{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "name": "04_Chapter04.ipynb", "provenance": [], "toc_visible": true, "include_colab_link": true }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "view-in-github", "colab_type": "text" }, "source": [ "\"Open" ] }, { "cell_type": "markdown", "metadata": { "id": "QwCP4URihbil", "colab_type": "text" }, "source": [ "## Chapter 4 - Generalized Linear Models: Model Fitting and Inference" ] }, { "cell_type": "code", "metadata": { "colab_type": "code", "id": "GQeT5h9SMAIZ", "colab": {}, "outputId": "1d7fac02-0eed-4bea-c5a6-9d9bbab4b92f" }, "source": [ "import warnings\n", "\n", "import pandas as pd\n", "import proplot as plot\n", "import seaborn as sns\n", "import statsmodels.api as sm\n", "import statsmodels.formula.api as smf\n", "from patsy import dmatrices\n", "from scipy import stats\n", "\n", "warnings.filterwarnings(\"ignore\")\n", "%pylab inline\n", "\n", "\n", "plt.rcParams[\"axes.labelweight\"] = \"bold\"\n", "plt.rcParams[\"font.weight\"] = \"bold\"" ], "execution_count": null, "outputs": [ { "output_type": "stream", "text": [ "Populating the interactive namespace from numpy and matplotlib\n" ], "name": "stdout" } ] }, { "cell_type": "code", "metadata": { "colab_type": "code", "id": "VeC-rT1MMAIq", "colab": {}, "outputId": "fcc7fcbd-d528-4e36-af16-6ad466bbf15a" }, "source": [ "crabs_df = pd.read_csv(\"../data/Crabs.tsv.gz\", sep=\"\\t\")\n", "crabs_df.head()" ], "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
crabyweightwidthcolorspine
1183.0528.323
2201.5522.533
3392.3026.011
4402.1024.833
5542.6026.033
\n", "
" ], "text/plain": [ " crab y weight width color spine\n", "1 1 8 3.05 28.3 2 3\n", "2 2 0 1.55 22.5 3 3\n", "3 3 9 2.30 26.0 1 1\n", "4 4 0 2.10 24.8 3 3\n", "5 5 4 2.60 26.0 3 3" ] }, "metadata": { "tags": [] }, "execution_count": 2 } ] }, { "cell_type": "code", "metadata": { "colab_type": "code", "id": "zHNQQBTBMAI0", "colab": {}, "outputId": "138cd6ce-7739-4098-e4e1-e472ac3b0a8d" }, "source": [ "formula = \"\"\"y ~ width\"\"\"\n", "response, predictors = dmatrices(formula, crabs_df, return_type=\"dataframe\")\n", "fit = sm.GLM(\n", " response, predictors, family=sm.families.Poisson(link=sm.families.links.log())\n", ").fit()\n", "print(fit.summary())" ], "execution_count": null, "outputs": [ { "output_type": "stream", "text": [ " Generalized Linear Model Regression Results \n", "==============================================================================\n", "Dep. Variable: y No. Observations: 173\n", "Model: GLM Df Residuals: 171\n", "Model Family: Poisson Df Model: 1\n", "Link Function: log Scale: 1.0000\n", "Method: IRLS Log-Likelihood: -461.59\n", "Date: Tue, 23 Jun 2020 Deviance: 567.88\n", "Time: 00:47:28 Pearson chi2: 544.\n", "No. Iterations: 5 \n", "Covariance Type: nonrobust \n", "==============================================================================\n", " coef std err z P>|z| [0.025 0.975]\n", "------------------------------------------------------------------------------\n", "Intercept -3.3048 0.542 -6.095 0.000 -4.368 -2.242\n", "width 0.1640 0.020 8.216 0.000 0.125 0.203\n", "==============================================================================\n" ], "name": "stdout" } ] }, { "cell_type": "code", "metadata": { "colab_type": "code", "id": "VIM8iLB7MAI-", "colab": {}, "outputId": "24d2ff3f-fe9e-443d-e022-1647bf1832f0" }, "source": [ "formula = \"\"\"y ~ weight + width\"\"\"\n", "response, predictors = dmatrices(formula, crabs_df, return_type=\"dataframe\")\n", "fit = sm.GLM(\n", " response, predictors, family=sm.families.Poisson(link=sm.families.links.log())\n", ").fit()\n", "print(fit.summary())" ], "execution_count": null, "outputs": [ { "output_type": "stream", "text": [ " Generalized Linear Model Regression Results \n", "==============================================================================\n", "Dep. Variable: y No. Observations: 173\n", "Model: GLM Df Residuals: 170\n", "Model Family: Poisson Df Model: 2\n", "Link Function: log Scale: 1.0000\n", "Method: IRLS Log-Likelihood: -457.60\n", "Date: Tue, 23 Jun 2020 Deviance: 559.90\n", "Time: 00:47:28 Pearson chi2: 537.\n", "No. Iterations: 5 \n", "Covariance Type: nonrobust \n", "==============================================================================\n", " coef std err z P>|z| [0.025 0.975]\n", "------------------------------------------------------------------------------\n", "Intercept -1.2952 0.899 -1.441 0.150 -3.057 0.467\n", "weight 0.4470 0.159 2.818 0.005 0.136 0.758\n", "width 0.0461 0.047 0.986 0.324 -0.046 0.138\n", "==============================================================================\n" ], "name": "stdout" } ] }, { "cell_type": "code", "metadata": { "colab_type": "code", "id": "UIeJFaSeMAJG", "colab": {}, "outputId": "29f6c310-06d8-4e3f-9d2d-6cd69b5ba628" }, "source": [ "house_df = pd.read_csv(\"../data/Houses.tsv.gz\", sep=\"\\t\")\n", "sns.pairplot(house_df[[\"price\", \"size\", \"taxes\"]])" ], "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "" ] }, "metadata": { "tags": [] }, "execution_count": 5 }, { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABdwAAAXcCAYAAAA4NUxkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde3RU5dn//08mkxlIIJLEIUIMTUCJICC4IKiggorQimmjLaS2tg014vkUKv48VaWFPLV4qlI0T6Gt+vVZCx9sqWAQrKAFTaDkK2g0iYRDCgKTBEI4ZHKa3x98s83kRGayJ5PMvF9rudz73veVfW/2zlyZa/bcO+z48eNuAQAAAAAAAACAbrEEegAAAAAAAAAAAAQDCu4AAAAAAAAAAJiAgjsAAAAAAAAAACag4A4AAAAAAAAAgAkouAMAAAAAAAAAYAIK7gAAAAAAAAAAmICCOwAAAAAAAAAAJqDg7idz587V3LlzAz0MAACCEnkWAAD/ItcCAOAba6AHEKz27Nkji8WigQMHGm2HDx+WJMXHxwdqWAgSXEswA9cRzOLttVRTU9PtfbaXZ3EGv9vBjfMb3Di/wa0nz29vzLVc36GHcx6aOO+hKRTPe2e5ljvcAQAAAAAAAAAwQcAL7tu2bdMvf/lLjRo1Sueee65GjBihn/3sZ9q5c2eHMU6nUw8//LDGjRsnh8Oh5ORkzZkzR1u3bu10X3v27NFdd91l7OvCCy/UL37xC33xxRdmHxYAAAAAAAAAIMQEtOCek5Oj6667TqtWrdKBAwdUV1cnp9Opv/3tb5o+fbrWrl3bJqa0tFRTpkzR8uXLtXfvXrlcLlVWViovL0/f/e53lZub2+6+8vPzNXXqVL3xxhvGvg4fPqzVq1frqquuandfAAAAAAAAAAB0VcAK7itXrtTixYvldrslSYMGDdL48eMVEREhSaqvr9edd96pyspKI8btdmv+/Pk6dOiQJMlisWjChAkaNGiQsX3hwoUqKiry2Nfp06d12223GXPr2Gw2XXrppYqKijL2dccdd+jIkSP+PWgAAAAAAAAAQNAKSMG9pqZGTz75pLH+gx/8QKWlpfroo4+0ceNG2Ww2SdKxY8e0atUqo98HH3yg7du3G+urVq3S5s2b9dlnnyk5OVmS1NDQoGeffdZjf2+99Zb27dsnSbLb7frwww+1adMm5efnG8X66upqLVu2zD8HDAAAAAAAAAAIegEpuK9Zs0bV1dWSztxt/tJLL8lut0uSJkyYoDvvvFM/+9nP9Mgjj+jiiy824t555x1j+dJLL9WMGTMkSTExMZo/f76xLS8vT7W1te3Gfe9739PYsWMlScOGDdMtt9zSbj8AAAAAAAAAALxhDcROP/zwQ2P54osvNu4yb7Zo0aJ243bs2GEsT5w40WPbZZddZiyfPHlSxcXFuuSSSyRJhYWFncY139m+Z88eHT16VDExMd4cDgAAAAAAAAAAgbnDveUc64mJiTp27JiWLFmiH/7wh7r11lu1fPlynTp1yiOmqalJpaWlxvqQIUM8tickJHisFxcXS5IOHjyo48ePG+3nnXeeR7+hQ4d6rJeUlPhwRAAAAAAAAACAUBeQO9y/+eYbY7mqqkpTp07V/v37jba///3veuWVV/T2228rJSVF0pl53+vq6ow+0dHRHj+z+QGoLX+uJI+HrrYXN2DAgHbjAAAAAAAAAADwRkAK7idOnDCW//Wvf7XbZ9++fbr55pv1r3/9S4MGDWpzx3tERESn6ydPnpQkr+Najq09qampnW5vVlZWpqSkJB0+fNhoczqdXYoFzoZrCWbgOoJZvL2WIiMjO9zWnTyLM/jdDm6c3+DG+Q1uPXl+e2Ou5foOPZzz0MR5D02heN47y7UBmVKmsbHRY/2yyy7Ttm3btG/fPj3zzDNG+/79+4351d1ud6c/MywsrN32s8UBAAAAAAAAAGCGgNzhPmDAAB07dkySZLFYtGLFCp1//vmSpAceeEBbt25VXl6eJOndd9/Vo48+2uZTg/r6+k7Xm6eYOVtcQ0NDm7F1pqCgoNPtzVJTU2WxWBQfH99mW3ttgC+4lmAGriOYpavXUk1NTYfbzMizOIN/m+DG+Q1unN/g1hPntzfnWq7v0MM5D02c99AUSue9s1wbkDvc4+LijOWhQ4caxfZmV1xxhbG8Z88eSdLAgQNltX77+UDrqV9aH2RsbKwkKSYmxqO9dVzLB6q2jAMAAAAAAAAAwBsBucN91KhR2r17tyR5PAi1WcsHoDY1NUmSwsPDlZSUpK+//lqS54NXJengwYMe680PW01ISFD//v11+vTpduNar48cOdLr4wEAAAAAoKWqU3VaUVCujSVOHXc1yO46rquHx+m+WTGKjbQFengAAAS11nk42m7VjJEOZaYm+j0PB6Tgfvnll+vdd9+VJB05ckRlZWUaPny4sb2srMxYHjZsmLE8fvx4o+Cen5/v8TO3b99uLEdFRRkFd4vForFjxxpfm8vPz9c999zTblxycnKbO+IBAAAAAOgqV0OjHlpTpBX5+1Xb0PTthpNHtenrCv2uoFKZqYl6Lm207NbwwA0UAIAg1GEelrS+2Kkn8or9nocDMqXMzTff7DE9zH333afq6mpJ0tdff60333zT2DZjxgxjefbs2cZyYWGh1q9fL0mqrq7Wq6++amybOXOm+vXr127ce++9p507d0qSDhw44LGvH/zgB90+NgAAAABAaHI1NGrWa/latmVvmzf5zU7XN2rZlr2a9Vq+XA2NPTxCAACCV2/JwwEpuA8dOlT33Xefsf7RRx/p4osv1lVXXaXLL7/ceKDqoEGDPO5GT0tL06hRo4z1uXPn6uqrr9a4ceNUWloq6czUMwsWLPDYX2ZmphwOh6QzU9hce+21mjZtmiZNmqTKykpJUnR0tO68807/HDAAAAAAIOg9tKZIm3ZXdqnvpt2Vyl5T5OcRAQAQOnpLHg5IwV2SHn/8cf3oRz8y1o8fP67/+3//r1wulyTpnHPO0RtvvKGhQ4cafaxWq15//XWdd955ks7M715YWKijR48afZYsWaIxY8Z47Kv5Zw0cOFCS5HK5tGPHDuMBqhEREVq2bJnxcwEAAAAA8EbVqTqtLCj3KmZFQbmqTrV9rhkAAPBOb8rDASu4W61W/elPf9Lrr7+u6dOna9CgQbLZbEpKSlJWVpa2bt2qq666qk3cyJEj9cknn+iee+5RcnKybDabYmNjNXPmTK1bt0533HFHu/u7/PLL9emnnyozM1Pnn3++bDabBg8erJtuukmbNm1SWlqavw8ZAAAAABCkKk7Waeu9U1T6/12jwoeu0ts/n6jvjRosS1jHMafrG70uDgAAgLZWFJTrdL13U8T4Kw8H5KGpLX3/+9/X97//fa9i4uLitHjxYi1evNiruMTERL344otexQAAAAAAcDYjHQM81scnnKObxw3RnspTeulfe/RC3r8ld9u4DSVOZU8b0UOjBAAgOG0scfoU5488HPCCOwAAAAAAfVnVqTqtKCjXxhKnjrsaFG23asZIhzJTE5UcF6nnv3+xxkQ36u7/3SlXq9gaV0NAxgwACH6d5afYSFugh2eq4z7mU3/kYQruMF1Y9j8CPYSzci+9MdBDAAAAANDHuRoa9dCaIq3I36/ahiaPbeuLnXoir1iZqYl6Lm20Zo+OlzROt6/dp6YWd7oPtPO2HABgLm/yk90aHqBRmivax3zqjzwcsDncAQAAAADoq1wNjZr1Wr6WbdnbppjR7HR9o5Zt2atZr+XL1dCo2aPjde/UZI8+M0Y6emK4AIAQ4Ut+CgbX+ZhP/ZGHKbgDAAAAAOClh9YUadPuyi713bS7Uk+tL5Ek3XdlsvEg1f4R4ZqXmuivIQIAQpC3+Sl7TZGfR9Qz5qUmqn+Ed3fr+ysP8901EzidTlVUVHi0uVwu2WzBNRcSAACBQJ4FAPQ2VafqtLKg3KuYtwoP6OHpI3RRcpRmpgzWe18d0bzURMX0gjl0ybUAEBx8yU8rCsr1zKyUPj+ne2ykTZmpiVq2ZW+XY/yVhym4myA3N1c5OTlt2h0OvhoIAEB3kWcBAL3NioJyna737iv4tfWN+p/Cg3oqOVG/nDxMtQ2NWpo22k8j9A65FgCCgy/56XR9o1YWlCt72gg/jarnPJc2WkWHarp0h//0C+L8locpuJsgKytL6enpHm0ZGRncDQAAgAnIswCA3mZjidOnuM1lZwoAqcMGafboyb3mQXXkWgAIDr7mpw0lzqAouNut4cq7fbIeWlOklR18+NA8jcxSPz4wloK7CRwOR5tP/u12uywWpsgHAKC7yLMAgN7muKvBp7gT/y8ucVB/M4fTbeRaAAgOvuanGh/jeiO7NVyv3DRWi2alaGVBuTaUOFXjatBAu1XXpziUOcn/07lRcAcAAAAAwAvRdt/eSg/wMQ4AgK7wNT8NDML8FBtpU/a0EQG5c5+PqwEAAAAA8MJ1I32b2/zq4XEmjwQAgG/5mp9m+BiH9lFwBwAAAADAC/NSE9U/wrt5X/tFhOvHE4b6aUQAAPiWn5rnNId5KLgDAAAAAOCF2EibMr0sTvx4QoIG+XnOWABAaPMlP81L9f+c5qGGgjsAAAAAAF56Lm20po3o2hQx0y+I01MzR/p5RAAAeJ+flqaN9vOIQg8FdwAAAAAAvGS3hivv9sm6a0pSh1/f7x8RrrunJOm9rMmyW737ij8AAL4gPwVe8D2CFgAAAACAHmC3huuVm8Zq0awUrSwo14YSp2pcDRpot+r6FIcyJ/E1fQBAzyM/BRYFdwAAAAAAuiE20qbsaSOUPW1EoIcCAICB/BQYTCkDAAAAAAAAAIAJKLgDAAAAAAAAAGACppQxgdPpVEVFhUeby+WSzcZcSAAAdBd5FgAA/yLXAgBgHgruJsjNzVVOTk6bdofDEYDRAAAQXMizAAD4F7kWAADzUHA3QVZWltLT0z3aMjIyuBsAAAATkGcBAPAvci0AAOah4G4Ch8PR5pN/u90ui4Up8gEA6C7yLAAA/kWuBQDAPGRPAAAAAAAAAABMQMEdAAAAAAAAAAATUHAHAAAAAAAAAMAEFNwBAAAAAAAAADABBXcAAAAAAAAAAExAwR0AAAAAAAAAABNQcAcAAAAAAAAAwAQU3AEAAAAAAAAAMAEFdwAAAAAAAAAATEDBHQAAAAAAAAAAE1BwBwAAAAAAAADABNZADyAYOJ1OVVRUeLS5XC7ZbLYAjQgAgOBBngUAwL/ItQAAmIeCuwlyc3OVk5PTpt3hcARgNAAABBfyLAAA/kWuBQDAPBTcTZCVlaX09HSPtoyMDO4GAADABORZAAD8i1wLAIB5KLibwOFwtPnk3263y2JhinwAALqLPAsAgH+RawEAMA/ZEwAAAAAAAAAAE1BwBwAAAAAAAADABBTcAQAAAAAAAAAwAQV3AAAAAAAAAABMQMEdAAAAAAAAAAATUHAHAAAAAAAAAMAEFNwBAAAAAAAAADABBXcAAAAAAAAAAExAwR0AAAAAAAAAABNQcAcAAAAAAAAAwAQU3AEAAAAAAAAAMIE10AMIBk6nUxUVFR5tLpdLNpstQCMCACB4kGcBAPAvci0AAOah4G6C3Nxc5eTktGl3OBwBGA0AAMGFPAsAgH+RawEAMA8FdxNkZWUpPT3doy0jI4O7AQAAMAF5FgAA/yLXAgBgHgruJnA4HG0++bfb7bJYmCIfAIDuIs8CAOBf5FoAAMxD9gQAAAAAAAAAwAQU3AEAAAAAAAAAMEFAC+5XX321oqOjO/3v7bff9ohxOp16+OGHNW7cODkcDiUnJ2vOnDnaunVrp/vas2eP7rrrLo0aNUrnnnuuLrzwQv3iF7/QF1984c9DBAAAAAAAAACEiIAV3BsbG/Xll196FVNaWqopU6Zo+fLl2rt3r1wulyorK5WXl6fvfve7ys3NbTcuPz9fU6dO1RtvvKEDBw6orq5Ohw8f1urVq3XVVVdp7dq1ZhwSAAAAAAAAACCEBeyhqaWlpaqtrZUk9evXTxMnTmy3X/ODW9xut+bPn69Dhw5JkiwWiy655BLt2bNHx44dk9vt1sKFCzVlyhSNHj3aiD99+rRuu+021dTUSJJsNpvGjBmj4uJinTx5UvX19brjjjv073//W4MHD/bnIQMAAACA31SdqtOKgnJtLHHquKtB0XarZox0KDM1UbGRtkAPDwCCHq/DAKQAFtx37dplLF988cVat25dp/0/+OADbd++3VhftWqVZsyYoaNHj2ratGnas2ePGhoa9Oyzz2rlypVGv7feekv79u2TdOYp6//85z81duxY7d+/X1OnTtWxY8dUXV2tZcuW6amnnjL3IAEAAADAz1wNjXpoTZFW5O9XbUOTx7b1xU49kVeszNREPZc2WnZreIBGCQDBi9dhAC0FbEqZzz//3FgePnz4Wfu/8847xvKll16qGTNmSJJiYmI0f/58Y1teXp5x53zruO9973saO3asJGnYsGG65ZZb2u0HAAAAAH2Bq6FRs17L17Ite9sUeZqdrm/Usi17Neu1fLkaGnt4hAAQ3HgdBtBawAruLe9wT05OPmv/HTt2GMutp5+57LLLjOWTJ0+quLjYWC8sLOxS3J49e3T06NEujBwAAAAAeoeH1hRp0+7KLvXdtLtS2WuK/DwiAAgtvA4DaK1X3OG+bds2XXHFFRo8eLCSk5P105/+1KPA3tTUpNLSUmN9yJAhHj8rISHBY7254H7w4EEdP37caD/vvPM8+g0dOtRjvaSkxMejAQAAAICeVXWqTisLyr2KWVFQrqpTdX4aEQCEFl6HAbQnIAX3iooK4+GnkvThhx/q888/V21trSorK7VmzRpdd911+utf/ypJqqmpUV3dty9G0dHRHj8vKirKY72qqkqSVFnp+Qlj67gBAwa0GwcAAAAAvd2KgnKdrvduaoLT9Y1eF4cAAO3jdRhAewLy0NSW08lIksVi0dixY3Xy5Ent3r1bbrdbDQ0Nuv/++3XRRRcpMTHRo39ERESn6ydPnpQknTp1yqu4EydOnHXsqampZ+0jSWVlZUpKStLhw4eNNqfT2aVY+F/L89IXcS3BDFxHMIu311JkZGSH27qTZ3EGv9vBjfMb3Lw9v2u3F0snvZ8W893txfrpqAFn7whT9eTvb2/Mtbx+hZ5QOOe8DrcVCucdbYXiee8s1wZsSpkrr7xSCQkJmjRpknbs2KGPP/5YO3bs0DvvvGMUwhsbG/Vf//Vfcrvdnf6ssLCwdtvPFgcAAAAAfVWNq8GnuBM+xgEAPPE6DKA9AbnDffr06Zo+fXq726655hrNnTtXb7zxhiTpo48+anMnen19fafrzVPMtP6koXW/hgbPF7jWU8y0p6Cg4Kx9pDN3DVgsFsXHx7fZ1l4belawnINgOQ4EFtcRzNLVa6mmpqbDbWbkWZzBv01w4/wGt66e33Mdg6Wq9m8+6kycw8E1FEA98W/fm3Mt117oCeZzzutwx4L9+NC+UDrvneXagN3h3pmxY8cayy6XS6dPn5bV+u1nA62nfml9gLGxsZKkmJgYj/bWcS0fqNoyDgAAAAB6u+tGOnyKm+FjHADAE6/DANoT0IJ7TU1Nuw8qbX0nev/+/ZWUlGSsf/PNNx7bDx486LGekpIiSUpISFD//v07jGu9PnLkyK4PHgAAAAACaF5qovpHhHsV0z8iXPNSE8/eEQBwVrwOA2hPQAruP/3pTzV06FAlJCQoMzOzzfYdO3YYy4MHD5bD4dD48eONtvz8fI/+27dvN5ajoqKMgnvzw1i7EpecnNzmjngAAAAA6K1iI23K9LJoMy81UTGRNj+NCABCC6/DANoTkIL7iBEjjOldPvzwQ/31r381tq1bt05/+9vfjPW5c+dKkmbPnm20FRYWav369ZKk6upqvfrqq8a2mTNnql+/fsZ6y7j33ntPO3fulCQdOHBAb775prHtBz/4gSnHBgAAAAA95bm00Zo2Iq5LfadfEKelaaP9PCIACC28DgNoLSAF9zvuuEPnnHOOsX7PPfdo/PjxmjhxojIyMtTU1CRJGjp0qBYsWCBJSktL06hRo4yYuXPn6uqrr9a4ceNUWloqSQoPDzf6N8vMzJTDcWZurLq6Ol177bWaNm2aJk2apMrKSklSdHS07rzzTv8dMAAAAAD4gd0arrzbJ+uuKUkdTmvQPyJcd09J0ntZk2W3ejf1AQCgc7wOA2jNevYu5hsyZIjefPNN/eQnP1F1dbUkqaysrE2fd955x5jmxWq16vXXX9fs2bN16NAhNTU1qbCw0CNmyZIlGjNmjEfbOeecozfeeEM//OEPVVNTI5fL5TFlTUREhJYtW6bzzjvPH4cKAAAAAH5lt4brlZvGatGsFK0sKNeGEqdqXA0aaLfq+hSHMicxfQEA+BOvwwBaCkjBXZKuuuoqffrpp3r55Ze1YcMG7d+/X+Hh4UpKStINN9yge++91+MueOnMQ00/+eQTLV26VGvXrtWBAwc0YMAATZo0Sffff7+mTp3a7r4uv/xyffrpp/r973+vDRs26MiRIxo0aJCmTp2q7Oxsj3neAQAAAKAvio20KXvaCGVPGxHooQBASOJ1GIAUwIK7JCUkJGjJkiVasmRJl2Pi4uK0ePFiLV682Kt9JSYm6sUXX/R2iAAAAAAAAAAAdElA5nAHAAAAAAAAACDYUHAHAAAAAAAAAMAEFNwBAAAAAAAAADABBXcAAAAAAAAAAEwQ0IemBgun06mKigqPNpfLJZvNFqARAQAQPMizAAD4F7kWAADzUHA3QW5urnJyctq0OxyOAIwGAIDgQp4FAMC/yLUAAJiHgrsJsrKylJ6e7tGWkZHB3QAAAJiAPAsAgH+RawEAMA8FdxM4HI42n/zb7XZZLEyRDwBAd5FnAQDwL3ItAADmIXsCAAAAAAAAAGACCu4AAAAAAAAAAJiAgjsAAAAAAAAAACag4A4AAAAAAAAAgAkouAMAAAAAAAAAYAIK7gAAAAAAAAAAmICCOwAAAAAAAAAAJqDgDgAAAAAAAACACSi4AwAAAAAAAABgAmugBwAEQlj2PwI9hC5xL70x0EMAAAAAAAAA0EXc4Q4AAAAAAAAAgAm4w90ETqdTFRUVHm0ul0s2my1AIwIAIHiQZwEA8C9yLQAA5qHgboLc3Fzl5OS0aXc4HAEYDQAAwYU8CwCAf5FrAQAwDwV3E2RlZSk9Pd2jLSMjg7sBAAAwAXkWAAD/ItcCAGAeCu4mcDgcbT75t9vtsliYIh8AgO4izwIA4F/kWgAAzEP2BAAAAAAAAADABBTcAQAAAAAAAAAwAQV3AAAAAAAAAABMQMEdAAAAAAAAAAATUHAHAAAAAAAAAMAEFNwBAAAAAAAAADABBXcAAAAAAAAAAExAwR0AAAAAAAAAABNQcAcAAAAAAAAAwATWQA8AAAAAAIJF1ak6rSgo18YSp467GhRtt2rGSIcyUxMVG2kL9PAAAEAfx98avR8FdxM4nU5VVFR4tLlcLtlsXOQAAHQXeRZAX+BqaNRDa4q0In+/ahuaPLatL3bqibxiZaYm6rm00bJbwwM0SqB95FoA6P34W6PvoOBugtzcXOXk5LRpdzgcARgNAADBhTwLoLdzNTRq1mv52rS7ssM+p+sbtWzLXhUdqlHe7ZN5I4xehVwLAL0bf2v0LRTcTZCVlaX09HSPtoyMDO4GAADABORZAL3dQ2uKOn0D3NKm3ZXKXlOkl28a6+dRAV1HrgWA3o2/NfoWCu4mcDgcbT75t9vtslh4Ji0AAN1FngXQm1WdqtPKgnKvYlYUlOuZWSnMs4peg1wLAL0Xf2v0PWRPAAAAAPDRioJyna5v9CrmdH2j12+cAQBAaOJvjb6HgjsAAAAA+GhjidOnuA0+xgEAgNDC3xp9DwV3AAAAAPDRcVeDT3E1PsYBAIDQwt8afQ8FdwAAAADwUbTdt8diDfQxDgAAhBb+1uh7KLgDAAAAgI+uG+k4e6d2zPAxDgAAhBb+1uh7KLgDAAAAgI/mpSaqf0S4VzH9I8I1LzXRTyMCAADBhL81+h4K7gAAAADgo9hImzK9fEM7LzVRMZE2P40IAAAEE/7W6HsouAMAAABANzyXNlrTRsR1qe/0C+K0NG20n0cEAACCCX9r9C0U3AEAAACgG+zWcOXdPll3TUnq8Cvf/SPCdfeUJL2XNVl2q3dfCwcAAKGNvzX6Fh5XCwAAAADdZLeG65WbxmrRrBStLCjXhhKnalwNGmi36voUhzIn8dVuAADgO/7W6DsouAMAAACASWIjbcqeNkLZ00YEeigAACAI8bdG70fB3QROp1MVFRUebS6XSzYbnyoBANBd5FkAAPyLXAsAgHkouJsgNzdXOTk5bdodDkcARgMAQHAhzwIA4F/kWgAAzEPB3QRZWVlKT0/3aMvIyOBuAAAATECeBQDAv8i1AACYh4K7CRwOR5tP/u12uywWS4BGBABA8CDPAgDgX+RaAADMQ/YEAAAAAAAAAMAEFNwBAAAAAAAAADABBXcAAAAAAAAAAEzQ6wrupaWlGjx4sKKjoxUdHa19+/a16VNTU6NFixZp4sSJGjx4sIYNG6Ybb7xRa9eu7fRnO51OPfzwwxo3bpwcDoeSk5M1Z84cbd261V+HAwAAAAAAAAAIEb3qoalut1v33XefamtrO+zjdDr1ve99T8XFxUZbbW2tNm/erM2bN+uBBx7QM8880yautLRUN9xwgw4dOmS0uVwu5eXlaf369fr973+vrKwscw8IAAAAAAAAABAyetUd7itXrtSWLVs67bNgwQKPYvvYsWMVHx9vrL/wwgvasGGDR4zb7db8+fONYrvFYtGECRM0aNAgY/vChQtVVFRk1qEAAAAAAAAAAEJMrym4f/PNN/r1r3/daZ+SkhK98847xvrzzz+vLVu26PPPP1dqaqrRnpOT4xH3wQcfaPv27cb6qlWrtHnzZn322WdKTk6WJDU0NOjZZ58141AAAAAAAAAAACGo1xTcFyxYoOrq6k77tCy2x8fHKzMzU5Jkt9v14IMPGtu2bdum//znP+3GXXrppZoxY4YkKSYmRvPnzze25eXldTqdDQAAAAAAAAAAHekVBfe//wURdosAACAASURBVP3v+sc//iFJxjQv7dmxY4exPGHCBFks3w7/sssu8+hbWFjYbtzEiRM9+rWMO3nypMd0NQAAAAAAAAAAdFXAC+7Hjh3Tr371K0mSzWbTk08+2WHflsXwIUOGeGyLi4uT3W5v07epqUmlpaUdxiUkJHS4DwAAAAAAAAAAuirgBfcnnnjCeJjpgw8+qJSUlA77VlVVGcvR0dFttkdFRbXpW1NTo7q6ug7jWsa03gcAAAAAAAAAAF1lDeTOP/74Y/31r3+VJF1wwQVasGCBCgoKOux/8uRJYzkiIqLN9pZtzX1PnTrVYZ/21lvuoz0tH87ambKyMiUlJenw4cNGm9Pp7FIs0Kzl9dMS1xLMwHUEs3h7LUVGRna4rTt5Fmfwux3cOL/BjfMb3Hry/PbGXMv1HXo456GJ8x6aQvG8d5ZrA3aHe21tre6991653W5J0osvvugxJUx7mvt2JCwszJQYAAAAAAAAAAC8FbA73JcsWaKysjJJ0q233qorr7zyrDFRUVGqrq6WJNXX17fZ3rKteaqY1p82tI5rvd56ipnWOrsDv6XU1FRZLBbFx8e32dZeG9Ces10rXEswA9cRzNLVa6mmpqbDbWbkWZzBv01w4/wGN85vcOuJ89ubcy3Xd+jhnIcmzntoCqXz3lmuDcgd7jt37tQf/vAHSdK5556rRYsWdSkuJibGWD5x4kSb7S0PNDY2VpI0cOBAWa3WDuNa/+M0xwEAAAAAAAAA4I2A3OG+du1aNTQ0SJIqKiqUlJTUYd+xY8dKkv74xz9q+PDh2rt3ryTpm2++8ehXWVnp8XDU5oevhoeHKykpSV9//XW7cQcPHvRY7+yhrQAAAAAAAAAAdCQgd7ifbV71jkyYMMFY3r59uxobG431bdu2ddh3/PjxxnJ+fr5Hv+3btxvLUVFRFNwBAAAAAAAAAD4JyB3u3/nOdzR16tR2t1VXV2vXrl3G+sSJE9WvXz8NHjxYKSkpWrp0qSTpyJEjWrFihbKyslRXV6cXX3zRI+b888831mfPnq23335bklRYWKj169dr5syZqq6u1quvvmr0mzlzpvr162fqsQIAAAAAAAAAQkNACu4/+clP9JOf/KTdbR9//LFuuOEGY33lypX6zne+Y6xfe+21+uCDDyRJ2dnZ+vOf/yyn06lDhw4ZfRYuXOjxM9PS0jRq1Ch9+eWXkqS5c+fqkksu0d69e3X06FFJZ6aeWbBggTkHCAAAAAAAAAAIOQEpuHfH8uXLNXv2bBUXF0uSx93wknTvvfdq5syZHm1Wq1Wvv/66Zs+erUOHDqmpqUmFhYUefZYsWaIxY8b4d/AAAAAATFN1qk4rCsq1scSp464GRdutmjHSoczURMVG2gI9PAAA0Aq5G6GgzxXc4+PjtXnzZr300ktavXq19u7dK7vdrksuuUS333670tLS2o0bOXKkPvnkEy1dulRr167VgQMHNGDAAE2aNEn3339/h1PcAAAAAOhdXA2NemhNkVbk71dtQ5PHtvXFTj2RV6zM1EQ9lzZadmt4gEYJAACakbsRSnpdwf3KK6/U8ePHO+0TGRmpRx55RI888ohXPzsuLk6LFy/W4sWLuzNEAAAAAAHiamjUrNfytWl3ZYd9Ttc3atmWvSo6VKO82yfzxh0AgAAidyPUWAI9AAAAAADoqofWFHX6hr2lTbsrlb2myM8jAgAAnSF3I9RQcAcAAADQJ1SdqtPKgnKvYlYUlKvqVJ2fRgQAADpD7kYoouAOAAAAoE9YUVCu0/WNXsWcrm/0+o0+AAAwB7kboajXzeHeFzmdTlVUVHi0uVwu2Ww8XRkAgO4izwJotrHE6VPchhKnsqeNMHk0QPAg1wLwF3I3QhEFdxPk5uYqJyenTbvD4QjAaAAACC7kWQDNjrsafIqr8TEOCBXkWgD+Qu5GKKLgboKsrCylp6d7tGVkZHA3AAAAJiDPAmgWbfft7ctAH+OAUEGuBeAv5G6EIq5eEzgcjjaf/NvtdlksTJEPAEB3kWcBNLtupEPri73/avqMkdylC3SGXAvAX8jdCEVkTwAAAAB9wrzURPWPCPcqpn9EuOalJvppRAAAoDPkboQiCu4AAAAA+oTYSJsyvXwDPi81UTGRTIsBAEAgkLsRiii4AwAAAOgznksbrWkj4rrUd/oFcVqaNtrPIwIAAJ0hdyPUUHAHAAAA0GfYreHKu32y7pqS1OFX1PtHhOvuKUl6L2uy7FbvvsYOAADMRe5GqOGhqQAAAAD6FLs1XK/cNFaLZqVoZUG5NpQ4VeNq0EC7VdenOJQ5ia+iAwDQm5C7EUoouAMAAADok2IjbcqeNkLZ00YEeigAAKALyN0IBUwpAwAAAAAAAACACSi4AwAAAAAAAABgAgruAAAAAAAAAACYgDncAQAAAIS8qlN1WlFQro0lTh13NSjabtWMkQ5lpiYqloe4AQD6MHIc0LMouAMAAAAIWa6GRj20pkgr8vertqHJY9v6YqeeyCtWZmqinksbLbs1PECjBADAe+Q4IDAouJvA6XSqoqLCo83lcslm41NCAAC6izwLwF9cDY2a9Vq+Nu2u7LDP6fpGLduyV0WHapR3+2QKEghK5Fog+JDjgMCh4G6C3Nxc5eTktGl3OBwBGA0AAMGFPAvAXx5aU9RpIaKlTbsrlb2mSC/fNNbPowJ6HrkWCD7kOCBwKLibICsrS+np6R5tGRkZ3A0AAIAJyLMA/KHqVJ1WFpR7FbOioFzPzEphvlsEHXItEFzIcUBgUXA3gcPhaPPJv91ul8ViCdCIAAAIHuRZAP6woqBcp+sbvYo5Xd+olQXlyp42wk+jAgKDXAsEF3IcEFhkTwAAAAAhZ2OJ06e4DT7GAQDQU8hxQGBRcAcAAAAQco67GnyKq/ExDgCAnkKOAwKLgjsAAACAkBNt9212zYE+xgEA0FPIcUBgUXAHAAAAEHKuG+k4e6d2zPAxDgCAnkKOAwKLgjsAAACAkDMvNVH9I8K9iukfEa55qYl+GhEAAOYgxwGBRcEdAAAAQMiJjbQp08vCwrzURMVE2vw0IgAAzEGOAwKLyZkAAAAAhKTn0kar6FCNNu2uPGvf6RfEaWna6B4YVddUnarTioJybSxx6rirQdF2q2aMdCgzNVGxFEwAIOT15RzXW5F70VUU3AEAAACEJLs1XHm3T9ZDa4q0sqBcp+sb2/Rp/or90rTRslu9+3q+P7gaGvXQmiKtyN+v2oYmj23ri516Iq9YmamJeq6XjBcAEBh9Mcf1VuReeIuCOwAAAICQZbeG65WbxmrRrBStLCjXhhKnalwNGmi36voUhzIn9Z6v2LsaGjXrtfxO71Y8Xd+oZVv2quhQjfJun8wbfwAIYX0px/VW5F74goI7AAAAgJAXG2lT9rQRyp42ItBD6dBDa4q6NDWAJG3aXansNUV6+aaxfh4VAKC36ws5rrci98IXPDQVAAAAAHq5qlN1WllQ7lXMioJyVZ2q89OIAAAIbuRe+Io73E3gdDpVUVHh0eZyuWSz8bUcAAC6izwLAGfewLc3/25nTtc3amVBOXc04qzItQDQFrkXvvIouB87dkwffvihdu3apaqqKuXk5Mhqterrr7/WRRddFKgx9nq5ubnKyclp0+5wOAIwGgAAggt5FgCkjSVOn+I2lDh504+zItcCQFvkXvjKKklNTU36zW9+oz/+8Y86ffq0sfGZZ57Rvn37dPnllys9PV0vv/yyIiMjAzbY3iorK0vp6ekebRkZGdwNAACACcizACAddzX4FFfjYxxCC7kWANoi98JXVkm67bbbtHr1arndboWFhRn/l6SvvvpKTU1NWr16tb755hutWbNGERERAR10b+NwONp88m+322WxMEU+AADdRZ4FACna7ttsoAN9jENoIdcCQFvkXvjKsm7dOv3v//6v0dC/f3+PDl999ZUkye1265NPPtF///d/9+gAAQAAACDUXTfSt6k9ZvgYBwBAqCP3wleWv/zlL8bKggULdPDgQY8Ot912m37xi18Y66tWreqpsQEAAAAAJM1LTVT/iHCvYvpHhGteaqKfRgQAQHAj98JXlh07dkiS4uPj9fjjjxtTyTSLi4vTCy+8oPPPP19ut1vFxcWBGCcAAAAAhKzYSJsyvXwDPy81UTGRzMENAIAvyL3wleXo0aMKCwtTQkJCm2J7s7CwMMXGxkqS6uvre3J8AAAAAABJz6WN1rQRcV3qO/2COC1NG+3nEQEAENzIvfCFZdCgQXK73fr666916tSpdjuVlZXpyy+/VFhYmM4999weHiIAAAAAwG4NV97tk3XXlKQOv+LePyJcd09J0ntZk2W3evc1eAAA4IncC19YJ0+erHfffVfHjx/X7bffrmeeecbYWFVVpa1bt+rRRx9VfX29wsLClJqaGsDhAgAAAEDoslvD9cpNY7VoVopWFpRrQ4lTNa4GDbRbdX2KQ5mT+Co7AABmIvfCW9Y777xT7777riTp3XffNZbdbrfGjx/fJqDlA1QBAAAAAD0vNtKm7GkjlD1tRKCHAgBASCD3oqssU6dOVXZ2ttxut6QzhfawsDCFhYXJ7XYb7ZKUmZmpadOmBWioAAAAAAAAAAD0XhZJevLJJ/WHP/xB8fHxktSm0B4dHa1Fixbp+eefD8woAQAAAAAAAADo5azNCz/72c/04x//WAUFBfriiy90/Phx9e/fXxdddJGmTJmifv36BXKcAAAAAAAAAAD0ataWKxEREZoyZYqmTJlitDVPMYOOOZ1OVVRUeLS5XC7ZbDwwAQCA7iLPAgDgX+RaAADMYxTcP/30U/3+97/Xiy++qISEBKPDgw8+qJKSEi1cuFBXX311QAbZ2+Xm5ionJ6dNu8PhCMBoAAAILuRZAAD8i1wLAIB5rJL08ssv64knnpDb7dbnn3/uUXD/8ssv9emnn+r73/++nn76ad1///0BG2xvlZWVpfT0dI+2jIwM7gYAAMAE5FkAAPyLXAsAgHmsu3bt0mOPPSZJCgsLU1FRkWbOnGl0KCkpUVhYmNxut5566ildccUVmjRpUqDG2ys5HI42n/zb7XZZLJYAjQgAgOBBngUAwL/ItQAAmMfyyiuvSDpTbI+Pj1dSUpJHhwceeEBDhgyRdGY+91dffbWnxwgAAAAAAAAAQK9n+fe//y1Jstls2rBhQ5uvkd1///1av3697Ha7JCk/P7/HBwkAAAAAAAAAQG9nOXDggMLCwjR69GgNGzas3U7Dhg3TqFGj5Ha7dejQoR4eIgAAAAAAAAAAvZ+leU62qqqqTjseOXJEkhQREWHqAPbt26cFCxZo/PjxGjx4sBITEzVr1iy9+eabampqajempqZGixYt0sSJEzV48GANGzZMN954o9auXdvpvpxOpx5++GGNGzdODodDycnJmjNnjrZu3WrqMQEAAAAAAAAAQo8lOTlZbrdb+/fv1+rVq9vt9Je//EUHDx5UWFiYkpOTTdv5+++/r9TUVL322msqKytTbW2tqqurtXXrVt1555265ZZbVF9f7xHjdDp1zTXX6Nlnn1VJSYlqa2t17Ngxbd68WT/+8Y/15JNPtruv0tJSTZkyRcuXL9fevXvlcrlUWVmpvLw8ffe731Vubq5pxwUAAAAAAAAACD2W66+/3ljJysrSvHnz9Morr+jPf/6znn/+ec2ZM0cPPPCA0WfmzJmm7Pjo0aP65S9/qdOnT0s6M4f8+PHjFRcXZ/RZt26dfvvb33rELViwQMXFxcb62LFjFR8fb6y/8MIL2rBhg0eM2+3W/PnzjelwLBaLJkyYoEGDBhnbFy5cqKKiIlOODQAAAAAAAAAQeix33XWXzj33XElSQ0ODVq9erccee0wPPPCAnn76ab3//vvG1C6xsbG6++67Tdnxm2++qerqaklSdHS0Pv74Y3300Uf64osvNHnyZKNfbm6ucZd7SUmJ3nnnHWPb888/ry1btujzzz9Xamqq0Z6Tk+Oxrw8++EDbt2831letWqXNmzfrs88+M+7Yb2ho0LPPPmvKsQEAAAAAAAAAQo8lLi5Ob775pmJiYjrtGBMTo7feesvjDvTuuvTSSxUVFaVbb71Vo0aNkiRFRkbq5ptvNvrU1NTI6XRKkkexPT4+XpmZmZIku92uBx980Ni2bds2/ec//zHWW8ZdeumlmjFjhnFM8+fPN7bl5eWptrbWtOMDAAAAAAAAAIQOiyRddtll2rp1q+bPn6+EhAS53W7jv4SEBN1xxx365JNPPO4876577rlHmzZt0sGDB/XrX//aY1tZWZmx3K9fPw0ePFiStGPHDqN9woQJan7ga/MxtFRYWGgst4ybOHGiR7+WcSdPnvSYrgYAAAAAAAAAgK6yNi8MGTJEv/vd7/S73/1OJ06cUE1NjQYOHKgBAwb4dQBhYWHq16+fJOnIkSNavXq1/vSnPxnbs7KyZLWeGWbLYviQIUM8fk5cXJzsdrtcLpfR98Ybb1RTU5NKS0s7jEtISPBYLy4u1iWXXGLCkQEAAAAAAAAAQom1vcYBAwb4vdDe2nvvvae5c+d6tM2ZM0dPP/20sV5VVWUsR0dHt/kZUVFRRsG9uW9NTY3q6uo6jIuKivJYb7kPAAAAAAAAAAC6ylpeXu51UGJioukD2b9/v8d6UlKS5syZY9zdLp2Z8qVZREREm5/Rsq2576lTpzrs0956y320p+XDWTtTVlampKQkHT582Ghrnose6KqW109LXEswA9cRzOLttRQZGdnhtu7kWZzB73Zw4/wGN85vcOvJ89sbcy3Xd+jhnIcmzntoCsXz3lmutY4ZM0ZhYWFd/mFhYWE6evSoGePyUFFRoQkTJqi6ulplZWXau3evfvjDH+rnP/+5XnrpJYWFhcntdp91bK35EgMAAAD0NUdP1emtwoP6qKxSNa4GDbRbdfXwOGVMGKqYSFughwcAQNAjFwOQWkwpc7bCtL899thjeuyxxyRJubm5ys7OliT95S9/0dSpUzV37lxFRUWpurpaklRfX9/mZ7Rsa54qpvWnDa3jWq+3nmKmtYKCgq4cjlJTU2WxWBQfH99mW3ttQHvOdq1wLcEMXEcwS1evpZqamg63mZFncQb/NsGt5fl1NTTqoTVFWpG/X7UNTf+vNUxSozZ9c0S/K6hUZmqinksbLbs1PCDjhXf4/Q1uPXF+e3Ou5foOPaFwzsnFbYXCeUdboXTeO8u1FinwxfbWsrKyNG7cOGP9f/7nfyRJMTExRtuJEyfaxLU80NjYWEnSwIEDPaalaR3X+h+nOQ4AAADo7VwNjZr1Wr6Wbdnb4g2+p9P1jVq2Za9mvZYvV0NjD48QAIDgRi4G0Jp17dq1Adt5bW2tDhw4oJiYmDaF7u985zvauXOnJKl5nvnhw4dr7969kqRvvvnGo39lZaXHw1FTUlIkSeHh4UpKStLXX3/dbtzBgwc91pvjAAAAgN7uoTVF2rS7skt9N+2uVPaaIr1801g/jwoAgNBBLgbQmjU+Pl4jRoyQxWLp0R2PHz9eZWVlkqSHH35Yjz/+uLHN7Xbrq6++MtYHDx4sSZowYYL++c9/SpK2b9+uxsZGhYef+SrOtm3bPH7+hAkTPPbVXHDPz8/36Ld9+3ZjOSoqioI7AAAA+oSqU3VaWVDuVcyKgnI9MytFsSEyj2zVqTqtKCjXxhKnjrsaFG23asZIhzJTE0Pm3wAA4D/k4p5FXkdfYcnIyFBKSooeeeQRVVZ27RM5M4wZM8ZYXr58uQoLC431Z599VqWlpcb6rFmzJEk33HCD0XbkyBGtWLFCklRXV6cXX3zR2DZx4kSdf/75xvrs2bON5cLCQq1fv16SVF1drVdffdXYNnPmTPXr16/bxwYAAAD424qCcp2u9+5r6afrG70uDPRFroZG3b16lxKe3qBf/aNI64ud+mTvUa0vdmrBP4p0/jMbdffqXXytHwDQLeTinkFeR19j+c9//qMjR45o1apVio6O7rEd/+pXvzLmVj9+/LiuueYaTZkyRRdffLF+85vfGP2GDx+u2267TdKZQvq1115rbMvOztaUKVM0ZswYbdmyxWhfuHChx77S0tI0atQoY33u3Lm6+uqrNW7cOKOwHx4ergULFph/oAAAAIAfbCxx+hS3wce4voK5dAEAPYVc7H/kdfRFlqioKIWFhWnYsGGKiIjosR1fcsklevXVV407yhsbG7Vr1y5jvnZJuvDCC7V69WpFRkYabcuXL/eY9mXXrl06dOiQsX7vvfdq5syZHvuyWq16/fXXdd5550mSmpqaVFhYqKNHjxp9lixZ4nHXPQAAANCbHXc1+BRX42NcX+HLXLoAAPiCXOx/5HX0RZaf//zncrvd2rVrl/7973/36M5/9KMfacuWLZo3b56SkpJks9kUFRWlCRMmaNGiRfroo480fPhwj5j4+Hht3rxZjz76qC666CL169dP55xzjq666iq98cYb+u1vf9vuvkaOHKlPPvlE99xzj5KTk2Wz2RQbG6uZM2dq3bp1uuOOO3rikAEAAABTRNutPsUN9DGuL/B1Lt2qU3V+GhEAIJh1NxcfqXGRgzpBXkdfZb3lllu0c+dObdy4UTNnztQ111yj8ePHKy4uTpGRkcZDSVu65ZZbTBvAhRdeqBdeeMGrmMjISD3yyCN65JFHvIqLi4vT4sWLtXjxYq/iAAAAgN7mupEOrS/2/ivpM0Y6/DCa3qE7c+lmTxvhp1EBAIJVd3Pxx3uqdOv/KVRmaqKeSxstu7VtDS6UkdfRV1knTpyosLAwhYWFqb6+Xu+//77ef//9ToPMLLgDAAAA6Lr6xjNvPOelJurJvGKv3oj2jwjXvNREfw0t4Lozly5vzAEA3upuLv5T/n5j/vGiQzXKu30yRfcWyOvoqywtV8LCwjrt7Ha7/ToYAAAAAJ17Mq9EeypPKTbSpkwvi+fzUhMVE2nz08gCj7l0AQA9qTu5uKzypNYXHzHamX+8LfI6+iqLdKaQ3pX/AAAAAATO0VN1eqvwgF761x5J0nNpozVtRFyXYqdfEKelaaP9ObyAY157AEBP8zUXv/TxHjW1KrUx/7gn8jr6Kmt1dXWgx9DnOZ1OVVRUeLS5XC7ZbMF79xAAAD2FPAt8663Cg6qtb9RLH5dpanKsbh43RHm3T9ZDa4q0soN5Tpu/ur40BOaGZV57wDfkWsB3dmu417n47c8OGh+et8T8457I6+ir2nzk89VXX6m0tFQnTpzQOeeco5SUFI0YwS96Z3Jzc5WTk9Om3eHgFxwAgO4izwLf+qisUpLU5JZ++uYOSZfq5nFD9MpNY7VoVopWFpRrQ4lTNa4GDbRbdX2KQ5mTgnsamZaY1x7wDbkW6B67NbzLufjtzw7q1v9TqI4mkmD+8W+R19FXGQX3t956S0uWLNH+/fvbdLrgggv06KOP6qabburRwfUVWVlZSk9P92jLyMjgbgAAAExAngW+1XJO0tqGJs3563bdOzVZ9185XMlxkcqeNqLdN+kHqmuVcE6/nhxqQDTPpbtsy94uxwT7vPZAV5BrAXPERto6zMVllSf10sd79NK/9nRYbJeYf7wl8jr6KqskPf7443r55Zc95mkPCwsz1ktLSzVv3jzt3LlTTz31VEAG2ps5HI42n/zb7XZZLJYOIgAAQFeRZ4FvtZ6TtMktvfjxHv3hX3s0M2Wwfjl5mIbHRWqg3aoaV4PKKk/pT/n7Jbm1LuuywAy6hz2XNlpFh2q0aXflWfuGwrz2QFeQawHzHayu1eETLiMXry8+0mbO9vYw/7gn8jr6Iuu6dev0hz/8QZJnkb294vsLL7ygK664Qtdff31ABgsAAP5/9u48Pqr63B/4Z5bMZA8kDBAgkAUTCRCQYgISFCpL3KBArxet1hINWKlooV6v916Xan+VVsGCSr1Qg8VavFWxxVISQaWyaFIkrpEEkgmJrJMJkGWSSWb5/ZHMkElmOzNn9s/79fIlOXNO5syZyTznPOf5Pl8iimTXZ6bgwMnmQctNZmDv8QvYe/yC3e2evy1yLj496aVLREQktj9XncYj71UL3o79x20xrlMokv/+978H0JtUj42NxQMPPIA5c+YgNTUVra2tOHz4MDZu3IiWlhaYzWa89NJLTLgTERERkcdadN0orWzC/loNWvUGJCrlmJ+twor8NCRzCLBTd1wzCr/96CS6BGwTib1MhfTSJSIi8oVI7z8u5vke4zqFGvnnn38OoDfhvnPnTtxwww02K1xzzTXIz8/HwoULYTabUVVVFYj9JCIiIqIQpzcYsXZ3NUorGtFlMNk8Vl6jweNlNViRn4aNrE5yaGisAsuvGY3Xvmlze5tI7mXqrJcuERGRL0Vq/3G9wYgny2vxZk2H6Od7jOsUKqRAb7I9KytrULLdIj8/H9nZ2QAAk8lkdx0iIiIiIkf0BiOKtlZgy+GGQRdfFp09Rmw53ICirRXQG9yvBos0v1yYjTlZKW6ty16mREREgbNxUW5ExWy9wYg7Xj+G1yoHF1dY8HyPIoF0ypQpMJvNNj3b7ens7IREIsGUKVP8tGtEREREFC7W7q52a7IrADhQp8W63cJ7nkYKSy/TB2alIybKfmVYTJQMq2elY29JAUcLEBERBUikxey1u6txpKHFrXV5vkfhTL569WocPHgQ9fX1+OSTTzBz5sxBK/3jH//AqVOnIJFI8MgjjwRgN4mIiIgoVLXourG9sknQNqWVTXi6KIc93R1gL1MiIqLQECkxm+d7RFfIb7rpJjzyyCN47rnnsHz5cjzyyCOYPXs2hg8fjgsXLqC8vBy/+93vIJFIcP/992P8+PFoahr8B5SWFh6TOhARERGRuEormwRNGAb0DjfeXtnEHp0usJcpERFRaAj3mM3zPaIr5Lm5vf2hZDIZLl26hP/5n/8ZtJLZbIZEIsErr7yCV155ZdDjEokEFy9e9PnOEhEREVHo2V+r8Wi7fbUaXgqHxAAAIABJREFUXoARERERhQCe7xFdIT99+jQkEgkAWP/fv5+7RCKxLh/4GBERERGRK616g0fbtXm4HRERERH5F8/3iK6QA86T6EywExEREZE3EpVyj7ZL8HA7IiIiIvIvnu8RXSHfs2dPoPeBiIiIiMLYvGwVymuEDzOen63ywd4QERERkdh4vkd0hbywsDDQ+xDyNBoNmpubbZbp9XooFJxlmYiIyFuMs6GvOD8NT5TVCJpIKyZKhuL8NB/uFRERWTDWEpG3rOd7Arbh+R6FK47bEMG2bduwfv36QctVKt6lIyIi8hbjbOhLjlVgRX4athxucHub4vw0DI1losdbLbpulFY2YX+tBq16AxKVcszPVmFFfhqSeXyJqA9jLYmlf9xp1lxAglKOW6fnMO5EAOv53vvNrlfuw/M9CldMuIugpKQES5YssVm2fPlyVgMQERGJgHE2PGxclIvqc204UKd1ue7c8SnYsCjXD3sVvvQGI9burkZpRSO6DCabx8prNHi8rAYr8tOwcVEulHJZgPaSiIIFYy15y27c6bgEADhw1si4EyE2LsrF57WncKShxeW6PN+jcMaEuwhUKtWgO/9KpRJSqTRAe0RERBQ+GGfDg1IuQ9nKAqzdXY3tlU1228tYhhVv4MW4V/QGI4q2Vji9udHZY8SWww2oPteGspUFPN5EEY6xlrzBuEMWSrkMO++ehifLa/F/tTqe71HEYsKdiIiIiPxCKZfh5aWT8UxRDrZXNmFfrQZtegMSlHIsyFFhxbUcViyGtbur3RpJAAAH6rRYt7saLy2d7OO9IiKicMW4Q/0p5TKsv2UCNiwfyvM9ilhMuBMRERGRXyXHKrBuThbWzckK9K6EnRZdN7ZXNgnaprSyCU8X5bC3LhERCca4Q47wfI8iGceHERERERGFiVIH7Xqc6ewxCk6WEBERAYw7RET2MOFORERERBQm9tdqPNpun4fbERFRZGPcISIajAl3IiIiIqIw0ao3eLRdm4fbERFRZGPcISIajD3ciYiIiIjCRKLSs9P7BA+3iwQtum6UVjZhf60GrXoDEpVyzM9WYUV+GvsPE1HEY9wJXYxvRL7DbzgiIiIiimjhdME5L1uF8hrhw/TnZ6t8sDehTW8wYu3uapRWNKLLYLJ5rLxGg8fLarAiPw0bF+VCKZcFaC+JiAKLcce1YDvPYHwj8j0m3ImIiIgoIoXjBWdxfhqeKKsRNIFdTJQMxflpPtyr0KM3GFG0tQIH6rQO1+nsMWLL4QZUn2tD2cqCkPmMEBGJiXHHsWA8z2B8I/IP9nAnIiIioohjueDccrhh0EWwheWCs2hrBfQG9xMJgZQcq8AKgUmM4vw0DA2xSn5fW7u72mkyor8