig. S33 and Table S9). Since we learned
the cutoff for ribotricer from four real datasets, we summarized the
performance of ribotricer on the remaining six datasets that were
not used to learn the empirical cutoff (Supplementary Figs S14–
S17). Notably, for human HeLa cell dataset (SRA accession:
SRP029589) (Stumpf et al., 2013), all methods achieved relatively
low F1 score with the best one to be 0.67 achieved by ribotricer.
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We checked the angle distribution of the 3D to 2D projection
described earlier for this dataset (Supplementary Fig. S6), and found
that it displays high noise level compared to other datasets analyzed,
which indicates low data quality. Consequently, we excluded this
dataset from further analysis. For the other two human datasets,
ribotricer achieved an average F1 score of 0.91, and RiboCode
achieved an average F1 score of 0.84. RiboTaper and ORFscore
achieved an average F1 score of 0.73 and 0.12, respectively. For the
three mouse datasets, ribotricer achieved an average F1 score of
0.93, and RiboCode achieved an average F1 score of 0.90.
RiboTaper and ORFscore achieved an average F1 score of 0.85 and
0.55, respectively.

3.2 Ribotricer accurately detects translating ORFs at the

transcript level
ORF-RATER (Fields et al., 2015), RibORF (Ji et al., 2015), Rp-Bp
(Malone et al., 2017) and RiboWave (Xu et al., 2018) only detect
translating ORFs at the full transcript level. To evaluate ribotricer
against these methods we use a similar to the comparison strategy as
used for exon-level benchmarking. For transcript level comparison,
we first used the area under ROC/PR curves to assess the ability of
different methods to distinguish Ribo-seq profiles from those from
RNA-seq data. For human HEK293 cell dataset (SRA accession:
SRP063852), ribotricer correctly distinguished Ribo-seq profiles
from the simulated RNA-seq profiles with an AUROC of 1.0, while
both Rp-Bp and RibORF achieved an AUROC of 0.96. RiboWave
achieved an AUROC of 0.90 (Fig. 3A). For human HeLa cell dataset
(SRA accession: SRP098789) (Lintner et al., 2017), ribotricer again
perfectly distinguished Ribo-seq profiles from the simulated RNA-
seq ones with an AUROC of 1.0, and Rp-Bp achieved an AUROC
of 0.91. RibORF and RiboWave achieved an AUROC of 0.96 and
0.83, respectively (Fig. 3A). Ribotricer also consistently outper-
formed other methods under the PR metric (Fig. 3A). The complete
results for all human and mouse samples can be found in
Supplementary Figures S18 and S19. It is worth mentioning that
RibORF (Ji et al., 2015) uses a classification based method which
trains its model by selecting one-third of the CDS profiles as true
positives which might give it an extra advantage in this comparison.
Notably, here we excluded ORF-RATER from the comparison be-
cause it always reports around half the number of detected ORFs
compared with other methods, as noticed by Xiao et al. previously
(Xiao et al., 2018). The difference between ribotricer’s AUROC and
the second best method in 8 of the 10 human and mouse datasets is
statistically significant (Supplementary Table S8).

Next, we compared the performances of different methods by
checking the number of truly translating transcripts recovered when
controlling the false positive rate to be the same as 0.1. For the
human HEK293 cell dataset (SRA accession: SRP063852), ribotricer
recovered 577 truly translating transcripts, while Rp-Bp, RibORF
and RiboWave recovered 508, 542 and 459 translating transcripts,
respectively (Fig. 3B). For the human HeLa cell dataset (SRA acces-
sion: SRP098789), ribotricer recovered 2251 truly translating tran-
scripts, and Rp-Bp recovered 1730. RibORF and RiboWave
recovered 2130 and 1308 truly translating transcripts, respectively
(Fig. 3B and Supplementary Fig. S20).

Finally, we used the F1 score to assess the performance of ribo-
tricer in detecting actively translating transcripts in comparison with
other tools. For the two human samples, ribotricer achieved an aver-
age F1 score of 0.99, and Rp-Bp achieved an average F1 score of
0.89. RibORF and RiboWave achieved an average F1 score of 0.91
and 0.75, respectively. For the three mouse samples, ribotricer
achieved an average F1 score of 0.99, and Rp-Bp achieved an aver-
age F1 score of 0.87. RibORF and RiboWave achieved an average
F1 score of 0.97 and 0.69, respectively (Supplementary Fig. S21).

3.3 Ribotricer achieves high accuracy across species
We further tested the applicability of our method across different
species including Arabidopsis, C.elegans, Drosophila, rat, yeast and
zebrafish. Though the median scores of RNA-seq samples do not ex-
hibit high levels of variation in the same species, the corresponding

Ribo-seq samples appear to have highly varied phase scores
(Supplementary Figs S27–S30). Following our previous strategy of
learning cutoffs from two datasets, we learned the cutoffs for each
species separately. The species-specific cutoffs (Supplementary
Table S6) were then used to determine the translation status of
Ribo- and RNA-seq profiles.

Ribotricer consistently gives the best AUROC and F1 score for
all samples in Arabidopsis, yeast and zebrafish at the exon level
(Supplementary Figs S32 and S33 and Tables S8 and S9). Similarly,
for C.elegans, ribotricer’s F1 scores are the highest in all the four
datasets. In Drosophila, where the difference between Ribo-seq and
RNA-seq phase scores is low (Supplementary Figs S27–S30), ribo-
tricer consistently results in the best F1 scores (Supplementary Figs
S33 and S34 and Table S9).

In more challenging datasets, where the AUROC achieved by the
best method is not close to one, ribotricer is able to perform well at
both AUROC and F1 score metrics. Particularly, in Arabidopsis
dataset SRP087624 (Xu et al., 2017), ribotricer achieves an AURC
of 0.690 whereas the second best method, RiboTaper, achieves an
AUROC of 0.523 (Supplementary Fig. S32 and Table S8) with the
difference between them being statistically significant (P < 0.001). It
is worth noting that in Drosophila, three datasets have AUROC in
the range of 0.64–0.73, however ribotricer’s AUROC is not the best
amongst other methods (Supplementary Table S8). The failure of
ribotricer in this case can be attributed to the diminished difference
between Ribo-seq and RNA-seq phase scores in these samples
(Supplementary Figs S27–S30 and S34). However, ribotricer still
results in the highest F1 scores for all the datasets (Supplementary
Figs S33 and S34 and Table S9).

4 Discussion

Ribo-seq has enabled transcriptome-wide monitoring of translation
and has provided avenues for discovering tissue- or condition-
specific ORFs. It has expanded the spectrum of translation beyond
the annotated coding regions with the discovery of thousands of
ORFs that were presumed to be non-active. The presence of amplifi-
cation bias, non-ribosomal RNA-protein complexes or other con-
tamination can often result in fragments that do not represent active
translation. This has made the detection of actively translating
ORFs from Ribo-seq data a challenging problem. The correct inter-
pretation of Ribo-seq data requires that only actively translating
regions be considered for drawing any conclusion. It is particularly
important to do this separation for accurately identifying actively
translating short ORFs, since their short length increases the impact
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of noise. Multiple tools have been developed for detecting actively
translating ORFs using Ribo-seq data. However, little focus has
been placed on detection of short ORFs. Though the textbook defin-
ition of an ORF is a sequence having a multiplicity of three with its
ends marked with a start (AUG) and stop codon, a more appropriate
definition suggests that such a sequence just be bounded by stop
codons (Sieber et al., 2018). As such, Ribo-seq based tools for deter-
mining active translation benefit from the capacity to identify trans-
lation in all potentially translatable ORFs rather than just known
protein-coding regions. Moreover, the detection of true translating
ORFs can be used to filter out reads not associated with translation
events, which would benefit downstream read count based analysis,
such as differential translation efficiency modeling using methods,
such as Riborex (Li et al., 2017) and Xtail (Xiao et al., 2016).

Ribotricer assesses the periodicity of RPF profile by projecting
the 3D read count vector of each codon to a 2D unit vector. There
are several advantages of our method. First, by unit normalizing the
projected vector, ribotricer performs a trend correction, allowing for
non-uniform coverage across the profile. In particular, this avoids
the bias caused by codons with a high number of mapped reads.
Second, ribotricer checks the consistency of the pattern across the
three frames of each codon but does not assume the exact translating
frame which makes it unaffected by any P-site shift. Lastly, as we
have demonstrated, the scores generated by ribotricer are not de-
pendent on the length of the ORF.

A key challenge in detecting short ORFs lies in the limited length
of the signal. Fourier transform based methods, such as RiboTaper
are subject to the uncertainty principle (Donoho and Stark, 1989),
which decreases frequency resolution when the signal length is short.
Methods that utilize the absolute magnitudes of the count of the
profile vector will tend to have a higher error rate in short regions
due to the high variance associated with limited observations. Our
method, on the other hand, relies on using the qualitative informa-
tion at each codon in the form of ‘high-low-low’ pattern. This gives
it the highest resolution and protects it from bias that might arise
from codons with an over-abundance of reads. This explains ribo-
tricer’s higher accuracy even at shorter regions (CCDS exons) as
compared to other methods. Species-specific phase-score cutoffs re-
sult in good performance across all the datasets that we tested.
However, depending on the availability and quality of data, dataset-
specific cutoffs can also result in improved performance
(Supplementary Tables S10 and S11 and Figs S35–S39).

