ribotricer: Identifying short and long ORFs under active translation

Saket Choudhary

Actively translating fragments show 3-nt periodicity

Actively translating fragments show 3-nt periodicity

Actively translating fragments show 3-nt periodicity

Problem definition: Differentiate an actively translating profile (left) from non-active (right) in Ribo-seq data

- Assesses the periodicity of RPF profile by projecting the 3D read count vector of each codon to a 2D unit vector
- Uses qualitative information of "high-low-low" pattern

- Assesses the periodicity of RPF profile by projecting the 3D read count vector of each codon to a 2D unit vector
- Uses qualitative information of "high-low-low" pattern

- Assesses the periodicity of RPF profile by projecting the 3D read count vector of each codon to a 2D unit vector
- Uses qualitative information of "high-low-low" pattern

- Assesses the periodicity of RPF profile by projecting the 3D read count vector of each codon to a 2D unit vector
- Uses qualitative information of "high-low-low" pattern

- Assesses the periodicity of RPF profile by projecting the 3D read count vector of each codon to a 2D unit vector
- Uses qualitative information of "high-low-low" pattern

- Assesses the periodicity of RPF profile by projecting the 3D read count vector of each codon to a 2D unit vector
- Uses qualitative information of "high-low-low" pattern

- Assesses the periodicity of RPF profile by projecting the 3D read count vector of each codon to a 2D unit vector
- Uses qualitative information of "high-low-low" pattern

- Assesses the periodicity of RPF profile by projecting the 3D read count vector of each codon to a 2D unit vector
- Uses qualitative information of "high-low-low" pattern

- Assesses the periodicity of RPF profile by projecting the 3D read count vector of each codon to a 2D unit vector
- Uses qualitative information of "high-low-low" pattern

$$\mathbf{x}_{\mathbf{i}} = \begin{pmatrix} x_{i1} & x_{i2} & x_{i3} \end{pmatrix}^{\mathrm{T}}$$

$$\mathbf{x}_{i} = \begin{pmatrix} x_{i1} & x_{i2} & x_{i3} \end{pmatrix}^{\mathrm{T}} \\ \mathbf{W} = \begin{pmatrix} 1 & 0 \\ \cos(-2\pi/3) & \sin(-2\pi/3) \\ \cos(-4\pi/3) & \sin(-4\pi/3) \end{pmatrix}^{\mathrm{T}}$$

$$\mathbf{x}_{i} = \begin{pmatrix} x_{i1} & x_{i2} & x_{i3} \end{pmatrix}^{\mathrm{T}}$$
$$\mathbf{W} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \cos\left(-2\pi/3\right) & \sin\left(-2\pi/3\right) \\ \cos\left(-4\pi/3\right) & \sin\left(-4\pi/3\right) \end{pmatrix}$$
$$\phi_{i} = \frac{\mathbf{W}^{\mathrm{T}}\mathbf{x}_{i}}{\|\mathbf{W}^{\mathrm{T}}\mathbf{x}_{i}\|}$$

$$\mathbf{x}_{i} = \begin{pmatrix} x_{i1} & x_{i2} & x_{i3} \end{pmatrix}^{\mathrm{T}}$$
$$\mathbf{W} = \begin{pmatrix} 1 & 0\\ \cos(-2\pi/3) & \sin(-2\pi/3)\\ \cos(-4\pi/3) & \sin(-4\pi/3) \end{pmatrix}$$
$$\phi_{i} = \frac{\mathbf{W}^{\mathrm{T}}\mathbf{x}_{i}}{\|\mathbf{W}^{\mathrm{T}}\mathbf{x}_{i}\|}$$
$$\bar{\phi} = \frac{1}{N} \sum_{i=1}^{N} \phi_{i}$$

$$\mathbf{x}_{i} = \begin{pmatrix} x_{i1} & x_{i2} & x_{i3} \end{pmatrix}^{\mathrm{T}}$$
$$\mathbf{W} = \begin{pmatrix} 1 & 0\\ \cos(-2\pi/3) & \sin(-2\pi/3)\\ \cos(-4\pi/3) & \sin(-4\pi/3) \end{pmatrix}$$
$$\phi_{i} = \frac{\mathbf{W}^{\mathrm{T}}\mathbf{x}_{i}}{\|\mathbf{W}^{\mathrm{T}}\mathbf{x}_{i}\|}$$
$$\bar{\phi} = \frac{1}{N} \sum_{i=1}^{N} \phi_{i}$$

- Focus on expressed Coding Domain Sequences (CDS)
- · Ribo-seq profiles from CDS exons: True positives
- · RNA-seq profiles from CDS exons: True negatives

- Focus on expressed Coding Domain Sequences (CDS)
- · Ribo-seq profiles from CDS exons: True positives
- RNA-seq profiles from CDS exons: True negatives

Goal: Detect actively translating ORFs with minimal dependence on the ORF length.