DdVqs213t4z0iIgpOjDv2Bet5BuMbkX8w4U5EREREESecLzg3LsrFnKwUt9adOz4FGxbl+niPQkuLrhvbK5sEbVNa2YQWXbeP9oiIKLgx7gwWjOcZjG9E/sOEOxERERFFlHC/4FTKZShbWYAHZqUjJsr+MPCYKBlWz0rH3hIOFR+otLJJUGsEoLdKUehniogoXDDu2ArW8wzGNyL/YQ93EWg0GjQ3N9ss0+v1UCjCe4gUERGRPzDOkti8ueBcNyfLR3slLqVchpeXTsYzRTnYXtmEfbUatOkNSFDKsSBHhRXXhv9wfk/trxU++R8A7KvVhMzng2ggxlrylr24o9WYEa+U47ZrcyIq7gTreQbjG5H/MOEugm3btmH9+vWDlqtUkTPrNhERka8wzpLYIumCMzlWgXVzskJuvwOpVW/waLs2D7cjCgaMtSSW/nHn/PnzAIARI0YEeK/8K1jPMxjfiPyHCXcRlJSUYMmSJTbLli9fzmoAIiIiETDOkth4wUnOJCo9u0RK8HA7omDAWEsknmA9z2B8I/If/tWIQKVSDbrzr1QqIZWyRT4REZG3GGdJbLzgJGfmZatQXiO8OnF+NiuBKXQx1hKJJ1jPMxjfiPyH0ZOIiIiIIso8Dy8cecEZGYrz0xxO+udITJQMxflpPtojIiIKJcF6nsH4RuQ/LNMhIiIioohSnJ+GJ8pqBE1oxgvOyJEcq8CK/DRsOdzg9jbF+ZEzGSCJo0XXjdLKJuyv1aBVb0CiUo752SqsyE9DMj9LRCEtWM8zQjW+8fuSQhET7kREREQUUUL1gpP8Z+OiXFSfa8OBOq3LdeeOT8GGRbl+2CsKB3qDEat3fYXSikZ0GUw2j5XXaPB4WQ1W5Kdh46JcKOXCKlGJKDgE83lGKMU3vcGItbur+X1JIYktZYiIiIgo4mxclIs5WSlurRvoC07yP6VchrKVBXhgVrrD4fcxUTKsnpWOvSUFvNAnt+gNRtzx+jFsOdwwKHlk0dljxJbDDSjaWgG9wf3qWCIKLsF6nhEq8U1vMKJoawW/LylkscKdiIiIiCKO5YJz7e5qbK9ssjvs2zK8ewMrpyKSUi7Dy0sn45miHGyvbMK+Wg3a9AYkKOVYkKPCims56oGEebK8FkcaWoC4oS7XPVCnxbrd1Xhp6WQ/7BkRiS2YzzNCIb6t3V3tVhU+wO9LCk5MuBMRERFRRAqFC04KvORYBdbNycK6OVmB3hUKYS26brxZdVrQNqWVTXi6KIc9iolCVLCfZwRrfGvRdWN7ZZOgbfh9ScGGCXciIiIiimjBesFJROGjtLIJXQImUAR62yVsr2zidxNRiON5hjClDkYEOMPvSwo27OFORERERERE5EP7azUebbfPw+2IiEIVvy8pHDDhTkRERERERORDrXqDR9u1ebgdEVGo4vclhQMm3ImIiIiIiIh8KFHpWTfXBA+3IyIKVfy+pHDAT6MINBoNmpubbZbp9XooFJysgYiIyFuMs0REFOrmZatQfqxW8Hbzs1U+2JvBGGuJKFjMy1ahvEZ4exh/fV8SuYMJdxFs27YN69evH7RcpeIfOxERkbcYZ4mIKNQV56fh8XdkgiZOjYmSoTg/zYd7dQVjLREFi+L8NDxRViNo4lR/fl8SuYMJdxGUlJRgyZIlNsuWL1/OagAiIiIRMM4SEVGoS45VYPk1o/FaZaPb2xTnp2ForH9iHWMtEQWL5FgFVuSnYcvhBre38ef3JZE7mHAXgUqlGnTnX6lUQipli3wiIiJvMc4SEVE4+OXCbNReaMcRjdnlunPHp2DDolw/7FUvxloiCiYbF+Wi+lwbDtRpXa7r7+9LIncwehIRERERERH5mFIuw867p+GBWemIiZLZXScmSobVs9Kxt6QASrn9dYiIwp1SLkPZygJ+X1LIYoU7ERERERERkR8o5TK8vHQyninKwfbKJuyr1aBNb0CCUo4FOSqsuJZtEYiIAH5fUmhjwp2IiIiIiIjIj5JjFVg3Jwvr5mQFeleIiIIavy8pFAW8pcyJEyfw85//HFOnTsXw4cORmpqKGTNm4KmnnkJzc7PdbTQaDf7jP/4DeXl5UKlUyMjIwO23344jR444fS61Wo0HHngAEyZMwLBhw3DVVVfhJz/5Cb755htfvDQiIiIiIiIiIiIiiiABrXD/85//jDVr1qC7u9tmeXV1Naqrq/HGG2/g3XffxaRJk6yPnThxArfccgvOnTtnXabX61FWVoby8nI8//zzKCkpGfRcFRUVWLp0Kdra2qzLzp8/j127duG9997Djh07cMstt/jgVRIRERERERERERFRJAhYwv2bb77Bz372MxgMBgBAVFQUJkyYgMuXL+PUqVMAehPid9xxB/71r38hOjoaZrMZq1atsibbpVIppkyZArVajUuXLsFsNuPRRx/FrFmzkJt7ZYbizs5O3HfffdZku0KhwKRJk1BTU4OOjg709PTg/vvvx2effYbhw4f7+UgQEREREXmnRdeN0som7K/VoFVvQKJSjvnZKqzIT0NyEPY3DbX9JSIKJ/wODk1834hCR8AS7i+//LI12R4fH499+/Zh4sSJAIDf/OY3+H//7/8BAE6dOoVdu3bhzjvvxAcffICjR49af8dbb72F+fPn4+LFi5gzZw7UajUMBgOee+45bN++3brezp07rUl8pVKJDz/8EJMnT0ZjYyMKCwtx6dIlXL58GVu2bMFTTz3lpyNAREREROQdvcGItburUVrRiC6Dyeax8hoNHi+rwYr8NGxclAulXBagvbwi1PaXiCic8Ds4NPF9Iwo9Aevh/tFHH1n//W//9m/WZDsA/OIXv0B0dLT1588++wwA8O6771qXTZs2DfPnzwcADB06FKtWrbI+VlZWhq6uLuvP/be7+eabMXnyZADA2LFjceedd9pdj4iIiIgomOkNRhRtrcCWww2DLsAtOnuM2HK4AUVbK6A3GP28h7ZCbX+JiMIJv4NDE983otAUsIT7448/jieffBIrV67EggULbB6TyWQ2Cfeenh4AwLFjx6zLpk+fbrPNjBkzrP/u6OhATU2N9eeqqiq3tlOr1bh48aInL4eIiIiIwliLrhvPH6hD0dZPcd2Lh1C09VNsOFCHFl236419ZO3uahyo07q17oE6LdbtrvbxHjkXavtLRBRO+B3sX2KdN/B9IwpNAWsp07+yfKCqqipcunTJ+vO4ceNgMplw4sQJ67LU1FSbbUaPHm3zc01NDaZMmYIzZ86gtbXVunzkyJE2640aNcrm59raWhQUFLj/QoiIiIgobAXrMO4WXTe2VzYJ2qa0sglPF+UEpM9rqO0vEVE44Xew/4h53sD3jSh0BazC3RGDwYD//u//tlm2YMECtLW1obv7yp3AxMREm3Xi4uJsfm5paQEAaLW2dwIHbhcfH293OyIiIiKKbME8jLu0sgmdPcKer7PHKPjCXSyhtr9EROGE38H+IfZ5A983otAVsAp3e0wmE1atWoVDhw5Zly1YsACTJ0/G2bNnbdaNiopy+nNHRwcAQKfTCdquvb3d6T7m5+c7fdyivr4e6enpOH/+vHWZRqNxa1sii/6fn/74WSIx8HNEYhH6WYqNjXX4mDdxlnrxb1s8/7nnWxz4stGtdQ98eRE/3dGNZ2+Z4NN9sry/e442Ah3CWyH+/WgN7poQ73pFke05WhNS+xso/PsNb/58f4Mx1vLzHTiB+g6OtPdc7POGUI2dkfa+U69IfN+dxdqgqXA3Go0oKSnBW2+9ZV2WmJiIjRs3AgDMZrPT7SUSid3lrrYjIiIiIhrooq4bb1adFrTNzqrTuOinnu5teoNH27V7uJ23Qm1/iYjCCb+Dfc8X5w1834hCV1BUuPf09KC4uBh/+9vfrMuioqJQWlqKsWPHAhh818Aykaqjny0tZlxtZzDYfhENbDEzUGVlpdPHLfLz8yGVSjFixIhBj9lbRmSPq88KP0skBn6OSCzufpba2tocPiZGnKVePDbeef1AHboUiYCAFqhdAPac6sa6OWk+2y+LYap2oMV+wYkzKSpVQD4bw1TDQ2p/Ay0SX3Mk8cf7G8yxlp9v/wv0d3AkvOe+OG8I9PvmrWDYB/K/SHrfncXagFe49/T04K677rJJtisUCrz22mtYsGCBdVlCQgLk8iv3Bwa2fhn4IpOTkwEAQ4cOtVk+cLv+E6r2346IiIiIItf+Ws+Gxe7zcDuh5mWrPNpuvofbDdSi68bzB+pQtPVTXPfiIRRt/RQbDtShxUGlXqD3l4gokgX6O1hozAhFvjhvCPT7RkSeC2iFu9lsRklJCfbu3WtdFhMTg9dff90m2Q4AMpkM6enpOHnyJAAM6ul+5swZm59zcnIAAKNHj0ZMTAw6Ozvtbjfw5+zsbC9eERERERGFg1YPh2N7OvxbqIdmZ6CkYCyio3rrZzp7TPjmXBvWf3gC//j2Akx2uirGRMlQnO9d9b3eYMTa3dUorWgcNCFceY0Gj5fVYEV+GjYuyoVSLrM+VpyfhifKagRN/ibG/hIR0ZXvYL3BiKKrh6M4fyyyUmIRr5SjXW9AnVaH0spGlB2/Ej/EihlPltfizZoOQTEjFPnivIGxkyh0BbTC/Ve/+hV27dpl/TkmJgZ/+ctfBiXbLaZOnWr9d0VFhc1jR48etf47Li7OmnCXSqWYPHmyW9tlZGQMqognIiIiosiTqPSsLiXBw+2EipJJkRQTBaVcBqVchiExUZiVkYz37i3AhV8uxM+vz8TAKY6K89MwNFbAWPcB9AYjirZWYMvhhkGJE4vOHiO2HG5A0dYK6A1XEgTJsQqsEJgA8HZ/iYioV3KsAjvunIqTj92IPfcVYFleKqaOTsL4YXGYOjoJy/JSsee+Apx87EY83Bc/xIgZd7x+DK9VDr5Ba+EoZoQiX5w3MHYSha6AJdwrKyuxYcMGm2Vbt27FDTfc4HCbW2+91frvqqoqlJeXAwAuX76M//3f/7U+tnDhQkRHR9vdbu/evfjyyy8BAKdPn8Ybb7xhfewHP/iBh6+GiIiIiMJJsA/jdjY8PyVOgY2LJ2LXPdMRLe893Z87PgUbFuV69Zxrd1fjQJ3WrXUP1Gmxbne1zbKNi3IxJyvFre3F2F8iIrrih3mjkJES6zR+ZKTE4oXFE3HggetEiRlHGlrcWtdezAgW7rbD8dV5A2MnUWiStLa22hlw6ns//OEP8f7771t/jo6OxvTp0+2uO3fuXDzyyCMwGAyYNWsWvv32WwC91etTpkxBQ0MDLl68CKC39czBgwcxadIk6/aXL1/GtGnToNH09sZSKpWYOHEiamtrrT3dExMTcfToUYwcOVKU12eZYOabb76xLjt//jyA8J9AQLLuvUDvQtgwb7jN7vJI+SyRb/FzRGIR+llyNrmMu+zFWerFv21xtOi6Mebp/YKHcZ9+Yp5PK8saT59xODzfsg/9h+f/7etz2F+rwfNeDtf39Hh898Q8JPc7HpaWNNsrm+z+LstQ+A1h0F7AE/z7DW/+fH+DMdby8x1YzlqCAYPjhzesMeNSc++CONedBOzFjEBy93j9bnEuomQyn543hFrs5N96ZIrE991ZrA1ID/dz585h3759Nsu6urpw6NAhu+uPGjUKACCXy/H666/j1ltvxblz52AymVBVVWWz7rPPPmuTbAeApKQk/OlPf8IPf/hDtLW1Qa/X49ixY9bHo6KisGXLFtGS7UREREQU2izDuLccbnB7G18P47YMzz/S0OIweWEZnl99rg1lKwuweNJILJ7k/TluqYOLfGc6e4zYXtmEdXOyrMuUchleXjoZzxTlYHtlE/bVatCmNyBBKceCHBVWXMuh8EREYrO0BHM2Smlg/PAmcStWzAgUIcfr+Pk27L9/pk/PGxg7iUJPQBLuFRUVMJs9K6zPzs7GJ598gg0bNmDPnj04ffo04uPjce211+Khhx5CYWGh3e1mzpyJTz/9FM8//zz27duHCxcuYMiQISgsLMS6dets+rwTEREREW1clIvqc21utVGxN4y7RdeN0som7K/VoFVvQKJSjvnZKqzIT/Oogs+T4fkvLRXnHHd/rcaj7fbVauwmT5JjFVg3J8tpYkXs40dEFKk8aQnmTfwQO2b4m5Dj9eFJLXZ9dRbL8kZ5fd7gijuxk4iCQ0AS7osXL0Zra6vH26ekpODXv/41fv3rXwvaLi0tDZs2bfL4eYmIiIgocijlMpStLBA8jNvZMPTyGg0eL6sRPGy/RdeN7ZVNgva/tLIJTxfliJKcbtUbPNquzYPtfHH8iIgiVSDihz9jhtg8OV737Pwct+WO9Pi8gYjCT0AS7kREREREoUDoMG5fDdsP9PD8RKVnlw0JArfzd9sDIqJwF4j44a+YISajyQyZVOLR8eroNuL3Rxrw0PWZbP9CRACYcCciIiKKCGzP4R13h3H7ath+oIfnz8tWobxG+D7Mz1YJWt/fbQ+IiHwlWOJuIOKHGDHD38fvbGsXxgyJ8fh47T1+AQ9dn2n9me1fiCIbE+5EREREYYztOfzHl8P2Az08vzg/DU+U1Qiq+rMMm3dXoNvmEBGJIdjirj/jR1tXDxKio67EDAHb9o8ZWw43YN3ub/x2/Fp03dD3PVeg4y0RhQdpoHeAiIiIiHzD0p5jy+GGQRetFpb2HEVbK6A3CBtCTba8GbZvj8lstv470MPzk2MVWCEgeQ70JumFDJsX+/gREflbMMZdf8aPrZ82Qq3VeRUzzlzuwoPvfuXX41da2WRNmAc63hJReGDCXQQajQbffvutzX96vR5GIy9aiYiIvMU46zlP2nOQ57wZtm/PF2darf+eJ7A1i4XQli7ObFyUizlZKW6tO3d8CjYsyhX0+8U+fkTkPsZacQRj3PVn/NhXq8HmQ2oAvTHjuvRkt7brHzN++9FJmMwuNoC4x29/rQZ1Wh2A4Ii3RBT6mHAXwbZt21BQUGDzn1qtRktLS6B3jYiIKOQxznrG0/YcLbpuH+1R+PNkGLpUAkxKTRi0vNtgwj+qz1t/Ls5PQ0yUsKHzQlu6uKKUy1C2sgAPzEp3uC8xUTKsnpWOvSXCJzPlMH6iwGGs9V6wxl1/xo9Hvz8eJ5vb8c6XZ6GUy7Dz7mn4Sf5Yt2NGu95gTdi7Q6zj16o3oLSyEUBwxFsiCn0c8yKCkpISLFmyxGbZ8uXLoVCwlyQREZG3GGc94017Dk7w5Rkhw9ClEmDN7EysKcxARkrsoMcVcin+e342eowmRMmk1uH5W95vdvs5hLZ0cYdSLsPLSyfjmaIcbK9swr5aDdr0BiQo5ViQo8KKaz1/Tg7jJwocxlrvBWvctcaPww1ub+Np/Jg7fhjmjh+GhhYdvjjTipFyGdbfMgEblg91K2acbO6A2Y3qdguxjl+iUo6y4xeg1uqQkRLrt+NFROGLZ6ciUKlUUKlshw8plUpIpRxAQERE5C3GWc94054j0hPuLbpulFY2YX+tBq16AxKVcszPVmFFfprTyTnnZatQXuP6uEfLpfjTj6ZhWV6qoOfbuCgXn9eewpEG1xWnnrR0ESI5VoF1c7JE/ay4e/wG4jB+Iu8x1novmOPuxkW5qD7X5la7m4HxwxKjPq5rxs9vyMLc8cNsltuLXenJvTeSP/ziPIbHKTBphOOYUa/twKmLnZg7fpi1rYsQYhw/S/zZfEiNFxZP9Op4EREBTLiHFMm69wK9C0RERBQi2J5DOL3BiLW7q1Fa0YhuowlFVw/HuhuykJUSi3ilHN9d6sKpi52YNDIeUbLBw82L89PwRFmN0wpHqQR440fTsDQv1eb5Bk4OV16jweNlNViRn4aNi3KhlMusw/OfLK/F/9Xq7D6PZVj7hr5tQok7x28gDuMnomARzHHX0hJs7e5qbHdQiT8wfhhNZjz816/x3eUu3PW9MbivYBqGxES5FbuK89Pwu8UTMXFkotP9uqjrRke3EbMze3u9Tx2diLfvmY7SykaUHb/gVi93MY6fJf5sPliPwoxkLMtLFXy8iIj6Y8KdiIiIKAx5256jVtOONe9+7VZldzjQG4wo2lqBj+u1Tlu9WJjNZkgkEptl7gzbXzM705psL9pa4bR6rrPHiC2HG1B9rg1lKwusSXchw/NDiT/bHhARiS3Y22IJaQlmNJmx7dNTWHtDlk0sdCd2mc1mzB0/DHJZ7+iIi7puvH6gzuEorv7f4VkpcchKicOyvFSotTpsPqTGpoP1TtvMiHH8+sefu944BqB3FJqvWqgRUfhjwp2IiIgoDHnbnuOrs20or9HYrbQOFE9bvbhj7e5qfHrqIv7y4+mCW73052wYulwKPPr9LOvzuTNUHQAO1Gmxbnc1Xlo6GUaTGTKpxCctXYIBh/ETUagKlbZY7sSPr8624v7r0gH0xkKZRIKkmCiXsWvgKK7/3PMtdh77Dnplks169s4tPjrZjOc+Ookbr+qNsxkpsXhh8UQUZiTjrjeODaqmtxDr+PWPP7fvOIoHCzPw0OxMZKTEhmW8JSLfYkM2IiIiojBUnJ+GmChhyfH+7TlerWi0LrdUWhdtrYDeIGxCODHoDUas3vUVRv9yHx55rxrlNRp80nAR5TUa/OK9aox5ej9W7/rK431r0XXjj/9qwht9fdW9eT7LsP0HZqVbj79UAjx8fSaaHp+PkQnRaNF1Y3tlk6B9LK1s6k16SCV47sMTOKxuwaXOHugNRugNRlzq7MEnDS1o6+rx6BgEC3vHb6CYKBlWz0rH3pICDuMnoqDhbdwNFt0GE6aOTrLGwnv/7wskxUS5FbsGjuJ6rbIRegeJ8oHnFnPHD0O2Kn5QnF2Wl4o//WgapJLBv0PM49c//ijlMmw6qMb4Zz/Azdsq8M6XZ1F1+jLqmjvQdKkTRnd63RBRRGOFOxEREVEY8qY9R722A+U1FwY93r/S2l88bb0iRGllE0pmjPOq1Ut//Yftv370O3wvLQmFGSk2zyekT7nlObdXNuGuCfGYMDIRhS8dHrTO6lnpfn1vfEVI2wMiomARiLZY7ozEqtW0Y1icwu2RYAq51CYWvn3PdACuY5dUAqwpzADg+SiuNbMz8OIh9aA4uywvFQ8WZmDTQbXNtmK3FbMXfy539WDbp6cYf4hIECbciYiIiMKUp+05Nh9UO5yorLSyCU8X5fitp7unF+32eqw78uEJDV5emufV89mTHKvAQ9dnAui9caBp78aYITHYXyu85QAA7KvV4K4J8Rg3NGbQY+HYXiVc2+YQUfjyV1ssIZNuZ6vi8devz2F/rcbtCT77x8Ksvh7urmJX0dXDkZES6/EorqeLcpCZEoeFOcOx93jvTX97yXjL+Ykv4x7jDxF5iy1liIiIiMKUJ+053v7iDDYfUttdF7hSae0P3rRekUgkMJrsD2MfaNV16V4lCVp03U7XsVQKWpIirXqDoOewaOvbLl5x5b1kexUiouDhj7ZYlpiy5XCDw77mA9u1/GDSSMilErdaww2MhfF9k5K6il3F+WMBeDeKCwDuLRhr85glzlqS8Yx7RBQKWOFOREREFMaEtOd4+4szuPvPVTC7aE26r1bjl6ovTy/aXz/6HR66PhMyaW9tiash94t8lvD2AAAgAElEQVQnjgQA7Dj6ncdJAmfHw1Ip2N6XrEhUenYKntC3nckMLMxRcXg7EVEQ8nVbLG/atVz17IcuW8MNjL3uxi53K+EdsZxbZPb9Hov+cXbTDyZiWJwiaOKeLydzJ6LQxoQ7ERERUQRwNjy6XtuBzQfV2HxI7TLZDlyptPY1Ty7apRJgetoQAMKG3CvlMkxPS4JUAoftdBxxdgOif6VgnVaHqaOTMC9bhfIa4a9tfrYKAJA1LA5lK2cI3p6IiPzHF21JxGjX4qo13J3XjMa8q4ahTqtDaWWj27HL3Up4RyznFgl2EvuWOHuVKt6j3y02oecXRBR52FKGiIiIKEIdUmtx87YKXPXsh9h00L1kO2D/YtgXPLloXzM7E7Mykj0acl+YkYIH+yZ8E8LZDYj+lYKllY0Aeid5c9RqwJGYKBmK89ME7xsREYUPMdq1uGoNNyopGlNHJ2FZXir23FeAWRlDAbiOXWKN4rIXU/11o98dnpxfEFHkYYW7CDQaDZqbm22W6fV6KBQcQkREROQtxlnf+fTUJevEZEJYKq19TehFu1QCrOlLmHsz5L7/pGzucHYDon+VftnxC1BrdchIicWK/DRsOdzg9nMU5/e2IDjf5v5+2cPh70RkD2NtaBCrXcs/65ptKu+dxYaRCdEAeiv2V84Yi00H7c/zItYornqtbtBj/rrR7w4xJ1cnovAVPN9aIWzbtm1Yv379oOUqlX8uRomIiMIZ46zvFOen4YmyGkHVcv6stBZ60V509XCvJj/tP+ReyI0IZzcg+lfpm8zA5kNqvLB4IjYuykX1uTa3Ltrnjk/BhkW5bu+PPRz+TkTOMNaGBjHatUglsCbbhcaGDYsm4quzrfjw5ODYVVrZiGV5qV6fW7xa0TjocX/d6HfFm/ML3tQmiixMuIugpKQES5YssVm2fPlyVgMQERGJgHHWd5JjFR5XWvuD0Iv24vyxALwbcr9uThbuLRjrdsLd1Q2IIdFy3DxhOIrzxyIrJRbxSjkudfZgSEwU3l9VgJ//rdrh/lp+9wYvk+CW4e/OkvuW4e/V59pQtrKASXeiCMNYGxq8bdcyKjEax9begCmjEj2ODeUrZ+Chv32D7QNilxijuOq1HSivsY2/wdRSrbSyCXqDcVBcb9cbrD3vy45fsBkl587k6kQUfphwF4FKpRp051+pVEIqZYt8IiIibzHO+pa/K62FEHpDIKtvqLxYQ+7d4eoGxM67voekmCi7j0XJZHhp6WT85tYJeOXIKeyr1aBNb0CCUo4FOSqsuFacmxsc/k5ErjDWhgZv27XEKmSYMioRgOexQS6T4uWlk/FMUQ62VzbZxK5TF3sT7tZziy8vuvzd/c8tNh8c3NLNnzf6XUlQynDysRuRYec8wdL3Xq3VYfMhNTYdrLfOjeNscnUiCk9MuBMREREFMV/33FbKZShbWYC1u6sHVatZiFVp7QkhNwRU8b3Hw9sh98Pj3Tuu7tyASIqJcvkexinkWDcnyycX4xz+TkQU/NyN9d62a3n9aBPunp7mdWw419qFkYnRDmOX5dzi/h3deLPqNLqc7Jfl3OLtL85g8yHb/vD+vtHvyqqZ6QCcv18ZKbF4YfFEFGYk4643jqHLYAqqSV+JyD+YcCciIiIKQv7sua2UyxxWqzmrtPbHBJxCbgikJvZO7ObtkPvUxGg8MCvd6xsQQt/DS509aO7ohlIuRdqQGI9ew0DettchIiLfERonvGkFV6/tQJyiN855GxuONFzE6599hycXZCNvVCKkEgkudvbgwxPNaO7oxqqZ46CUy7D+lgl4dG4W9pzqdnpu8fYXZ3D3n6usFeGBvNHvjJD3a1leKoBpuH3H0aCa9JWI/IN/9URERERBJlA9t5NjFW5VWvt7Ak6hNwS8HXIvlUg8ugHRnyfv4ZCYKLxx7DvcVzBW8L474m17HSIi8g1348QrRxrw71NH4frMFACet4LbfFCNn1zbW+nubWwozEjG3PEpgxLmM9OHYm9JgXV9bUc3UuIUWDcnzW5MMZrM+Lhei1crGjFtTJLoLdXE5ElcX5aXigcLM0S7iU5EoYMJdyIiIqIgEyw9tw0mE+q1Orx+9Duo4hVYMzszIDcD3v7iDL43ZggyUmId3hDo0BvQ2WPEsHil10PuLdy9AWGPp+/hA9elQyKRCH4+R7xtr0NEFEn8MXLLwt04sWZ2Jq7PTIHeYETFqUu4PitFcCs4S7uWnxVmABCh9VqCEgBQr+3A5oNqbKtoxL0FY20q0lt03bj2dx9jxriheGD+NchMiUWCUo42vQFSCTAiXomRidGYO34Y5o4f5tH++JOncf2h2ZkYEsPUG1Gk4V89ERERURAJhp7bAyvYpRLg5GM3AvD/zQCjyYzKpktY/qfPUJQzHP939/cQp5RD066H3mDC0JgoxCnl1v8A4ZOtAuJOyhYM76GFt+11iIgigb9HbrkbJ6QSYE1fktyyf3/60TQsy0t1eySW3mDET97sbdfS3pcwFyM2NHd0Y827X+H7V6nw3ePzBsXQ0som6LqN+PBEMz48c9Tua1uYMxz3Foy1ScbHKWTIVsV7tH++4k1ctzfBKhGFP55JExEREQWRQPfctlfBXnT1cGSkxPoskeyqovC3t+biodkZ2F7ZhDilHC26bpxs7sDM9ORB2980YTgemp3p8ZB7dzja3wcLM6CQSwP+HvbnbXsdIqJwF4iRW47ihFTSG3OL88ciKyUWwxOUGJUYjW6DCWcvd6HbaMKP/3wM44cVYsqoJKcjsYwmM2RSSe8cIb+6CRfauxGr6N1vb2NDt8GEYXEK/P2+GQ7XddW2xmQG9h6/gL3HL9gsX5ijQtlKx7/XE96OXBArrvtzBAURBRYT7kRERERBJNA9t+1VsBfn9/YUFzuRLKSicHRSDP5nfjYAICk6CjPTk+1uv69WgzFJMViWlyp4yL0rrvZ3frYKeaMSA/4e9idWex0ionAViDZuA+OEVNLbOmZNYYbdimiFXIpdK66FukWHti4D8kYlQm8w4tWKJoxKVGJc8pUK8XqtDq9WNOLjei3uufZKVf6opGjr7/M2Nvy9+jyW5qU6XT8YWpqJNXLB27huNpvx4Ltf41U/jaAgosBjwp2IiIgoiATyAtVRBXtW38W/mIlkbyoKZVKJw+1NZuCuN44BEDbkvlbTjmFxCocVZu7sr6VyMBiSDBaBbq9DRBTMAtUCrH+ciJZLrW1iLPvkqAo6I7k3HhtNZix69V9430VcHhhD//dIA5ZfM9qr2FCv7cAfKk65TLgHuqWZmCMXvI3rZ1v1eNnJsRZ7BAURBZ400DtARERERFcE8gLVUQV7fN/vFjOR7ElFIQCYzWaX23cZTLh9x1E8/NevoW7RWYfcl62cgcMPFqJs5QysvSHLmjh4+K9f4+rffIQxT+/H6l1fQW8YfAzc2V8xe+OKaeOiXMzJSnFrXaHtdYiIQpk3I7e8YYkTUgnwRl+yXW8wYvWurzD6l/vwyHvVKK/R4JOGiyiv0eAX71XbxCiZVIKVM8dB6sYc2/1j6PwcFX75fi0Az2PD5oNqXO5yfT4wz8PWZGK1NPP0PMMeb+P6+Xa9KPtBRKGDCXciIiKiIBLIC1RHFexiJ5JbdN3447+acPOE4Xj7numoWns9Tjz2fVStvR5v3zMdN08YPiiJUFrZhBZdNyQSCdq6elwmO0xmYNNBNV48qAbQWw14QtOOk80dqDp9Ge98eRY3b6vAVc9+iE0H1TCbr1SYFW2tsEm6u1sBWafVAQh8kmEgpVyGspUFeGBWOmKi7FfNxUTJsHpWOvaWsLKOiCKHNyO3vGGJE2tmZ2JpX7K9aGsFthxuGNRyxGJgjFqWl4oH+yZUdcUSQzNT4rAsLxWXOnuglMvwwU9n4tja67Fk0ki7yfuBseHtL85g8yG1WzeIi/PTEO0g5jgiVkszT0cutOi67T7mbVyv7zs/8HY/iCh0sKUMERERURAJZM9tRxXsdVodpo5OEm0CziiZFBd/VYQo2eDaj6mjk7AsLxVqrQ6bD6mx6WC9NRlu6QV/tk3v1vGRSmBNRqz569duD50f2KO3fw/4gRPaxSvlaNcbUKfV4auzrViWlxqUfdOVcpnb7XWIiCJFoFqAFeen4anyGqzpi1Ge9pFfMzsDLx5Sw2R2vL5UAqyaOQ4ySW9GfVZGcr/HJLhmdBJ2rbgWlzt78Obnp/H60e8Qbyc2vP3FGdz95yqYze7dIE6OVWD5NaPxWmWjW68LEK+lmdhzzngb11+tcP8Y+GoSdSLyLybcRaDRaNDc3GyzTK/XQ6HgRQsREZG3Ii3OBrLntqMK9tLKRo8TyXEKGX563TibZZbKOKd9alNi8cLiiSjMSMZdbxxDl8Fk7QUvlbgxhh69ifGMlFive/Re6uxxOaGd5UZBj9Hk1XtoNJkhc6dHgIcs7XV4IU9E/UVarLUIVAuw5FgFfntbrtcxKjMlDgtzhmPv8Qt21xPSHz45VoFVM9Oxama6ze+o13Zg80E1Nh/qHQ0m5AbxLxdmo/ZCO45onNwR6CNmSzOxJy/3tud9eY3990fofhBR6GDCXQTbtm3D+vXrBy1XqXwzLJiIiCiSRGKc3bgoF9Xn2myq3RxVVrfqDZg5bogoz+uogr3s+AWotTpkpMQKuuCMlktx6GezEKvoPeXsMZoQJZPCZDZD29GNM61dyEiOhUwqQcWpizCZgfIaDR4vq8GK/DRsXJTblySYhtt3HLVWFEbL3euKWJw/FoD3lW7zslXWhDrgOmEB2H8PHemfZPjPPd9C12PExkW5bO1CRH4TibEWcBz3XBGjBdiqGb03o72NUfcWjEV5zQW75wiqeAVGJ8VAbzBi7e5qlFY0DmpZMzDuKuUyXOrswQcnmvFqRSPKay7YVNALucmvlMuw8+5p+E2F1ma0WH+WBP4GEeOeL0YueBrXNx90PgJB6H4QUWhgwl0EJSUlWLJkic2y5cuXh301ABERkT9EYpy19Nxeu7saf/xXE0pmjHNYWS0mRxXsJjOw+ZAaLyye6PYFp1QCvL9qBqaOToLBaILeaEKcwjJJnASqeCVU8UpMGTW4hYylT231uTaUrSyw9qk9fqEdABz2tx0oq+94eVvp9r0xSYhXyt1KWBTnp2HTDybZvIfuJhne/uIMNvyzDmYzrK+dSXci8odIjLVAYNu4WUYzeRujCsYOwcnHbnR6jtCi64FCJoXe6Lw/vCX2DImJwsF67aDKeU+q0APR0kzskQtGk9mjuH6wXovNh9Si7QcRhQ7+FYtApVINuvOvVCohlXJOWiIiIm9Fapy1XKC+sGgiFH0V3e5UVnsjOVaB2v+ci4rGSyitbETZ8StVbZsP1qMwIxnL8lLduuB8/c6pmJ2ZAqPJDLlMCrlMKriFzMA+tX/96hwAwGR2r1Qsvu+C1dtKt3ilHEaTGU2XuvDz6zNRUjDW2rM9LzURmQN6uT9VXoOnFuYISjL0740LDO4jT0TkS5EaawPZxs3C0xil77vxO2ZIDADn5wipidGDYqw9jvrDi1GF7s+WZmKOXNAbjFj06r+wcuY4LMtLFXTz4LPvLsPNUxaX+0FEoYUJdyIiIqIgppBLoTcYsW53NU5f7sJd3xuD9bdMsEnw3vd/X2BUUrQovU/HDInBmCExg6rOTWbgrjeOAZgm6IJTJpUIGsrev4WMyWzbp7ZkRm+LmNQEJWKiZC4rEtv7khhiVLrJpBKMHxZn/bl/i5n+LMubO7oxLK73GDhLMgzsjdtf/z7yRETkG562ChGLJzFKKgF+ddPVAOBVjLWnf9z9rxuvwtDYqJCbWFvMkQtrd1fj/VoN9p/Q4MHCDDw0OxMZKbEO43r/+P/j6WPwX/84HlSTqBORfzDhTkRERBTE9AYj/vBpI9bdkOV0sk61Voc/fNqI2zKUgqrPhFad377jKNbekIVHvz8ew+JcV6vpDUYUba1wmshw1EJm00G1TZ/ahOgo9BhNSIiOcqsisU6rw9TRSV5XunUbTNh8SI2P65rx8xuyMHf8MJfHznKxbVGraUdHtxEJSjna9AbUa3V2e+MOPC6W105ERL7hSasQMZhMZkilEo9i1JrZmZiVkex1jHW0viX2PNOX1HfGWSwUur5YN5jFGrnQf0JbkxnYdFCNFw+psTBnOO4tGIvMlNhBcf3jei0aH5+H5FhFUIygIKLAYMKdiIiIKIhVn2/H6sIMAK6T46sLM/DB5ycwKTXR5e8VWhGXEluA3350EvOyhfVbXbu72q2qQcDxUHZLn1oA+Hv1eSyZnOpWRWJpZSOW5aV6Xel2+46jeK/6PN768XTMHT9M8ORzAPDwX7/G3uPCk/79XzsREflGIPqMt+oNGBITJThGSSXAQ7N7zwvEiLH2uBN73ImFy7NjParEV8plOKTW4j/3fIt4hWcJeTFGLtib0NZkBvYevzCov31//W+WB3oEBREFRng3ZCMiIiIKYd0GE64ZnQS9wYjVu77C6F/uwyPvVaO8RoNPGi6ivEaDX7xXjTFP78fqXV9BbzBiUmoiul1MKmqpiNtyuMFhH1dLRVzR1groDUbMGT8M/yiZgbU3ZLmddOhfGeau0somtOi6kZkSh4U5wwFc6aVuMJrwbzuO4p0vz1orEh+YlY6YKPvVhv+s06K5o9taYSaEpcKsXtuB96rPY83sTCzNS/Xo2AHAgr7XIlSbh719iYhIOEsLsLKVM3D4wUKUrRQW94TQdRutzykkRhVdPRzpybGixVh7XMUed2OhXCaxtpYTGjsLM1IwfcwQu+c67nDnPCEmSobVs9Kxt8T+JOXeTGgr5n4QUehhwp2IiIgoSFn6twu9SLVMsuqIJxVx7mjRdeP5A3XWajB7lWGuWIayA8C9Bb092y291GVSCW7ITMFdbxyzJt1fXjoZ3z0xD8/flouFOSpclz4UC3NU2LAoF02Pz7O2dtm4KBdzslLc2of+FWab+4bcryn0vJoQAP596ihIJW5tZiPBw/7zREQU3Nq7ryS1hcSoR78/HoB4MdYeV7HHnVgolQD35Y91e32L/rFzzewMa+y0dzPbFVfnCaefmIeXlk52mOT2dtJ1sfaDiEIPE+5EREREQUzoRepT5bVO1/GmIs6RgRX46Bui7m1lWGZfz3pLL3WJRIKylQUoLhiLe3ZW4eG/fg21Vue0ItHcNxOpJxVmb39xBpsPqVF09XBkpHhXTZiaGO20mtARy2snIqLwcqFdD6B3jg8hMaowIxmAeDHWHnuxp8fYm+R2NxYWXT0c45JjcVHkSnwhhQAWno5cEGPSdTH2g4hCD0tmiIiIiIKUJwnenVWn8R9zszDCwePeVMTZ6+dqb8I2Y1+S29vKsASl3KaXOgBEyWz77K7e9SVyRyTgB5NHIntYPFLiFJD1lcPVNXcga1icdVshPXrf/uIM7v5zFcxmoLivQs/bY7dy5jinPV8HGvjafckfk9gREdEVF9p6b2QPi1Pgr1+fww8mjRTUR16MGGuPvdijNxhRceoSrs9KcTsWWmLnzqozXsXOewvGDoqdpZVNeLoox+fxydtJ10MB4z+RbzDhTkRERBSkPEnwdvUY8WbVGTyVYT9R601FXP+Eu9lshkQisVuBf6Fdj3il3OvKsDa9wdpL/WxrF1ITo2E0mXGpswcpcb1VYvZuAtRrO7D3+AXc52C4vKXCzNGEcK8cacADu75C330DZPVVAXp77L43JknQdpbX7kueTABLRETemzM+BQ0tOqQnx2J/rQYHTjbjodmZyEiJdRrflHIpRifFiBJj7RkYd4He0XYlfTHV3VjYGzu78HG9e6P0BrLETnuV+M4KAcTk7aTrwYzxn8i32FKGiIiIKEh5muD9p5OLWzH6kfYYjZBIJA4r8D8/3QqgtzLME5bKsDa9wdpL/S+fnwHQ2xP2yfIaLNn+L7zz5VlUnb6Mk80dqDp9Ge98eRZLtv8LL/yzHvcVjPX4AnHHZ99Zk+0AEN+XnPD22I1Jivaoj7yveDoBLBEReS85VoGj310CAGxYlIsvzrRi/LMf4OZtFXbj283bKnDVsx+iTqsD4H2Mre/7Pf31jz2VjRcBXBltJzQWxrtI7LviqhJ/n4fnSEJ4M+l6MGP8J/I9JtyJiIiIgpSnCd52J9uJ0Y/063PtABxX4L9a2Qig96LTUS9aR/pXhs0cN8TaS72sbzi5RCLBS0sn49V/n4KGFh0e2/Mt7tlZhcf2fItTF3Uo/fcpeNHLiccGHiPL8fT22Fl60AvpI+9Lvpo8l4iI3HNb7gh8XKe19nC//7p0HKjT4od/PIppGz/GVc9+iGkbP8YP/3gUB+q0+Ol16Zg5bggA72PsqxWNNsv7x56LfSPJgCuxXmgsbHeRMHfFVSW+p4l8oTyddD2YMf4T+R5byhAREREFKU8TvPFOthvYj1Qq6Z3YrDh/LLJSYhGvlKNdb0CdVofSykaUHb8Ak/lKRVy3wQSZpLdHuqMK/LLjF6Bu0SEjORYr8tOw5XCD2/vevzIsSiaz9lL/1U1X26znqi2MNwYeozqtDlNHJ4nSy1VIH3lf8nQCWH/0zCUiihRKuQwF44ag6vRlXDM6SVB8sFRfexJjz7Z2oU3fg4U5Kru/+8DJZswaMDmr0FhYp9UhdYQU12em4MBZ9+cvsXBWiQ94nsgXynIzZO3uamx3UGhguZGxIQTarzD+E/kHE+4i0Gg0aG5utlmm1+uhUPDLiIiIyFuRHGc9TfDekOm4EsvSj1RvMGLN7EysKcxAhp3+qFNHJ2FZXirUWh1+/0mDtSLuverzmDIqEYDjCnyTGdh8UI0XFk/ExkW5qD7X5lYlVf/KsOYOPX617wQ2H1IjWu7ffqgDe7aWVjZiWV6qqL1cfXnDwB1iT55LRKEtkmNtoCnlMlwzOgkd3QYYjGZB8cHTGJuaGI2DPyu0eVyt1WFEggKxCjl2HP0OiyaOBHAl1guNhaWVjSi8LR13XDMKz1VqPY6d/Svx+/PnxKTBcrNcDIz/RP7BhLsItm3bhvXr1w9arlKFzszUREREwSqS46wnCd7oKBnuuGaUw8eTYxVYOWMsZmemYFleKoDeaqfSyibsr9WgVW9AolKO+dkqrMhPQ0ZKLH5765Xh0a9WnMKvb54AwHkF/uaD9SjMSMayvFTBlWGH6lsw5/eHYTRdOQ7+vJAdWDVYdvwC1FodMlK8q9gPJmJNnktE4SGSY627nMVKMSp/4xTC0zOeVF9/d6kTmo5uJCjlaNMbUK/V4dWKRmSlxOLFpZNRr+3AmKRoyKS9o9kssV5oLCw7fgGnZg3HOC9Gu9VrO1BeM7g6PlATkwb6ZrkYGP+J/IMJdxGUlJRgyZIlNsuWL1/OagAiIiIRRHKc9WS4+B3XjMYQFxf+GxZNhEwqgd5gxNrd1SitaBw0aVZ5jQaPl9VgRX4aNvYbIr3pB5OQmhgNANi8ZBJ+/rdvrG1n+jOZgbveOAZgGpblpbpdGWZpIWNJtgeqH2r/qkGTGdh8yLuK/WAjxuS5RBQ+IjnWuuJJrPQnIdXXlhg78HXMHZ+C5/vildkMbFoyyfpY/1gvJBaazMAfKhvxTNHVHsfOzQfVg84vgOC9mR0KGP+J/IMJdxGoVKpBd/6VSiWkUs5JS0RE5K1Ij7NCL1KfWpjucj1Lsr1oa4XT36s3GKGQSdGi60FqYm8S4SpVvPXxbFU89txXALVWh82H1Nh0sB7mfhfGXQYTbt9xFA8WZuCh2ZnISIl1WBlWr+3A5oNqbD6khtk8uCKvVtOO7H7P7WsDqwa9qdgPRmJMnktE4SPSY60j7sTKzh4jthxuQPW5NpSt9P2E1444q75Wa3XYdLDeGmMtYqJkuDc/DS8sngi5rPe9zhoWZ7Nt/1j/4iE13vnyrNux0Gg0w2gye1SJ//YXZ7D5kHrQesF8MzsUMP4T+Qf/YoiIiIiCmNCL1EvaZju/ZbC1u6udJhCi5VL86UfT3G4788LiiSjMSMZdbxyzqZwzmYFNB9V48ZAaC3OG49lbrsaUUUnWx7sNJvy9+jz+UHEKl7sMWJA9eAK3t784gx1Hm7D73gK3XptYBlYN/vFfjUiJjcKc8cNCvperGBPAEhGFO1exsr8DdVqs212Nl5ZO9vFeCZcUI0fakBgsyFY5jVeuYv3GxRPx16/O4t2vzmLJZNej17rbLlp/tyeV+ANvDgT7zexQwPhP5B+S1tZWOwN0yFv5+fmQSqX45ptvrMvOnz8PABgxYoRHv1Oy7j1R9o1Ch3nDbXaXe/tZIgL4OSLxCP0stbW1ef2c9uJsJGjRdbu8SHXn/WjRdWPM0/sd9oaXSoC3fjwdS/NSnQ6lB3ovgPsPpX/ny7O4fcdRu0PA545Pwd6S3uq/d786i6mjkuxO2GrRv+p95rihOPxgocN1I4VY392uPgP2xETJcPqJeUF/MyGUMTaHN3++v8EYa0Pt8+3p9+R3T8wTpae7PwmN9bu+PIuD9Vqs6Ru95ogn73lHtwGvHDkVkjezQ4E/4n+o/a2TOCLxfXcWa4Oqwv2f//wnbrutN8FYWFiIf/zjH3bX02g0eO6551BWVoazZ88iPj4e1157LR5++GFcd911Dn+/Wq3Gc889h48++ggajQZDhw7FrFmz8Mgjj2DixIk+eU1EREREYhFrsq5SB5XyFmtmZ1qT7UKH0i/LS8WDhRnYdPDKMPCBVWnvfHkG2yubsCJ/LExmM0YkKCGVSGAym3G+TY8vzrTiDxWNKK+50hve2VBmdyayq9W04xe7v0Gzrkf0ie5CkSfzA7BnLhFFElex0p7OHiO2VzYF3eSSbV09ONumh1QiQbRcii6DCYnRcgyPV3oU65fmpeLjei3GP/sBFuYMx70FYzF+WCxGJUYjJU4BqUTi8b7GKeQhPzFpMGP8J/KPoEm4d3R04L/+679crnfixAnccsstOHfunHWZXq9HWVkZyos6Ac8AACAASURBVMvL8fzzz6OkpGTQdhUVFVi6dKnN3Yfz589j165deO+997Bjxw7ccsst4rwYIiIioiDRPxm9eckkZKvisb/W8VBiqQRYU5gBwPOh9I9+fzw+++4S4hSDq9IutOvxvdFDsOy+UXZ/T7xSDqlEgpzh8SiruWBdbm8os5CJ7LJV8bjn2rHW6vtgmOgu0MJlAlgiIl9wFiud2Verwbo5WTjZ3IG/fX0uoDd3HcVJqQQ4+diNQLz3sd5kNuPURR2+Pz6FSdkQwfhP5HtBkXBvb2/H7bffjq+++srpemazGatWrbIm26VSKaZMmQK1Wo1Lly7BbDbj0UcfxaxZs5Cbe+ULobOzE/fdd5812a5QKDBp0iTU1NSgo6MDPT09uP/++/HZZ59h+PDhvnuhRERERH5i7yLbUnHWqjc43K7o6uHISIm1tq8RorSyCU8X5SA1MRoHf2a//cvweCUQL6wnvEQiQXF+2qDX5231fbBMdBconkxiR0QUKZzFSmfa+m33i/eqA3Zz11mc9GWs7+g24PdHTmF/rQbNmgtIUMpx6/QcmxsPh9RafNZ0GXdPHxOxI80CifGfyPcCnnA/cuQIfvrTn0KtHjz79EAffPABjh49av35rbfewvz583Hx4kXMmTMHarUaBoMBzz33HLZv325db+fOnTh16hSA3pnWP/zwQ0yePBmNjY0oLCzEpUuXcPnyZWzZsgVPPfWU6K+RiIiIyJ8cXWS39yUBEp20ZynOHwvA+6H07XoDLnb2YFRiNGTSK0PLhVSl907YOg0HTjYPqprztCJvzewMvHhIbdNjPpgnuvM1IZPYERFFEmex0hlLCzRL4j1QN3edxUmxYn1/PUYjfv63arzaP753XAIAHDhrtInvhRkpON/WjbHP7Mc910buSLNAYvwn8i1poJ5Yr9dj8eLFKCoqcivZDgDvvvuu9d/Tpk3D/PnzAQBDhw7FqlWrrI+VlZWhq6vL7nY333wzJk/uvZgaO3Ys7rzzTrvrEREREYWqJ8tr7V5k12l1AIB5dtqzWGT1TX7mzVB6ADjR3IGxz+zHvFc+gd7QezFvNJlQtLUCWw432J2UDbiSmCjaWgG9wYhleal4YbHtXDueVuS16LqRmRKHhTmDRzRaHo9UlvkBylbOwOEHC1G2cgbW3pDFi20iiljOYqWFVALcPGE43r5nOqrWXo8Tj30fO+68BgCg6zai3/1m681df3AVJ8WK9RZ6gxEL/rcCLwuM7/cVjLVZRv7H+E/kGwFLuHd2duKjjz6y/nzTTTfhpptucrrNsWPHrP+ePn26zWMzZsyw/rujowM1NTXWn6uqqtzaTq1W4+LFi26+AiIiIqLgc1HXjTerTtt9rLSyEUDv5FcxUfYryeL7KvOcDaW3l2CoWns93r5nOialJgC4UuFnm2CQ4JBaWFU6AMhltqes3lTkAcC9BWOdPk5EROQsVkolwMPXZ+LkYzdiz329Lcumjk7C+GFxva3TAMzKSMbJx27Ew9dnwjKHqL9u7rqKk+7EemfaBmznyagzAFgzOwNSiX9vRhAR+UPAEu4WKSkpWL9+Pd58800MHTrU4XomkwknTpyw/pyammrz+OjRo21+tiTcz5w5g9bWVuvykSNH2qw3apTthF21tbXCXgARERGRCFp03Xj+QB2Ktn6K6148hKKtn2LDgTrBF+Y7q86gy8FFdtnxC1BrdUiOVWDFgJ7oFs7azjhLMEwdnYRleal4/rbeavRouXRQgkEmleCxG69y+7U4Skx4W5GX2VfZ5+hxIiIiR7EyWi7FX348HS8snmjtg+4oflvmJHnrx9MRLZf67eauqzjpTos5ZxL6bSfWqLNIH2lGROElYD3cFQoFfve73+GOO+5ATEyMy/Xb2trQ3X3lyzcxMdHm8bi4OJufW1paAABare1d1oHbxcfH292OiIiIyB+E9DR3p7/px/WOK8xMZmDzITVeWDwRGxflovpc26CKtDqtDlNHJ2FetgrlNVcu2KPlUvzpR9P6+qo7n/Q0OVaBMUNi8NaPp+OuN47Z9HtdMzsDU0YlISslFvFKOdr1BtRpdSitbETZ8Qs2vdUd9Yn1tiIvwUGCYWDFHhERhRdXsWuggbFSKgHe+NE0LM1L9WhOktt3HMW+Ws2guCY2V3HSUax31/x+7Xa87QN/b8FY7D1+wWHMJyIKRQFLuMfGxqK4uNjt9XU6nc3PUVFRTn/u6OjwaLv29nan+5Gfn+96ZwHU19cjPT0d58+fty7TaFg1RcL0//z0x88SiYGfIxKL0M9SbKz96mLAuzgbivQGI+54/RiONDi+4d8JYMv7zfi89hR23j3NZdK9RdsM6C47fHxT2WeYlGjErbkj8MfF6XiyvLcFjaUq/vf7q1A4QopbxynweHcrunqMkEiAl2+fisIRUjSePoMny2ux89h30A9MMByrxf+8I8Pya0bjlwuzUThChi9+OgWH1C2IlnVa36/CEVIAXYARSJADqSOkKLwtHadmDccfKhux7dNTQF/i/e9Ha3DXBNsCCaW+FegQ3gZQoZfh/PnzaDhrf3vL48GM393hje9vePPn+xuMsTaQn2+9weh27BoYZ/+4OB1/rorCyPhoTB2VgNSk3lgoNH4XjpCheFICPj99weexxlWctBfr3RUdJcOt4xTW17DnaI3j53JyPmKJ70mmduv29mI+hR7GssgUie+7s1gbsIS7UGaz2enjEonE7nJX2xERERH5m9FkhkwqwZPltU4v1vs70tCCp8pr8ewtE5yuF69wnpA3m4HV73wJIA+35o7A+lsm4NG5WXiz6gz+Wa9FW5cBF9q6MDwhGsuvGY3XKhtx34xxuCV3hFs3CLp6jHjt/7N37/FRVff+/9+ZJDOQQICESbgFk6CJgEGwEFRA8UKhXlLBHolt7behBu+2ClV7+tC2eqqcY1HRlq+aX7FV+dqetnqKRwxVK4ioiRw4okYJkkRRbpOAJBIyuf7+CLOdSSbJXPZkJjOv5+PB4zGz91571p61yWf2Z6+9VsVnqjr8lZ675iyNGJqoS6dkGOuPt7Tpj+9+rjeq69XobNNwW4LOz0lT0YxxOiU1SfctOl2zJ47STX/bJWdbh/HYu7vzctK0+ZM6r58fFyddeNpoXT1jgrJGDVWyNV7HW9pVe/SEXL8WPz16wmvZ83PS+vzuAACR52hTi57bub9HXPnBrAlKtiYEFLvck+62hHgVz/Kc+yPQ+F0ye6J+tvHjwA7UTW/H/KPZE2VNsPQZJyXpn3vq9OmRJp2SmmTE+u56i6eSNNLtaYBAnw5zxXf33y3eYj4ADEaDJuHe/a5Ba2trn+9dQ8z0V66tzfMPevchZrqrqKjov7Lq6jVgsViUkZHRY523ZYA3/Z0rnEswA+cRzOLrudTY2NjrOjPibCRztrXr9xX7dOO5WTrS1KI/VzVJyb3PYdPdn6qa9JuiUV4fe3e5+MxT9fbh3frWN/K0rGBir0O3LH/pU91yzKIfz8vR6dlJ+mV2z3FqH//BaH3mLNfPLpuujLQk3fT8+3rL0elTnd9ydOo/yuv12yX5+vJEqzo6O416Tztq0X+U16m5LU5SuzYfOKz/qKg3Hr3/0QUZGplm11VPb1ea3d6jnX+8aJQerKj3eITdEifdOi9Ht87NVnYvY7S7XJgwTJfuPaGX3YawGZoYrx8vmqFRfXy3kWSwnfvwD+0b3QaifSM51pq1P+9DunTFlTcOHtYP5+crIzXw2OXuSFOLNn9SryXTxgYVvwsyMnRz69CAv4O+jnnzgcPadcyi54tneY2T7jolPVfVpIe/na3HfzBatc3lHsPm+BpPJcluT5eOeO8AafDyXbni+/62Y8Z6bzEfgxdtGZtiqd37irWDJuE+fPhwJSQkGAny7kO/dD/I1NRUSeoxEWv3cu4TqrqXAwAAMJOzrV2LnizXzXOzJQU/5mlv/s+sCbpsSrpmnZ7dY51rYtOa+iY9+maN1myt1mNv1qhw6hj9+ZpvyJpg8djelhCvsuWzlRgfH/CkaPcuylNqklWLn3pX40YM6TGWrSvhfaK1XY+/VasUW4L+7Vun68ppY9W06hJZvDzF6JrIbu22Wkn+jy+fnZas/752tmrrm7Tm5PewrCBz0CTbASDWuWJq93lIXBadnq6s1KSgY1dre7t+8veuBPez3zvLWB9M/L4if4xfZV36O2ZJ+vuHB1VT36TstCQtK8hUzZGmXm++//bNas3NTtWV08aqbPls3b6hUs/t+EKlV53pczyVpDWLz9CZv9nSYxz7/rjGga+ub+qxDAAGu0GTcI+Pj1dWVpY++eQTSdKBAwc81u/fv9/jfV5eniRp/PjxGjp0qE6cOOG1XPf3ubm5ptYbAABAkm7fUKnNe+v18LenSpJerQpsnMP+JltLtiYo2ZrQ50VydlqSHv72VM3NTtX31+/Q+BFDeiTbXRLjux71DjbB8P1vTNB3/rhdlQcbVbZ8tq6cNla3zM3Wmq01vfam62u8etdEdm9U1wc0gZ0tIV5ZJ7+HxfljNHviSL+ODQAQPq6Y2ptlBV1DwAQbu96u/dK4uTvpZHwKNn73Nhxuf/o7ZqlrcvTH3qzRQ9+eqscWn+H1s9xvvv/ft2olSVdOG6vfLcnXw4VTZU2w+BVPc+3D9Nw139CVf3jXY+LzvgxNjNeygq4n635f/lmPZQAw2A2ahLskTZ8+3Ui4l5eXe6zbvn278To5OdlIuFssFuXn5xuPzZWXl+vmm2/2Wi47O7tHj3gAAIBgufewG2br+vnVEOA4pf2NleqaGO5Pu4/3uEh+pcqhbTVHdPc3c3XmuBRdOW2sFuYt1NDEvsd9l4JPMOScTFRs3luvFRsq9dsl+bp1XrZK3/lUT3/X997pLq7e9y9WHjKS7f31/DvR2q6122qNpL8tIV5t7R06j7HbAWDQ8KXXulnJ8eFDvk6ZmBW/HV85lTIkQbaEeFU5vtLoZGufQ8VJvh2z1PXE19zsrqf24+Li+r35/h+XT9H/fnFMbe0dSoi3GMl2f+PpFWeMMW6i+8L1VFl1/XFt2n3YYxkARAPvXZki1GWXXWa83rlzpzZt2iRJOnbsmJ544glj3cKFCzVkyBCv5V5++WXt2rVLkvTFF19o/fr1xrorrrgiZHUHAACxy72HnWtCsBRbYP0ehvdRrrOzU/uPNWtudqouPG20LCc7tlnipJ+cl6NPfnaRni+epRnjRxhDtQyzJSje0n9vu2ATDO71XlexT0eaWpSTlqx/XHeOrjyZML/p+fc1/lev6KcvVmrTboferj2qTbsdWvlipSbc+6puev59OdvajWO1JcTrO9PGSfKt55+LK+kvSYe/ajH2CQCIfL70WjcrOe4eu8yK358fa9aiJ8vlbGtXrn2YHnjtE4/45o0vx2yJk8cTX77G1OnjRygh/uvUUKDx9I4LTpUPPyd0walpWl04RZL06NYadXR6LgOAaDCoEu6FhYWaPHmy8X7p0qU6//zzNW3aNO3Zs0dS19AzK1eu9ChXXFwsu71rLLCWlhZddNFFmj9/vmbNmqX6+q5AkpKSohtuuGGAjgQAAMQS9x52e0+OVXpxgOOU9jW+aVxcnLLTknXZlAy9dO1sffKzi/TT+ZP0nz+YqYe/PVXZaV3j2f5m814tevIdnfvYm1r05DtavXmvjjS19Pm5wSYY3Hvmux7Xl6Q52alGb7q122p7HQPW1ZvOlaSIi4tTe0fXtoGO0XukqUXjRgzR78v9KwsACC1vserwV05JvvVaNys57h67zIrf1fVNHonqG849RY+/9XV888aXY751Xo7HE1/+xFSXYOPpY4vze31qbmhivG6ak6WXS7qeMPvre/tVWv6ZxzIAiBaDKuGekJCgZ555RmPGdE0y0tHRoZ07d+ro0aPGNg888IDOOOMMj3IjRozQs88+q+HDh0uSnE6nduzYYUygmpiYqLVr1xr7BQAAMJN7D7t1FV1jlS4ryPRpKBd33sY37Z6UKHrmf/R/t9XqSFOL8bh4ID3IuzMjweDutT1fJw8C7U3nyiMEM0avJI0bMaTfGw4AgNDrK1Y1NHfFUl96rZuZHHcxK367xix3f9prYV66R3zrrr9jtsRJt56clD3QmOqqUzDx9MY5Wfr8nov1m8unaGGeXTMzR2r+qaO1unCKvrjnYv12Sb5sCfHaWl2v/Q3N+vzur5cBQDQZVAl3qWtS07fffls333yzsrOzZbValZqaqoULF2rjxo26/vrrvZY755xz9M4776i4uFgTJkyQ1WpVenq6lixZos2bN6uwsHCAjwQAAMQK9x52ZR8fVk19k1KTrCr2c3Iw9/FNe0tKbP6kTr/6x25NuPdV/XXXfmPbQHu7uX+2GQkGlyljujpCBNObznZyotdgxuiVpFNGDfW7DgAAc/UXq/zptW52clwyJ367j1nunqj+0eyvJ3n1dgO4v2NedHq68RRbIDG17eQTY8HGU0lKTbJqxfxJKlt+tv772tn60zXf0O3nT/IYn31eTppunZfDmO0AolZEJdwff/xxNTQ0qKGhQRs3bux1u7S0NN1///167733VFdXp9raWv3lL3/R3Llz+9x/Zmam1qxZo8rKStXV1emTTz7RH/7wB+Xn55t9KAAAAAb3HnYdndKjb3ZNKvZQ4RTNn+TbhJ3u45u2tXf0m0B3trXrG+NHSgqut5uLWQkGlyvO6HqyMNjedJI5Y/S+EmCSAQBgjv5ilT+91s1OjkvmxG/XmOUurtjjmli8e3xz6e+YlxV8nbAPJKY2OrvKhGpCdwCINRGVcAcAAIhG3XvYPbq1Wn/bdUC2hHiVLZ+tG+dk+TzmqST95O8f9ptAD7a3m7cedmYlGCQp1z5Mkjm96cwYo5dkAQCEjy+xyp9e66FIjnctCzx+//W9/UadXLxNzurtBnB/xzzpZMI+0Jh65HhXzA/FhO4AEItIuAMAAIRY9x52HZ3S99fvMC7af7ck32PM03OzRmlhnr3HmKdSV1JinQ8J9GB7u3lLfJiVYBiaGK+0k4+Rm9GbzowxekkWAED4+BKr/O21HkxyvKWtQ6XdhkKTAo/ff31vv675fzvV2S2B721yVm83gPs75mEn9xNoTN335QlJoZnQHQBiEVcWQASLW/FiuKvQr87Vl4e7CgAwKDxUOEWVBxuNnunNbR266untumVutn48L0fZaUlaMX+SVsyf1Od+fE2gB9vb7ZUqh9e6uBIM9y3K01MV+/RKlUONzjYNtyXom3l2Fc/6epz53hIMywoyFW+Jk2ROb7plBZm6p2y3XzcWuo/RS7IAAMLHl1jl6rX+8Len9oipvW3//fU7ZB92ts7LSfM5dh13tinZlqAfzsrU2m21PfbrT/w+7mzTz1/+WI++WdMjFkreJ2ft7QZwX8fsz/j23vxzT53mnzo66HgKAOhCwh0AAGAAuHrY3b6hUk+dTJp3dEprttbosTdrtDAvXcvPOUXfmDBCE0YMUVxcnNf9+JpAD6S3myWuayiaZQUTNW3s8D63dU2K5i3BUF1/XI9urfGaYHB/XF/q6k23abf/NwVcSYrW9g6j55+3xEhv3MfofaO6Xuu/N8PvOgAAzOFrrHp0a7XmZqfqymlje8TU7lyJ4NkTRxrL+otdj71ZoykZw1Vy9il6bPEZ+teLTpXjqxbtrW/SuorPVPbxYXV0qkf8vuuiUzU3O1WWuDh9/uUJ1R5t0tzsNFXVHdearTU9Psu9fpLn5Kzf7OUGsC0hXv+4brZu+3tlj5vve+ubNH38iIBj6sihicb3E2g8BQB8jYS7CRwOh+rq6jyWOZ1OWa0EHQAAghVNcbav3uEX547W+Tmp/V60+pqU8Ke3myVOunVejm6dm63skz3j/dXR2an39jfo3n9UacOHB3uMe+tKLKwunCJbQrw+ONCgM8amBN2brr2jU4nxfff86677GL0/nEWyAEBsC3es9bVntqvXunSWrpw21ude631paetQ0bP/o6xRSbp1bo4RBy1xcRo/YqjGjxiq6eNH6MppY1VT36RH36zRmq3V6uzsius5aUmaPXGkLHFx+tuu/fqXp/9H55wySttumdvncGXdJ2e1xEkr5k/Sj8/L6bVMYny8frskX/9+2WQ9/tanxjG/98UxXTltbMAx1X24mkDjKQDgayTcTVBaWqpVq1b1WG6382gyAADBGsxx1jXe+qtVDn3V0qbvnzVBV88Y32cPu/74mpTwtbfbkASLnv1eV+Kie50bnG1KsSVoQa5dxQWZSu0jcWGJi9OM8SP0+6Vn6qmK1H4TH2eMTZEUXG+6uuMtGp3ctU9vTxB01z3p/9f39uv9Aw3aWDLb588GgGgU7ljrT89s9yFdfrUwL6CY6pqk9XtnjdeYlCG6e0GuZowfYazrLQ5mpyXp4W9P1ZXTxmjH58d0zTcmeMS2b4wfqR/Py9HHhxoleR+PXep549ca718sTrYmeD3mYHuot3d0BhRPAQCe4hoaGryMJAZ/eOsNUFRUJKvVqo8//thYdujQIUlSRkZGQJ8zGMbzRuxhDPfBK9i/SYCLv+dSY2OjX/v3Nc5GEmdbu27fUKl15Z+pua3DY50lTiqcOkb3fDNXZ45LkaWXoWN685vNe/XTFyt73+D4UUnSJTPz9NK1s3WkqUUT7n3V6wWzJU76yw9masm0sX3WWfq6B9xDJy+u2zs6jXHYfVV3vEV//+CgRg5NVE5akiaMGCL7MJucbe1a9GS5z73pXJPatbV3KCHe0mMbVyKlr6T/C+8f0Bt767XqssmDKlnA3+7oRvtGt4Fs30iMtX0df1+xqjdDE+P1xT0Xa1SSVdtqjmiYLV7jUoYoLdnaa2ztHutuOy9HD317qtd13j7PPQ66HGho1seHv9KZ41KMG9NVjq+Uax+mv+06oO/8cbvHPrrf+C169n/0n9cEFot7O8ZAYup7+4/pzHEjPOK7L/G0L/xNi020e2yKxXbvK9bSw90Edru9x51/m80mi6XnBSAAAPDPYIuz/V3odnRK//XBQf3XBwc1f1KaypbP9ivh6+vj4mUfH1ZNfZOy05J67e1267wc4wK/v4vzE63tWrutVpUHG406d3R2+nXDYHSyVYvzx+ipin0qfedTHW9p0wOXTtbc7DS/e9O1d3R6TbZLfY/R60qMzJ+UpsX5Y32uOwBEs3DH2mDn4jjvd9uMocx6i619xbpA4+ATb3+qG/+2Sx2dnsnwXPswSdJ7XxzTuVmj+pxY/PbzJwUVi7sLpId6leMr3fPyx7rt/Emaf+poSV293YN5Ig8AYhkJdwAAABPdvqHSp15lkrR5b71WbKjUb5fk+7x/X5MSHZ3So2/W6OFvT/U6HqslTrp1bnZQdfa3d76r/t4u3vsa395bbzp/e9e7jE0ZorEpQwIqCwAInWDm4nCfN6S32No91lnipFuCjIMLckcby70lw+/91um6t1v5Aw3N+s//3a+yjw/r/ktO163zcoKqgzf+xtRc+zD9/Ueew6sFGmcBAFJkdg0DAAAYhFyPXvtjXcU+HWlq8avMQ4VTNH9SWr/bPbq1Wm9U1xu93W6ck6WhiV294Radnq7stKSg67xiw4da9OQ7Wr15r9/H4Y0rIV+2/Gxtu2WuypafrdvPn8SkpgAQ5bzFqu6GJsbrpjlZxjAof31vvx59s6bHdt1jq7dYZ0YczElL1sK8dI91rmR4b8amDNGPz8vRy8vP1m3nT1K8JS5kvx+IqQAQHiTcAQAATLKul0e3+3Kitd3vi2xfkxI3nJul2RNHGmV+tyRfn99zsX5z+RT97KJTTanzuVmp2rTboZUvVmrCva/qpuffl7PNv/0BACD1jFUL8+w6N2uUFubZtbpwir6452L9dkm+kWy/5v/tVKeXWem6x1ZvsW5ZwcRe1/XHff8/mj2xx3p/b6YP1O8HAMDAYEgZAAAAk7xa5Qio3CtVDr/HR+3tcXGrM17zJ6Xp1oUzPMaJLf/sqH65MM/o7WZWnXPSkoxlvowtCwBAf/oaO7y6/rge3VqjR9+s8Zpsd3GPrd5i3aST8cvMOOjiSob7GtsH8vcDACD0SLgDAACYpMHZFlC5xgDLST2TEocOHZIkYyI596TE986aoOnjR+jNmnrNyhwpW0J80HUebuv5czKQsenD4UhTi9ZV7NOrVQ41ONuUYkvQgly7igsylcrj9gAQET7/8oQcx1tUXd+k35d/pk27D3uM2d4b99jqLdYNOxm/QhEHJf+S4aH6/UCcA4DwIOEOIChxK14MdxV80rn68nBXAUAMSOnlors/vV2s++Lulz/W9PEjlJOWpOG2BNUeaNCnR0/obxtqeyQlXMmFO/77I61dkq/p40cEXefeLvbXVezTvYvyIvKC3tnWrts3VGpd+WdqbuvwWLdpt0N3l+1WcUGmHiqcQi99AAiza//zPW3a7X8PcPfY6i3WfXUyfoUqDvpzM93s3w/EOQAIL8ZwBwAAMMnFufaAyi0IsJwkjRiaqO/8cbvOeugNnfbAP7Xg8bd17Z//Vy9/3LMHoHtyYW99kyl1rj65n+4idWxZZ1u7Fj1ZrrXbanskIVxcQ+MserKc8egBIMzMiK3e9hHqOOjPzXQzfz8Q5wAg/Ei4AwAAmGRZQWavk5j2ZmhivJYVZA7IZ7onF9ZVfOZ3eRf3Ov++/LNet3slwDFpQ+n2DZXavLfep21dQ+MAAMLHjNjqbR+hjoP+3Ew38/cDcQ4Awo+EOwAAgElSk6wq9jN5vqwg05jcNNSf6Z5c2LK3XjX1TUHVubr+uDbtPtzrdsGMTR8KR5pa/O51v65in440tYSoRgCA/pgRW73to+zjwyGLg/7eTDfr9wNxDgAiAwl3AAAAEz1UOEXzJ6X5tO0Fp6ZpdeGUAfvMso8P60BDs1KTrPo/szL16Js1fpWXPOv86NaaPieuC2Zs+lBYV7FPJ1r9e3Q+UofGF8m9ggAAIABJREFUAYBYYkZs7b6Pjk6FLA4GcjPdjGMkzgFAZCDhbgKHw6GPPvrI45/T6VR7O2OhAQAQrMEWZ20J8SpbPls3zsnq9fHwoYnxumlOll4umW3KZGXunzmkj8+84dws2ZO7EgAPFU7Rrv3H9LddBwKq81/f228kKnoTzNj0ofBqgEPcROLQOABgpkiPtWbEVm/7eHRrtelxMNCb6WYcI3EOACJDZHU7GqRKS0u1atWqHsvt9si6yAQAYDAajHHWlhCv3y3J132L8vRUxT69UuVQo7NNw20J+maeXcWzghtGpq/PvGXGSP1p5369U9fZ52faEuK1sWS27vzvjxRvidMVZ4zxuc5/fW+/rvl/O9XZR+/2YMemD4WGAIe4ibShcQDAbIMh1poRW73t47dv1ihjuFVzs9OCioOuuLe6cErAN9ODPUbiHABEhriGhoY+LpXgC4fDobq6Oo9lRUVFslqt+vjjj41lhw4dkiRlZGQE9DlxK14MvJJAjOtcfXm4qxBxgv2bBLj4ey41Njb6tX9f4+xgd6SpResq9unVKocanG1KsSVoQa5dxQWZSvUjOR/I/+0jTS16b3+DJqcP05iUIb1uV3ukSY+8Ua1H36zpM9kuSTfNydJvl+T7XIeBsOjJd7Rpt/+9+Bbm2VW2/OwQ1Mh//O2ObrRvdBvI9o3EWNvX8ZsVA31Rd7xFo5MD3+fxljY9/tanA3Iz3V+RFuf4mxabaPfYFIvt3lespYe7Cex2e487/zabTRYLI/YAABCsaI+zzrZ23b6hUuvKP1NzW4fHuk27Hbq7bLeKCzL1UBA95vqTmmTVBaeO7nOb1vZ2/ejP/6t/flLf7/7MGpvebBfn2gNKRETa0DgAYLZwxdpwxMDhtnjd9d+VmjVxlHLSkjTclqBGZ5uq65v0/oEGLci1a+qY4RqaaFFcXJwSLXGKi4szyidbE7Ri/iStmD/JlPqYiTgHAJEhOq5UAQAABiFnW7sWPVmutdtqeyQaXE60tmvttloterJczrbwjaWbGN81BM1Ajk1vtmUFmb3WvTeRODQOAESDcMVAW0K8frUoT//8pE5zHtumvFX/1NPbP9dZ40folwvzNCc7VSOHJsqWEC9rvMUj2R7piHMAEBno4Q4AABAmt2+o1Oa9/fcYl6TNe+u1YkNlwMO0mPG4fjjGpjdTapJVxQWZWrut1ucyywoi+5gAYLAayBjYnXs8qzveolz7MEkDO7RNKBDnACAykHAHAAAIgyNNLXqqYp9fZdZV7NO9i/L8uugPxeP6qUnWiH2cvj8PFU5R5cFGn5I8kTo0DgAMdgMVA/uTmmRVapI1IoZ3MwtxDgDCjyFlAAAAwmBdxT6daPXv8fgTre1+JSgG05A1A8WWEK+y5YN7aBwAGOwGIgb6KtpiJXEOAMKPHu4AAABh8GqV/5OaSdIrVQ6fe5aH83H9SDbYh8YBgMFuIGKgr6IxVhLnACC8SLgDAACEQYOzLaByjT6Wi5TH9SPZYB4aBwAGs1DHQF9Fe6wkzgFAeDCkDAAAQBik2ALr9zDcx3KR9Lg+AADuQh0DfUWsBACEAgl3AACAMLg41x5QuQU+lgvmcX0AAEIp1DHQV8RKAEAokHAHAAAIg2UFmb1OZtaboYnxWlaQ6dO2kfK4PgAA3YU6BvqKWAkACAUS7gAAAGGQmmRVsZ+Jg2UFvk9yFimP6wMA0F2oY6CviJUAgFAg4Q4AABAmDxVO0fxJaT5te8GpaVpdOMXnfUfK4/oAAHgTyhjoK2IlACAUuC1rAofDobq6Oo9lTqdTVmvkz1oOAECki+Y4a0uIV9ny2bp9Q6We6mXiNtcj9KsLp8iW4Pvj98sKMnVP2W6/JoMLxeP6AIDIF45YG8oY6CtiJQAgFEi4m6C0tFSrVq3qsdxu5643AADBivY4a0uI1++W5Ou+RXl6qmKfXqlyqNHZpuG2BH0zz67iWYE9Qu96XH/ttlqfy4TicX0AQOQLV6wNVQz0FbESABAKJNxNUFJSosWLF3ssKyoqioqedwAAhFusxNnUJKtWzJ+kFfMnmbbPhwqnqPJgozbvre9321A9rg8AiHzhjrWhiIG+IlYCAMxGwt0Edru9x51/m80mi4Uh8gEACBZxNnCR8Lg+ACDyxXKsJVYCAMxGwh0AACCKhftxfQAAIh2xEgBgJhLuAAAAMSCcj+sDADAYECsBAGaI/ufDAAAAAAAAAAAYAPRwBwAAiAFHmlq0rmKfXq1yqMHZphRbghbk2lVckKlUHpMHAAAAAFOQcAcAADEt2hPRzrZ23b6hUuvKP1NzW4fHuk27Hbq7bLeKCzL1EBPBAQBC5EhTi9Zuq9Ub1fVy2lKiLtYCAOCOhDsAAIhJsZCIdra1a9GT5dq8t77XbU60tmvttlpVHmxU2fLZg/ZYAQCRxyPWHjsZi5LbJUVPrAUAoDvGcAcAADHHlYheu622R7LdxZWIXvRkuZxt7QNcQ3PcvqGyz2S7u81767ViQ2WIawQAiBWxEmsBAOiOhDsAAIg5sZCIPtLUoqcq9vlVZl3FPh1paglRjQAAsSQWYi0AAN6QcAcAADElVhLR6yr26USrf70FT7S2+/3dAADQXazEWgAAvGEMdwAxIW7Fi+GuQr86V18e7ipggA2G81KKvnMzmET0ivmTQlQr871a5Qio3CtVjkF1nACAyBMrsRYAAG/o4Q4AAGJKMInowaTB2RZQucYAywEA4BIrsRYAAG/o4W4Ch8Ohuro6j2VOp1NWqzVMNQIAIHqYHWdjJRGdYgvsZ97wAMsBAAYvYi0AAObhisoEpaWlWrVqVY/ldrs9DLUBACC6mB1nYyURfXGuXZt2+99TcEEuv18AINYQawEAMA/RzAQlJSVavHixx7KioiJ6uAMAYAKz42ysJKKXFWTqnrLdfo2hOzQxXssKMkNYKwBAJCLWAgBgHhLuJrDb7T3u/NtsNlksDJEPAECwzI6zsZKITk2yqrggU2u31fpcZllBpkYl0WEAAGINsRYAAPOQEQYAADHFlYj2x2BNRD9UOEXzJ6X5tO0Fp6ZpdeGUENcIABALYinWAgDQHQl3AAAQc2IlEW1LiFfZ8tm6cU6WhibGe91maGK8bpqTpZdLZsuW4H0bAAD8FSuxFgCA7mIq4d7Y2Kj77rtPM2fOVHp6uiZOnKjLL79cL730UrirBgAABlAsJaJtCfH63ZJ8fX7PxfrN5VO0MM+uc7NGaWGeXasLp+iLey7Wb5fkD+pjBABEnliKtQAAuIuZMdwdDocuueQS7d6921jW3NysLVu2aMuWLfrJT36ie++9N4w1BAAAA8mViL5vUZ6eqtinV6ocanS2abgtQd/Ms6t4VnQ92p6aZNWK+ZO0Yv6kcFcFABAj3GPto2U7taW6Xi22lKiNtQAASDGUcF+5cqVHsj0/P1+HDx/WoUOHJEmPPPKI5s2bpwULFoSrigAAIAxIRAMAEFqpSVbdMCdLN8zJUkZGRrirAwBASMXEkDJVVVV64YUXjPcPP/ywtm3bpg8++EAFBQXG8lWrVoWjegAAAAAAAACAKBATPdzdk+0ZGRkqLi6WJNlsNt122226+uqrJUnvvvuuPv/8c02YMCEs9QQQ2+JWvBjuKgAAAAAAACAIMdHDfceOHcbrGTNmyGL5+rDPPvtsj2137tw5YPUCAAAAAAAAAESPmEi4u4/dPnbsWI91aWlpstlsXrcFAAAAAAAAAMBXMZFwP3LkiPE6JSWlx/rk5GSv2wIAAAAAAAAA4KuYGMP9+PHjxuvExMQe692XuW/rjfskq32prq5WVlaWDh06ZCxzOBw+lQUAIJK4xzJv/I1vSUlJva4LJs6iC783ohvtG91o3+g2kO0bibGW8zv20OaxiXaPTbHY7n3F2pjo4d7Z2dnn+ri4uAGqCQAAAAAAAAAgWsVED/fk5GQdO3ZMktTa2tpjvfsy9+FlvKmoqPDpMwsKCmSxWJSRkdFjnbdlAABEKl/jlq/bNTY29rrOjDiLLnw30Y32jW60b3QbiPaN5FjL+R17aPPYRLvHplhq975ibUz0cB81apTx+quvvuqx3v0LSk1NHZA6AQAAAAAAAACiS0wk3HNycozXBw4c8FhXX1+vlpYW431eXt6A1QsAAAAAAAAAED1iIuE+Y8YM4/X27dvV3t5uvH/33Xd73RYAAAAAAAAAAF/FxBjul156qVavXi1JOnz4sNatW6eSkhK1tLRozZo1xnYzZ87UhAkTTPnMzz//XK2trZo6daqxrK2tTZKUkBDg175olRlVAwDAL+6xzBt/49spp5yiP//5z0HVyVucRZegf28gotG+0Y32jW4D2b6RGGs5v2MPbR6baPfYFIvt3lesjYlvYebMmbrooov02muvSZJWrFihP/zhD3I4HDp48KCx3Z133mnaZyYlJampqUkdHR3GstraWkmeQ9z44/SNd5hRNQ/t7e06evSoRo0apfj4eNP3P9jrI0VmnaqrqyUFfi6ZLRK/I+rUv0g7j6TI+46kyKtTOOrT0c/6YONbILzFWTOF8nsOdRuGuj1CXX/23zfaN7r3T/tG9/5D2b6hqLvZsTYcvxdcwv17LpyfH87PDmebS7H7vYf782l32n2ghft79yauoaGhM9yVGAiHDh3SZZddpt27d3tdf8stt+jXv/51SOtQUFAgyfdZ4QfCRx99pNmzZ6u8vFyTJ08Od3Uirj5SZNYp0s6lSPyOqFP/Iu08kiLvO5Iir06RVh8pMs+lYIXyew51G4a6PUJdf/bfN9o3uvdP+0b3/kPZvpH4+6C7cP5eCPf3E87PD+dnh/s3Yqx+7+H+fNqddh9o4f7evYmJHu6SlJGRoS1btujRRx/V888/r9raWtlsNp155plavny5CgsLw11FAAAAAAAAAMAgFjMJd6nrkbi77rpLd911V7irAgAAAAAAAACIMpZwVwAAAAAAAAAAgGhAwh0AAAAAAAAAABPE/+xnP/tluCsRK0pLSyVJJSUlYa6Jp6SkJM2bN0/JycnhroqkyKuPFHl1isRzKdK+I4k69ScSzyMpsr4jl0irU6TVJ1LPpWCF8nsO5b4Hoj1CfQ6y/97RvtG9f9o3uvcf6vaNtN8H3YX790K4v59wfn64PjvcbS7F5vce7s+n3Wn3cAj3995dXENDQ2e4KxErwj1TM6IH5xLMwHkEs3AuRRbaI7rRvtGN9o1usd6+sX78sYg2j020e2yi3T0xpAwAAAAAAAAAACYg4Q4AAAAAAAAAgAlIuAMAAAAAAAAAYALGcAcAAAAAAAAAwAT0cAcAAAAAAAAAwAQk3AEAAAAAAAAAMAEJdwAAAAAAAAAATEDCHQAAAAAAAAAAE5BwBwAAAAAAAADABCTcAQAAAAAAAAAwAQl3AAAAAAAAAABMQMIdAAAAAAAAAAATkHAHAAAAAAAAAMAEJNwBAAAAAAAAADABCXcAAAAAAAAAAExAwj1Eli5dqqVLl4a7GgAARCXiLAAAoUWsBQAgMAnhrkC0qqmpkcVi0fDhw41lhw4dkiRlZGSEq1qIEpxLMAPnEczi77nU2NgY9Gd6i7Powv/t6Eb7RjfaN7oNZPtGYqzl/I49tHlsot1jUyy2e1+xlh7uAAAAAAAAAACYgB7uJnA4HKqrq/NY5nQ6ZbVaw1QjAACiB3EWAIDQItYCAGAeEu4mKC0t1apVq3ost9vtYagNAADRhTgLAEBoEWsBADAPCXcTlJSUaPHixR7LioqK6A0AAIAJiLMAAIQWsRYAAPOQcDeB3W7vceffZrPJYmGIfAAAgkWcBQAgtIi1AACYh+gJAAAAAAAAAIAJSLgDAAAAAAAAAGACEu4AAAAAAAAAAJiAhDsAAAAAAAAAACYg4Q4AAAAAAAAAgAlIuAMAAAAAAAAAYAIS7gAAAAAAAAAAmCAh3BWIBg6HQ3V1dR7LnE6nrFZrmGoE9O1IU4vWVezTq1UONTjblGJL0IJcu4oLMpWaxHkLILIQZwEACC1iLYBIRf4CgxEJdxOUlpZq1apVPZbb7fYw1AbonbOtXbdvqNS68s/U3NbhsW7TbofuLtut4oJMPVQ4RbaE+DDVEgA8EWcBAAgtYi2ASEP+AoMZCXcTlJSUaPHixR7LioqK6A2AiOJsa9eiJ8u1eW99r9ucaG3X2m21qjzYqLLlswlaACICcRYAgNAi1gKIJOQvMNiRcDeB3W7vceffZrPJYmGIfESO2zdU9hms3G3eW68VGyr12yX5Ia4VAPSPOAsAQGgRawFEEvIXGOxCFj337Nmj9PR0paSkKCUlRZ9++mmPbRobG3Xfffdp5syZSk9P18SJE3X55ZfrpZde6nPfDodDd9xxh6ZNmya73a7s7GxdddVVeuutt/osV1NToxtvvFGTJ0/W6NGjddppp+mHP/yhPvzww6COFYh0R5pa9FTFPr/KrKvYpyNNLSGqEQAAAAAAgCfyF4gGIUm4d3Z26tZbb1Vzc3Ov2zgcDl144YV68MEHVVVVpebmZn355ZfasmWLrr76at1zzz1ey+3Zs0dz5szR448/rtraWjmdTtXX16usrEzf+ta3VFpa6rVceXm55s6dq2effVZffPGFWlpadOjQIT3//PM677zz+k3yA4PZuop9OtHa7leZE63tfgc5AAAAAACAQJG/QDQIScL9qaee0rZt2/rcZuXKldq9e7fxPj8/XxkZGcb7Rx55RK+88opHmc7OTl133XU6ePCgJMlisWjGjBkaOXKksf7OO+9UZWWlR7kTJ07o2muvVWNjoyTJarXqrLPOUnJysiSptbVV119/vQ4fPhzgEQOR7dUqR0DlXgmwHAAAAAAAgL/IXyAamJ5wP3DggH7xi1/0uU1VVZVeeOEF4/3DDz+sbdu26YMPPlBBQYGxvPss6a+99pq2b99uvP/LX/6iLVu26L333lN2drYkqa2tTQ8++KBHueeee84Y0sZms+n111/X5s2bVV5ebiTrjx07prVr1wZwxEDka3C2BVSuMcByAAAAAAAA/iJ/gWhg+qSpK1eu1LFjx/rcxj3ZnpGRoeLiYkldyfDbbrtNV199tSTp3Xff1eeff64JEyb0KHfWWWdpwYIFkqRRo0bpuuuu01133SVJKisrU3Nzs4YMGdKj3CWXXKL8/K6JFCZOnKjvfve7RqL9hRde0C9/+cuAjx2IVCm2wP6rDw+wHIDB70hTi9ZV7NOrVQ41ONuUYkvQgly7igsylZpkDXf1MAjErXgx3FXwSefqy8NdBQAAAJxE/gJmCec1raln49///ne9+GLXxdXIkSP15Zdfet1ux44dxusZM2Z4zHx+9tlne2y7c+dOI+HuXm7mzJke27mXO378uHbv3q0zzzzT2Edf5VwJ95qaGh09elSjRo3q50iBweXiXLs27fb/8aoFufYQ1AZAJHO2tev2DZVaV/6Zmts6PNZt2u3Q3WW7VVyQqYcKp8iWEB+mWgIAAACIRuQvEKxIuKY1bUiZL7/8Uj/96U8ldY2R3tukp5I8xm4fO3asx7q0tDTZbLYe23Z0dGjPnj29lhs/frzXz9i/f78aGhqM5WPGjPHYbty4cR7vq6qqeq03MFgtK8jU0ET//ogMTYzXsoLMENUIQCRytrVr0ZPlWruttscPE5cTre1au61Wi54sl7PNv8mMAAAAAKAv5C8QjEi5pjUt4X733Xcbk5nedtttysvL63XbI0eOGK9TUlJ6rHdNZuq+bWNjo1paWnot517GvVx9fb3H8u7lhg0b1mvdgGiRmmRVsZ/BZ1lBpkYxbAQQUxxftejmudm6ZHK6LHF9b7t5b71WbKjseyMAAAAA8AP5CwTj9g2V2ry3vv8NFdprWlOGlNm6dauefvppSdKpp56qlStXqqKiotftjx8/brxOTEzssd59mWvbpqamXrfx9j7Qcl999VWv9ZbkMalrX6qrq5WVlaVDhw4ZyxwOZkyGOQI5l+6cnab/rfpUb9X2f1NpTnaq7pid5nH+IvrwNwndJUqam2HR3Muz9OmcdP1/FZ+p9J1PpU7v2//+9QbdPGOk2o73PXdLd0lJSb2uCybOogv/t/0z2M4h2je60b7RbSDbNxJjLed37KHNY5MZ7U7+YvCJhP/vR5tatO71XVKr773WXde0gdyw6SvWBp1wb25u1i233KLOzq6r8TVr1ngMCeONa9vexMX17FYXSBlfygGxwpYQr+euOUu/2FSlP+38Qs1e/gANSYzX1TPG65cLcxmbGYgBR5ta9NzO/Xqjul6NzjYNtyXo/Jw0Fc0Yp1NSk3TfotM1e+Io3fS3XXJ6eRyvubVdf9q5X9/JTfaydwAAAADwH/kL8/R1zRdtTwU8t3O/13OlL65r2hvmZJlal6AT7g888ICqq6slSddcc43mzZvXb5nk5GQdO9bVG661tbXHevdlrqFiut816F6u+3tfy7W1tXm87z7ETHd99dx3V1BQIIvFooyMjB7rvC0DAhHIufTUsnFa3dSipyr26ZUqh/EH95t5dhXP4jGsWMTfpNjjfRKZOEnt2nzgsP6jot6YROZHF2RoZJpdVz29XR1e7mG/U9epG+Z0TVDk67nU2NjY6zoz4iy68N34ZrB+T4O13vAN7RvdBqJ9IznWcn7HHto8NpnR7uQvAufPNZ+ZNyzC+f+9vK5GSh7ld7l36jr1ywDq3VesDSrhvmvXLj322GOSpNGjR+u+++7zqdyoUaOMhLu3IVzcK5yamipJGj58uBISEowEefdy3Q/SVW7UKM8vuns59wlV3csB0Sw1yaoV8ydpxfxJ4a4KgAHmmkSmr3HtXJPIVB5sVNny2bpy2ljdMjdba7bW9Ni20dnmZQ8AAAAAEDzyF/4L5JovGp4SaAjw2jQU17RBTZr60ksvGQnwuro6ZWVlKSUlRSkpKbr00ks9ts3Pz1dKSorWr1+vnJwcY/mBAwc8tquvr/eYHNU1+Wp8fLyysrJ6Lbd//36P965y48eP19ChQ3st1/19bm5u7wcMAMAgF+gkMrfOy/Y6kepwmynTwQAAAAAATBApE4cOtJQAr01DcU0bVMI90PHRZ8yYYbzevn272tu/Hl/n3Xff7XXb6dOnG6/Ly8s9ttu+fbvxOjk52Ui4WywW5efn+1QuOzu7R494AACixZGTj2P6Y13FPh1palFOWrIW5qX3WL8g125W9QAAAAAAQQjmmm+wuzjAa9NQXNMGlXA/5ZRTNHfuXK//3JPckjRz5kzNnTtX6enpHr3fDx8+rHXr1kmSWlpatGbNGo8yEyZMMN5fdtllxuudO3dq06ZNkqRjx47piSeeMNYtXLhQQ4YM8Vru5Zdf1q5duyRJX3zxhdavX2+su+KKKwL7IgAAGATWVezTCT8nkTnR2m78YPvR7Ike64YmxmtZQaZp9QMAAAAABC7Ya77BbFlBpoYm+jc0TqiuaYPqM/+9731P3/ve97yu27p1q0di/amnntIpp5xivL/ooov02muvSZJWrFihP/zhD3I4HDp48KCxzZ133umxz8LCQk2ePFkfffSRJGnp0qU688wzVVtbq6NHj0rqGnpm5cqVHuWKi4v12GOPyeFwqKWlRRdddJGmTp2qqqoqY0z3lJQU3XDDDYF+FQAARLxXqxwBlXulyqEV8ycpJ81zIvJlBV0TFR3qfa4YAAAAAMAACfaabzBLTbKquCBTa7fV+lzGdU1rtqB6uAfj8ccfN4Z9kaT333/fI9l+yy23aOHChR5lEhIS9Mwzz2jMmDGSpI6ODu3cudNItkvSAw88oDPOOMOj3IgRI/Tss89q+PDhkiSn06kdO3YYyfbExEStXbvW2C8AANEo2Elk3Me2u+DUNK0unGJKvQAAAAAAwYukiUPD4aHCKZo/Kc2nbUN5TRu2hHtGRoa2bNmif/3Xf9Xpp5+uIUOGaMSIETrvvPP07LPP6te//rXXcrm5uXr77bd18803Kzs7W1arVampqVq4cKE2btyo66+/3mu5c845R++8846Ki4s1YcIEWa1Wpaena8mSJdq8ebMKCwtDebgAAIRdsJPINDrbNDQxXjfNydLLJdExkz0AAAAARItImjg0HGwJ8SpbPls3zsnqdXiZgbimDdm3OW/ePDU0NPS5TVJSku666y7dddddfu07LS1N999/v+6//36/ymVmZnqMEQ8AQCy5ONeuTbv9f8TQNYnMMGu8vrjn4pA8cgcAAAAACE6w13zRwJYQr98tydd9i/L0VMU+vVLlUKOzTcNtCfpmnl3Fs0IzjIy76Lh9AQAA+rWsIFP3lO32axId90lkTrMPC1XVAAAAAABBCvaaL5qkJlm1Yv6ksIxNT8LdBA6HQ3V1dR7LnE6nrFZ6AAIAIkckTSLjD+IsAAChRawFgOgwWK/5og0JdxOUlpZq1apVPZbb7dHzOAYAIDo8VDhFlQcbtXlvfb/bRsrEqMRZAABCi1gLANFjMF7zRRsS7iYoKSnR4sWLPZYVFRXRGwAAEHFck8jcvqFST1Xs8/qooeuRwtWFUyJiYlTiLAAAoUWsBYDoMRiv+aINCXcT2O32Hnf+bTabLBZLmGoEAEDvImESGX8QZwEACC1iLQBEl8F2zRdtSLgDABCjwjmJDAAAAAAgtLjmCw9uVwMAAAAAAAAAYAIS7gAAAAAAAAAAmICEOwAAAAAAAAAAJiDhDgAAAAAAAACACUi4AwAAAAAAAABgAhLuAAAAAAAAAACYgIQ7AAAAAAAAAAAmSAh3BaKBw+FQXV2dxzKn0ymr1RqmGgEAED2IswAAhBaxFgAA85BwN0FpaalWrVrVY7ndbg9DbQAAiC7EWQAAQotYCwCAeUi4m6CkpESLFy/2WFZUVERvAAAATECcBQAgtIi1AACYh4S7Cex2e487/zabTRYLQ+QDABAs4iwAAKFFrAUAwDxETwAAAAAAAAAATEDCHQAAAAAAAAAAE5BwBwAAAAAAAAD9zLsuAAAgAElEQVTABCTcAQAAAAAAAAAwAQl3AAAAAAAAAABMQMIdAAAAAAAAAAATkHAHAAAAAAAAAMAEJNwBAAAAAAAAADBBQrgrEA0cDofq6uo8ljmdTlmt1jDVCACA6EGcBQAgtIi1AACYh4S7CUpLS7Vq1aoey+12exhqAwBAdCHOAgAQWsRaAADMQ8LdBCUlJVq8eLHHsqKiInoDAABgAuIsAAChRawFAMA8JNxNYLfbe9z5t9lsslgYIh8AgGARZwEACC1iLQAA5iF6AgAAAAAAAABgAhLuAAAAAAAAAACYgIQ7AAAAAAAAAAAmIOEOAAAAAAAAAIAJSLgDAAAAAAAAAGACEu4AAAAAAAAAAJiAhDsAAAAAAAAAACYg4Q4AAAAAAAAAgAkSwl2BaOBwOFRXV+exzOl0ymq1hqlGAABED+IsAAChRawFAMA8JNxNUFpaqlWrVvVYbrfbw1AbAACiC3EWAIDQItYCAGAeEu4mKCkp0eLFiz2WFRUV0RsAAAATEGcBAAgtYi0AAOYh4W4Cu93e486/zWaTxcIQ+QAABIs4CwBAaBFrAQAwj2nR89NPP9XKlSs1ffp0paenKzMzU4sWLdL69evV0dHhtcz555+vlJSUPv/99a9/7VHO4XDojjvu0LRp02S325Wdna2rrrpKb731Vp91rKmp0Y033qjJkydr9OjROu200/TDH/5QH374oSnfAQAAAAAAAAAgdpnSw/0f//iHrrnmGp04ccJY1tzcrLfeektvvfWWXnzxRT3zzDNKTEw01re3t+ujjz7y+7P27NmjSy+9VAcPHjSWOZ1OlZWVadOmTfrNb36jkpKSHuXKy8u1ZMkSNTY2GssOHTqk559/Xi+++KKefvppXXrppX7XBwAAAAAAAAAAyYQe7kePHtWPfvQjI9lutVo1ffp0paWlGdts3LhRv/71rz3K7dmzR83NzZKkIUOGaO7cuV7/uT/W1tnZqeuuu85ItlssFs2YMUMjR4401t95552qrKz0+KwTJ07o2muvNZLtVqtVZ511lpKTkyVJra2tuv7663X48OFgvw4AAAAAAAAAQIwKOuG+fv16HTt2TJKUkpKirVu36o033tCHH36o2bNnG9uVlpaqtbXVeP/+++8br6dOnaqNGzd6/Xf++ecb27322mvavn278f4vf/mLtmzZovfee0/Z2dmSpLa2Nj344IMedXzuuef06aefSuoah+7111/X5s2bVV5ebiTrjx07prVr1wb7dQAAAAAAAAAAYpQpY7i7eotfc801mjx5siQpKSlJV155pbFNY2OjHA6H8f6DDz4wXufk5Pj0OS+88ILHZy5YsECSNGrUKF133XXGurKyMqP3fPdyl1xyifLz8yVJEydO1He/+12v2wEAAAAAAAAA4I+gE+4333yzNm/erP379+sXv/iFx7rq6mrj9ZAhQ5Senm68d+/h7uqd3p8dO3YYr2fOnOmx7uyzzzZeHz9+XLt37zbe79y506dyNTU1Onr0qE91AQAAAAAAAADAnSk93CUpLi5OQ4YMkSQdPnxYjz/+uH7/+98b60tKSpSQ8PUcre493N99912de+65Sk9PV3Z2tr7//e97JNclqaOjQ3v27DHejx071mP9+PHjPd67Eu779+9XQ0ODsXzMmDEe240bN87jfVVVVf8HCwAAAAAAAABANwn9b+Kfl19+WUuXLvVYdtVVV+lXv/qV8b6urs6Y+FSSXn/9deN1c3OzNmzYoI0bN+qRRx7RD37wA0ldQ9K0tLQY26WkpHh8hmsCVJcjR45Ikurr6z2Wdy83bNgwr+UAAAAAAAAAAPCH6Qn3zz77zON9VlaWrrrqKo/e7e7DyUiSxWJRfn6+jh8/rr1796qzs1NtbW368Y9/rNNPP10FBQVqamryKJOYmNjn++PHj0uS3+W++uqrPo+voKCgz/Uu1dXVysrK0qFDh4xl7mPYA8HgXIIZOI9gFn/PpaSkpF7XBRNn0YX/2/4ZbOcQ7RvdaN/oNpDtG4mxlvM79tDmsYl2j02x2O59xVrThpRxqaur04wZM4yJUGtra/Wd73xHt9xyizo7O43t5s2bp/Hjx2vWrFnasWOHtm7dqh07duiFF14wkuDt7e3693//d0nyKOtNXFyc1+X9lQMAAAAAAAAAwAym93D/+c9/rp///OeSpNLSUq1YsUKS9Mc//lFz587V0qVLdcEFF+iCCy7wWv7CCy/U0qVL9eyzz0qS3njjDbW0tPS4a9Da2trne9cQM/2Va2tr83jffYiZ7ioqKvpc71JQUCCLxaKMjIwe67wtAwLBuQQzcB7BLL6eS42Njb2uMyPOogvfjW8G6/c0WOsN39C+0W0g2jeSYy3nd+yhzWMT7R6bYqnd+4q1pvdwd1dSUqJp06YZ7//0pz/5VC4/P9947XQ65XA4NHz4cI9haboP/dL9IFNTUyVJo0aN8ljevZz7hKru5QAAAAAAAAAA8IcpCffm5mbt3bvX64Sjp5xyivF63759HusaGxu9luneC91qtSo+Pl5ZWVnGsgMHDnhss3//fo/3eXl5kqTx48dr6NChvZbr/j43N7dHfQAAAAAAAAAA6E/QCffp06crPT1dM2bM0Nq1az3WdXZ26uOPPzbep6enS5K+//3va9y4cRo/fryKi4t77HPHjh0eZex2u/FZLuXl5R5ltm/fbrxOTk42Eu6uCVl9KZednd2jRzwAAAAAAAAAAL4IOuF+xhlnGK8ff/xx7dy503j/4IMPas+ePcb7RYsWSZImTZpkDO3y+uuv6+mnnza22bhxo/7rv/7LeL906VLj9WWXXWa83rlzpzZt2iRJOnbsmJ544glj3cKFCzVkyBCv5V5++WXt2rVLkvTFF19o/fr1xrorrrjC5+MGAAAAAAAAAMBd0An3n/70p8bY6g0NDbrwwgs1Z84cTZ06Vf/2b/9mbJeTk6Nrr71WknT99ddrxIgRxrqbb75Z06dP18yZM1VUVKSOjg5J0rhx47Ry5Upju8LCQk2ePNl4v3TpUp1//vmaNm2akdiPj4/3KCNJxcXFRi/5lpYWXXTRRZo/f75mzZql+vp6SVJKSopuuOGGYL8OAAAAAAAAAECMCjrhfuaZZ+qJJ54wepS3t7fr/fff9xiv/bTTTtPzzz+vpKQkSdLYsWO1fv16j6R7dXW1qqqqjPdjx47VCy+84DHES0JCgp555hmNGTNGktTR0aGdO3fq6NGjxjYPPPCAR697SRoxYoSeffZZDR8+XFLXRKw7duwwetknJiZq7dq1xn4BAAAAAAAAAPCXKZOm/su//Iu2bdumZcuWKSsrS1arVcnJyZoxY4buu+8+vfHGG8rJyfEoc9555+mdd97RTTfdpNzcXA0ZMkTJycmaOnWq7rjjDlVUVHj0ZnfJzc3V22+/rZtvvlnZ2dmyWq1KTU3VwoULtXHjRl1//fVe63jOOefonXfeUXFxsSZMmCCr1ar09HQtWbJEmzdvVmFhoRlfBQAAAAAAAAAgRiWYtaPTTjtNjzzyiF9lxo8frwceeEAPPPCAX+XS0tJ0//336/777/erXGZmptasWeNXGQAAAAAAAAAAfGFKD3cAAAAAAAAAAGKdaT3cY5nD4VBdXZ3HMqfTKavVGqYaAQAQPYizAACEFrEWAADzkHA3QWlpqVatWtVjud1uD0NtAACILsRZAABCi1gLAIB5SLiboKSkRIsXL/ZYVlRURG8AAABMQJwFACC0iLUAAJiHhLsJ7HZ7jzv/NptNFgtD5AMAECziLAAAoUWsBQDAPERPAAAAAAAAAABMQMIdAAAAAAAAAAATMKQMAADAIBO34sVwVwEAAAAA4AU93AEAAAAAAAAAMAEJdwAAAAAAAAAATEDCHQAAAAAAAAAAE5BwBwAAAAAAAADABCTcAQAAAAAAAAAwQUK4KxANHA6H6urqPJY5nU5ZrdYw1QgAgOhBnAUAILSItQAAmIeEuwlKS0u1atWqHsvtdnsYagMAQHQhzgIAEFrEWgAAzEPC3QQlJSVavHixx7KioiJ6AwAAYALiLAAAoUWsBQDAPCTcTWC323vc+bfZbLJYGCIfAIBgEWcBAAgtYi0AAOYhegIAAAAAAAAAYAIS7gAAAAAAAAAAmICEOwAAAAAAAAAAJiDhDgAAAAAAAACACUi4AwAAAAAAAABgAhLuAAAAAAAAAACYgIQ7AAAAAAAAAAAmIOEOAAAAAAAAAIAJEsJdgWjgcDhUV1fnsez/Z+/e46Mu77z/v3OaIQECJAznYAIYJBo03DpRoRUqh1Q0CirF0+9hosFj6y5R2/v2p3Zra9lVaG01KlnDVkV61y62sEpocIkKlkQKq5TUhAKBKAJDgiSQZJJJcv8RZ5rJiTkmc3g9Hw8ezHy/32vmm8xkrvl8vtf1uaxWqwwGwyCdEQDAW3WNLSoqr9G2KovqrTbFG6O1INWkHHOSEuL4fB9I9LMAAPgXfS3gG8QQACQS7j5RWFioVatW9dhuMpkG4WwAAN6w2tq0clOFisqOqtnW7rRva6VFTxZXKsecpDXZaTJGRw3SWYYX+lkAAPyLvhbwDjEEgK5IuPtAXl6elixZ4rRt+fLljAYAgCBjtbUpa22ZSg/W9nlMU2ubCnZWq+J4g4pXZPKFeQDQzwIA4F/0tYDniCEAdEfC3QdMJlOPK/9Go1GRkZTIB4BgsnJTRb9flLsqPVir/E0VenFpup/PCvSzAAD4F30t4DliCADd0XsCAKDOeovrymvcalNUXqO6xhY/nREAAACAQEYMAaA3jHAHAC+wKE7oKCqvUVNrm1ttmlrbtK68Rvlzp/rprAAAAAAEKmKI8EL8D1eRcAcAD7AoTujZVmXxqF1JlYUvywAAAEAYIoYID8T/cBcJdwBwE4vihKZ6q82jdg0etgMAAAAQ3IghQh/xPzxBDXcAcJMni+Ig8MUbPbsGPdzDdgAAAACCGzFE6CP+hydIuAOAG1gUJ3TNTzV51G6Bh+0AAAAABDdiiNBG/A9PkXAHADd4sygOAluuOUmxMe5N/YuNiVKuOclPZwQAAAAgkBFDhDbif3iKhDsAuMGbRXEQ2BLiDMpx84tvrjlJo1iNHgAAAAhLxBChjfgfnqJolA9YLBadOnXKaZvVapXBwAcoEGpYFCe0rclOU8XxBpdq9M2blqjV2WkDcFagnwUAwL/oawHPEUOELuJ/eIqEuw8UFhZq1apVPbabTNTkAkINi+KENmN0lIpXZGrlpgqt62P6oH0K6OrsNFafHyD0swAA+Bd9LeA5YojQRfwPT/EO8IG8vDwtWbLEadvy5csZDQCEoPmpJm2tdH96GIviBA9jdJReWpquZ7Kma115jUqqLGqw2jTcGK2F003KuYIpoAONfhYAAP+irwW8QwwRmoj/4SkS7j5gMpl6XPk3Go2KjKREPhBqcs1Jeqq40q2FU1gUJzglxBmUP3eq8udOHexTCXv0swAA+Bd9LeAbxBChhfgfnvJZ73nkyBE9+uijuuyyyzRmzBglJSUpKytL69evV3t7e69tGhoa9Mwzz+jyyy/XmDFjNHnyZN1www169913+30ui8Wixx9/XDNnzpTJZFJKSoqWLVumjz/+uN92hw8f1oMPPqgZM2Zo9OjRuvDCC3X33Xdr//79Hv/cAMILi+IAAAAAABD6iP/hKZ+McP/Tn/6ku+66S01NTY5tzc3N+vjjj/Xxxx9r8+bNeuONNxQTE+PYb7FYdN1116mystKpzQcffKAPPvhA//RP/6Sf/OQnPZ7rwIEDWrx4sY4fP+7YZrVaVVxcrK1bt+r5559XXl5ej3ZlZWVaunSpGhoaHNtOnDihjRs3avPmzXr99de1ePFir38XAEIfi+IAAAAAABD6iP/hCa9HuJ8+fVr33HOPI9luMBh02WWXKTEx0XHMe++9p5/97GdO7R599FGnZHt6errGjh3ruP/LX/5SJSUlTm06Ojp03333OZLtkZGRysjI0MiRIx37f/jDH6qiosKpXVNTk+69915Hst1gMGjWrFkaOnSoJKm1tVX333+/Tp486dXvAkB4sC+K8+DsZMXG9L7gTWxMlB6anawteZksigMAAAAAQBAi/ocnvE64r1+/XmfOnJEkxcfH66OPPtKHH36o/fv3KzMz03FcYWGhWltbJUlVVVV65513HPt+8YtfaOfOnfrrX/8qs9ns2N59lfT3339fu3fvdtx/++239cEHH+jTTz9VSkqKJMlms+m5555zardhwwYdOXJEUmcduu3bt6u0tFRlZWWOZP2ZM2dUUFDg7a8DQJiwL4rzxVPz9fwNaVo03aSrk0dp0XSTVmen6cun5uvFpel0tgAAAAAABDHif7jLJzXc7aPF77rrLs2YMUOSFBcXp5tvvtlxTENDgyyWzpV9uybbx44dq5ycHEmdyfB//ud/duz75JNP9MUXXzjud203a9YsLViwQJI0atQo3XfffY59xcXFam5u7rXdddddp/T0dEnS5MmTdfvtt/d6HAC4wr4oTvGKK7Xz+3NUvOJKrbxmKjXbAAAAAAAIIcT/cJXXCfeHH35YpaWlOnbsmJ5++mmnfYcOHXLcHjJkiMaMGSNJ2rNnj2N7RkaG08rnV155pdNj7N2713G7a7vLL7/c6biu7c6dO+dUrqbrY/TX7vDhwzp9+nRvPyYAAAAAAAAAAP3yyQh3SYqIiNCQIUMkSSdPntQrr7yi1157zbE/Ly9P0dGda7R2TYaPHz/e6XESExNlNBod9+3Htre368CBA322mzhxotN9e7tjx46pvr7esX3cuHFOx02YMMHpflVVVX8/JgAAAAAAAAAAvYr29QNu2bJF3/ve95y2LVu2TP/yL//iuF9XV+e4HR8f3+Mxhg4dKqvV6nRsQ0ODWlpa+mxnXwC1+3PU1jqvIty93bBhw3ptBwAAAAAAAACAO3yecD969KjT/eTkZC1btswxul3qLPliFxMT0+Mxum6zH9vY2NjnMb3d97Td2bNne5xPV10Xde3PoUOHlJycrBMnTji22WvYA97ivQRf4H0EX3H3vRQXF9fnPm/6WcATwfYe4rM7tPH6hraBfH0Dsa/l/R1+eM3DE697eArH172/vtZnJWXsTp06pYyMDE2ZMkWSVF1drVtuuUXf//731dHRIUmO//sSERHRY5snbVxpBwAAAAAAAACAL/h8hPsTTzyhJ554QpJUWFio/Px8SdJvfvMbzZkzR9/73vc0dOhQnTlzRpLU2tra4zG6brOXiul+1aB7u+73XW1ns9mc7ncvMdNdeXl5v/vtzGazIiMjNXbs2B77etsGeIL3EnyB9xF8xdX3UkNDQ5/7fNHPAu4I1vdQsJ43XMPrG9oG4vUN5L6W93f44TUPT7zu4SmcXvf++lqfj3DvKi8vTzNnznTc/+1vfytJGjVqlGNbbyVcup5wQkKCJGn48OFOZWm6t+v+Q9rbdX2u3tp1XVC1azsAAAAAAAAAANzhk4R7c3OzDh482OuCoxdccIHjdk1NjSQ5ys1I0ldffeV0fG1trdPiqNOnT5ckRUVFKTk5uc92x44dc7pvbzdx4kTFxsb22a77/dTU1B4/AwAAAAAAAAAA5+N1wv2yyy7TmDFjlJGRoYKCAqd9HR0d+vzzzx33x4wZI0nKyMhwbNu9e7fa2toc9z/55BOnx+h67GWXXea4XVZW5nTc7t27HbeHDh3qSLhHRkYqPT3dpXYpKSk9RsQDAAAAAAAAAOAKrxPul1xyieP2K6+8or179zruP/fcczpw4IDjflZWliRp8eLFjm0nT55UUVGRJKmlpUUvvPCCY9/ll1+uSZMmOe5ff/31jtt79+7V1q1bJUlnzpzRq6++6ti3aNEiDRkypNd2W7Zs0WeffSZJ+vLLL7V+/XrHvptuusnlnxsAAAAAAAAAgK68XjT1scce03vvvSebzab6+np95zvfUVpamr7++mtHCRmps4zMvffeK6kzkX7ttdfq/ffflyTl5+frP/7jP2SxWHT8+HFHmx/+8IdOz5Wdna0ZM2bob3/7myTpe9/7ni699FJVV1fr9OnTkjpLzzz66KNO7XJycvTrX/9aFotFLS0tuvbaa3XxxRerqqrKUdM9Pj5eDzzwgLe/DgCApLrGFhWV12hblUX1VpvijdFakGpSjjlJCXGGwT49AAAAAACCEvF24PM64X7ppZfq1Vdf1UMPPaTm5ma1tbVp3759TsdceOGFevvttxUXF+fY9sorr+j6669XZWWlJPVo8/3vf1+LFi1yPtnoaL3xxhu6/vrrdfz4cbW3tzuNqJekn//8506j7iVpxIgRevPNN3XLLbeooaFBVqtVe/bsceyPiYlRQUGBxo0b5/kvAgAgq61NKzdVqKjsqJpt7U77tlZa9GRxpXLMSVqTnSZjdNQgnSUAAAAAAMGFeDt4+GTR1FtvvVU7d+5Ubm6ukpOTZTAYNHToUGVkZOiZZ57Rhx9+6LRQqiSNHTtWH3zwgf7P//k/uuiiizRkyBCNGDFC3/72t/Xmm2/qZz/7Wa/PlZqaqj//+c96+OGHlZKSIoPBoISEBC1atEjvvfee7r///l7bXXXVVdq1a5dycnI0adIkGQwGjRkzRkuXLlVpaamys7N98asAgLBltbUpa22ZCnZW9+j87Zpa21Sws1pZa8tktbX1egwAAAAAAPgH4u3g4vUId7sLL7xQv/zlL91qExcXpx/96Ef60Y9+5Fa7xMREPfvss3r22WfdapeUlORUIx4A4DsrN1Wo9GCtS8eWHqxV/qYKvbg0/fwHAwAAAAAQxoi3g4tPRrgDAMJbXWOL1pXXnP/ALorKa1TX2OKnMwIAAAAAIPgRbwcfn41wD2cWi0WnTp1y2ma1WmUwsFABgPBQVF6jplb3pqw1tbZpXXmN8udO9dNZIVTQzwIA4F/0tQAQuIi3gw8Jdx8oLCzUqlWremw3mUyDcDYAMPC2VVk8aldSZeELAM6LfhYAAP+irwWAwEW8HXxIuPtAXl6elixZ4rRt+fLljAYAEDbqrTaP2jV42A7hhX4WAAD/oq8FgMBFvB18SLj7gMlk6nHl32g0KjKSEvkAwkO80bPuZLiH7RBe6GcBAPAv+loACFzE28GH3hMA4LX5qZ5NN17gYTsAAAAAAMIB8XbwIeEOAPBarjlJsTFRbrWJjYlSrjnJT2cEAAAAAEDwI94OPiTcAQBeS4gzKMfNzjzXnKRRcdQFBQAAAACgL8TbwYdiPgD6VdfYoqLyGm2rsqjealO8MVoLUk3KMScpgQ9vdLEmO00VxxtUerD2vMfOm5ao1dlpA3BWAAAAAIDuiPWDC/F2cCHhDqBXVlubVm6qUFHZUTXb2p32ba206MniSuWYk7QmO03GaPemNiE0GaOjVLwiUys3VWhdeY2aWtt6HGOf1raa9w0AAAAADDhi/eBEvB1cSLgD6MFqa1PW2rJ+r5w2tbapYGe1Ko43qHhFJh/mkNT5JeClpel6Jmu61pXXqKTKogarTcON0Vo43aScK5jWBgAAAACDgVg/uBFvBw8S7gB6WLmpwqVpSpJUerBW+Zsq9OLSdD+fFYJJQpxB+XOnKn/u1ME+FQAAAACAJMvZFhUuu1RnrTYdrG1UUflRFX9+Uu0dPY8l1g9cxNuBj0VTATipa2zRuvIat9oUldeorrHFT2cEAAAAAAC8NWlkrKaNHqrLJo7QzTPH6917M/X3/32t/unbUxQR0fN4Yn3AM4xw9wGLxaJTp045bbNarTIYmMaB4FPURy2w/jS1tmldeQ1XV13AwjSA++hnAQDwL/paILT1F4emJMbpFzderDkpCbpz/R6nuu7E+oBnSLj7QGFhoVatWtVju8lkGoSzAbyzrcriUbuSKgudcD9YmAbwHP0sAAD+RV8LhCZ34tCbZ46XNEvLXt/tVGKGWB9wHwl3H8jLy9OSJUucti1fvpzRAAhK9VabR+0aPGwXDliYBvAO/SwAAP5FXwuEHk/i0Jtnjtf356TohY8OO44h1gfcR8LdB0wmU48r/0ajUZGRlMhH8Ik3evaxMNzDduGARWgB79DPAgDgX/S1QOjxNA79wbdS9Osdhx2j3In1AffRewJwMj/Vs2mjCzxsF+pYhBYAAAAAMJC8iUOnJA7VouljHNuJ9QH3kXAH4CTXnKTYGPfKmcTGRCnXnOSnMwpu3ixCCwAAAACAu7yNQ+/JnCyJWB/wFAl3AE4S4gzKcbNDzTUnaVQc9R17480itAAAAAAAuMvbOHRKYpwkYn3AUyTcAfSwJjtNc6cmunTsvGmJWp2d5uczCl4sQgsAAAAAGEjexqHDjdHE+oAXSLgD6MEYHaXiFZl6cHZyn+VlYmOi9NDsZG3Jy5Qx2r0SNOGERWgBAAAAAAPJ2zjUGB1JrA94gYwOgF4Zo6P00tJ0PZM1XevKa1RSZVGD1abhxmgtnG5SzhVMLXPF/FSTtla6P52PhWkAAAAAAJ7wNg5NGhnr61MCwgoJdwD9SogzKH/uVOXPnTrYpxKUcs1Jeqq40q0Fa1iYBgAAAADgKeJQYHBRUgYA/IhFaAEAAAAAA4k4FBhcjHD3AYvFolOnTjlts1qtMhj4oAJ8oa6xRUXlNdpWZVG91aZ4Y7QWpJqUY05SQhB8IViTnaaK4w0qPVh73mNZmAboiX4WAAD/oq8FQk8oxqHBnhtA+CDh7gOFhYVatWpVj+0mEzWYAW9YbW1aualCRWVH1Wxrd9q3tdKiJ4srlWNO0prstIBezMW+CO3KTRVaV17T67Q++/S91QH+swCDgX4WAAD/oq8FQk8oxaGhkhtA+Iior6/vGOyTCHa9jQZYvny5DAaDPv/8c8e2EydOSJLGjh07oOeH0BMO7yWrrU1Za8tcuho/d2qiilcExwrqdY0tAbMIbTi8jzAw3H0vNTQ0uPX4rvaz4SQif/Ngn0LI6Fh9w2Cfgp6o0gUAACAASURBVFv47A5tvL6hbSBf30Dsa3l/hx9e88AxkHGor1/3UM0NhJpw/Hvvr69lhLsPmEymHlf+jUajIiMpkQ94auWmCpc6VEkqPVir/E0VenFpup/PynssQgu4j34WAAD/oq8FQlswx6GhmhtAaKP3BBBw7Fff3VFUXqO6xhY/nREAAAAAABhI5AYQrEi4Awg4RX3Ul+tPU2ub2x0xAAAAAAAITOQGEKxIuAMIONuqLB61K/GwHQAAAAAACCzkBhCsSLgDCDj1VptH7Ro8bAcAAAAAAAILuQEEKxZNBRBw4o2efTQN97BdsKprbFFReY22VVlUb7Up3hitBakm5ZiTlODjleYBAAAAAPCWO3EsuQEEK96BAALO/FSTtla6PwVsQarJD2cTeKy2Nq3cVKGisqNqtrU77dtaadGTxZXKMSdpTXaajNFRg3SWAAAAAAB08iSOJTeAYEVJGQABJ9ecpNgY9xLFsTFRyjUn+emMAofV1qastWUq2Fnd40uKXVNrmwp2VitrbZmsNvcWmAEAAAAAwJfcjWNb2zrjWHIDCFYk3AEEnIQ4g3Lc7CBzzUkaFQZlVFZuqlDpwVqXji09WKv8TRV+PiMAAAAAAPrmbhy78o+dcSy5AQQrSsr4gMVi0alTp5y2Wa1WGQz8gQOeWpOdporjDS51yvOmJWp1dtoAnNXgqmts0bryGrfaFJXX6CdZ06npjqBGPwsAgH/R1wLwF0/i2NfKa7Tq+hkaaogmN4CgRMLdBwoLC7Vq1aoe200makYBnjJGR6l4RaZWbqrQuvIaNbX2LI1inyq2OkxqlRf18XvoT1Nrm9aV1yh/7lQ/nRXgf/SzAAD4F30tAH/xNI599eMjWjl3KrkBBCUS7j6Ql5enJUuWOG1bvnw5owEALxmjo/TS0nQ9kzVd68prVFJlUYPVpuHGaC2cblLOFeE1VWxblfuLxUhSSZWFhDuCGv0sAAD+RV8LwF88jWP/VGXRym/iWHIDCDYk3H3AZDL1uPJvNBoVGUmJfMAXEuIMyp87NeyTxvVWm0ftGjxsBwQK+lkAAPyLvhaAv/gyjiU3gGDhs4T7gQMHVFBQoO3bt+vYsWOKiorSBRdcoKysLD388MMaPXp0jzYpKSmqre2/BtO2bdtkNpudth0+fFjPPfectm/fLovFolGjRmn27Nl67LHHdPHFF/f5WPv27dPq1au1Y8cOff311xozZoy+853v6PHHH9fkyZM9+8EBN9Q1tqiovEbbqiyqt9oUb4zWglSTcsxJ1NjGecUbPfvIHu5hOwAAAADw1OnGFm3Ye0xlpw4T/4Yx4liEI5+8e9966y394Ac/UEtLi9P2iooKVVRUaP369XrnnXd0ySWXOPYdO3bsvMn23pSVlWnp0qVqaGhwbDtx4oQ2btyozZs36/XXX9fixYt7tNu8ebPuvvtutba2OrZ98cUXev311/WHP/xB77zzjq644gq3zwdwhdXWppWbKlRUdlTNtnanfVsrLXqyuFI55iStod4Y+jE/1aStle5Px1uQSu1NAAAAAAPDHv++9t+fymprl4aOcuwj/g0/xLEIR17PD9u/f78efvhhR7I9JiZGM2fO1AUXXOA45sSJE7rtttvU3Nzs2LZv3z7H7ZEjR2rOnDm9/ouPj3cc19TUpHvvvdeRbDcYDJo1a5aGDh0qSWptbdX999+vkydPOp3jiRMn9MADDziS7cOGDVNGRoajHl19fb3uueceNTU1efvrAHqw2tqUtbZMBTureyTb7Zpa21Sws1pZa8tktbm3mAjCR645SbEx7n0htS8eAwAAAAD+1jX+tRL/QsSxCE9eJ9xfeukl2WyddZWGDRumDz/8UDt27NC+ffv0xBNPOI47cuSINm7c6Lj/17/+1XH7O9/5jt57771e/1100UWO4zZs2KAjR45I6qwnt337dpWWlqqsrEwjR46UJJ05c0YFBQVO5/jyyy+rvr5ekjR69GiVl5frgw8+UElJiWJiYiRJ1dXV2rBhg7e/DqCHlZsqVHrQtdkcpQdrlb+pws9nhGCVEGdQjptfOnLNLB4DAAAAYGAQ/6I74liEI68T7tu3b3fcvvXWW51qqD/66KMaMmSI4/5f/vIXx+2uI9ynTJni0nO98847jtvXXXed0tPTJUmTJ0/W7bff3utxkpwS/XfccYcmTZokScrIyNCiRYsc+/7whz+4dB6Aq+oaW7SuvMatNkXlNaprbDn/gQhLa7LTNHdqokvHzpuWqNXZaX4+IwAAAAAg/kXfiGMRbrxOuD/55JN6+umntWLFCi1cuNBpX1RUlFPCvWv99K4j3FNSUlx6rr179zpuX3755U77rrzySsftw4cP6/Tp05Kkuro6VVdXu9Su6+MDvlBUXqOmVvemyDW1trn9JQXhwxgdpeIVmXpwdnKf0/JiY6L00OxkbcnLpCYiAAAAgAFB/Iu+EMci3Hi9aGrXkeXd7d27V19//bXjvr2ue1NTkw4ePOjY/t577+kXv/iFampqNGrUKM2bN0+PPfaYpk2b5jjm2LFjjrIwkjRu3Din55owYYLT/aqqKmVmZqqqqsppe3/tzpw5o6+++krjx4/v82cC3LGtyv2FQSSppMqi/LlTfXw2CBXG6Ci9tDRdz2RN17ryGpVUWdRgtWm4MVoLp5uUcwXT7wAAAAAMLOJf9Ic4FuHE64R7X2w2m1MNd0mOEfAVFRVqa/vHVc93333Xcfv48ePasGGD/vjHP+r11193tKmtda4B1nUxVamzfnxXdXV1vbYbMWKE0337gqtd25Fwh6/UW20etWvwsB3CS0KcQflzp/LlFAAAAMCgI/6FK4hjEQ78knBvb2/Xfffdpx07dji2LVy40FFzvWs5GUkyGAy65JJLVFtb61gUtbGxUXfffbc+/vhjJScnq7Gx0amNfbHTvu6fPXtWknTu3Dmn7dHRzj9yX+36Yjab+91vd+jQISUnJ+vEiROObRaLZ1d7EbyM1nrp3Gm32xmsUU7vne54L8EXeB/BV9x9L8XFxfW5z5t+FvBEsL2H+OwObby+oW0gX99A7Gt5f4e+HvFv4xmX2p0v/kVw4W89PIXj695fX+t1Dffu2tralJeXp7ffftuxLT4+XmvWrHHcj42N1ZVXXqkxY8Zo0aJFqqioUGlpqfbt26eXX37ZcdzZs2f1wgsvSJI6Ojo8Op/ztYuIiPDocQFXfHuKa4uCdHeNh+0AAAAAABgMxL8A0MmnI9xbW1uVm5urP/7xj45tMTExKioq0uTJkx3bli1bpmXLlvX6GHfccYc2bNigDz/8UJL0/vvvS+p51aDrAqxSZwmbruwlZrqXjOl+XPfH6V6aprvy8vJ+99uZzWZFRkZq7NixPfb1tg2h6ZGsUXquvNathWNiY6L0SFZGr7XL6hpbVFReo3d3H1WD1abRprNakGpSjjlJCdQ6g4f4TIKvuPpeamho6HOfL/pZwB3B+h4K1vOGa3h9Q9tAvL6B3Nfy/g5dfca/Q0f12aa/+BfO7PmAbVUW1VttijdGB3Q+gL/18BROr3t/fa3PEu6tra268847tWXLFsc2g8GgdevWOeqwuyo9Pd2RcP/iiy8kSaNGOX9Ady