The strength of ribotricer is derived from its simplicity: we make
fewer assumptions about quantitative aspects of the data, and in the
face of technically heterogeneous data, this is a positive. However,
eventually technical characteristics of Ribo-seq data will converge.
When that happens, we expect that by directly modeling those tech-
nical characteristics, more intricate methods will be able to more ef-
fectively leverage quantitative aspects of RPF profiles. The phase
score specifically avoids modeling the distribution of absolute RPF
counts along transcripts. If technical characteristics of Ribo-seq data
stabilize in the near future, and can be modeled accurately, our ap-
proach can be adapted to weigh the contributions of codons based
on their total number of reads.

By default, ribotricer searches for ORFs that are at least 60 nt or
20 codons long to build the candidate list but this minimum length
can be set to a user-defined value. We arrived at the default value of
20 codons by performing a simulation using the Ribo-seq profiles of
genes with total codons >100 and with at least 50% non-empty
codons. In the simulation, we randomly sampled 10–100 codons
and generated a ‘downsampled’ profile. The mean absolute differ-
ence between the original phase score calculated using the full length
profile versus the ‘downsampled’ profile with 20 or more codons is
smaller than 0.05 and does not change after increasing the number
of codons (Supplementary Figs S22 and S23).

Ribotricer enables discovery of both short and long ORFs that
will deepen our understanding of translational regulation across
various biological contexts. We envision ribotricer’s phase score to
become a commonly used quality control metric for assessing the
quality of Ribo-seq datasets, especially for new datasets in species
where no prior datasets exist (Supplementary Figs S40–S42).
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1 Data description

To evaluate the performance of different methods in a comprehensive way, we selected multiple public
datasets from Arabidopsis, C. elegans, Drosophila, human, mouse, rat, yeast, and zebrafish. These datasets
span several tissues and cell lines. The treatment employed for inhibiting translation includes, flash freezing,
cycloheximide, streptomycin, emetine, tunicamycin, and blasticidin (Supplementary Table S1).

The five Arabidopsis datasets include one dataset from inflorescence (SRA accession: SRP108862,
unpublished), two datasets from leaf tissue (SRA accession: SRP087624 [50] and SRP059391 [29]). The
other two datasets include a whole seedling (SRA accession: SRP029587 [24]) and an etiolated seedling
(SRA accession: SRP018118 [28]).

In C. elegans, all the four datasets are from the n2 strain (SRA accession: SRP056647 [35], SRP026198
[45], SRP014427 [43], and SRP010374 [44]).

For Drosophila, we have four datasets spanning body wall muscle (SRA accession: SRP108999 [8]),
embryo (SRA accession: SRP028243 [12]), oocytes (SRP076919 [14]), and S2 cells (SRA accession:
SRP045475 ([3])).

The five human datasets include a prostate cancer cell line (PC3; SRA accession: SRP010679 [20]),
two samples from HeLa cells (SRA accession: SRP029589 [46] and SRP098789 [27]), one sample from
HEK293 (SRA accession: SRP063852 [7]), and one from H1933 cancer cell line (SRA accession: SRP102021
[42]).

The five mouse datasets include neutrophils cultured from mouse bone marrow (SRA accession: SRP003554
[17]), cultured hippocampal neurons (SRA accession: SRP062407 [9]) , two samples from liver tissue (SRA
accession: SRP078005 [15] and SRP115915 [30]), and embryonic stem cells (SRA accession: SRP091889
[47]).

For rat, we have three datasets including one in PC12 cell line (SRA accession: SRP056012 [1]) , one
in pheochromocytoma cells (SRA accession: SRP045777 [36]) and one from the BN/SHR strain (SRA
accession: ERP007231 [39]).

For yeast, there are five datasets spanning strains by4743 (SRA accession: SRP075766[6]), by4176
(SRA accession: SRP028614 [2]), by4741 (SRA accession: SRP033499 [18], and SRP000637 [21]) and
s288 (SRA accession: SRP028552 [32]).

In Zebrafish, all the three datasets from the tuab strain (SRA accession: SRP034750 [4], SRP010040
[5], and SRP023492 [25]).

∗equal contribution
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For additional benchmarking on completely independent datasets, we also used datasets from C. al-
bicans treated with blasticidin (SRA accession: SRP032814 [34]), one from S. pombe treated with tuni-
camycin (SRA accession: SRP107240 [19]) and one each from chimpanzee and macaque lymphoblastoid
cell lines involving flash freezing for inhibiting translation (SRA accession: SRP062129 [49]). To the best
of our knowledge the datasets we selected for C. albicans, chimpanzee and macaque are the only public
datasets available for these species.

2 Obtaining and pre-processing data

We downloaded the raw data (Supplementary Table S1) from NCBI’s Sequence Read Archive (SRA) using
pysradb [10]. We used cutadapt [31] to perform adapter trimming. The specific adapters for each
dataset are either obtained from the corresponding papers or were automatically inferred by checking for
over-represented k−mers at the 3’end. Sequences of the adapters for each dataset is documented in Supple-
mentary Table S2. All the Ribo-seq and RNA-seq data were mapped using STAR [11] by allowing at most
two mismatches (--outFilterMismatchNmax 2) and forcing end-to-end (--alignEndsType
EndToEnd) read alignment. Only uniquely mapping reads were retained (-outFilterMultimapNmax
1). For human and mouse, we relied on the GENCODE [16] GTF for annotation. For all other species except
C. albicans, we used ENSEMBL [38]. For C. albicans, both the FASTA and the GTF were obtained from
the Candida Genomes database [41]. The assembly and GTF information is summarized in Supplementary
Table S3. FASTA is handled using the pyfaidx package [40].

The strand-specific protocol, either forward stranded, reverse stranded or unstranded, is inferred by
checking the first 20, 000 reads from the mapping results. Since most tools we compared with can only deal
with forward stranded protocol, our ten datasets are all forward stranded for both RNA-seq and Ribo-seq
samples. BAM files are processed using pysam, a python interface to samtools [26].

To create fragment length specific metagene profile, we counted the number of 5’ end of reads at each
nucleotide per fragment length. Supplementary Figures S2 and S3 show the distribution of fragment lengths
for Ribo-seq and RNA-seq samples across different datasets in human and mouse, respectively. Metagene
plots for individual fragment lengths which were retained for downstream analysis for different datasets are
shown in Supplementary Figures S4 and S5.

The specific Ribo-seq and RNA-seq samples used from each dataset for the benchmarking along with
the read lengths and the corresponding P-site offsets used for the Ribo-seq samples can be found in Supple-
mentary Table S4.

AUROC, F1 scores, and p-values for AUROC difference were calculated using the pROC [37] package
in R. For calculating p-values, we used the bootstrap method and set alternative=‘greater’.

3 Learning species-specific cutoffs

Ribo-seq’s protocol was initially developed to profile the translational landscape in yeast [22], but it has
been widely used to profile the translational status of ORFs in multiple species [33, 48]. We benchmarked
ribotricer first using human and mouse datasets where we have access to CCDS annotated regions as a
high confidence ground truth for known protein coding status (Supplementary Figures S12-S21). In order
to further benchmark ribotricer against other methods, we used additional public Ribo-seq datasets from
Arabidopsis, C. elegans, Drosophila, rat, yeast, and zebrafish (Supplementary Table S1). Unlike human
and mouse, CCDS annotations are not available for these species. Hence, for such species, we considered
the Ribo-seq profile of annotated CDS regions as the true positive and the corresponding RNA-seq profile
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as the true negative. In order to establish if we needed to re-adjust our phase score cutoff for each species
separately, we summarized the phase scores for both Ribo-seq and RNA-seq samples from multiple public
datasets (Supplementary Figure S30). We observed that phase scores of both RNA-seq and Ribo-seq samples
vary across species (Supplementary Figures S27, S28, and S29) with higher variation arising from the Ribo-
seq samples. The variation in phase scores for RNA-seq samples in the same species is limited, though
it also exhibits a species related trend (Supplementary Figure S29). Ribo-seq samples on the other hand
exhibit higher intra-species and across-species heterogeneity. Hence, in order to capture this species-specific
differences in RNA-seq and Ribo-seq scores, we learned cutoffs for each species separately (Supplementary
Table S5 and S6; Supplementary Figure S31). It is worth noting that, human and mouse samples that
we previously used for our benchmark exhibit similar variation in RNA-seq and Ribo-seq phase scores
besides having higher Ribo-seq phase scores as compared to all other species. On the other hand, the
difference between Ribo- and RNA-seq phase scores appears to be particularly low in Drosophila datasets
(Supplementary Figure S29).

4 Learning dataset-specific cutoffs

In studies where both Ribo-seq and RNA-seq experiment are available, it is possible to fine-tune the phase-
score cutoff to be dataset-specific. The Ribo-seq and RNA-seq samples within the same species can show
variation in terms of their phase score (Supplementary Figure S29) and hence, it is possible that learning
dataset-specific cutoffs leads to an overall better performance (Supplementary Figures S35-S39). To learn
the dataset-specific cutoffs, we calculated the median difference between phase scores of Ribo-seq and
RNA-seq profiles for each dataset over only protein-coding regions. Using a sampling strategy where a one-
third fraction of protein-coding profiles were used to determine the median difference between Ribo-seq
and RNA-seq profiles with replacement (nbootstraps = 10000) [13], the dataset-specific cutoff was assigned
to be the median of these differences. It is worth mentioning that this approach is only viable for studies
where both Ribo-seq and RNA-seq samples are available. The dataset-specific cutoffs result in ribotricer
achieving higher F1 scores in some but not all datasets (Supplementary Tables S9-S11; Supplementary
Figures S35-S39). In all our datasets, a median difference of 0.25 or more between Ribo-seq and RNA-
seq protein-coding profiles results in an F1 score greater than 0.73 (Supplementary Figure S38). Given a
set of Ribo-seq and RNA-seq mapped files (BAM), the dataset-specific cutoffs can be determined by using
ribotricer learn-cutoff (Section 8.5).

