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Abstract

We explore how recurrent neural networks (RNNs) can
be used to predict protein coding domains in a gene. We
first demonstrate that using long short term memory RNNs
give with one-hot encoding resulted in a limited prediction
power. Later, we demonstrate how a word embedding ap-
proach along with bi-directional LSTMs gives promising re-
sults using the entire pool of protein coding genes in hu-
man achieving an overall accuracy of 0.67. This model is
then used to predict protein coding domains in a different
species, mouse, and achieves an overall accuracy of of 0.70
when tested on non-orthologous genes(where orthogonality
implies a gene in mouse shares significant sequence from a
human gene owing to descent from a common ancestor).

1. Introduction and Related Work

The central dogma of biology describes the flow sequen-
tial information from nucleic acid to nucleic acid and nu-
cleic acid to protein. A protein coding gene can be parti-
tioned into three regions: 5’ UTR, CDS and 3’ UTR (UTR
= Untranslated region; CDS = coding domain sequence)
(Figure 1). While the CDS is responsible for synthesis of
protein, the UTR regions act as regulators and stabilizers.
The exact boundaries of CDS and UTR are more or less
well characterized for humans and mouse but is not avail-
able for non-model organism such as C. albicans [1]. Deter-
mining these exact boundaries involves preparing biological
assays capable of capturing the expressed parts of genome
and is a resource and time consuming step. Instead, we
wanted to use the existing annotation to come up with a
predictive model that can be used to annotate regions in
non-model organisms. The essential problem we are try-
ing to tackle here is a toned down version of gene predic-
tion problem, which has been addressed in literature ear-
lier. Chris Burge and Samuel Karlin’s GENSCAN [2] uses
a fifth-order markov chain to to identify these boundaries
in genes. However, RNNs do not make any markovian as-
sumption and hence are capable of handling long term de-
pendencies where markov chain approaches will often fail.

Figure 1. The three regions of interest in a gene. Image Credits :
Wikimedia commons

2. Data
The human genome consists of 20, 000 protein coding

genes with length ranging from 200-100,000. Sequences
and their annotation were downloaded from ENCODE
project’s website (https://www.encodeproject.
org/). Besides human, we also utilizes sequence from
mouse and C. elegans as testing datasets.

3. Model and Results
The property of Long Short Term Memory (LSTMs)

based RNNs to capture the sequential information is well
suited for our problem. LSTMs have found extensive ap-
plication in the field of natural language processing such as
speech recognition [4] and text generation [3]. The human
genome is 3 × 109 long made of 4 bases {A,C, T,G} and
as such re[resents a language in itself. Just like in speech or
text prediction tasks where the goal is to learn the sequen-
tial pattern to predict the next occurrence of a word, our
task here is to learn the sequential pattern of these bases to
determine the boundaries of protein coding region in genes.

We iterated over different models since the initial few
models had limited prediction power on the trainining
dataset alone. The models are described in the following
subsections.

3.1. Model 1: One-hot encoding with LSTM

Our first iteration of the model was a basic LSTM with
100 hidden units, followed by a fully connected layer with
softmax activation (Figure 2). It was trained on 5000 human
genes in human and was run for 40 epochs. Training was
performed on a batch size of 1 with dropout rate set to 0.25.
The input consisted of one-hot encoded sequences of length
L such that each batch of size 1 was a 4× L matrix.

We use categorical cross entropy as the loss function.
Though there are 20000 genes in total, we down-sampled
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Figure 2. Model 1 : LSTM (100 hidden units) with fully
connected (FC) layer with softmax activation. The input
is one-hot encoded and is in the form of a 4 × L matrix
where L is the length of the sequence and {A,C, T,G} =
{〈1, 0, 0, 0〉, 〈0, 1, 0, 0〉, 〈0, 0, 1, 0〉, 〈0, 0, 0, 1〉}

and used only 5000 genes for training. These 5000 genes
were sampled proportionally from the entire pool of 20000
genes. Briefly, the genes were partitioned into 10 bins based
on gene length ranging between 200 and 10000. Then we
sampled genes from each bin proportional to the total num-
ber of genes in each bin such that the sum of sampled genes
across all bins came out to be 1000. This approach has prob-
lems. In particular, a sample size of 1000 genes might be
too little for RNNs to train. However, looking at the train-
ing curves for humans (Figure 8), the training error is upper
bounded by around 0.54 which though is higher than 0.33
(worst case scenario for a 3 class classification problem),
is too slow in learning. The testing accuracy curve (Figure
9) also shows saturation around 25 epochs. Though it is
possible that the model will learn better by increasing the
number of epochs, we decided to terminate the training at
40 epochs.

3.2. Model 2: Embedding layer with LSTM

Lee et al.[7] have argued that use of one
hot encoding ( {A,C, T,G} are mapped to
{〈1, 0, 0, 0〉, 〈0, 1, 0, 0〉, 〈0, 0, 1, 0〉, 〈0, 0, 0, 1〉} ) as in
our Model 1 can result in limited generalization owning to
the sparsity of the structure. They suggest using an em-
bedding approach similar to word2vec [8] where the bases
{A,C, T,G} are randomly initialized to four dimensional
dense vectors (say A = 〈−0.1,−0.2,−0.3, 1〉) and whose
elements are in turn trained using gradient descent method.

