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Introduction

The completion of human genome sequencing[1] revealed that a major portion of this genetic material does not
code for protein sequences. Although this portion once termed ”junk” DNA, is now known to be functionally
active and conserved over evolution[2]. It is often referred to as ’conserved non-genic sequence’ (CNS)

Vertebrate genomes have around twice the number of genes compared to the invertebrates. A lot of
these are attributed to gene duplication[3]. There is substantial evidence to establish that the difference in
organism complexity arises from elaborate regulation of gene expression. A small number of genes could be
exploited to generate complex systems in higher order organisms(vertebrates). One such mechanism involves
alternative splicing, which involves one gene coding for multiple proteins. Another mechanism involves DNA
rearrangement. However, it has often been argued that the physiological and behavioral complexity must
arise from the elaboration of the complexity present at cis- regulatory DNA sequences[3, 4]. The regulatory
landscape consists of trans- acting proteins that bind at different sites along the cis-regulatory sequence.
These modules are regulated by multiple transcription factors and each transcription factor can interact
with multiple genes. Sequence specific DNA-binding proteins called transcription factors(TF) bind near
the transcription start site in the promoter region but can also bind to the region being transcribed or
distal regulatory elements such as enhancers and silencers[5]. These DNA binding proteins can themselves be
regulated at the transcription level. DNA-TF binding is sequence specific and hence TFs can bind at locations
that are similar but not necessarily identical. The combinatorial nature of transcriptional regulation leads
to dramatic increase in regulatory complexity.

Systematic identification of regions where the TFs bind can help us understand transcription regulation
in a better way, providing the means to understand and model cellular response to different stimuli.

The Biological Problem

To understand the cis-regulatory mechanism, it is important to identify the sequence specific patterns or
‘motifs’ associated with TFs. Having identified these motifs, the next question to ask is where do these
occur in the non-coding region. Both these problems are analogous to finishing a partially complete jigsaw
puzzle, where the first step will involve looking for possible pieces that can fill the available gaps and then
having chosen a piece, looking for a place where it would most likely fit. Sophisticated methods developed
over the last one and half decades have tried to tackle both these problems simultaneously. In the following
discussion we refer to ‘motifs’ as the specificity or pattern representation associated with transcription factors
and ‘instances’ , ‘matches’ , ’TF binding sites’ or ‘regulatory sequences’ to those positions in the non coding
DNA where the ‘motifs’ bind. In the next few sections, I describe the different approaches taken to solve this
problem.

The Computational Problem

Given a set of DNA sequences typically around 100-200 base pairs long, the goal is to find a shorter sequence
typically 5-25bp long which occur frequently, allowing for errors at individual sites(since TF-DNA binding
can involve similar but not necessarily identical sequences). Also for the motif to be significant, it should not
be as frequent in another set of DNA sequences, either pooled randomly or generated using some ‘biologically
feasible’ model.
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Futility Theorem

Wasserman and Sandelin in their review of tools for motif discovery[6] conjectured ‘Futility Theorem’ asserting
that essentially all TF binding sites(TFBS) predicted using models for the individual binding of the TFs will
have no functional role. One of the frequent assumptions underlying methods for TFBS prediction is that
each TF binds individually. However it is well known that it is the combinatorial interaction of multiple
factors binding to multiple cis-regulatory sites regulate gene transcription[7]. These assumptions lead to a
limitation - inability to distinguish between sites that are functional and non-functional, in-vivo. Few of the
methods discussed in the following sections, often fail to overcome this theorem’s claim.

First generation: Pattern matchers

First generation of motif discovery tools relied on performing a multiple sequence alignment and then searching
for a motif which maximizes some objective function. For example, CONSENSUS[8] implemented such a de-
novo discovery method by maximizing the information criterion of patterns in multiple sequence alignment.
However, such methods that do not use any extra information apart from the alignment are susceptible to
a lot of false positive motifs arising firstly due to the inherent degeneracy in TF binding specificity and
secondly because of the fact that an over-represented sequence might not necessarily be a true binding site.
This is often the case if the aligned sequences have a lot of repeats. These methods often rely on likelihood
ratios and p− values to determine statistically significant ‘motifs’ which are likely to be significant even for
nonfunctional repeats. A possible example where Futility theorem holds.

Second generation: Combination and Conservation of Motifs

Tagle et al. proposed the term phylogenetic footprint referring to the phylogenetic comparisons that reflect
evolutionary conserved functional elements in homologous genes[9].