5 Ribotricer’s phase score remains stable on truncated ORFs

In order to test the ability of ribotricer to correctly predict the translation status of an ORF whose length
has been shortened due to truncation we performed a simulation where for all candidate ORFs which have
atleast 50% of non-empty codons, i.e. codons with non-zero reads, we truncated it from 3’ end such that
the truncated length was 10 − 100% of the original length. For each such truncated ORF, we calculated
ribotricer’s phase score and compared it with the corresponding RiboCode generated p-value. It is worth
mentioning, that among the tools of capable of performing exon level classification, we were able to bench-
mark ribotricer against only RiboCode and ORFscore as RiboTaper requires bam files of both RNA-seq and
Ribo-seq samples.

Ribotricer’s score for the truncated ORF is negligibly different from the original ORF with a maximum
difference of ±0.05 (Supplementary Figure S24 and S25) as demonstrated using a human (SRA accession:
SRP063852) and a mouse dataset (SRA accession: SRP003554). On the other hand, the RiboCode generated
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p-values show a clear dependence on the ORF length with the deviation from original score being as high as
± 100. It is worth mentioning that the differences between truncated and original profile for RiboCode are
calculated on a log10 scale as it outputs p-values, while for both ribotricer and ORFscore, the differences are
calculated on the same scale as the scores.

6 Ribotricer can detect ORFs as short as 20 codons

In order to determine the minimum length of ORF that can be detected by ribotricer we performed a simula-
tion using the Ribo-seq profiles of genes with total codons > 100 and with at least 50% non-empty codons.
We then randomly sampled 10 − 100 codons, without maintaining their order explicitly, and generated a
“downsampled” profile. The mean absolute difference between the original phase score calculated using the
full length profile versus the “downsampled” profile with 20 or more codons is smaller than 0.05 and does
not change after increasing the number of codons (Supplementary Figures S22 and S23).

7 Running ribotricer on a new species

We provide a list of recommended phase score cutoffs (Supplementary Table S6) for most species where
there are at least three or more public Ribo-seq datasets (Supplementary Table S1). The cutoffs for each
species were learned empirically by using Ribo-seq and RNA-seq samples from two datasets and maximiz-
ing the F1 score by treating the Ribo-seq profiles of CCDS/CDS regions as ground true positive and the
corresponding RNA-seq profiles as true negatives (Supplementary Figure S31; Supplementary Table S5).
However, this approach is only best suited for species where there are multiple datasets available. For a new
species where there are only few or none datasets available and hence the cutoff cannot be learned empiri-
cally, we recommend using the median score difference between the profiles of annotated CDS regions of a
Ribo-seq and the corresponding RNA-seq sample. This strategy is also used by RibORF [23] which tunes
the parameters of its model by selecting one-third of the CDS profiles as true positives. We followed this
strategy of using the median phase score difference as the phase score cutoff for each of the four species: C.
albicans, chimpanzee, macaque and S. pombe. Except for S. pombe, all other species have only one public
dataset available to the best of our knowledge (Supplementary Table S1).

We first generated candidate ORF list for each species using ribotricer over transcripts with annotated
CDS regions. Phase scores were then calculated for each RNA-seq and Ribo-seq sample over these CDS
annotated candidate ORFs (Supplementary Figure S42). The median differences in Ribo-seq and RNA-seq
phase scores for C. albicans, chimpanzee, macaque and S. pombe is summarized at the end of Supplementary
Table S7. We used these differences as species-specific cutoffs for benchmarking ribotricer against other
methods.

Ribotricer results in the best AUROC for all the four species with the difference between ribotricer and
the second best method statistically significant in all the cases (Supplementary Figure S40; Supplementary
Table S8). It is worth mentioning that the AUROC metric is not dependent on the choice of the learned
cutoff. Furthermore, ribotricer is also the best method using the F1 score metric (Supplementary Figure
S41; Supplementary Table S9).

We recommend using the species-specific cutoffs for all the species as listed in Supplementary Table
S6. For any new species, we recommend using median phase score differences on ribotricer generated
candidate ORFs over CDS annotated transcripts between Ribo-seq and RNA-seq samples (Supplementary
Figure S42). This can be determined by ribotricer itself, using the learn-cutoff subcommand.
(See Section 8.5).
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8 Using ribotricer

In order to use ribotricer, the following three files are required:

• GTF: genome annotation file in GTF format (ENSEMBL/Gencode/others)

• FASTA: reference genome file in FASTA format

• BAM: alignment file in BAM format

Henceforth, we use the boldface acronyms above to refer to these files as such.

8.1 Preparing candidate ORFs list

ribotricer prepares a candidate list of ORFs given a GTF and FASTA file. For any species, given a reference
and a fixed version of GTF, this step only needs to be done once. Ribotricer by default searches for ORFs
defined by an ‘AUG’ start and an in-frame stop codon (‘UAG’, ‘UAA’, and ‘UGA’) and are a minimum of
60 nucleotides long. It is possible to expand the definition of ORF by supplying a list of all start codons
using the --start codons parameter. It is also possible to change the minimum length of an ORF by
using the --min orf length option. If multiple potential in-frame start codons exist upstream of a stop
codon, we always choose AUG if it exists, otherwise, we take the most upstream one as the start codon.

ribotricer prepare-orfs --gtf {GTF} \
--fasta {FASTA} \
--prefix {RIBOTRICER_INDEX}

The command above will create a list of candidate ORFs at the RIBOTRICER INDEX location.
For this study, we used a total of ten codons with a maximum of one nucleotide difference from “ATG” as

potential start codons including ATA, ATC, ATT, AAG, ACG, AGG, ATG, CTG, GTG, TTG. Note that we
use ’T’ as a nucleotide here instead of ‘U’ as the reference FASTA almost always contains DNA sequences.

8.2 Detecting actively translating ORFs using ribotricer

Ribotricer’s ORF list as created above can then be used along with the BAM to define the translation status
of these ORFs:

ribotricer detect-orfs --bam {BAM} \
--ribotricer_index {RIBOTRICER_INDEX}_candidate_ORFs.tsv \
--prefix {OUT_PREFIX}

For each ORF in the candidate ORFs list, ribotricer calculates the phase score on the read profiles after
performing read length appropriate offset shifts. These offsets are determined by maximizing the cross-
correlation of these profiles with the profile for the most abundant read length. Additionally, ribotricer
automatically infers the sequencing protocol (forward/reverse) and only uses unique mapping reads that
conform to the strand orientation in the GTF. For example, a read uniquely mapping to a gene defined on
the negative strand for a forward stranded protocol, will be discarded.

In order to assign ‘non-translating’ or ‘translating’ status, ribotricer, by default, uses a cutoff threshold
of 0.428. ORFs with phase score above 0.428 are marked as translating as long as they have at least five
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codons with non-zero read count. Ribotricer does not take coverage into account for predicting an ORF to
be translating or not-translating. Apart from these two criteria, there is no other requirement for an ORF to
be active. Though, a region with higher overall coverage as defined by number of reads per unit codon might
be a more confident ‘hit’ for active translation, our method is designed to find evidence of active translation
based on the qualitative pattern of “high-low-low” and hence our rankings are purely based on phase scores.

The default cutoff (0.428) was learned using public human and mouse Ribo-seq datasets, where the gap
between Ribo- and RNA-seq phase scores is the highest amongst other species (Supplementary Table S7)
and hence, it is a conservative cutoff for detecting active translation. We provide a list of species-specific
recommended cutoffs (Supplementary Table S6), optimized for F1 score based performance.

The main output of the above command is a tab separated file consisting for each candidate ORF, its
translation status, the corresponding transcript and gene and the ORF type. Different ORF types defined by
ribotricer are described below:

• annotated: CDS annotated in the provided GTF file

• super uORF: upstream ORF of the annotated CDS, not overlapping with any CDS of the same gene

• super dORF: downstream ORF of the annotated CDS, not overlapping with any CDS of the same
gene

• uORF: upstream ORF of the annotated CDS, not overlapping with the main CDS

• dORF: downstream ORF of the annotated CDS, not overlapping with the main CDS

• overlap uORF: upstream ORF of the annotated CDS, overlapping with the main CDS

• overlap dORF: downstream ORF of the annotated CDS, overlapping with the main CDS

• novel: ORF in non-coding genes or in non-coding transcripts of coding genes

8.3 Filtering actively translating ORFs using multiple criteria

In order to assign ‘non-translating’ or ‘translating’ status, ribotricer by default uses a cutoff threshold of
‘0.428’. ORFs with phase score above ‘0.428’ are marked as translating as long as they have at least
five codons with non-zero read count. By default, ribotricer does not take coverage or count information
explicitly into account for predicting an ORF to be translating or not-translating. However, this behavior
can be changed by following filters:

• --min valid codons (default=5): Minimum number of codons with non-zero reads for deter-
mining active translation

• --min valid codons ratio (default=0): Minimum ratio of codons with non-zero reads to total
codons for determining active translation

• --min reads per codon (default=0): Minimum number of reads per codon for determining ac-
tive translation

• --min read density (default=0.0): Minimum read density (total reads/length) over an ORF total
codons for determining active translation
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For each of the above filters, an ORF failing any of the filters is marked as ‘non-translating’.
For example, to ensure that each ORF has at least 3/4 of its codons non-empty, we can specify

--min valid codons ratio to be 0.75:

ribotricer detect-orfs --bam {BAM} \
--ribotricer_index {RIBOTRICER_INDEX}_candidate_ORFs.tsv \
--prefix {OUTPUT_PREFIX}
--min_valid_codons_ratio 0.75

It might also often be desired to have some minimum density of reads over an ORF. The read density
here is defined as the ratio of total number of reads over an ORF to its length. For example to ensure that
each ‘translating’ ORF has at least a read density of 10, we will specify --min read density to be 10.

ribotricer detect-orfs --bam {BAM} \
--ribotricer_index {RIBOTRICER_INDEX}_candidate_ORFs.tsv \
--prefix {OUTPUT_PREFIX}
--min_read_density 10.0

The above filters can be combined to give ORFs that have high read density as well as have have reads
present over most of the codons in the profile. Note that increasing the value of any of the four filters will
usually result in a smaller list of ORFs marked ‘translating’.