Following Lee et al.’s suggestion, we modified our model
to consist of a embedding layer followed by LSTM and the
fully connected layer as in Model 1. This model resulted in
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Figure 3. Model 2 : Embedding layer followed by LSTM (100 hid-
den units) with fully connected (FC) layer with softmax activation.

improvement at both training (Figure 10) and testing steps
(Figure 11).

3.3. Model 3: Embedding layer with bidirectional
LSTM

LSTMs tend to ’memorize’ input sequences that have
passed through them using the hidden states and hence only
preserve information about the past. Bidirectional LSTMs
on the other hand follow a two pass strategy, where the first
learning happens over sequences starting from the past and
going to the future and the second pass involves learning the
information starting from the future and going all the way
back to the past. So using two hidden states, bidirectional
LSTMs can learn information from both past and future.
Such a property is useful in learning long term genomic de-
pendencies arising in the transition from 5’UTR =⇒ CDS
=⇒ 3’UTR.

Changing the LSTM units to bidirectional in Model 2
gives us Model 3 (Figure 4) which results in the highest
training and test accuracies among the 3 models (Figures 12
and 13). Due to time constraints, we could only train Model
2 and Model 3 for around 10 epochs, which is nowhere close
to saturation.

3.4. Prediction across species

Using Model 3 trained on human genes only, we used se-
quences from other species to asses its accuracy. Sequences
were derived from mouse and C. elegans since the protein
coding boundaries are close to completely annotated for
these species. The model gave an average mean accuracy
of 0.71 on entire pool of 20000 mouse genes and 0.70 on
entire pool of 10800 protein coding genes in C.elegans.
It is worth noting that this value is higher than the aver-
age mean accuracy of 0.67 that we obtained on the human
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Figure 4. Model 3 : Embedding layer followed by LSTM (100 hid-
den units) with fully connected (FC) layer with softmax activation.

Figure 5. Human UTR5 prediction for ENSG00000107164.
P=5’UTR, Q=CDS, R=3’UTR

Figure 6. Human CDS prediction for ENSG00000107164.
P=5’UTR, Q=CDS, R=3’UTR

dataset alone, given that the model was trained using human
sequences only. Since humans have the most complex gene
structure, it is possible that the mouse and C.elegans gene
structure are subsets of those in human and hence result in
higher accuracy as compared to the held out sequence in
human, which is likely still different from the training set,
even if it belongs to the same species.

The motivation to use these two species was to ensure
that the model learns not just local, but global features that
are useful for prediction across species when their common

Figure 7. Human UTR3 prediction for ENSG00000107164.
P=5’UTR, Q=CDS, R=3’UTR
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Figure 8. Model 1 training accuracy
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Figure 9. Model 1 testing accuracy

ancestors are too distant. Though human and mouse are
close evolutionarily, the distance between C.elegans and hu-
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Figure 10. Model 2 training accuracy
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Figure 11. Model 2 testing accuracy
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Figure 12. Model 3 training accuracy

mans/mouse diverged from a common ancestor 900 million
years ago. Since the model gives comparable accuracies
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Figure 13. Model 3 testing accuracy
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Figure 14. Model 3 testing accuracy distribution across genes in
humans

with all three species, it indicates, the model is capable of
learning global features that determines the protein coding
boundaries across species.

4. Limitations and Possible improvements
LSTMS are time consuming to train. This resulted in us

using only half of the entire pool of genes for training. Be-
sides, the training was stopped at 10 epochs, even though
the training curves did not indicate any saturation. One ob-
vious improvement could have come through increasing the
number of epochs. Besides this, we also came across other
tricks that might result in a better accuracy, but could not be
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Figure 15. Model 3 testing accuracy distribution across genes in
mouse
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Figure 16. Model 3 testing accuracy distribution across genes in
C. elegans

implemented due to time constraints. These are listed in the
following subsections.

C. elegans Human Mouse
Species
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Figure 17. Model 3 average testing accuracy across species. Model
was trained using 5000 genes in human only.

Figure 18. Phylogenetic tree indicating the divergence times in
million years. Adapted from [10]

4.1. Using Autoencoders

Lee et al. [6] have made use of autoencoders to learn the
inherent sequence over a stacked RNN model. The prob-
lem they are trying to address is similar in nature, where
the idea is to learn which two patterns of sequence inter-
act. Our current model (Model 3) might possibly still be
learning features which are too local. An autoencoder based
approach might likely help in learning these features in an
unsupervised manner.



4.2. Dilated Convolutions

In a recent paper Gupta et al. [5] propose using di-
lated convolutions to model long term dependencies which
claims to make the best out of convolution and bidirec-
tional LSTM worlds, by ensuring a short path from input
to output as in convolution and a large receptive field as in
bi-directional LSTMs. the problem of handling long term
dependencies is at the core of our problem definition. We
might benefit from using this dilated convolution approach.

4.3. Conditional Random Fields

A recent paper by Wang et al. [9] combined Conditional
Random Fields (CRFs) with deep neural networks to pre-
dict protein secondary structures. In spirit, the protein sec-
ondary structure prediction problem is similar to our prob-
lem where the objective is to identify class of structure given
the protein sequence. The advantage of using CRFs over
using HMMs to learn the interdependence between states is
that it is discriminative approach and hence the independent
assumption required by HMMs can be relaxed. CRFs seem
the most promising improvement that could have potentially
been included in the model.

5. Conclusion

We propose a bidirectional LSTM based approach to
learn the boundaries of protein coding domains in gene. Our
model achieved an overall mean accuracy of 0.67 on human
dataset and 0.70 and 0.71 for mouse and C.elegans datasets
respectively.
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