Gelfand et al. were one of the first to use comparative genomics to predict transcription factor binding
sites[10]. Using the available experimental data, they wanted to predict sites of operator sequences in E.coli.
However, the information contained in these datasets was limited. They hypothesized that the regulatory
signal must be conserved across some of the evolutionary close species of E.coli and hence adding sequences
from co-regulated genes and orthologous regions of other species could help in discovering patterns in TFBS.
By combining profile-based search with phylogenetic analysis, they were able to overcome the limitations of
missing experimental data. This idea was further used by McGuire et al. [11] to discover new motifs in the
upstream regions of co-regulated genes. Detecting motifs that are overrepresented is easy, however, pooling
orthologous regions from closely related organisms provides an extra layer of information that can help in
discovery of these conserved motifs, assuming these sites are always under constraint due to purifying selection.
They demonstrated how an experimentally verified E.coli motif(MetR) is not found if only E.coli sequences
are used, since there are very few instances of this motif compared to the background non-functional sequence.
However, when pooled with orthologous regions from B.subtilis, it was found, since it is over represented in
the pooled sample. Hence they concluded that a conserved operon is likely to represent a functional coupling
if it is also found to be conserved across large evolutionary distances.

Using evolutionary distant species can help overcome Simpson’s paradox(or the Yule-Simpson effect)[12]
where closely related species can be the confounding factor. In other words, if two species are closely related
evolutionary, there TFBS can show high conservation, but it is difficult to determine if the conservation
arises from the fact that they are selectively conserved being TFBS or is it simply because all other regions
are conserved too. A discussion on controlling for such conservation in methylation studies is discussed in a
recent paper[13].

Caveats of Gelfand and McGuire approach:

• Ignores phylogenetic relationships, often giving way to Yule-Simpson effects: phylogenetically close
sequences are bound to have most portions of the DNA conserved

• In at least one of the earlier studies by Lane et al. [1], the instances of orthologous regulatory regions
were found to be more conserved(since they arose from the same ancestral sequence) when compared to
instances across the co-regulated genes of the same genome. Since both these studies relied on pooling
sequences from co-regulated genes along with the orthologs, there is an inherent loss of distinction

• number of occurrences of regulatory elements might not be comparable when they are pooled with
their orthologs. Some regulatory regions will have zero occurrences while others will have multiple.
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This variance is expected to be lower across the orthologous genes since they evolved from the single
ancestral sequence

Conservation: Biological implications

My focus in the following sections is on methods that employ phylogenetic footprinting to predict TFBS.
The approach of finding functional segments in non-coding DNA has been a pretty old one, probably dating
to 1971 when Pribnow et al. [14] determined the sequence of promoters in T7 bacteriophages which was
reported to have similarities with the bacteriophage fd and a lac UV5 promoter.

Several studies have used phylogenetic footprinting to identify functional regulatory elements. For exam-
ple, Loots et al. [15] used comparative genomics to find distal regulatory regions. In their study a sequence
alignment from chromosomal region 5q31 and an orthologous region in mouse lead to the discovery of 90
conserved noncoding sequences(ungapped sequence alignment of at least 100bp with at least 70% identity),
which on experimental validation(knockout experiments) validated that they were indeed regulatory.

In a separate experiment contrasting the experiment, Kim et al. [16] found very slow divergence rates of
enhancers of HOX clusters when compared to the primitive horn shark. So they essentially went beyond Loots
et al.’s approach of just using phylogenetically close species(mammals), to say that a comparison between
mammals and fish will reveal regions that are under stronger selection and hence likely to be involved in
more critical functions. Essentially, regions conserved between human and mouse might not be so in human
and fish, but the most conserved regions can be trusted to be functionally relevant. It is also important to
note that criteria used for finding CNS at one locus might be too stringent for other loci. One such example
of this study, is Gottgens et al. [17] which found a lot of CNS when comparing human-mouse sequences,
but one enhancer was discovered in chicken-human sequence, which was then experimentally shown to be a
neural enhancer

The simple premise underlying these comparative methods is that selective pressure acts on the functional
elements in CNS and causes them to evolve at a much slower rate compared to the the flanking non-functional
elements and hence set of orthologous regions showing conservation can be good candidates for TF binding.
However, there is at least one caveat with this hypothesis. Species close to each other will show high degree
of conservation because while evolving, the time for substitution to occur has been insufficient. As the
distance increases, non functional sites will undergo far more substitutions and hence conservation detection
can happen more confidently until the point that the one fails to find sufficient orthology between the species
being aligned. Hence, it is important to ensure that the predicted conserved regions do not show conservation
merely because they were found using two species which are very close to each other.

The following methods try to integrate two levels of information for de-novo motif discovery: over repre-
sentation and conservation in orthologous regions. The motivation to do so is quite intuitive, if the motif is
insignificant using either level of information, it might turn out to be significant when they are combined.