8.4 Downstream ranking and filtering

It is also possible to filter actively-translating ORFs after running ribotricer. Ribotricer produces a tab
separated file with columns that include read-density, number and ratio of valid codons to total codons in
the ORF besides the phase score. As such, filtering can be performed downstream using awk or any other
programming language. Here we provide an example of filtering and sorting the output of a ribotricer run
using Python using the pandas library:

Listing 1: Filtering ORFs using python. The function returns a filtered list of translating ORFs which have
a read density of at least 2.5; a total read count of atleast 50; and the ratio of non-empty codons to total
codons atleast 0.75.

import pandas as pd
def f i l t e r e d d f ( d f ) :

d f f i l t e r e d = df . l o c [ d f . s t a t u s == ’ t r a n s l a t i n g ’ ]
d f f i l t e r e d = df . l o c [ ( d f [ ’ r e a d d e n s i t y ’ ]>=2.5) & \

( d f [ ’ r e a d c o u n t ’ ]>=50) & \
( d f [ ’ v a l i d c o d o n s r a t i o ’ ] >=0 .75) ]

d f s o r t e d = d f f i l t e r e d . s o r t v a l u e s ( by =[ ’ p h a s e s c o r e ’ ,
’ r e a d d e n s i t y ’ ] ,

a s c e n d i n g =[ F a l s e ,
F a l s e ] )

re turn d f s o r t e d
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# read r i b o t r i c e r o u t p u t
r i b o t r i c e r o u t p u t d f = pd . r e a d c s v ( ’ / p a t h / t o / t r a n s l a t i n g O R F s . t s v ’ , sep = ’\ t ’ )
# f i l t e r and s o r t r i b o t r i c e r o u t p u t
r i b o t r i c e r f i l t e r e d d f = f i l t e r e d d f ( r i b o t r i c e r o u t p u t d f )

8.5 Learning cutoff empirically from data

Ribotricer can learn cutoff empirically from the data. Given at least one Ribo-seq and one RNA-seq
BAM file, ribotricer learns the cutoff by running one iteration of the algorithm on the provided files with
a pre-specified cutoff (--phase score cutoff, default: 0.428) and then uses the generated output
to find the median difference between Ribo-seq and RNA-seq phase scores of only candidate ORFs with
transcript type annotated as protein coding:

ribotricer learn-cutoff --ribo_bams ribo_bam1.bam,ribo_bam2.bam \
--rna_bams rna_1.bam \
--prefix ribo_rna_prefix \
--ribotricer_index {RIBOTRICER_ANNOTATION}
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9 Supplementary tables

Table S1: List of datasets.

SRA Accession Species Cell type Treatment Citation
SRP010679 Human PC3 100 µg/ml cycloheximide [20]
SRP029589 Human HeLa cycloheximide [46]
SRP063852 Human HEK293 100 µg/ml cycloheximide [7]
SRP098789 Human HeLa 100 µg/ml cycloheximide [27]
SRP102021 Human H1933 100 µg/ml cycloheximide [42]
SRP003554 Mouse neutrophils cultured from bone marrow 100 µg/ml cycloheximide [17]
SRP062407 Mouse hippocampal neurons 100 µg/ml cycloheximide [9]
SRP078005 Mouse liver 200 µg/ml cycloheximide [15]
SRP091889 Mouse ESC cycloheximide [47]
SRP115915 Mouse liver 200 µg/ml cycloheximide [30]
SRP108862 Arabidopsis inflorescences unavailable unpublished
SRP087624 Arabidopsis leaf tissue 50 µg/ml cycloheximide [50]
SRP029587 Arabidopsis whole seedlings 50 µg/ml cycloheximide [24]
SRP059391 Arabidopsis leaf tissue 100 µg/ml cycloheximide [29]
SRP018118 Arabidopsis etiolated seedling 100 µg/ml cycloheximide [28]
SRP075766 Baker’s Yeast strain by4743 100 µg/ml cycloheximide [6]
SRP033499 Baker’s Yeast strain: by4741 0.1 mg/ml cycloheximide [18]
SRP028614 Baker’s Yeast strain: by4176 cycloheximide [2]
SRP028552 Baker’s Yeast strain: s288 cycloheximide [32]
SRP000637 Baker’s Yeast strain: by4741 100 µg/ml cycloheximide [21]
SRP056647 C. elegans strain: n2 100 µg/ml cycloheximide [35]
SRP026198 C. elegans strain: n2 100 µg/ml cycloheximide [45]
SRP014427 C. elegans strain: n2 cycloheximide [43]
SRP010374 C. elegans strain: n2 cycloheximide [44]
SRP108999 Drosophila body wall muscle 100 µg/ml cycloheximide [8]
SRP028243 Drosophila embryo 20 µg/ml emetine [12]
SRP076919 Drosophila oocytes 100 µg/ml cycloheximide [14]
SRP045475 Drosophila S2 cell 100 µg/ml cycloheximide [3]
SRP056012 Rat PC12 Cells 100 µg/ml streptomycin [1]
SRP045777 Rat Pheochromocytoma cells streptomycin [36]
ERP007231 Rat strain: bn/shr 0.1 mg/ml cycloheximide [39]
SRP034750 Zebrafish strain: tuab 100 µg/ml cycloheximide [4]
SRP010040 Zebrafish strain: tuab 100 µg/ml cycloheximide [5]
SRP023492 Zebrafish strain: tuab 50 µg/ml cycloheximide [25]
SRP032814 C. albicans strain: sc5314 10 µg/mL Blasticidin S [34]
SRP107240 S. pombe strain: WT 0.15 µg/ml tunicamycin [19]
SRP062129 Chimpanzee Lymphoblastoid cell line flash freezing [49]
SRP062129 Macaque Lymphoblastoid cell line flash freezing [49]

15



Table S2: Adapters trimmed from Ribo-seq and RNA-seq samples for each dataset.

SRA Accession Ribo-seq adapter RNA-seq adapter
SRP010679 CTGTAGGCAC CTGTAGGCAC
SRP029589 CTGTAGGCACCATCAAT CTGTAGGCACCATCAAT
SRP063852 None None
SRP098789 CTGTAGGCACCATCAAT CTGTAGGCACCATCAAT
SRP102021 TCGTATGCCGTCTTCTGCTTG None
SRP003554 TCGTATG TCGTATG
SRP062407 TGGAATTCTCGGGTGCCAAGG TGGAATTCTCGGGTGCCAAGG
SRP078005 TGGAATTCTCGGGTGCCAAGG TGGAATTCTCGGGTGCCAAGG
SRP091889 AGATCGGAAGAGCACACGTCT AGATCGGAAGAGCACACGTCT
SRP115915 TGGAATTCTCGGGTGCCAAGG TGGAATTCTCGGGTGCCAAGG
SRP108862 TGGAATTCTCGG AGATCGGAAGAGC
SRP087624 AGATCGGAAGAGC AGATCGGAAGAGC
SRP029587 TCGTATGCCGTCTTCTGCTTG TGGAATTCTCGGGTGCCAAGGAACTCCAGTCAC

SRP059391 TGGAATTCTCGG TGGAATTCTCGG
SRP018118 TGGAATTCTCGG TGGAATTCTCGG
SRP075766 AGATCGGAAGAGC AGATCGGAAGAGC
SRP033499 AGATCGGAAGAGC AGATCGGAAGAGC
SRP028614 AAAAAAAAAAA AGATCGGAAGAGC AAAAAAAAAAA AGATCGGAAGAGC
SRP028552 AGATCGGAAGAGC AGATCGGAAGAGC
SRP000637 AAAAAAAA AGATCGGAAGAGC AAAAAAAA AGATCGGAAGAGC
SRP056647 AGATCGGAAGAGC AGATCGGAAGAGC
SRP026198 AGATCGGAAGAGC AGATCGGAAGAGC
SRP014427 AGATCGGAAGAGC AGATCGGAAGAGC
SRP010374 AAAAAAA AGATCGGAAGAGC AGATCGGAAGAGC
SRP108999 AGATCGGAAGAGC AGATCGGAAGAGC
SRP028243 CTGTAGGCACCATCAAT AGATCGGAAGAGC
SRP076919 AGATCGGAAGAGC TGGAATTCTCGG
SRP045475 AGATCGGAAGAGC AGATCGGAAGAGC
SRP056012 AGATCGGAAGAGC AGATCGGAAGAGC
SRP045777 AGATCGGAAGAGC AGATCGGAAGAGC
ERP007231 AGATCGGAAGAGC AGATCGGAAGAGC
SRP034750 AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCACACGTCTGAACTCCAGTCA

SRP010040 ATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAA ATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAA

SRP023492 AGATCGGAAGAGC AGATCGGAAGAGC
SRP032814 AGATCGGAAGAGC AGATCGGAAGAGC
SRP107240 AGATCGGAAGAGC AGATCGGAAGAGC
SRP062129 TGGAATTCTCGG AGATCGGAAGAGC
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Table S3: Reference assemblies and GTF for each species

Species Reference assembly GTF
Human GRCh38 Gencode (v94)
Mouse GRCm38 Gencode (v94)
Arabidopsis TAIR10 ENSEMBL (v96)
C.elegans WBcel235 ENSEMBL (v96)
Drosophila BDGP6 ENSEMBL (v96)
Rat Rnor6.0 ENSEMBL (v96)
Zebrafish GRCz11 ENSEMBL (v96)
C. albicans SC5314 Candida Genomes Database (r27)
S. pombe ASM294v2 ENSEMBL (v96)
Chimpanzee Pantro3 ENSEMBL (v96)
Macaque Mmul8 ENSEMBL (v96)

17



Table S4: Ribo- and RNA-seq samples used for the benchmarking along with the read lengths and P-site
offsets used for Ribo-seq samples.

SRA Accession Ribo-seq sample Read lengths (nt) P-site offsets (nt) RNA-seq sample Species
SRP010679 SRX118286 28,29,30 12,13,13 SRX118285 Human
SRP029589 SRX345309 29,30,32 12,12,13 SRX345311 Human
SRP063852 SRX1254413 28,29,30 12,12,12 SRX426378 Human
SRP098789 SRX2536421 28,30 12,13 SRX2536426 Human
SRP102021 SRX2647167 28,29,30,31 12,12,12,12 SRX2647164 Human
SRP003554 SRX026871 28,29,30 12,12,12 SRX026872 Mouse
SRP062407 SRX1149649 28,29,30,31 12,12,12,12 SRX1149668 Mouse
SRP078005 SRX1900396 26,27,28,29,30 12,12,12,12,12 SRX1900402 Mouse
SRP091889 SRX2255510 26,27,28,29,30 12,12,12,12,12 SRX2255511 Mouse
SRP115915 SRX3110803 29,30,31,32,33,34 12,12,12,13,13,13 SRX3110807 Mouse
SRP108862 SRX2896566 23 12 SRX2896570 Arabidopsis
SRP087624 SRX2148419 28,29,30,31,32 12,12,12,12,12 SRX2148418 Arabidopsis
SRP029587 SRX345240 26,27 12,12 SRX345251 Arabidopsis
SRP059391 SRX1056790 27,30 12,12 SRX1056791 Arabidopsis
SRP018118 SRX219170 28,29,30,31 11,12,13,13 SRX347226 Arabidopsis
SRP075766 SRX1801603 26,27,28 11,12,13 SRX1801650 Baker’s Yeast
SRP033499 SRX386988 29,30,31 12,12,12 SRX386983 Baker’s Yeast
SRP028614 SRX333052 28,29,30 12,13,13 SRX334053 Baker’s Yeast
SRP028552 SRX332185 28,29,30 11,12,12 SRX332188 Baker’s Yeast
SRP000637 SRX003187 28,29,30,31 12,12,12,12 SRX003191 Baker’s Yeast
SRP056647 SRX971770 28,29,30,31,32 12,12,12,12,12 SRX971774 C. elegans
SRP026198 SRX311784 29,30,31,32 12,12,12,12 SRX311777 C. elegans
SRP014427 SRX160518 28,29,30,31,32 12,12,12,12,12 SRX160149 C. elegans
SRP010374 SRX118118 28,29,30,31,32 12,12,12,12,12 SRX118116 C. elegans
SRP108999 SRX2902857 29,30,31,32 12,13,10,12 SRX2902867 Drosophila
SRP028243 SRX327686 28,29,30,32,33,34 12,12,12,12,12,13 SRX327688 Drosophila
SRP076919 SRX1870218 34 12 SRX1870191 Drosophila
SRP045475 SRX679371 28,29,30,31,32 12,12,12,12,12 SRX679372 Drosophila
SRP056012 SRX915217 29,30,31,32 12,12,13,13 SRX915210 Rat
SRP045777 SRX686499 28,29,30,31 12,12,12,13 SRX686500 Rat
ERP007231 ERX609893 28,29,30,31,32 12,12,12,12,12 ERX609898 Rat
SRP034750 SRX399800 28,29,30,31 12,12,12,12 SRX399817 Zebrafish
SRP010040 SRX113357 27,28,30,31,33,34 12,12,12,12,12,12 SRX113344 Zebrafish
SRP023492 SRX288475 28,29,30 12,12,12 SRX288474 Zebrafish
SRP032814 SRX375317 28,29,30 12,12,12 SRX375318 C. albicans
SRP107240 SRX2825796 28,29,30 12,13,13 SRX2825805 S. pombe
SRP062129 SRX1135820 28,29,30 12,12,12 SRX333018 (SRP028612) Chimpanzee
SRP062129 SRX1135825 28,29,30 12,12,12 SRX333023 (SRP028612) Macaque

18



Table S5: Datasets used to learn ribotricer phase score cutoffs.

SRA Accession Species Used to learn cutoff
SRP010679 Human Yes
SRP029589 Human No
SRP063852 Human No
SRP098789 Human Yes
SRP102021 Human No
SRP003554 Mouse Yes
SRP062407 Mouse No
SRP078005 Mouse No
SRP091889 Mouse No
SRP115915 Mouse Yes
SRP108862 Arabidopsis No
SRP087624 Arabidopsis No
SRP029587 Arabidopsis No
SRP059391 Arabidopsis Yes
SRP018118 Arabidopsis Yes
SRP075766 Baker’s Yeast Yes
SRP033499 Baker’s Yeast No
SRP028614 Baker’s Yeast No
SRP028552 Baker’s Yeast Yes
SRP000637 Baker’s Yeast No
SRP056647 C. elegans No
SRP026198 C. elegans Yes
SRP014427 C. elegans No
SRP010374 C. elegans Yes
SRP108999 Drosophila Yes
SRP028243 Drosophila Yes
SRP076919 Drosophila No
SRP045475 Drosophila No
SRP056012 Rat Yes
SRP045777 Rat No
ERP007231 Rat Yes
SRP034750 Zebrafish Yes
SRP010040 Zebrafish Yes
SRP023492 Zebrafish No
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Table S6: Species specific recommended phase score cutoffs for ribotricer. A “#” indicates the cutoff for
the species is taken to be the median phase score difference between CDS annotated Ribo-seq and RNA-seq
profiles since they only had one dataset each.

Species Cutoff
Arabidopsis 0.330
Baker’s Yeast 0.318
C. elegans 0.249
Drosophila 0.181
Human 0.440
Mouse 0.418
Rat 0.453
Zebrafish 0.249
C. albicans# 0.228
S. pombe# 0.409
Chimpanzee# 0.334
Macaque# 0.321

Table S7: Species wise mean, median and standard deviation of difference of Ribo-seq and RNA-seq phase
scores. SD = Standard Deviation. A “#” indicates that the median phase score difference for these species
is also considered as cutoff for ribotricer, since they only had one dataset each.

species number of samples mean difference phase score median difference phase score SD
Arabidopsis 5 0.308 0.365 0.252
Baker’s Yeast 5 0.309 0.287 0.225
C.elegans 4 0.232 0.273 0.235
Drosophila 4 0.048 0.054 0.221
Human 5 0.385 0.428 0.240
Mouse 5 0.468 0.528 0.230
Rat 3 0.260 0.303 0.253
Zebrafish 3 0.325 0.388 0.309
C. albicans# 1 0.228 0.225 0.151
S. pombe# 1 0.380 0.409 0.176
Chimpanzee# 1 0.328 0.334 0.233
Macaque# 1 0.285 0.321 0.218
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Table S8: Best and second to best performing methods at AUROC metric for each dataset. The p-values
were calculated using pROC [37] package using bootstrap method and alternative=‘greater’. AU-
ROC (B) and AUROC (SB) denotes area under ROC for the best and the second to best methods respectively.
A ∗ indicates the dataset was later used to learn the ribotricer cutoffs by maximizing the F1 score. The AU-
ROC values however do not depend on any cutoff.

