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Actively translating fragments show 3-nt periodicity

Problem definition: Differentiate an actively translating profile (left) from non-active
(right) in Ribo-seq data
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Ribotricer simplifies detecting active ORFs

• Assesses the periodicity of RPF
profile by projecting the 3D read
count vector of each codon to a 2D
unit vector

• Uses qualitative information of
“high-low-low” pattern
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Ribotricer’s phase score calculation
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Ribotricer’s phase score calculation

xi =
(

xi1 xi2 xi3

)T

W =

 1 0
cos (−2π/3) sin (−2π/3)
cos (−4π/3) sin (−4π/3)


ϕi =

WTxi

∥WTxi∥

ϕ̄ =
1
N

N∑
i=1

ϕi
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Assessing ribotricer

rib   tricer

• Focus on expressed Coding Domain Sequences (CDS)

• Ribo-seq profiles from CDS exons: True positives

• RNA-seq profiles from CDS exons: True negatives

Goal: Detect actively translating ORFs with minimal dependence on the ORF length.
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Ribo-seq data is heterogeneous across species
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Ribotricer achieves highest AUROC across datasets
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Ribotricer achieves highest F1 score across datasets
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Ribotricer can detect ORFs as short as 20 codons

• Calculate the deviation of phase score between a full length exon and its shorter
variant created by subsampling codons

• Ribotricer can accurately detect ORFs as short as 20 codons
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Identifying actively translating
regions using ribotricer



Yeast-filament transition in C. albicans

• C. albicans: a fungal pathogen that inhabits the mucosal surfaces of most healthy
individuals

• Reversible morphological transition from single budding yeasts to continuously
branching filaments increases virulence

• Translational landscape changes unknown: Avenues for improving drug efficacy

By Garnhami - Own work, CC BY-SA 4.0
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Ribotricer enables recovery of ORFs with low signal to noise ratio
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• High rRNA contamination leads to a very few shallow sequenced samples

• Most ORF detection methods fail at detecting any translating regions because of
low signal to noise ratio
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Ribotricer identifies genes playing differential role at translational level

Ribotricer detects hundreds of genes
playing a differential role at the
translational level in yeast to filamentous
transition.
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Ribotricer enables discovery of novel ORFs

• Ribotricer can be used to discover novel ORFs that are unannotated

• Ribotricer discovered 71 novel ORFs that are currently missing from C. albicans’
annotation
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Ribotricer’s phase score captures periodicity in Ribo-seq profile
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Ribotricer cutoff learned by maximizing the F1 score

• F1 score = harmonic mean of precision and recall
• Using public datasets in human and mouse, we choose the phase-score cutoff as

the score resulting in maximum F1 score
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Ribotricer outperforms other methods at the isoform level
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Ribotricer outperforms other methods at the exon level
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Ribotricer outperforms other methods at the exon level
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Species-specific cutoffs can vary with datasets
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Ribotricer’s performance is consistent across short and long ORFs

• Ribotricer’s performance
unaffected by signal strength

• Particularly advantageous in
regions of low signal to noise
ratio
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Ribotricer’s performance is minimally dependent on ORF length
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Dataset specific cutoffs can give marginal improvement

Ribotricer can also learn dataset-specific cutoffs based on availability of RNA- and
Ribo-seq dataset
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Ribotricer achieves highest AUROC in independent species
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Ribotricer achieves highest F1 score in independent species

23



Membrane proteins seem to be not-profiled by Ribo-seq
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Membrane proteins seem to be not-profiled by Ribo-seq
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Phase scores with transcript category
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Phase scores correlation conservation
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