MONKEY

In a 2003 paper on evolution of transcription factor binding sites, Moses et al. [18] concluded that these
sites evolved slowly compared to the surrounding sequences, thus asserting their hypothesis that they were
under purifying selection. A striking result was the positive correlation between rate of evolution and the
degeneracy of the binding site, implying if a particular site in the motif is evolving, the degeneracy of TF-
DNA binding at that position also increases allowing for other bases to be present. They also leveraged
this observation to predict rate of evolution at individual bases of TFBS under the assumption that the
position weight matrix(PWM) reflects the allowed sequence specificity for TF-DNA binding. For example,
consider a site where the PWM is of this form fA, fC , fG, fT = (1, 0, 0, 0) then a mutation at any site
will most likely inhibit TF-DNA binding. However distributions like fA, fC , fG, fT = (1/2, 0, 0, 1/2) would
lead to changes at C,G to be removed over the course of evolution, whereas for a distribution of the form
fA, fC , fG, fT = (1/4, 1/4, 1/4, 1/4) all substitutions are permitted. They used this model to make predictions
about rate of evolution for transcription factors with experimentally characterized binding sites and found
them to be in-sync. Though the motifs appeared to be conserved on average, the individual binding sites need
not be perfectly conserved. And hence it is important to note that simply searching for perfectly conserved
segments need not reveal the true binding sites. They thus demonstrated that conservation relative to flanking
sequences and correlation between position-specific rate of evolution and intragenomic degeneracy can be used
as a proxy to identify the bona fide transcription factor binding sites from computational artifacts.
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Using the results from the earlier study, Moses et al. developed MONKEY[19] which employs a probabilis-
tic framework to assess factor specificity and binding site evolution to compute the likelihoods of motif hits
in multiple sequence alignments. The goal here was to identify conserved binding sites while simultaneously
accounting for sequence specificity, pattern of evolution, and phylogenetic relationship of the species being
compared.

MONKEY is not a de-novo motif finder. Given a multiple sequence alignment, a model of transcription
factor’s binding specificity, and a model for background noncoding DNA, it returns the likelihood ratio of
each position being conserved over the probability that it is background.

It uses a statistic commonly used for scoring the similarity of a single sequence to a frequency matrix:
ratio of the logarithm of the probabilities of observing the sequence under the motif model to the probability
of observing it under a background model. Since the hypothesis is that the aligned sequences arose from a
common ancestor(which is a hidden variable) this score is calculated by averaging over all possible ancestral
sequences. These calculations also involve a rate matrix, quantifying the probability of observing each base
in the ancestral sequence given the time or distance of divergence. The background model involves use of
Jukes-Cantor or Hasegawa-Kishino-Yano model of DNA substitution.

With MONKEY another problem being investigated was which species are optimal for defining conser-
vation. However this problem mostly remained unanswered since different transcription factors exhibited
different conservation patterns for the same set of species, although in general the p − values correspond-
ing to the hypothesis of the TFBS originating from the background decreased with increasing evolutionary
distances.

Caveats:

• Not suitable for de-novo motif discovery

• assumes each site is evolving independently (this assumption is almost always not true)

PhyME and PhyloGibbs

PhyME[20] uses expectation maximization to search for relevant motifs. Motif evaluation involves accounting
for its occurrence in orthologous regions, which are assumed to be related by a probabilistic model that takes
into account the different phylogenetic distances between species.

This approach is mostly similar to PhyloGibbs[21] except that here expectation-maximization(EM) is
used instead of Gibbs sampling and secondly PhyloGibbs assumes star topology for phylogeny while there is
no such assumption in PhyME. Another approach, orthoMEME[22] performs EM based motif elucidation by
accounting for homology simultaneously. It however, has this stronger assumption that each motif occurrence
has an orthologous analog in the other species. This is often not true, especially when the cis-regulatory
sequence is specie specific.

It is important to note that PhyME is not a de-novo motif-finder. It requires the length of motif to
be inputted along with the sequences. It is assumed that there is also a master reference sequence such
that its sequence data comprises all the promoter sequences inputted. Besides this, the input consists of
a phylogenetic tree over different species specifying the neutral point mutation rate at each branch point.
By performing multiple sequence alignment it selects contiguous regions that are conserved in the master
reference. There will be aligned portions in these multiple sequences and then there will be some ’bracketed’
sequences which do not align with the reference but have flanking regions aligned to it. A hidden markov
model is then trained using essentially two states: a motif or background over the aligned regions accounting
for which species in the phylogenetic tree the alignments arose from, to maximize an objective function.

Caveats: Not suitable for de-novo motif discovery; Assumes all positions in the binding site evolve
independently(this can probably be accounted for by fitting a higher order markov chain, but was not discussed
in the original paper); requires presence of a ’master reference’ with all promoters present in that sequence

INSIGHT:

Inference of Natural Selection from Interspersed Genomically coHerent elemenTs (INSIGHT) is a probabilistic
method that characterizes the effects of natural selection on collections of short transcription factor binding
sequences[23].