SRP Species Best (B) Second Best (SB) AUROC (B) AUROC (SB) p-value
SRP018118∗ Arabidopsis ribotricer RiboCode 0.982 0.923 < 2.2× 10−16

SRP029587 Arabidopsis ribotricer RiboCode 0.897 0.594 < 2.2× 10−16

SRP059391∗ Arabidopsis ribotricer ORFscore 0.690 0.632 < 2.2× 10−16

SRP087624 Arabidopsis ribotricer RiboTaper 0.697 0.523 < 2.2× 10−16

SRP108862 Arabidopsis ribotricer RiboCode 0.732 0.607 < 2.2× 10−16

SRP000637 Baker’s Yeast ribotricer RiboCode 0.921 0.837 < 2.2× 10−16

SRP028552∗ Baker’s Yeast ribotricer RiboCode 0.986 0.951 < 2.2× 10−16

SRP028614 Baker’s Yeast ribotricer RiboCode 0.966 0.846 < 2.2× 10−16

SRP033499 Baker’s Yeast ribotricer RiboCode 0.947 0.783 < 2.2× 10−16

SRP075766∗ Baker’s Yeast ribotricer RiboCode 0.996 0.962 < 2.2× 10−16

SRP010374∗ C. elegans ribotricer RiboCode 0.867 0.776 < 2.2× 10−16

SRP014427 C. elegans ORFscore ribotricer 0.927 0.920 3.774× 10−14

SRP026198∗ C. elegans ORFscore ribotricer 0.956 0.908 < 2.2× 10−16

SRP056647 C. elegans RiboCode RiboTaper 0.745 0.745 0.247
SRP028243∗ Drosophila ribotricer RiboCode 0.725 0.587 < 2.2× 10−16

SRP045475 Drosophila ORFscore RiboTaper 0.633 0.522 < 2.2× 10−16

SRP076919 Drosophila ORFscore ribotricer 0.638 0.465 0.317
SRP108999∗ Drosophila ribotricer RiboTaper 0.884 0.727 0.068
SRP010679∗ Human ribotricer RiboCode 0.944 0.849 < 2.2× 10−16

SRP029589 Human ribotricer RiboCode 0.846 0.701 < 2.2× 10−16

SRP063852 Human ribotricer RiboCode 0.969 0.930 < 2.2× 10−16

SRP098789∗ Human ribotricer RiboCode 0.975 0.908 < 2.2× 10−16

SRP102021 Human ribotricer RiboCode 0.961 0.927 < 2.2× 10−16

SRP003554∗ Mouse RiboCode ribotricer 0.974 0.972 2.045× 10−6

SRP062407 Mouse RiboCode ORFscore 0.986 0.981 < 2.2× 10−16

SRP078005 Mouse ribotricer RiboCode 0.989 0.968 < 2.2× 10−16

SRP091889 Mouse ribotricer RiboCode 0.981 0.966 < 2.2× 10−16

SRP115915∗ Mouse ribotricer RiboCode 0.926 0.923 1.095× 10−11

ERP007231∗ Rat RiboTaper RiboCode 0.955 0.953 3.321× 10−9

SRP045777 Rat ribotricer RiboCode 0.793 0.746 < 2.2× 10−16

SRP056012∗ Rat ORFscore RiboCode 0.971 0.872 < 2.2× 10−16

SRP010040∗ Zebrafish ribotricer ORFscore 0.658 0.562 < 2.2× 10−16

SRP023492 Zebrafish ribotricer ORFscore 0.970 0.958 < 2.2× 10−16

SRP034750∗ Zebrafish ribotricer RiboCode 0.995 0.977 < 2.2× 10−16

SRP032814 C. albicans ribotricer RiboCode 0.953 0.842 < 2.2× 10−16

SRP062129 Chimp ribotricer ORFscore 0.918 0.883 < 2.2× 10−16

SRP107240 S. pombe ribotricer RiboCode 0.972 0.939 < 2.2× 10−16

SRP062129 Macaque ribotricer ORFscore 0.904 0.854 < 2.2× 10−16
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Table S9: Best and second to best performing methods at F1 score metric for each dataset using
dataset-specific cutoff. F1 (B) and F1 (SB) denotes the F1 scores for the best and the second to best
methods respectively. An asterisk (∗) indicates that the dataset was used to learn the cutoffs by maximizing
the F1 score. A # indicates the ribotricer phase score cutoff for the dataset is taken to be the median phase
score difference between CDS annotated Ribo-seq and RNA-seq profiles.

SRP Species Best (B) Second Best (SB) F1 (B) F1 (SB)
SRP018118∗ Arabidopsis ribotricer RiboCode 0.937 0.848
SRP029587 Arabidopsis ribotricer RiboCode 0.645 0.176
SRP059391∗ Arabidopsis ribotricer RiboCode 0.562 0.361
SRP087624 Arabidopsis ribotricer ORFscore 0.675 0.338
SRP108862 Arabidopsis ribotricer RiboCode 0.628 0.333
SRP000637 Baker’s Yeast RiboCode ribotricer 0.680 0.503
SRP028552∗ Baker’s Yeast ribotricer RiboCode 0.964 0.859
SRP028614 Baker’s Yeast ribotricer RiboCode 0.855 0.738
SRP033499 Baker’s Yeast RiboCode RiboTaper 0.747 0.705
SRP075766∗ Baker’s Yeast ribotricer RiboTaper 0.951 0.877
SRP010374 C. elegans ribotricer RiboCode 0.799 0.517
SRP014427 C. elegans ribotricer RiboCode 0.826 0.776
SRP026198∗ C. elegans ribotricer RiboCode 0.828 0.636
SRP056647 C. elegans ribotricer RiboCode 0.690 0.634
SRP028243∗ Drosophila ribotricer RiboCode 0.693 0.562
SRP045475 Drosophila ribotricer RiboCode 0.561 0.391
SRP076919 Drosophila ribotricer RiboCode 0.667 0.125
SRP108999∗ Drosophila ribotricer RiboCode 0.769 0.400
SRP010679∗ Human ribotricer RiboCode 0.877 0.773
SRP029589 Human ribotricer RiboCode 0.651 0.599
SRP063852 Human ribotricer RiboCode 0.919 0.854
SRP098789∗ Human ribotricer RiboCode 0.932 0.824
SRP102021 Human ribotricer RiboCode 0.890 0.835
SRP003554∗ Mouse RiboTaper ribotricer 0.901 0.899
SRP062407 Mouse RiboTaper ribotricer 0.930 0.910
SRP078005 Mouse ribotricer RiboCode 0.951 0.901
SRP091889 Mouse ribotricer RiboCode 0.938 0.900
SRP115915∗ Mouse ribotricer RiboCode 0.853 0.842
ERP007231∗ Rat ribotricer RiboTaper 0.879 0.874
SRP045777 Rat RiboCode ribotricer 0.618 0.511
SRP056012∗ Rat ribotricer RiboCode 0.787 0.786
SRP010040∗ Zebrafish ribotricer RiboCode 0.670 0.377
SRP023492 Zebrafish RiboCode ribotricer 0.838 0.826
SRP034750∗ Zebrafish RiboCode ribotricer 0.920 0.894
SRP032814# C.albicans ribotricer RiboCode 0.883 0.752
SRP062129# Chimp ribotricer RiboCode 0.865 0.436
SRP062129# Macaque ribotricer RiboCode 0.842 0.635
SRP107240# S. pombe ribotricer RiboCode 0.913 0.869
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Table S10: Best and second to best performing methods at F1 score metric for each dataset-specific
cutoff. F1 (B) and F1 (SB) denotes the F1 scores for the best and the second to best methods respectively.
The cutoff was learned independently for each dataset as the median difference between Ribo-seq and RNA-
seq phase scores over protein coding ORFs.

SRP Species Best (B) Second Best (SB) F1 (B) F1 (SB)
SRP018118 Arabidopsis ribotricer RiboCode 0.920 0.848
SRP029587 Arabidopsis ribotricer RiboCode 0.846 0.176
SRP059391 Arabidopsis ribotricer RiboCode 0.678 0.361
SRP087624 Arabidopsis ribotricer ORFscore 0.671 0.338
SRP108862 Arabidopsis ribotricer RiboCode 0.695 0.333
SRP000637 Baker’s Yeast ribotricer RiboCode 0.850 0.680
SRP028552 Baker’s Yeast ribotricer RiboCode 0.928 0.859
SRP028614 Baker’s Yeast ribotricer RiboCode 0.923 0.738
SRP033499 Baker’s Yeast ribotricer RiboCode 0.904 0.747
SRP075766 Baker’s Yeast ribotricer RiboTaper 0.935 0.877
SRP010374 C.elegans ribotricer RiboCode 0.798 0.517
SRP014427 C.elegans ribotricer RiboCode 0.868 0.776
SRP026198 C.elegans ribotricer RiboCode 0.846 0.636
SRP056647 C.elegans ribotricer RiboCode 0.716 0.634
SRP028243 Drosophila ribotricer RiboCode 0.679 0.562
SRP045475 Drosophila ribotricer RiboCode 0.667 0.391
SRP076919 Drosophila ribotricer RiboCode 0.667 0.125
SRP108999 Drosophila ribotricer RiboCode 0.818 0.400
SRP010679 Human ribotricer RiboCode 0.878 0.773
SRP029589 Human ribotricer RiboCode 0.765 0.599
SRP063852 Human ribotricer RiboCode 0.919 0.854
SRP098789 Human ribotricer RiboCode 0.922 0.824
SRP102021 Human ribotricer RiboCode 0.900 0.835
SRP003554 Mouse ribotricer RiboTaper 0.919 0.901
SRP062407 Mouse ribotricer RiboTaper 0.936 0.930
SRP078005 Mouse ribotricer RiboCode 0.944 0.901
SRP091889 Mouse ribotricer RiboCode 0.924 0.900
SRP115915 Mouse ribotricer RiboCode 0.863 0.842
ERP007231 Rat RiboTaper RiboCode 0.874 0.867
SRP045777 Rat ribotricer RiboCode 0.722 0.618
SRP056012 Rat RiboCode ribotricer 0.786 0.738
SRP010040 Zebrafish ribotricer RiboCode 0.668 0.377
SRP023492 Zebrafish ribotricer RiboCode 0.918 0.838
SRP034750 Zebrafish ribotricer RiboCode 0.937 0.920
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Table S11: Ribotricer’s performance at F1 score when considering species-specific or dataset-specific
cutoff F1 (SS) and F1 (DS) denotes the F1 scores for ribotricer when using species-specif and dataset-
specific cutoffs respectively. Ribo-RNA indicates the median difference between phase score of protein
coding ORFs in Ribo- and RNA-seq samples. ‘sampled’ indicates the median was calculated using 30% of
protein coding ORFs per dataset with resampling (nbootstraps = 10000) while ‘all’ indicates the median was
calculated using the complete list of protein coding ORFs.