Ribo-seq data is heterogeneous across species

Ribotricer achieves highest AUROC across datasets

Ribotricer achieves highest F1 score across datasets

Ribotricer can detect ORFs as short as 20 codons

 Calculate the deviation of phase score between a full length exon and its shorter variant created by subsampling codons

Ribotricer can detect ORFs as short as 20 codons

 Calculate the deviation of phase score between a full length exon and its shorter variant created by subsampling codons

Ribotricer can detect ORFs as short as 20 codons

- Calculate the deviation of phase score between a full length exon and its shorter variant created by subsampling codons
- · Ribotricer can accurately detect ORFs as short as 20 codons

Identifying actively translating regions using ribotricer

Yeast-filament transition in C. albicans

• *C. albicans*: a fungal pathogen that inhabits the mucosal surfaces of most healthy individuals

Yeast-filament transition in C. albicans

- *C. albicans*: a fungal pathogen that inhabits the mucosal surfaces of most healthy individuals
- Reversible morphological transition from single budding yeasts to continuously branching filaments increases virulence

By Garnhami - Own work, CC BY-SA 4.0

Yeast-filament transition in C. albicans

- *C. albicans*: a fungal pathogen that inhabits the mucosal surfaces of most healthy individuals
- Reversible morphological transition from single budding yeasts to continuously branching filaments increases virulence
- Translational landscape changes unknown: Avenues for improving drug efficacy

By Garnhami - Own work, CC BY-SA 4.0

Ribotricer enables recovery of ORFs with low signal to noise ratio

· High rRNA contamination leads to a very few shallow sequenced samples

Ribotricer enables recovery of ORFs with low signal to noise ratio

- · High rRNA contamination leads to a very few shallow sequenced samples
- Most ORF detection methods fail at detecting any translating regions because of low signal to noise ratio

Ribotricer identifies genes playing differential role at translational level

Ribotricer identifies genes playing differential role at translational level

Ribotricer detects hundreds of genes playing a differential role at the translational level in yeast to filamentous transition.

Gene	Function	FC
HMS1	TF required for morphogenesis	3.6
ERK1	Kinase required for yeast-hyphal switch	3.5
PTC8	Required for hyphal growth	3.1
RAX2	Involved in establishment of bud sites and hyphal growth	2.4

Ribotricer enables discovery of novel ORFs

· Ribotricer can be used to discover novel ORFs that are unannotated

Ribotricer enables discovery of novel ORFs

- · Ribotricer can be used to discover novel ORFs that are unannotated
- Ribotricer discovered 71 novel ORFs that are currently missing from *C. albicans*' annotation

Ribotricer enables discovery of novel ORFs

- · Ribotricer can be used to discover novel ORFs that are unannotated
- Ribotricer discovered 71 novel ORFs that are currently missing from *C. albicans*' annotation

Ribotricer's phase score captures periodicity in Ribo-seq profile

Ribotricer cutoff learned by maximizing the F1 score

- F1 score = harmonic mean of precision and recall
- Using public datasets in human and mouse, we choose the phase-score cutoff as the score resulting in maximum F1 score

Ribotricer outperforms other methods at the isoform level

Ribotricer outperforms other methods at the isoform level

Ribotricer outperforms other methods at the exon level

Ribotricer outperforms other methods at the exon level

Species-specific cutoffs can vary with datasets

Ribotricer's performance is consistent across short and long ORFs

- Ribotricer's performance
 unaffected by signal strength
- Particularly advantageous in regions of low signal to noise ratio

Ribotricer's performance is minimally dependent on ORF length

Dataset specific cutoffs can give marginal improvement

Ribotricer can also learn dataset-specific cutoffs based on availability of RNA- and Ribo-seq dataset

Ribotricer achieves highest AUROC in independent species

Ribotricer achieves highest F1 score in independent species

Membrane proteins seem to be not-profiled by Ribo-seq

Membrane proteins seem to be not-profiled by Ribo-seq

Membrane proteins seem to be not-profiled by Ribo-seq

Phase scores with transcript category