Just like the previous methods, they also argue that even though transcription factor binding sites have
experienced weaker selection than protein coding regions, there is enough evidence of evolutionary adaptation.
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It can be argued that mutations since cis-regulatory mutations are often co-dominant, and hence natural
selection might act more strongly on these as compared to protein coding mutations.

It assumes that nucleotides within TFBs evolve by a mixture of four selective models: 1) neutral drift
2) weak negative selection 3) strong negative selection 4) positive selection. A strong positive or negative
selection will cause mutations to rapidly reach fixation or be lost. A weak negative selection allows polymor-
phism, allowing degeneracy in the TFBS consensus sequence. Positive selection allows for fixation of derived
alleles while negative selection ensures elimination of deleterious ones. The flanking sequences are assumed
to be evolving neutrally. Information about overall prevalence of selection comes from the rate of alleles, pos-
itive selection rate comes from the rate of divergence, and information about weak negative selection comes
from the relative rates of low and high frequency derived alleles. By analyzing different transcription factors
from the ENCODE datasets, they detected a strong signature of natural selection in TFBS compared to the
flanking sequences. They also found that the information content is positively correlated with the fraction
of sites under selection, thus indicating higher information content at a particular site will often have a high
conservation too.

Third generation: Combining Information from multiple sources

Over the past half decade, the advent of technologies such as ChIP-seq, DNAse-seq, and other epigenetic-seq
studies has been used to create models that along with phylogenetic footprinting produce promising results.

MEME and priors

MEME[24] was the first EM based de-novo motif finder. It uses EM to find over-represented motifs and
hence as such does not take into account any biological feature. However, this extra biological information
can be easily integrated in the form of priors.

Several molecular mechanisms limit TF-DNA binding. Local chromatin structure in its ‘closed’ form
hinders TF access to DNA. A lot of studies have also established the association of epigenetic marks such as
mono and tri methylation of H3K4[25] and hypersensitivity to DNAse I digestion[26]

With the easy availability of this epigenomic data in the past few years, MEME leverages this extra
information in the form of Bayesian priors. This is an extension of the work done earlier in a tool called
PRIORITY[27, 28]

These priors represent the probability of a TF binding a certain position i given that the tag count at
position is yi. This tag count can be from any assay: histone modification, DNAse I etc. The tag counts can
be mapped to probability values using a linear mapping function at each position i. So the prior P (Bi = 1|yi)
is the probability of binding (Bi = 1) given the tag count at ith position is yi Using DNAse I sensitivity and
histone marks H3K4Me1, H3K4Me3, H3K9Ac,H3K27Ac (which are known to correlate with transcriptional
activation) they create a prior and using H3K27Me3 as a negative control asses the log posterior scores
compared to a degenerate prior. They concluded that using H3K4Me3 priors improved TFBS prediction in
mouse ES cells while using histone modification and DNAse I hypersensitivity improved predictions in human
K562 and GM12878 cell lines.

CENTIPEDE

Centipede[29] is a probabilistic framework that integrates cell/tissue-specific experimental data(histone marks,
DNAse I hypersensitivity, gene annotation and phylogenetic footprinting) and uses mixture models to predict
TFBS. CENTIPEDE can identify binding sites for many factors from a single experimental assay.

The underlying hypothesis here is the same as that was used for MEME using epigenetic priors, the sites
that are bound are more likely to be associated with an open chromatin region and would often be associated
with active histone marks, evolutionary conservation. For each candidate binding site CENTIPEDE separates
the information into two components: G and D. G: Genomic information independent of cell type or
experimental conditions. D: Cell-specific experimental data(DNAse I, histone marks). Here the information
contained in G is treated as a prior and then the likelihood P (D|Bound) is modeled depending on whether
the site is bound or not. In addition to the histone and DNAse I marks, other informative priors are also
incorporated: PWM match score, proximity to the nearest TSS and evolutionary conservation.
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Comparative genomics based methods to asses conservation
de-novo motif finder, utilising some additional information
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Figure 1: Timeline of different tools used for motif discovery or phylogenetic footprinting. The list is non-
exhaustive. For a more detailed list refer to the following reviews:[46, 47, 48]

Conclusions

A lot of methods have leveraged phylogenetic footprinting to predict TFBS based on the hypothesis that
these sequences evolve slowly compared to the neighboring sequences. However, leveraging just this piece of
extra information has not been able to disprove the Futility Theorem . Use of mixture models and Bayesian
priors leveraging information from the open chromatin region sounds promising. For example, a recent paper
from Siepel et al. [30] explored using machine learning approach to reveal active transcriptional regulatory
elements using GRO-seq[31].

These methods coupled with other *-seq technologies mapping open chromatin regions such as GRO-seq
and ATAC-seq[32] can help in decoding the regulatory map of the genome at higher resolutions.

Thus improving these third generation methods that use cascaded information from different sources, can
promise better characterized regulatory maps in the coming few years.
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