SRP species F1 (SS) F1 (DS) Ribo-RNA (sampled) Ribo-RNA (all)
SRP018118 Arabidopsis 0.937 0.920 0.455 0.447
SRP029587 Arabidopsis 0.645 0.846 0.206 0.191
SRP059391 Arabidopsis 0.562 0.678 0.109 0.104
SRP087624 Arabidopsis 0.675 0.671 0.233 0.145
SRP108862 Arabidopsis 0.628 0.695 0.181 0.154
SRP000637 Baker’s Yeast 0.503 0.850 0.186 0.179
SRP028552 Baker’s Yeast 0.964 0.928 0.383 0.382
SRP028614 Baker’s Yeast 0.855 0.923 0.267 0.263
SRP033499 Baker’s Yeast 0.573 0.904 0.204 0.194
SRP075766 Baker’s Yeast 0.951 0.935 0.694 0.671
SRP010374 C.elegans 0.799 0.798 0.224 0.222
SRP014427 C.elegans 0.826 0.868 0.343 0.334
SRP026198 C.elegans 0.828 0.846 0.322 0.316
SRP056647 C.elegans 0.690 0.716 0.141 0.135
SRP028243 Drosophila 0.693 0.679 0.109 0.098
SRP045475 Drosophila 0.561 0.667 -0.019 -0.020
SRP076919 Drosophila 0.667 0.667 -0.025 -0.034
SRP108999 Drosophila 0.769 0.818 0.363 0.360
SRP010679 Human 0.878 0.878 0.421 0.404
SRP029589 Human 0.651 0.765 0.234 0.223
SRP063852 Human 0.919 0.919 0.522 0.498
SRP098789 Human 0.932 0.922 0.526 0.514
SRP102021 Human 0.891 0.900 0.427 0.417
SRP003554 Mouse 0.900 0.919 0.542 0.526
SRP062407 Mouse 0.910 0.936 0.588 0.568
SRP078005 Mouse 0.951 0.944 0.603 0.591
SRP091889 Mouse 0.939 0.924 0.509 0.497
SRP115915 Mouse 0.854 0.863 0.372 0.361
ERP007231 Rat 0.879 0.863 0.403 0.388
SRP045777 Rat 0.511 0.722 0.176 0.173
SRP056012 Rat 0.787 0.738 0.264 0.247
SRP010040 Zebrafish 0.670 0.668 0.136 0.108
SRP023942 Zebrafish 0.826 0.918 0.512 0.502
SRP034750 Zebrafish 0.894 0.937 0.660 0.649
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Figure S1: Length distribution of candidate ORFs for human and mouse. The length distribution of
uORFs, dORFs, and novel ORFs predicted from presumably non-coding genes compared with the CCDS
exon and CCDS transcript lengths (CCDS = Canonical Coding Sequence; uORF = upstream ORF in 5’
UTR; dORF = downstream ORF in 3’ UTR; novel = candidate ORFs in annotated non-coding genes.)
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Figure S2: Read length distribution of Ribo-seq and RNA-seq samples from human datasets. SRA
sample accession and total uniquely mapping reads are shown in individual subplots.
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Figure S3: Read length distribution of Ribo-seq and RNA-seq samples from mouse datasets. SRA
sample accession and total uniquely mapping reads are shown in individual subplots.
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Figure S4: Metagene plots for representative read lengths for human Ribo-seq samples. SRA sample
accession, read length and phase score are shown in individual subplots.
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Figure S5: Metagene plots for representative read lengths for mouse Ribo-seq samples. SRA sample
accession, read length and phase score are shown in individual subplots.
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Figure S6: Distribution of the resulting vector angles for datasets in human. Angles are formed by
projecting the CCDS 3D codon profiles to 2D unit vectors. The left sub-panel indicates the distribution for
Ribo-seq sample; the center sub-panel shows the distribution for its corresponding RNA-seq sample; the
right sub-panel shows the distribution of angles resulting from a RNA-seq profile simulated from a Poisson
distribution with the mean parameter estimated from the RNA-seq data.
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Figure S7: Distribution of the resulting vector angles for datasets in mouse. Angles are formed by
projecting the CCDS 3D codon profiles to 2D unit vectors. The left sub-panel indicates the distribution for
Ribo-seq sample; the center sub-panel shows the distribution for its corresponding RNA-seq sample; the
right sub-panel shows the distribution of angles resulting from a RNA-seq profile simulated from a Poisson
distribution with the mean parameter estimated from the RNA-seq data.
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Figure S8: Learning the cutoff for phase scores for human datasets. The optimum cutoff for distinguish-
ing actively translating regions from non-active translation was learned by maximizing the F1 score. The
profiles from expressed CCDS exons in Ribo-seq data were treated as positives and corresponding profiles
from RNA-seq were treated as negatives. Two datasets in human (SRA accession: SRP010679, SRP098789)
were used for learning this cutoff.
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Figure S9: Learning the cutoff for phase scores for mouse datasets. The optimum cutoff for distin-
guishing actively translating regions from non-active translation was learned by maximizing the F1 score.
The profiles from expressed CCDS exons in Ribo-seq data were treated as positives and corresponding pro-
files from RNA-seq were treated as negatives. Two datasets in mouse (SRA accession: SRP003554, and
SRP115915)were used for learning this cutoff.
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Figure S10: ROC plots and Precision-Recall plots for human datasets for exon level classification. Per-
formance of ribotricer for detecting translating ORFs at exon level is compared with RiboCode, RiboTaper
and ORFscore. The profiles of expressed CCDS exons in Ribo-seq data were treated as true positive and the
corresponding RNA-seq profile as true negative.
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Figure S11: ROC plots and Precision-Recall plots for mouse datasets for exon level classification. Per-
formance of ribotricer for detecting translating ORFs at exon level is compared with RiboCode, RiboTaper
and ORFscore. The profiles of expressed CCDS exons in Ribo-seq data were treated as true positive and the
corresponding RNA-seq profile as true negative.
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Figure S12: Number of translating exons recovered when controlling the false positive rate to be the
same. Performance of ribotricer is compared with RiboCode, RiboTaper, and ORFscore when the false
positive rate is controlled to be 0.1. The number of truly translating exons are shown for both human (A)
and mouse (B) datasets. The profiles of expressed CCDS exons in Ribo-seq data were treated as true positive
and the corresponding RNA-seq profile as true negative.
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Figure S13: Effect of ORF length on output scores. Distribution of scores generated by ribotricer and
ORFscore, and the P-values generated by RiboCode and RiboTaper over different CCDS exon lengths.
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Figure S14: Comparison of F1 score (exon level) of ribotricer with RiboCode, RiboTaper, and ORF-
score. Performance of ribotricer is compared with RiboCode, RiboTaper, and ORFscore in terms of F1
score when the default threshold score is used for each tool. Results are shown for human (A) and mouse
(B) datasets. The profiles of expressed CCDS exons in Ribo-seq data were treated as true positive and the
corresponding RNA-seq profile as true negative.
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Figure S15: Comparison of sensitivity (exon level) of ribotricer with RiboCode, RiboTaper, and ORF-
score. Performance of ribotricer is compared with RiboCode, RiboTaper, and ORFscore in terms of sensi-
tivity when the default threshold score is used for each tool. Results are shown for human (A) and mouse
(B) datasets. The profiles of expressed CCDS exons in Ribo-seq data were treated as true positive and the
corresponding RNA-seq profile as true negative.
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Figure S16: Comparison of specificity (exon level) of ribotricer with RiboCode, RiboTaper, and ORF-
score. Performance of ribotricer is compared with RiboCode, RiboTaper, and ORFscore in terms of speci-
ficity when the default threshold score is used for each tool. Results are shown for human (A) and mouse
(B) datasets. The profiles of expressed CCDS exons in Ribo-seq data were treated as true positive and the
corresponding RNA-seq profile as true negative.
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Figure S17: Comparison of precision (exon level) of ribotricer with RiboCode, RiboTaper, and ORF-
score. Performance of ribotricer is compared with RiboCode, RiboTaper, and ORFscore in terms of preci-
sion when the default threshold score is used for each tool. Results are shown for human (A) and mouse
(B) datasets. The profiles of expressed CCDS exons in Ribo-seq data were treated as true positive and the
corresponding RNA-seq profile as true negative.
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Figure S18: ROC plots and Precision-Recall plots on transcript level for human datasets. Performance
of ribotricer for detecting translating ORFs at transcript level is compared with RpBp, ribORF and Ri-
boWave. The profiles of expressed CCDS transcripts in Ribo-seq data were treated as true positive and the
corresponding RNA-seq profile as true negative.

43



0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

1.00

0.90

1.00

0.85

P
re

c
is

io
n

Ribotricer

RpBp

RibORF

RiboWave

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

T
ru

e
 p

o
s
it
iv

e
 r

a
te

1.00

0.95

0.99

0.90

Ribotricer

RpBp

RibORF

RiboWave

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

T
ru

e
 p

o
s
it
iv

e
 r

a
te

1.00

0.97

0.99

0.76

Ribotricer

RpBp

RibORF

RiboWave

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

T
r u

e
 p

o
s
it
iv

e
 r

a
te

1.00

0.93

0.99

0.88

0.0 0.2 0.4 0.6 0.8 1.0

Ribotricer

RpBp

RibORF

RiboWave

Recall

P
re

c
is

io
n

P
re

c
is

io
n

P
re

c
is

io
n

S
R

P
00

35
54

S
R

P
09

18
89

S
R

P
07

80
05

S
R

P
06

24
07

Figure S19: ROC plots and Precision-Recall plots on transcript level for mouse datasets. Performance
of ribotricer for detecting translating ORFs at transcript level is compared with RpBp, ribORF and Ri-
boWave. The profiles of expressed CCDS transcripts in Ribo-seq data were treated as true positive and the
corresponding RNA-seq profile as true negative.

44



Ribo
tric

er

Ribo
W

av
e

RibO
RF

RpB
p

SRP010679

SRP063852

SRP098789

SRP029589

BA

0

500

1000

1500

2000

2500

0

100

200

300

400

500

600

0

500

1000

1500

2000

2500

3000

3500

4000

0

500

1000

1500

2000

2500

SRP003554

0

500

1000

1500

2000

2500

SRP062407

0

1000

2000

3000

4000

5000

SRP078005

0

1000

2000

3000

4000

5000

6000

7000

8000

SRP091889

0

500

1000

1500

2000

2500

3000

3500

4000

#
 t
ra

n
s
c
ri
p

ts
#

 t
ra

n
s
c
ri
p

ts
#

 t
ra

n
s
c
ri
p

ts
#

 t
ra

n
s
c
ri
p

ts

Ribo
tric

er

Ribo
W

av
e

RibO
RF

RpB
p

Figure S20: Number of translating transcripts recovered when controlling the false positive rate to
be the same. Performance of ribotricer is compared with RpBp, ribORF, and RiboWave when the false
positive rate is controlled to be 0.1. The number of truly translating transcripts are shown for both human
(A) and mouse (B) datasets. The profiles of expressed CCDS transcripts in Ribo-seq data were treated as
true positive and the corresponding RNA-seq profile as true negative.
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Figure S21: Performance of different methods on transcript level measured using F1 score. Perfor-
mance of ribotricer is compared with RpBp, ribORF, and RiboWave in terms of F1 score when the default
threshold score is used for each tool. The profiles of expressed CCDS transcripts in Ribo-seq data were
treated as true positive and the corresponding RNA-seq profile as true negative.
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Figure S22: Effect of number of codons on ribotricer’s phase score in human dataset. Mean absolute
difference and standard deviation between original phase score using all codons and the one with down-
sampled number of codons. The plot was generated on human dataset (SRA accession: SRP063852) using
5K genes with at least 50% valid codons, the down-sampling is repeated 100 times for each gene. Similar
trend is observed for other human datasets.
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Figure S23: Effect of number of codons on ribotricer’s phase score in mouse dataset. Mean absolute
difference and standard deviation between original phase score using all codons and the one with down-
sampled number of codons. The plot was generated on mouse dataset (SRA accession: SRP003554) using
5K genes with at least 50% valid codons, the down-sampling is repeated 100 times for each gene. Similar
trend is observed for other mouse datasets.
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Figure S24: Effect of truncating an ORF on ribotricer’s phase score, RiboCode’s p-values and ORF-
score in human dataset. Mean difference and standard deviation between original phase score using full
length ORF and the ones after truncating it from the 3’ end. The plot was generated on human dataset (SRA
accession: SRP063852) using 5K genes with at least 50% valid codons and truncating it to have indicated
percentage (X-axis) of codons.The differences between truncated and original profile for RiboCode are cal-
culated on a log10 scale as it outputs p-values, while for both ribotricer and ORFscore, the differences are
calculated on the same scale as the scores.
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Figure S25: Effect of truncating an ORF on ribotricer’s phase score, RiboCode’s p-values and ORF-
score in mouse dataset. Mean difference and standard deviation between original phase score using full
length ORF and the ones after truncating it from the 3’ end. The plot was generated on mouse dataset (SRA
accession: SRP003554) using 5K genes with at least 50% valid codons and truncating it to have indicated
percentage (X-axis) of codons. The differences between truncated and original profile for RiboCode are
calculated on a log10 scale as it outputs p-values, while for both ribotricer and ORFscore, the differences are
calculated on the same scale as the scores.
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Figure S26: Example of phase scores for an active and a non-active ORF. Phase score generated by
ribotricer for two different profiles.
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Figure S27: Summarized median phase score for RNA-seq and Ribo-seq for all datasets. For each
dataset, the median phase score was calculated for all the candidate ORFs for both Ribo-seq and the corre-
sponding RNA-seq sample.
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Figure S28: Median phase score for RNA-seq and Ribo-seq and their differences across multiple
species. For each dataset, the median phase score was calculated for all the candidate ORFs for both Ribo-
seq and the corresponding RNA-seq sample. Same as Supplementary Figure S27 except that the RNA- and
Ribo-seq samples have been separated into individual panels.
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Figure S29: Distribution of median phase scores for RNA-seq and Ribo-seq samples and their dif-
ferences across multiple species. For each species, medians were calculated on the collection of merged
datasets for that species.
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Figure S30: Distribution of individual RNA-seq and Ribo-seq samples’ phase scores across species.
For each dataset phase scores were calculated for all candidate ORFs. For human and mouse, Ribo-seq
CCDS profiles were treated as true positive and the corresponding RNA-seq profile was treated as true
negative. For all other species Ribo-seq profile of annotated CDS regions were treated as true positive and
the corresponding RNA-seq profile treated as true negative.
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Figure S32: Distribution of area under ROC (AUROC) across multiple species. For each Ribo-seq and
RNA-seq pair in a dataset, area under ROC was calculated for exon level classification using Ribotricer,
Ribotaper, RiboCode and ORFScore.
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Figure S33: Distribution of F1 scores across species using species-specific cutoff. For each species two
datasets were used to learn the cutoff score of ribotricer for that species.
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Figure S34: Performance of ribotricer at AUROC and F1 scores metrics across species at different
median phase scores of RNA-seq and Ribo-seq samples using species-specific cutoff. For each dataset,
median phase score was calculated for both RNA-seq and Ribo-seq samples for the same list of candidate
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Figure S35: Distribution of F1 scores across species using dataset-specific cutoff. For each dataset,
the cutoff was learned by determining the median phase score difference between Ribo-seq and RNA-seq
profiles by sampling one-third of the total protein-coding transcripts nbootstrap = 10000 times.
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Figure S36: Difference in performance of ribotricer using species-specific or dataset-specific cutoffs.
Species-specific cutoffs were learned by maximizing the F1 scores for two datasets per species while dataset-
specific cutoffs were learned per dataset using the median difference of phase score of Ribo-seq and RNA-
seq protein coding profiles.
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Figure S37: Summarized performance of ribotricer using species-specific and dataset-specific strate-
gies. Species-specific cutoffs were learned by maximizing the F1 scores for two datasets per species while
dataset-specific cutoffs were learned per dataset using the median difference of phase score of Ribo-seq and
RNA-seq protein coding profiles. Species-specific and dataset-specific cutoffs only apply to ribotricer.
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Figure S38: Distribution of ribotricer’s F1 scores with respect to median phase score difference of
Ribo-seq and RNA-seq, using species-specific and dataset-specific cuoffs. Species-specific cutoffs were
learned by maximizing the F1 scores for two datasets per species while dataset-specific cutoffs were learned
per dataset using the median difference of phase score of Ribo-seq and RNA-seq protein coding profiles.
The dashed red lines indicate a median difference of 0.25 between Ribo-seq and RNA-seq phase scores
results in a F1 score of 0.73 and above.
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Figure S39: Effect of Ribo-seq and RNA-seq phase scores on species-specific and dataset-specific based
F1 performance. F1 (DS-SS) indicates difference in F1 scores using species-specific (SS) or dataset-
specific (DS) cutoff. Each single data point represents one dataset. Median phase scores were calculated
using all the candidate ORF profiler of either RNA-seq or Ribo-seq sample.
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Figure S40: Distribution of area under ROC in the independent datasets. For each Ribo-seq and RNA-
seq pair in a dataset, area under ROC was calculated for exon level classification using Ribotricer, Ribotaper,
RiboCode and ORFScore.
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Figure S41: Distribution of F1 scores in the independent datasets. For each Ribo-seq and RNA-seq pair
in a dataset, F1 score was calculated for exon level classification using Ribotricer, Ribotaper, RiboCode and
ORFScore.
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Figure S42: Distribution of ribotricer’s phase scores for RNA-seq and Ribo-seq samples in the inde-
pendent datasets. For each dataset phase scores were calculated for all candidate ORFs. For human and
mouse, Ribo-seq CCDS profiles were treated as true positive and the corresponding RNA-seq profile was
treated as true negative. For all other species Ribo-seq profile of annotated CDS regions were treated as true
positive and the corresponding RNA-seq profile treated as true negative.
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