/90nVBVUlKSEjotV33X0b3+/Z2gC8kxBmUY05Swc5ql9vkmnsuFGK1tWnlpgoVlR1Vs639H9P06iK0tdKiJ4srlWNO0prsNFbzBgAAAAAMOF/Fv3DWIx/QBfkAIDD5pKRMR0eH8vLynJLtsbGxeuutt3TDDTf02e7rr7/ukSiXpJaWFsdte431iRMnKjY21rH9q6++cmrT/X5qaqokaepU50UYjh8/3me7ESNGsGAqfG5NdprmTnVtity8aYlanZ3mtM1qa1PW2jIV7Kzu0bnaNbW2qWBntbLWlslqc300PQAAAAAAvuJt/Atn5AOA4OSThPtPf/pTbdy40XE/NjZWv/vd7/oc2T537lyNHTtWkydP1hNPPNFj/969ex2309I6P3wjIyMdi65KUllZmVOb3bt3O26npKQ4RraPGzdO48aNc+zbtWtXn+0yMjL6/iEBDxmjo1S8IlMPzk5WbEzvV5tjY6L00OxkbcnL7HFFeuWmCpUerHXpuUoP1ip/U4XX5wwAAAAAgLu6xr9DPIh/4Yx8ABCcvE64l5eXa/Xq1U7b1q5dq2uuuabPNsnJyWpqapIkvfXWWyopKXHse/XVV52S4MuXL3fcvv766x23t2zZos8++0yS9OWXX2r9+vWOfTfddJPT8y1evNhxe/369Y4yNfv27XMalX/jjTf285MCnjNGR+mlpen64qn5ev6GNC2abtLVyaO0aLpJq7PT9OVT8/Xi0vQeXzbqGlu0rrzGrecqKq9RXWPL+Q8EAAAAAMDH7PHv3pXf1tMLp7sc/8IZ+QAgeHldw/3f/u3f1N7+j2ktQ4YM0auvvqpXX321x7Hz5s3TY489pvz8fG3evFmtra1qbW3VzTffrBkzZqipqUnV1dWO49PT05WTk+O4n5OTo1//+teyWCxqaWnRtddeq4svvlhVVVWOmu7x8fF64IEHnJ73kUce0fr169Xc3Ky6ujqZzWalpqZq//79slqtkqTJkyfrtttu8/bXAfQrIc6g/LlTlT936vkPVmdn6c6Cq1LndLJ15TUuPwcAAAAAAL42Ks6gB2Yn68dhtIiiL5EPAIKXVyPcjx8/7jQ6XZKam5u1Y8eOXv9VVlZK6kykv/zyyzIajY52f/vb35yS7dOnT9fvf/97GQz/WDxjxIgRevPNNzV8+HBJktVq1Z49exzJ9piYGBUUFDiVkJE6R9SvXbvWUQ/+7Nmz2rNnjyPZPnz4cL322muKi4vz5tcB+Ny2KotH7Uo8bAcAAAAAAAYf+QAgeHmVcC8rK1NHR4dHbZctW6adO3cqJydHycnJMhgMio+PV0ZGhp555hl99NFHvS5getVVV2nXrl3KycnRpEmTZDAYNGbMGC1dulSlpaXKzs7u9fluuukmffTRR7r11ls1duxYxcTEaOLEibrzzju1c+dOZWZmevRzAP5Ub7V51K7Bw3YAAAAAAGDwkQ8AgpdXJWVuvPFG1dfXe9w+NTVVL7zwgtvtkpKSPGqXlpam1157ze12wGCJN3r2Jzrcw3YAAAAAAGDwkQ8Aghd/hT5gsVh06tQpp21Wq9WpHA7gifmpJm2tdH862IJUkx/OBgAGB/0sAAD+RV8LBB7yAUDwIuHuA4WFhVq1alWP7SYTH3LwTq45SU8VV7q1UEpsTJRyzUl+PCsAGFj0swAA+Bd9LRB4yAcAwYuEuw/k5eVpyZIlTtuWL1/OaAB4LSHOoBxzkgp2VrvcJtecpFFxvPcAhA76WQAA/Iu+Fgg85AOA4EXC3QdMJlOPK/9Go1GRkV6tSQtIktZkp6nieINKD9ae99h50xK1OjttAM4KAAYO/SwAAP5FXwsEJvIBQHCi9wQCnDE6SsUrMvXg7GTFxkT1ekxsTJQemp2sLXmZMkb3fgwAAAAAAAge5AOA4MQIdyAIGKOj9NLSdD2TNV3rymv0X7srddZqU6LJpIXTTcq5gmljAAAAAACEmu75gJIqixqsNg03RpMPAAIUCXcgQNQ1tqiovEbbqiyqt9oUb4zWglSTcsxJSvim80yIMyh/7lTdOWOYJGns2LGDecoAAAAAAPTLlVgX52fPB+TPnTrYpwLgPEi4A4PMamvTyk0VKio7qmZbu9O+rZUWPVlcqRxzktZkpzE9DAAAAAAQFKy2Nj29tUq/rTxHrAsgrFDDHRhEVlubstaWqWBndY8vIHZNrW0q2FmtrLVlstraBvgMAQAAAABwj9XWptve2KP/KO85sMyOWBdAqCLhDgyilZsqXFptXJJKD9Yqf1OFn88IAAAAAADvrNxUoY+r61w6llgXQKgh4Q4MkrrGFq0rr3GrTVF5jeoaW/x0RgAAAAAAeIdYF0C4I+EODJKi8ho1tbo3ba6ptc3tLy4AAAAAAAwUYl0A4Y5FU33AYrHo1KlTTtusVqsMBlbbRt+2VVk8aldSZdGdM4b5+GwAIHDRzwIA4F/0tfAlb2Ld/LlTfXw2ADDwSLj7QGFhoVatWtVju8lkGoSzQbCot9o8atfgYTsACFb0swAA+Bd9LXyJWBdAuCPh7gN5eXlasmSJ07bly5czGgD9ijd69uc33MN2ABCs6GcBAPAv+lr4ErEugHDHp5kPmEymHlf+jUajIiMpkY++zU81aWul+1PtFqQyygRAeKGfBQDAv+hr4UvEugDCHb0nMEhyzUmKjYlyq01sTJRyzUl+OiMAAAAAALxDrAsg3JFwBwZJQpxBOW5+ocg1J2lUHNM6AQAAAACBiVgXQLijpAyCWl1ji4rKa7StyqJ6q03xxmgtSDUpx5ykhCDorNdkp6nieINKD9ae99h50xK1OjttAM4KAAAAAADPrclO0/9UHdHH1XXnPZZYd/AEe04FCFQk3BGUrLY2rdxUoaKyo2q2tTvt21pp0ZPFlcoxJ2lNdpqM0e5NZRtIxugoFa/I1MpNFVpXXqOm1rYex9in1q0O8J8FAAAAAACpM9bdcNcsPb21Sv+3qpFYN8CESk4FCFQk3BF0rLY2Za0t63dUeFNrmwp2VqvieIOKV2QGdAdhjI7SS0vT9UzWdK0rr1FJlUUNVpuGG6O1cLpJOVcwtQ4AAAAAEFyM0VFatXiGVi8fRawbQEItpwIEIhLuCDorN1W4VIJFkkoP1ip/U4VeXJru57PyXkKcQflzpyp/7tTBPhUAAAAAAHyCWDewhGpOBQgkLJqKoFLX2KJ15TVutSkqr1FdY4ufzggAAAAAACDwkVMBBgYJdwSVoj7qnPenqbXN7Q4FAAAAAAAglJBTAQYGJWV8wGKx6NSpU07brFarDAZqkfnatiqLR+1KqiweTV9jxW4AGHz0swAA+Bd9bXgj7g0fA51TAcIVCXcfKCws1KpVq3psN5lMg3A2oa3eavOoXYOb7VixGwACB/0sAAD+RV8bnoh7w89A5VSAcEfC3Qfy8vK0ZMkSp23Lly9nNIAfxBs9e8sOd6MdK3YDQGChnwUAwL/oa8MPcW94GoicCgAS7j5hMpl6XPk3Go2KjKREvq/NTzVpa6X7U6AWpLo+MoMVuwEgsNDPAgDgX/S14Ye4NzwNRE4FAIumIsjkmpMUG+PeVfXYmCjlmpNcOpYVu91T19ii50sPKmvtLl396x3KWrtLq0sPhu3vAwAAAAACnT/j3q4x4uJ/L9PyN/5CjBhA/J1TAdCJEe4IKglxBuWYk1Sws9rlNrnmJI1ycaEXb1bsDqcFRKj1BwAAAADByR9xb68x4rmvJUmlX7URIwYIf+dUAHRihDuCzprsNM2dmujSsfOmJWp1dprLj+3Nit3hwl7rr2BndY9ku5291l/W2jJZbe59kQMAAAAA+I+v415ixODiz5wKgE4k3BF0jNFRKl6RqQdnJ/c5FSo2JkoPzU7Wljz3FnZhxe7z86TWHwAAAAAgMPg67iVGDC7+zKkA6ERJGQQlY3SUXlqarmeypmtdeY1KqixqsNo03BithdNNyrnCsylPrNjdP09r/f0ka7oSmIIGAAAAAIPOl3EvMWJw8ldOBUCn8MgSImQlxBmUP3eqz+qns2J3/wKlxn1dY4uKymu0rcqieqtN8cZoLUg1KcecxJc2AAAAAOiHL+PeQIkRA0Wwxaq+zqkA6ETCHegi15ykp4or3frCMJArdts773d3V6rBatNo05gB7by9qfXniw6cxVoBAAAAwDu+jHsHO0YMFMSqALoi4Q50EagrdvfovM+d7txRFzGgnfdg1ri3L8TTX21A+0I8FccbVLyCWnMAAAAAYGe1tanB2qbRQ30X97IOGrEqgJ5IuPuAxWLRqVOnnLZZrVYZDIE3XQjntyY7TRXHG1xa9GUgVuwOpM57oGrc20fy//cBi/592WWaMGKIRwvxvLg03ZPTBRBg6GcBAPAv+trQZ48rL5s4Qr+48WKfxb2sg+bZorEvLk3XV/XN2rDnS90doOVmAHgucrBPIBQUFhYqMzPT6d/hw4dVV1c32KcGDwTait2BtOL7fA9r1bta495qa9NDG/dp4r+U6LHNFYqIiNCEEUM8XoinrrHFk9MFEGDoZwEA8C/62tBnjyt/9dEh/ednX/ks7vV3jBjovIlVx8cP0bYDpzTpJ9v00MZ9strcq4UPIHCFziXFQZSXl6clS5Y4bVu+fDmjAYJYoKzYHWgrvvuzxn1vI/lzzZMlsRAPEO7oZwEA8C/62tBmjysjI6Ssi8YoMkL6uqlVI2NjvI57A30dNH/79Fi9mt1MlHeNVe/JnKwtn5+k3AwQYki4+4DJZJLJ5Hx11mg0KjKSCQTBzp8rdruyevmpcy3q6Ohw63H9mWj2Z4373kbyT02Mk8RCPEC4o58FAMC/6GtD27ryGt131QX6wZwUpXwTY3XlTdwbqOug+cr54vZ500br7f/vct25fk+PxVL7Y49Vp3R5PSiNCoQOn/WeBw4c0D//8z/rsssu05gxYzR+/HhdeeWV+vGPf9yjFpydxWLR448/rpkzZ8pkMiklJUXLli3Txx9/3O9zHT58WA8++KBmzJih0aNH68ILL9Tdd9+t/fv399tu3759uvvuuzVt2jSNHj1aaWlpevjhh3X06FGPf27AXd3LpmyttOjP1ae1tdKiRzdXOE0nSzUN04Y7Zykywr3nKPEwQe2KNdlpmjs10aVjXa1x39dI/mHf1PVjIR4AAAAA8EzmBSP1ixsvVkpinOoaW/R86UFlrd2lq3+9Q9cV7tLGz75SS5dk8ddNrfrDvq/05JbPXXp8f8SIg82duP3mmeP15h3uxe32WLV7LXtKowKhwScJ97feektXXXWVXnvtNR06dEjNzc06d+6cKioqtGbNGl111VX661//6tTmwIEDmj17tl555RVVV1fLarWqtrZWxcXF+u53v6vCwsJen6usrExz5szRm2++qS+//FItLS06ceKENm7cqG9/+9t69913e223efNmzZ07Vxs3btTJkyfV0tKiL774Qq+//rquvvpqffLJJ774VQD9spdNKdhZ3efVb/sCqFlry2S1temm9PH6wbdS3Hoefyaa/VHjvq+SMWe/+TlYiAcAAAAAPDMnJbHPBPKWzy26+Te7NfL/L3YkkEfGxqitQyo92Pvgye4CbR00b3kSt988c7y+P8f1uN0eq3aP3e0z1gEEN68T7vv379fDDz+slpbOK3AxMTGaOXOmLrjgAscxJ06c0G233abm5mZJUkdHh+677z4dP3688yQiI5WRkaGRI0c69v/whz9URYXz4o9NTU2699571dDQIEkyGAyaNWuWhg4dKklqbW3V/fffr5MnTzq1O3HihB544AG1trZKkoYNG6aMjAxHPbr6+nrdc889ampq8vbXAfSq/ZuyMJ4ugPrE/FS3rpb7O9Fsr3H/xVPz9fwNaVo03aSrk0dp0XSTVmen6cun5uvFpekuf5Hqq2TMwdpGSSzEAwAAAACe8jSBfMesSS4/R28x4uVJIzV32miPYsTuI/Gz1u7S6tKDAzL629O4/QffSnE5brfHqoe+iXm78ueMdQADw+uE+0svvSSbrfOK3LBhw/Thhx9qx44d2rdvn5544gnHcUeOHNHGjRslSe+//752797t2Pf222/rgw8+0KeffqqUlM4rgjabTc8995zTc23YsEFHjhyR1FlPbvv27SotLVVZWZkjWX/mzBkVFBQ4tXv55ZdVX18vSRo9erTKy8v1wQcfqKSkRDExMZKk6upqbdiwwdtfB+DEamvTyx9XKzIiwqvVy0cPNei7F41xud1AJZrttf6KV1ypnd+fo+IVV2rlNVPdrsfXV8mYovLOck+55qQ+R0r0JZQW4gEAAAAAT3maQF6eMdHt5+oaI/7XvZn67V3/y60Y0Z1SLv7gTdw+JXGoFk0/f9zeNVZ9raxniWNKowLBz+uE+/bt2x23b731Vl188cWO+48++qiGDBniuP+Xv/xFkvTOO+84ts2aNUsLFiyQJI0aNUr33XefY19xcbFjVHz3dtddd53S0zsXkpg8ebJuv/32Xo+T5Ej0S9Idd9yhSZM6r9JmZGRo0aJFjn1/+MMfXPqZAVfYRxHMHB8vqe+yKf3pOp3sf197oUttgjHR3FfJmOLPT+pwbaNjIR53BNNCPAAAAADgD94kkEfGxvjprHrnyUh8X/M2br8nc/J5j7fHqodqz2lr5cke+ymNCgQ/rxPuTz75pJ5++mmtWLFCCxcudNoXFRXllHC3l3TZs2ePY9vll1/u1ObKK6903D537pwqKysd9/fu3etSu8OHD+v06dOSpLq6OlVXV7vUruvjA96yjyK4eNxwSX2XTTkf+3Qy++OcTzAmmvsqGdPeIf1qx2FJobkQDwAAAAD4k7cJ5IHk6Uh8X/I2bp+SGNfvcV1j1V99dFjtHT2PoTQqEPy8Trjffvvtys/P1/PPP6/Fixc77du7d6++/vprx/0LLrhA7e3tOnDggGPb+PHjndpMnOg8ZcmecD927JijLIwkjRs3zum4CRMmON2vqqpy+t+VdmfOnNFXX33Vy08JuKfrKILYmM4/s77KppyPfTqZ/XH6E6yJ5v5Kxvzqo0P6z8++CrmFeAAAAADA37xNIA8Ub0bi+5K3cXtfs7e7x6q///SYY3BZ9+OCbcY6gJ78Nk/FZrM51XCXpIULF6qhocGxwKokxcfHOx1jXwDVrq6uTpJUW+t8lbN7u2HDhrnUbsSIEed9vu4XAQB39TaKoK+O93zs08kiIyIUGxPV6+gEe6e8OjstKBPN9pIxBTure+xr75DuXL9H0izdPHO8XlqarmeypmtdeY1KqixqsNo03BithdNNyrki+Eb3AwAAAIC/eJtAHijejMTPnzvVZ+fhbdx+QUKsnr8hrd9Y9fefHtNdQHdyOAAAIABJREFUb+1VRy+j24NxxjqAnvyScG9vb9d9992nHTt2OLYtXLhQ6enpPUaQ2xct7ev+uXPnJEmNjY39Htf9/tmzZ53a20VHO//IfbXri9ls7ne/3aFDh5ScnKwTJ044tlksrDQdLt7dXSmd6yxrdOSLrzQiNkaZoyO0dc9ptx/rytFjHO+jPfel67d7j6nk03qda2nTqMQozZ2aqOWXTdDIOIO+rj3l059jIP0wM1H/U3VEH1fX9djXLOnWl0t0T+Zk5WVeoAsS4nTnjGG6c4bzhbaWhtM60TBAJxwC+EyCr7j7XoqL63uqrTf9LOCJYHsP8dkd2nh9Q9tAvr6B2Nfy/h4cRmu9IzZ1h8Ea5fVr785r3jWGdsd/7a7sERd6wxdxe1+xavmRcyosO6p/Lzsq9ZJsn52SoMczE4Puu0l3/K2Hp3B83fvra70uKdNdW1ub8vLy9Pbbbzu2xcfHa82aNZKkjt4u4XURERHR6/bzteuLp88HeKPraIDKk50XcW7LmKAhfZRC6cuQmCjdlvGPskej4gx6YHayXr31Ur15xyz99q7/pfuvTtbIELgCboyO0oa7Zulu8+Ref08dHdKbf/lSr/75iFrb/LMiPQAAAACEkm9PcW0drO6u8bCdpzwdUX/WxyPxfRG3d9fW3qF15Uc17+U/69939Uy2D4mJUo55st66c1ZQzlgH0JNPR7i3trYqNzdXf/zjHx3bYmJiVFRUpMmTO1dq7p79ty+k2td9e8mX87Wz2Zw/ZO0lZrqXjOl+XPfH6V6aprvy8vJ+99uZzWZFRkZq7NixPfb1tg2h5f/ed6061Nn5N7a0aezYBI2VlDtvZq9lU/pyz+xkTU/pu35bKL6X1uVO0Opv6vdRMmZghOL7CIPD1fdSQ0PfU1F80c8C7hj3b6695wZTx+obemzjvR/aeH1D20C8voHc1/L+HliPZI3Sc+W1bpVriY2J0iNZGT6LvVx5zUebxkh17g+ITDSZfPqe8kfcLkk/umGcVlx7aVjFufyth6dwet3762t9lnBvbW3VnXfeqS1btji2GQwGrVu3TgsXLnRsGz58uKKjox2J7+4lXLqfbEJCgiRp1KhRTtu7t+u6oGp/7bo/fl/PB3hj6uihvW5/4caL9bfjDdruwsrrwboAqi8kxBmUP3eqT2vxAQAAAEC46W+9rL4MRh3x+akmba10vyTFglSTz89lTXaaKo43qNTHcTtxLhA+fJJw7+joUF5enlOyPTY2Vm+88YZTsl2SoqKilJycrL///e+S1KOm+7Fjx5zuT58+XZI0ceJExcbGqqmpqdd23e+npqZKkqZOdf4gO378eJ/tRowYwYKp8EpdY4uKymu0rcqieqtN8cZoLUg1KcecpIQ4g6KjIlVy/1XK37Rfa3cdDckFUAEAAAAAgcMfCeTzxb7uyjUn6aniSrdH4uea+x9Z7gljdJSKV2Rq5aYKretjMVfidgD98UnC/ac//ak2btzouB8bG6vf/e53uuaaa3o9/rLLLnMk3MvKypz27d6923F76NChjoR7ZGSk0tPTHdPfysrK9PDDD/faLiUlxTGyfdy4cRo3bpwj0b5r1y7dcMMNvbbLyMhw46cG/sFqa9PKTRUqKjuqZlu7076tlRY9WVypHHOS1nzTGf/ypkv01MLUsJpOBgAAAAAYeL5MILsT+7oj0EbiG6Oj9NLSdD2TNZ24HYDbvE64l5eXa/Xq1U7b1q5d22eyXZKuv/56/f73v5ck7d27V1u3btWiRYt05swZvfrqq47jFi1apCFDhji1syfct2zZos8++0wzZ87Ul19+qfXr1zuOu+mmm5yeb/HixXrttdckSevXr9cDDzygSZMmad++fU6j8m+88UZ3f3wEAV9fee/OamtT1tqyfkcLNLW2qWBntSqON6h4RaaM0VFMJwMAAAAAOPFX/OqLBLK7se9vbkx2a/S3v0q5eIO4HYAnIurr6zvOf1jfbrnlFv3pT39y3B8yZIguv/zyXo+dN2+eHnvsMdlsNs2ePVt/+9vfJHWOXr/00ktVXV2t06dPS+osPfPRRx/pkksucbQ/c+aMZs2aJYuls66X0WjUxRdfrKqqKkdN9/j4eO3evVvjxo1ztKuurpbZbFZzc7OkzoVRU1NTtX//flmtVknS5MmTVV5e3mNxVk/ZF5jZv3+/Y9uJEyckhdcCAoOpvyvvUucV/K6jzj310MZ9bl2Ff2h2sl5cmu7x80m8l+AbvI/gK+6+l/pbXMZVvfWz4SQif/NgnwIGUNdFU/nsDm28vqFtIF/fQOxreX/3b6DiV2+4G/vmXDxcP188w63X3P57oJRL8OJvPTyF4+vut0VTjx8/rpKSEqdtzc3N2rFjR6/HT5gwofNJo6P1xhtv6Prrr9fx48fV3t6uvXv3Oh3785//3CnZLnXWWH/zzTd1yy23qKGhQVarVXv27HHsj4mJUUFBgVOyXZKSk5O1du1a3XPPPWptbdXZs2ed2g0fPlyvvfaaz5LtGHyejjp3V11ji9aV17jVpqi8Rj/Jmq6EOINa29oVExXp9vMCAAAAAEKDO/Hr5ycatHXFlYoe4DjSk9h3w94v9fi8qXIn/UYpFwChwKuEe1lZmTo6PBsgn5qaqj//+c9avXq13n33XX355ZcaNmyYrrjiCj3yyCOaM2dOr+2uuuoq7dq1S88//7xKSkp08uRJjRw5UnPmzFF+fr7S03sfOXzTTTcpNTVVq1ev1ocffqi6ujqNGTNG8+bN0+OPP67k5GSPfg4EppWbKlyahiZJpQdrlb+pwq1R5y22dhmiI1XUx1X3/jS1tmldeY3y504l2Q4AAAAAYc7V+HVIdKQenJ3iSLb7u3xqV57Evs2tbfrt3mP6cYr7C5tSygVAMPMq4X7jjTeqvr7e4/aJiYl69tln9eyzz7rVLikpSS+88ILbz5eWluao5Y7Q5cmV9//4pEb/ev0MDTX0/yfR0dGh/9z3lS4cPVSXThihbVUWj86xpMrCFwcAAAAACHOuxq+REdL6O2Zp6czxbi1c6quyK57Gvh8ccm0gHACEEq8XTQUCjbtX3odER+o3t2U4ku3nGyVwy8wJOmu1SZLqv/nfXQ0etgMAAAAAhA5X49cffGuKI9k+EOVTu/M09j0bgrHvQM4sABCcSLj7gMVi0alTp5y2Wa1WGQx80A4Gd668ezpKYJix809n5BDP/oSGG/nTAwBX0c8CAOBf9LWDx5X4NTJC+sGcFEn+L5/al3gPY9hhIRT7DsbMAgDBKXQ++QZRYWGhVq1a1WO7yWQahLOBO1fevR0l8Oi8adryuftT6xakdr43tv/9lP71v//O1XAA6Af9LAAA/kVfO3hciV+zLhqjlMQ4j8qnFpXX6CdZ072ONeenmrS10v3Y95opiV4972DoOoL9uzPG6JFvTRm0mQUAghMJdx/Iy8vTkiVLnLYtX76c0QCDxNUr774YJXDNlEQNNUTpXIvrJWxiY6KUa+5cNOa57Qe1tdLC1XAA6Af9LAAA/kVfO3hciV9zzZMlebZwaVNrm9aV13i9hliuOUlPFVe6V741Jkq3ZUzw6nkHUvcR7JER0ss3z5Q0eDMLAASnyME+gVBgMpk0Y8YMp39Go1FRUSRNB8P8VNdGYXg7SqCusUVRkRH6t+vT3Gqba07SqDiDDtWe09bKk47t9qvhWWvLZLW59yUKAEIZ/SwAAP5FXzt4XIlfpybGSfJ84dISD9t1lRBnUM43A8dcdVvGRI0Mklnc9hHsBTurHeVifJEzABCeSLgj5OSakxQbc/4vhr4YJSBJ9111geZOdW2a3LxpiVqd3Zmg/9VHh9Xe0fMY+9VwAAAAAEBocyV+tddB93Th0gYfLVy6JjvNrdj3x4tSffK8A6G3Eey+yhkACD8k3BFyXL3y7qtRAlGRESpekakHZyf3+UUpNiZKD81O1pa8zjpuv//0mH6143Cfj83VcAAAAAAIfa7Er2e/SZh7unDpcB8tXGqMjnI79g0GfY1gD4SZBQCCEzXcEZLWZKep4nhDvzXWfDVK4KzVpmHGaL20NF3PZE3XuvIalVRZ1GC1abgxWgunm5RzRWcZGUn6/afHdNdbe9XRy+h2O1/V2QMAAAAABLbzxa8Haxt12cQRHi9cusDFsquuMEZHuRz7Bou+RrAHyswCAMGHhDtCkv3K+8pNFVrXR+fZ+M1Cp96OEjhw6px+80mNHvnWFKUkxil/7tReE+WHas/pVx8d1q92HO432W5XUmUh4Q4AAAAAIe588WtR+VHdPHO8RwuXxsZEKdfN2uuuSIgz9Bn7Bpu+RrAHyswCAMGHv36ELPuV9xduuliHahv15u4vtP3gKQ01dF55v2jMMEnyepTAodpGvfDRYf16x2Etmj5G92RO1pTEOE0aMUSmYUY1tbbp1t/s1pbPT/Zas70vXA0HAAAAgPDQ38jx+ReOVlt7h6P8TMHOapcfN9ccfCPOB1pfI9gDaWYBgOBCwh0hLzoyUqmmYfrJdy/qdb+3owReKzsqSWrvkLZ8flJbPj+pedMStSUvU5L0m09q9O7fTrp93lwNBwAAAIDwcr6R466UT7WbNy1Rq7PTfH2KIaevEeyBOLMAQHAgo4eQU9fYoqLyGm2rsqjealO8MVoLUk3KMScpoZcr+96MEjhUe05bK/+RTLd3qquz0xwLxJxtcW81czuuhgMAAAAAunKlfGpvcWmgcDdeHwh9jWAv/vykDtc2KiUxjpkFANxCwh0hw2pr08pNFSoqO6pmW7vTvq2VFj1ZXKkcc5LW9PKlw9NRAn+qtOjKC0b1u0AMV8MBAAAAAP1xJxEdjAuXehOv+1tfMXt7h/SrHYf1ixsv9snMgkC82ADAP0i4+4DFYtGpU6ectlmtVhkMfGAOFKutTVlry/rt/Jpa21Sws1oVxxtUvCJTxugo2draFR0V6fEogfuvTtb9Vyf3e27U2QMA79DPAgDgX/S1g8ebRHSwLFzqabw+UPqL2X/10SHNSUnQzTPHezyzoKOjQ1+eadbumq+1/e+nVFJlcazvNtgXGwD4Bwl3HygsLNSqVat6bDeZKAkyUFZuqnDpSrMklR6sVf6mCr24NF0nz7YocWiMjNFRfh0lQJ09APAc/SwAAP5FXzs4Aj0R7SuexusDqa+Yvb1DunP9HkmzdPPM8R7lDCIiIjRpZKwmjYzVTenjdbi2Ub/acVgvfHRIHR2h8RoDcBZRX1/fMdgnEex6Gw2wfPlyGQwGff75545tJ06ckCSNHTt2QM8v1NU1tmjST7a5XbLli6fmKyHOoIKd1XpwdrJOnbOqwdqmlIQ4v5ynfeSCu1fDe5t2duXoCC3PmKCLUig7A8/xmQRfcfe91NDQ4Nbju9rPhpOI/M2DfQoYQB2rb3Dc5rM7tPH6hraBfH0Dsa/l/d3TQxv3uTUT+qHZyQOeiPbGiRMndLqxRbNe3edxvD6Q+ovZIyOklddM1Q+/M02jh57/vFwpH/Ofn32lO9fvcZrZEGyvcW/4Ww9P4fi699fXMsLdB0wmU48r/0ajUZGRkYN0RuGlqI8Edn+aWtu0rrxG+XOnasKIIaprbNHooUbdvaFM7R3SPZmTNSUxTsON0TrXYtOMMcNliPbu9XR3BH2/Uwv3nNa/bv+7cufNZNoZgJBHPwsAgH/R1w68usYWrSuvcatNUXmNfpI1PajqfW/Ye8yreH0g+WLWuzslgm6eOV7SLC17fbejxEwwvsYAeiLhjqC3rarnauKuKKmyKH/uVF0wKtbRmeeYJ+uW3+zWls9POh37/A1pPuvsXamz58rUwmamnQEAAABAUPJ24Fig6Gsk9yPfTpEkfXjItVIy3dnj9cHgaW18T0oE3TxzvL4/J0UvfHTYsT/QXmMA7uNyNYJevdXmUbuGb9oNN0ar5Juk/ZTE3svJlPSR1K9rbNHzpQeVtXaXrv71DmWt3aXVpQdV19ji0TnZeVLjDgAAAAAQHLwZOBYIrLY2PbRxnyb+S4ke21yhrZUW/bn6tLZWWvTo5godqWuS9I+4212ethtMnsbxP/hWiiIj/rEvUF5jAJ5jhDuCXrzRs7fx8G/aNVhtTsn33nTv7L1ZSf58wmVqIQAAAACEK28Hjg0mV0ZyN1htGhZtj7HdG8kv9R2bBypv4vgpiUO1aPoYx0z7QHiNAXiHEe4IevNTTec/qBcLvml3qLbRKfnem66dvf3LRcHO6h7Jdjv7NLGstWWy2tz7cuHN1EIAAAAAQODzduDYQLHP6r6ucJeOnWmW5NpI7oO1jZKkb09J9Oh57fF6m724eYDzNo6/J3OyY3uwXWwA0BMJdwS9XHOSYmPcG0UeGxOlXHOSJOm1sqNOyffeLOyS1Pd0mlhHh2tfFIJ9aiEAAAAAoH/eDhzzt+4lYyIiIjRhxBCXR3IXlR+VJN2WMcGreP3VPx9x/+QHgbdxfNfytgP1GgPwHxLuCGpnmlqVEGdQzjedsatyzZ2ri5+z2vThoVqn5Ht3sTFRyruy82qzp9PE6hpbFBERoda281/xDuaphQAAAACA8/N24Jg/9TarO9fcGRO7OpK7+POTOlLXqFFexOuHas/p8f+q8HqNtIHgi7XlpIF7jQH4Fwl3BLXf/s+XkqQ12WmaO9W1qWrzpiVqdXaaJOl0U6vuvuIfnfnWypM9js81J2n4kBhJ3k8T23/87HmPD5aphQAAAADw/9i7+/im6vtv/K/cNGnTO2jaQimtTQutFFqBYUEoCBOlooLCLobDqYCgqMC+MN21/b46567f5PoOcICiA8GJIm5D5mCMdniDUJB2CAOk0mqbUqDclBRKb5OmyfVHekKS5j6nbdq+no+HD3NzzknShp7zfn8+n/eb/BPIxLHO5mxVd1r7DGxvZ3KbzMA77bPc/Y3X1x/SotHQM8qnitFbDui63zERdS4m3KlHe//rC/j41CUo5TLkLx6LZyekuJwlEBYiw3MTUrBv0VhrI1OJBHYnc8fycLYneyDwZWISCTyOzgf70kIiIiIiIiIKnL+J6M7kalV3RHti2JeZ3O8cPYd/lFzxK17febIa6wu1AHpG+VQxest11e+YiDofp8SKoKamBteuXbN7TK/XQ6HgqGRni1DI8dj24wBGY3Z2At6clYXf5mXg3eLz2F9Wg3q9EZFKOe7LiMP8O2+NFB+q0GFiqhoJUaGQSiR2J3Pg1jKuNTMyrcl5IPBlYuEKOd4tPo+Vk9NcbrsgJwkv55f6NJO+M5ad1TYZsLX4PD4tq8FNvRFRSjnuTY/D/JwkxHDEnYi6EM+zREREnYvn2u4hJKJX7C7Buy5WU7uKTTuLq1XdDe0xrS8zuc1m4LmPT6GfOs6neH3nyWr89MMTENqg9YTyqYHG8Vfq9XaTA4moZ2PCXQSbN2/GqlWrOjweF9czZxz3pETr1PQ4FJTWYM62Y1iaq8HyianQqFVYOTnNaVK7QteI9Ye0SOoXhompakglEpTVNGDbsfO467b+Tk/2tsRYJra/rMZtwl1YWrjxcKXXxxdz2Zne2IYVu0uwtajKWq9PUFBag5fySzE/Jwlru+iCj4iot51niYiIgg3Ptd1HKZd5nYj2lT+xvatV3eW6JoxMjLbG4N7SG02Ys+0YPn3mLkwZEosYlcJjvL6+UGtNtgM9o3xqIHF8m8mMZyekdNp7I6KuF/x/tXqARYsW4ZFHHrF7bO7cuT1uNkBPTLTajiKvO6TFhkItpmXEY+HYZKSqVYhUylGvN6JC14QtRVXYX3YVD2UOxP88eGuZVnpcBHYvHOvV6/l6cSGwXSbmzej82hmZKLlc36FunjNiLjsTmuO4e93m1jZsPFyJksv1yF/MEXgi6ny95TxLREQUrHiu7X7uEtG+CiS2d7Wqe2txFWZnJ/g1k1spl2HkoCgAwMv5Z3HHoGin8XpB6dUOZV6BnlM+1d84XiaVwGw2QyKRdPZbJKIuwoS7COLi4jqM/CuVSkilPadEfk9NtDqOIpvMwL6zV7HvrH3zU6kEWDYxFW/OyoKmvdmLPwJdJralqMqr0XlvlhaGhsiwcEKKqEsLnTXHceVAuQ4rd5fgjVlZorw2EZErveE8S0REFMx4ru09Ao3tXa3qzj97FVpdEzRqVUAzudd+WYFGQ/eWT+0s/pQIunCjGU//9RRS1SpsYGxN1Gsw4U4Aenai1dMocqhcig/mWWq8A4GVzAlkmViFrhEFpVftZte7425p4V1x8Zg7chAyNOJdeLhqjuPO1uLzeDUvI+hKDREREREREfVEgZZ4DTS2d7Wq22QG1hdq8frM4T7N5J6gibGbyf3End1XPrUr+FIiSKhV32I0ISxEht8wtibqNZhwpx6faHU3iiyVANvnjcas7ATRSuasf3gE/mtSKgBL45hyXRO2Flch/2zH5W+2y8TWH9JCKfd9dN7Z0sIrV674dAxvuGqO405za5vHJrBERERERETknhjxqhixvbtV3esPVSBXE4PZ2QlezeSem5OMV6al273f7iqf2pUaDUafa9UztibqXZhwp16RaHU1ivz4mMHWZLtYJXNkUgmGxIZb749MjMbs7ARodU1YX6jFukMVCJXbLxPbebIa6wu1eHZ8StCOzrtqjuOJpyawRERERERE5JpY8aoYsb27Vd0mM/DY9uMALCvIPc3kNtRf73AMf8qu9DThCjku32zBlQYDTGaz17XqGVsT9R5MuFNQJVoDXT7nahRZrJI57t6fRq3C6zOH49nxtyE2XNFhmdjktOAenXfVHMcTb5rAEhERERERkXNixatixfbuZqG3GE2Ys+0YluZqsHxiKjRqlcuZ3Ffqnb+eL2VXgpm7/MDAqFAMjArFx6cu4bHtxzusWnCGsTVR78GEO3VqotXbBLpY5V5cvYdAl9X58v6GxkUAuLVMbHNRFRaOTQ760XlXzXE88aYJLBERERERUV/hy0QyMUu8ihXbe5qFbjIDm45WWZqgzsxEiMy/ONdd2ZVg5kt+wNJLbjTmbDvmdFa7LcbWRL0H/zVTpyRabU9AhjYT8m6Px8q705CmViFCKceFGy04d70ZIwZGIEQmQ9G5G3j7SKXLE5C35V6c8XdZ3cnqm5gyJNbv5X37y2qQ3D8MF16a2iNG5101x/Hk3vS4Tng3REREREREPYs/E8nELPEqZmwvzEJ/fcZw3GhphbHNjEaDEVca9KhpMGBymrpHxLli8yc/MDs7AUtzNVh3SOv22IytiXoPaXe/Aep+U/38o+7qZCCcgN4+Uolnxqfg+1/eg71PWU4yIxOjMSQ2HNmDojAqMRohMhnMZjMmpamxLFfj8TWF5XO+8GdZnVQCDIu3zFT3Z3kfADx9VwpW3J3WYy5CFuQkISzEt5kJQm09IiIiIiKivkyIgzcernRZPkRIxOZtKoKpvVtmIGVgHIkd2wOAQi5FfIQSg6JDMTQuArkaNR7JSugxca7Y/M0PLJuogVTielvG1kS9CxPuJHqidcXuEhw9dx1/eXwMXp85HBq1CrVNBqw+UI68TUcxfkMh8jYdxZoD5ahtMkAisZx1/s/9t0MV4vkrubX4PGqbDF6/V3+W1eXdHo+BUaF+L+/z5f0FC6E5ji8W5PSM2npERERERESdyddErK7REjOKWeJV7NjeXRzfFwWSH0hVh2NaRrzL7RhbE/UuLCkjgpqaGly7ds3uMb1eD4WiZ/yxdNeF3BVXJ4PaJgPe+/d5bJ83GrOyE3xaUheulONfT9+FSW8edlvbzNXyOVf8WVa3ICcZgLjL+3oCd81xHE0ZEtxNYImo9+jp51kiIqJgx3NtYPxJxF66qUdchFLUMjCBxPY3mlvRLywEQOf0WPOlrn2wCjQ/sHBsMvadvdphG8bWRL0PE+4i2Lx5M1atWtXh8bi4nlN/S6xE69bi81g07jZrst3X2mYTNDFe1TZz7KLujj+1ydPUKgDidXnvKTw1xwFuzYAI9iawRNR79IbzLBERUTDjuTYw/iRiv7vWiOxBUaL30vI3ti+5XI/xmhi/e5i5oje24bldp0VN3neXQPMDqe15BgFja6Leiwl3ESxatAiPPPKI3WNz587tUbMBxEq0fv5dDd6clQ3Av9pmb8zKwv9//+148s4kRCjlaNAbUa5rwtbiKuSfvWqd+e5s+ZwrC3KS8HJ+qU8XQMJsATGX9/UUQnOc3+Zl4N3i89hfVoN6vRGRSjnuy4jD/Du51I2IulZvOM8SEREFM55rA+NPInZrcRVmZyf4Fa+6KwOjlMvw6TN34Y9Hz+HFPSVobm1D3u3xWJCTjDS1ChFKOZoMbTCZzRg+MAIhMhl2nqzGBE0MAP/jeGf0xjY8+v5xHKlxvYTdl+R9dws0PzAgQonxKf0ZWxP1AUy4iyAuLq7DyL9SqYRU2rNK5IuRaM0cGGmt2e5PbbNX8zIQo1JgZGK09fGRidGYnZ0Ara4J6wu1WHeowunyOVf8WVanlFt+d2Iu7+tpYlQKrJyc1iNn6hNR79JbzrNERETBiufawPiTiM0/exXVdS0YFB0qWolXgUwqwbPjU/DMuNugbzO5reveaDAiqV8YEgLoYSbE8Y5+XVCGI5W1QHh/j8fxlLwPBoHmBwZFh+Lw0lwx3xIRBalOOXt++eWXiIqKQlRUFKZPn+5yO41GY93O1X/FxcUd9tNqtXj22WcxbNgwxMbGYujQoXjyySdx5swZt+/r9OnTePLJJzFkyBDExsYiMzMTzz//PKqqqgL+zL2JkGjNXzwOh5fmIn/xOKy4O82rkdeHRwwEEFhtMwAo1Oo6NGXRqFV4feZw/PXxMbj/dtfNRpxZOyMTk9PUXm07ZYgaCVGhADqnyzsRERERERH1Hv4kYk1mYE/JZQC+x6u2JV6dNTZdd7ACBqMJUqkEYSEyt81PwxVyjL3NkhAPNI63VdtkwEcnLvp0LKHBaLBifoCIvCV6wr2xsRG/+tWvPG5XXV0MpQYhAAAgAElEQVQNnc67ZUq2ioqKkJubiw8++AAXL16EwWDAlStXsGvXLkyaNAl79+51ut+ePXswefJk7Nq1C1evXoXBYMCFCxewbds2jB8/Hv/+9799fi/UUXpcBIDAapsBQLhCjq8qr6OgtAY/31OCwa9+iud2nYbe2IbZ2QlYMj7Fp+MKJXOenZDicnQ/LESG5yakYN+isZBJJQDE7/JOREREREREvYu/idhGvSW57Wu8qpTL0GYy4/ldp5H4m/14YU8JCkpr8FXldewvq0FSvzAo5FJr/XTHbRzjbJPZUvIl0Dje1tbi82gRKXkfLJgfICJviVr3oqGhAXPmzMHp06c9bmu7Tb9+/TBixAin20VFRVlvNzc346mnnkJ9fT0AQKFQYMSIESgtLUVjYyNaW1vxzDPP4Ouvv0Z8/K0Z0FeuXMGSJUvQ2toKAIiIiMDQoUNx5swZGAwG3Lx5EwsXLkRRURHCwsL8+uxkoW6fBR9obTPHkiyB1nUzmcw+lczZebIaY5L6ISVGJfryPiIiIiIiIuo9/K3DPt8mEetLvNpmMmP65iL8y0mie9nEVMzKTvCp+emv7hmCxOgwUXuYBdpgNBj5U66W+QGivkm0hPuRI0ewZMkSaLVar7b/5ptvrLd/+MMf4k9/+pPHfXbs2IFz584BsNST+/zzz5GVlYWqqirk5ubixo0bqKurw8aNG/HKK69Y93vrrbdw8+ZNAEBsbCwOHjyIwYMH48SJE5g6dSpaW1tRWVmJHTt2YMGCBd5/aOpAmBkeaG0zV01Hfa3rpje24dsrDRiZGA2z2QyJROK2NnmFrhHrD2mxvlCL5RNT8frM4X53eSciIiIiIqLeT8xErLt4tbXNhBCZFMs/+cZpsl0qAZblagD41vy0psGAxOiwgON4k9kMqcSSExAzeR9MmB8gIm8EnHDX6/WYM2cOvvjiC5/2s53hnpqa6tU+f/vb36y3p0+fjqwsS9I1OTkZP/nJT7Bx40brdrYJ9127dllvz5s3D4MHDwYAjBo1CtOmTcM//vEPAMAnn3zChLtIpqbHoaDU9xFtobZZha7J5TbumrLY0hvb8M7RKjyXq0FrWxtCZJbadQv/fBKP/WAwUtUqRCrlqNcbUaFrwpaiKhSUXoWpvYH6+kMVyNXEYHZ2AvIXj8WK3SV410VNO2GZ2JoZmVDKZTh96SbS48KDusM6ERER9QySlXu6+y14xbzmoe5+C0RE3aazErEmsxmFFbX47Lsa/CbvdtQ2GbDVRdmVvNvjoVGrfG5+Wq5rwsjE6IDj+MKKWuSmxkAqkQScvA9WQvkfX/IDRNT3BFzDvbm52S7Zfv/99+P+++/3uJ/tDHeNRuPVa504ccJ6e8yYMXbPjRs3znpbq9Xi+vXrAIDa2lpUVlZ6tZ/t8SkwgdY221LkupGtt3XdVu4uwfRhAwAA31xuAGBJ1n/yzWX86L1jGL32IIa+9jlGrz2IH713DPvO3kq2A5YmNo9tP46PT12yLu+78PJUrH4oE9My4jA+pT+mZcRhzYxMXHx5Kt6YlWU9mWYlRKFe71u9OiIiIiIiIuqZ/KnD7o2lf/sGd288guxB0QDcNzZdkJPscRtnthZXte8fWBy/6vPvcaraUl2gNzcY9TU/QER9j2hDh2q1Gi+88AKWLFmCJUuWuN22ubkZ5eXl1vv//Oc/8frrr+P8+fPo378/pkyZghdeeAFDhgyxblNdXW0tCwMAAwcOtDvmoEGD7O6XlZVh7NixKCsrs3vc3X51dXW4dOkSEhISPHxa8iSQJXUVukYUlF51u62num61TQZU17VYR/dl7cvafK0j12I0Yc62Y3hzVhaeGZ/idnnfxboW7DlzGY2GNszPSUJsOOu0ERERERER9RW+1GH3hu1M9TS1CoD7mNabbZzJP3sVWl0TNGr/e5hpdU0oKL2KULkUu+bfiQU5SXjpY5lPjVN7WoNRd/kBIurbAk64KxQK/OEPf8Cjjz7qdcPRkpIStLXd+qO7d+9e6+3Lly9jx44d+Pvf/45t27bhvvvuAwDodPbLsmybqQKWRqi2amtrne4XHR1tdz88PLzDfky4i8PfJXXrD2ntZpo746mu29bi85j3g8HW2w+PsAy0+FNHzmQG3v/6Ap4Zn4Lm1jaEhchgMpuhazTgYl0Lyp2Uo3kpvxTzc5KwlkvIiIiIiIiI+hSxErG2M9Uj2kutuItpvdnGGZMZWF+oDaiH2U19KwDg72cuo665FTEqBeaOSsSfil2vXnfEBqNE1FsEnHBXqVQ+1z23LScDWJL2I0aMgE6nszZFbWpqwpNPPokjR44gJSUFTU32Nb1DQkLc3m9osJQQaWxstHtcLrf/yK72cyUnJ8ft84KKigqkpKTgypUr1sdqavzr0t2TvTczBb8uMOCjExedjmyHhsjw6KhEvDItBTd017DnzGWsKzgJeEi4K/Qyu5+to73HSvHfU4fiypUr2HusFKP6mRDZFgWl/ibQeN3nz2H7ejXGNjz6/nEcqax1uX0zgI3/uob/lJ3Djp+OFj3p3he/SyQ+fo9ILL5+l1QqlcvnAjnPElH34r/HwPHc3Lt15e83GM+1/H77bu+xUmv8eu5CtceY1pttXFmX/zUeTQ/DbTHhPsfxbSYzBsokWDAiEu8crcKmz/+Dx8ck4/nR/fFN+Xkc03l+LxM0MXhxrJrnkl6A/9b7pr74e3d3rg24hrs/wsLCMG7cOMTHx2PatGkoKSnBgQMHcPr0abz11lvW7RoaGrBu3ToAgNnsIQPrgqf9JO2lRqhzKOUyrHpgGE6smIRf35eByUNiMSapHyYPicUr0zLwnxWT8NoDw6CUy7DnzGU8v+u0x2Q7ANydqnb7fL3eiHCFzHq78nozAGCSh/1cmWyz368Lytwm220dqazFKwVlnjckIiIiIiIismG7stubmDbQuLd/mGV2ua9x/CsFZwEAi8YmQyIBdp68ZD3O2/8rG0/mJCPURW340BAZ5uck48PHxJ+oRkTUXbql/fOcOXMwZ84cp8/NmzcPO3bswMGDBwEAn332GYCOowatra12941G+yVTQokZx5Ixjts5HsexNI2j4uJit88LcnJyIJVKMWDAgA7POXusN6ptMuA/1TeRGR+B2weE4hWN81psWl0T1h2qwPrCKpiV0YDS/XHDQmRYnjfK7VKz2Lh4hEarMWBANGLj4rGrvBkLpwzA8rz++H2xzqcGMmEhMqyYPhqRoSGobTLgz2VNQHh/r/f/qKwJq+f2R0wnLI3rK98l6lz8HpFYvP0u1dfXu3xOjPMsEXUP/nsUD3+WvVtX/H6D+Vwb7N/v2iYDthafx6dlNbipNyJKKce96XGYn5PUKTGdO7Fx8UCtZZKgNzFtIHHvwyMGYmjKYNQ2GfDaZ9/j2fEpuF2jchnHV+gasf6QFusLqxAql2HVnP7IGTAAeaNrYDKb7X7P7y64A2va69EHWteeeo5g/7dOnaMv/d7dnWu7JeHuSVZWljXhfuHCBQBA//72CU7H0i+2DVUBICYmxul+jj8Mx/vCfuQ/vbENK3eX4GJdCx77wWBcrtfDZAZU7TPOm1vbYDSZMTg6FBKJBGu+LMebfjRlcWdqehzKdU0YmRiNqelx+MU/SgJqAhMZaik95Gu3d8Dyed8tPs9GKkREREREREFKb2zDit0l2FpUhRajye65gtKabunTNTU9DgWlljIN3jQ2td1mQU4StLVNWJCTjDS1ChFKORr0RpTrmrC1uAr5Z6/a9U57+b50AJaYd/WBcqz9shzTMuKxcGwyUtUqRCrlqNcbUeGkh5ltzLtwbDIqa5s6vDc2GCWivqRbE+43btyAVCrt0ADVYDBYbws11hMTExEWFobmZssSqUuXLtnt43g/Pd1yskhLs/9jfvnyZZf7RUdHs2FqgPTGNrxztAor706DRu28llG/sBBodU04rK1FbqqlycoZP5qyuLMgJwlP/fkkZmcnYEFOEl7OLw24CQzge7d3wf6yGl5YEBERERERBSG9sQ15m4rcxojNrW3YeLgSJZfrkb94bJck3YVYtrm1zavGpiYzsKFQi7Uzh2PDIyOcltAdmRiN2dkJ0OqasL5Qi3WHKjA5TY3sQZa8jBDzmszAvrNXse/sVa/eqxDzDolV4YdD/CtpQ0TUW3RLwn3y5Mn49ttv0dzcjCeeeAIbNmywe/7EiRPW25mZlmSnVCpFVlaWdflbUVERnn/+eet2x44ds97WaDTWme0DBw7EwIEDrYn2o0eP4qGHHnK636hRo8T6iH1WyZUGPJerAeB+KZ5GrYJGrcKN5lb0CwtB/uKxWLG7BO+6mEEeFiLDgpwkrPFyNkGMSoFB0aHQNRqgDldgfk4S1h+qQK4mBrOzE5C/eCxW7i5BdV0L5v1gcIcR/+1fX0BidChWt7+e3tgGpVzmc7d3Qb2f+xEREREREVHnWrG7xKsJWQBwoFyHlbtL8MasLJ9ew59SNTEqhd1sdseY1jGGDpVLkauxrNqXSCQeY/LXZw7HE2MGY9iACEjbk/OBxryDokJZIoaI+rxuSbinpKTg+PHjAIAPP/wQM2bMwL333gsA+OMf/2iXBJ87d6719oMPPmhNuO/btw+nTp1CdnY2Ll68iO3bt1u3e/jhh+1e74EHHsCWLVsAANu3b8eSJUswePBgnD59Gvv27bNuN3PmTJE/ad9iMJowKjHap6V4/cJCYDKZoZTL8OasLPw2L0O0um7rHxlhbcC6/uERiFLK8fiHxwGMxuzsBJcXSMKIv+3nEpL8UUr//slE+rkfERERERERdZ7a9trivthafB6v5mV4VdM90FI1f5iZiR/fMQhRoXJEKOVo1Btxsa4ZidFhdjH0Z9/V4Bc/HIK702LtXtPQZkLe7fFYeXeadaLZhRstOHe9GSMGRmBkYrTd6wUa86rDmWwnIuqWLODKlSuxZ88etLa2orW1FbNnz8awYcPQ3NyMyspK63ZZWVmYP3++9f78+fOxYcMG1NTUwGAw4J577sHw4cNRVlZmrekeFRWFJUuW2L3e8uXLsX37drS0tKC2thY5OTlIT0/HmTNnoNfrAQDJycl49NFHO//D92IKuTTgpXhi1nWTSiRA+wo6mVSC1x4Yht/mZaDNpk5dfUsrNh2twn43swwUcika9UaEK+V2NfR8cW96XMCfh4iIiIiIiMTVmX26xChVEyKTYVKa6xItjjG08JoHK3RYNjEVy3I1Lsu9AoDZbLYrPRNozCt1UsamuwVTI1wi6huk3fGiWVlZeOutt6BUKq2Pffvtt3bJ9oyMDOzcuRMKxa0/ftHR0fjggw8QGRkJANDr9Th+/Lg12R4SEoKNGzdi4MCBdq+XkpKCTZs2WevBNzQ04Pjx49Zke2RkJLZs2QKVyvVJiLzjz1I8X9U2GbD6QDnyNh3F+A2FmLGlCGU1DR2en775KNYdqsDlmy3W5+QyKZTyW1/7yNAQzMpKwLABkTh67joKSmvw8z0lGPzqp3hu12nojZYLr5PVlqa8C3KSEBbiW60+oRwOERERERERBZdA+nR5IkZ87Bj/5m06ijUHylHbdKv33cW6ZujbZ8+v2F2Co+eu4y+Pj8HrM4dDo1ah0WBEXXOr09cVku1ms2VmWm+KefXGNjy36zQSf7MfL+wpQUFpDb6qdB33ExGJpdvqXMyZMwcjR47Em2++iS+++ALV1dUIDQ1FWloaZs2ahaeffhqhoaEd9rvrrrtw9OhRrF69Gvv378fVq1fRr18/5ObmYuXKlcjKcl4m5OGHH0Z6ejrWrFmDgwcPora2FvHx8ZgyZQpefPFFpKSkdPIn7v26YymeVAL89fExSI+LsHseAD6YN9paGsab2nW5mhg8tv04WoymDrMMxmti0Kg3dqih540FOb6XwyEiIiIiIqLO11l9uvyJj//07/NYO2O4dfW4t6VoEqPDrK/53r/PY/u80ZiVnQC9sQ0lVxowqr1sjDczvWNUCiwel4x1h7Rev+9gjHmDtREuEfUNnZJwf/vtt/H222973C49PR3r1q3z+fhJSUl+7ZeZmWmt5U7i68yleMY2E+7fVIQvHE6WyyamWi8khJOpkIQXHvf2IsWSnB+NOduOwdRedsa2IU54e006Vx3hnZkyRI01MzK9/4EQERERERFRl+msPl3+xMeLxt3mV6nWT5+5CzKpBFuLz2PRuNussXBR1Q1MSlX7XEd+zYzhOH3pJj7/vufGvF3RCJeIyJVuKSlDvVOgS/HMZjP++FUlJjhZJieXSfFcrgahNuVgpBJgWa4GgP3JdHl7Er7NZMb5Gy34r0mp+GpZLnY+MQbTh8VDalNSTrhIydtUBL2xDbOzE7C0/ZiCrcXn7ZbrKeUy5C8ei2cnpLhcahcWIsNzE1KwbxFHyW15sxySiIiIiIioq0z1s9+Wpz5dvsbHruJbTw6U63CpvYzqXbf1w6oHhgEAmltNmJSqRmtbG6ZvLsLGw5Udku0Cx7hYJpWgYPE4v2Je25jvgXeKMPf9r7s85vN39T3jUnEx/qe+rNtKyvQmNTU1uHbtmt1jer3erv58XxDoUjyJRIKn70pBbLgSj20/7nEGet7t8dCoVdaTqVRiSbb/3wctFxgyqQRDYsOtrzMyMRqzsxOg1TVhfaEW6w5VwOxkJvuyiRpsKNRaZ7k7m4WvlMvsOsLvL6tBvd6ISKUc92XEYf6dwbekrjv5OqOCiMgWz7NERESdqyefawNtiLkgJwkv55f6NBvdm5rlvsbHjvGtN6QSy6rvAZGW/ngTNLeaq/YLs/SwC5HJ8M6ckR1iYGds42K5TOpTzOs05mu8YTnupbYujfk6c/U9eaY3tuHXBWX4qLSR8T/1WUy4i2Dz5s1YtWpVh8fj4vwbKe+pAl2Kd/5GM+IjFHaJdceaasIM9HWHtFiQkwzAcjI1m834y+Nj/K7ZLhzn1bwMpKrDMS0jHvvOXrW+x/1lNU5PvI4d4akj1s4jokDxPEtERNS5euK5VqxJPZ3Vp8vX+Ng2vvUmWRwqlwbUt8wV2z5rl2+2YGBUqMeYN9hivkBW37v7nIEO7vQFemMbHn3/OI5U1gLh/Z1uw/if+gIm3EWwaNEiPPLII3aPzZ07t0fMBhDT1PQ4FJT6fmITluIVV93AG4XaDol1wPkM9DS1CgDw+Xc1dk1h/K3ZbjuivXBssl3C3VNDHHKNtfOIKFA8zxIREXWunnauFTvB2xl9unyNj4X41ptksVQCUWJgZ2zj4iOV1/FOURUWjk1GqlqFSKUc9XojKnRNOHb+On43fRgkEknQxXxiN8Llim3vrdhdYkm2e4HxP/VmrOEugri4OAwbNszuP6VSCZmsb/2hXZCT5LK+myu2S/G2FFVZ/+ACwLKJGrt660JNNWEGekT7jIFpt8fbNU71pTadY812oZ58avvFjsBTQxxyjrXziEgMPM8SERF1rp52rvUnwetOZ/Tp8jU+FuJbb5LFy9r7lokRAzsjxMUatQr7zl7Fj947htFrD2Loa59j9NqD+NF7x3DqUj0kEklQxnxiNsL152fcVwXjd4GouzDhTqIRluL5QliKV6FrREGpZUa5Y2JdIIy0A8DCscloaL8Q+fEdgwD4f9Flm9gXRrQdT7SeGuKQc4HUziMiIiIiInLUWUk9oU/XhZenYvVDmZiWEYfxKf0xLSMOa2Zk4uLLU/HGrCyvZzD7Gh8L8a2nZHEgzVVdTW5z5CoutuVrCRxbnR3zidkIV+zBnd4sGL8LRN2FCXcS1doZmZicpva8IeyX4q0/1LFJKWBJrNuynYFermsCAAyMCg3ooss2sS9cUNguJfOmIQ45F0jtPCIiIiIiIkedndQT+nTlLx6Hw0tzkb94HFbcneaxZrszvsTHwsx2T8lif5qrClxNbnPkLC525EsJHGc6M+YLdPW9gDO2fROM3wWi7sKEO4nKn6V4hdpavHFYa7eNq9IutiPtW4urrI8HetElJPaFEe2K9mQ+4F1DHHJO7Np5RERERETUtwVLUs9gNGHXqUuYvvkoxm8oRN6mo1hzoNwu2epLfHzXbf0AeE4WizWz3HFymy1ncbEjX0rgONOZMV8gq+9tcca2b4Lxu0DUXZhwJ1F98f01n5fi5Wpi8N3/vgc/m5QKiYfSLrYj7flnr0LfXkMt0IuuVLWqQz15wPuGOOScmLXziIiIiIiIgiWpp5BLMSs7AW/OysbY5P74V1kNfr6nBINf/RTP7TptreXtbXwc0l4v31OyWKyZ5Y6T2wTO4mKBVAJMHxaPnU+MQWJUKADg/UdHYecTYzB9WLzbMjWOOjvm83f1va1gGdzpKRj/E93CbzWJ6vdffI+/f3MZ//fBTOtSvJWT0zpsd7GuBXvOXEajoQ3zc5KgUavw+szhyNXE4LHtx10uYXMcaW9tM0EplwZ80RWplNvVkz9YocNzE1Kwhl3GAzI1PQ4Fpb5fbLBmPhEREREROdMdSb3aJgO2Fp/Hp2U1uKk3Ikopx73pcU5jWaGBZsnleuQvvtVg1V187GjtjEyUXK53WjtcrJnlrn4ezvqsSSWWRq3LcjXQOCTq02LDkRYbjtnZCdDqmrC+UIt1hypgNrt/H50d8wmrC1bsLsG7LmaqC4MLruL+YBnc6SkY/xPdwoQ7ieqHQ+Pwwp4STExVY3Z2AgDAZDZD12jAxboWlOuasKWoCgWlV60121/KL8X8nCSsnZHZvs9onKu1JNRtl7DZjrS/f+w8/vL4GOvFRqAXXWaz2Tqife56M86/NJVlZESwICcJL+eX+rQMjzXziYiIiIjIla5M6umNbVixuwRbi6rQ0r66WlBQWuM0lp2z7RhM5lsNNN+YleXz67pLFnvbXNUVd/XZnfVZC5VL8cG80db43pfBhxYX76GrYj5hdcFv8zLwbvF57C+rQb3eiEilHPdlxGH+ne7Lx3LGtm+s8b8P+zD+p96qb/4VoE4j/IEV6tbpjW3I21Tktqu34wyA2dkJaDJYTv4trW2QSwGj6dZIe5vJjN8/lImhcRFoM5khk0oCvuhKVYdD1r7+bcqQWJ+PQ84JyyE3Hq70eh/WzCciIiIiIle6alKPv7Hs0lwN1h2y9CjbWnwer+ZlIMaP+MZVsrjBcKu5aiAxsLPJbcJM750nq7G+UAupBNg+bzRmZSf4PPhwz9D7cFZ7Ho2GNoRGW0q7hCtkiFDKESqXdmnM58vqAlucse0ba/z/r2te78P4n3or1nAnUcWoFFiQk2TtrL5id4nbCxRbwgwAAFApLGNB834wGE2rHsCh58dbR9plUgmGxkVAb2zDf+87CyDwLuQyX4rNkU/EqJ1HREREREQEiNcQ0xN/Y9llEzXWWuZiNNAUksX5i8fh8NJc5GossVWgMfBXlbVO+6ztPFmNn354AmazpYyMkGzP21SEjYcrOyTbBcLgQ96mIuiNbegXFgKNOhwjEqIwQRODCZoYjEyMxpDYcAzuFxbQz6SrBPoz7ovWzsjE+JQYr7Zl/E+9GWe4i6CmpgbXrtmP4On1eigUfXOU7vWZmQiRyVDbZHB6cSGVAHm3x2NBTjLS1CpEKOVo0BtRrmvC9q8voLbJgBiVAier65DULwwxKoX1osLWit0lePtIJRaPuw0atcrvmdTCLHnqHGLUziOivo3nWSIios7V08617mqcO/InqecqlnVHmM2eqg7HtIx47DtrqX++v6zG55nV3gh0NfHqGcM7PG9sM1mT6lIJsCxXA8C/wYc3ZmXh0s0WrNx9BtN/kIH5OUnWmf6FWh2+Pl+Hn44Z7Nfs/67CFdu+U8pl2PHT0fh1QRn+XNbE+J/6LCbcRbB582asWrWqw+NxcX1zGZHQXX2rQ3LVXaMVABiZGI3Z2Qmoa24FAHx/rQl3rT9sXZZm+4dYuAAymYH1hVq8PnO43xddZrMZgASNBiPeOnLOaS26YL4I6AkCrZ1HRH0bz7NERESdq6edazt7Uo9jLOsNYTb7yslpWDg22Zpw74wGmo0GI8IVcr9j4OvNBtQ2tuKm3ogKXRPeLa7C/JxkzM5OwL72n+uluhZo1KqABh8SokIBAD/fU2JXciZXo8aVegOSf/spnrizY7wfTDp7cKc3UsplWPXAMKyZ25/xP/VZkps3b3roHU2eOJsNMHfuXCgUCpw9e9b62JUrVwAAAwYM6NL3113yNh211jvzpdGKkNy+0dyKhFf+hRajCZPT1HYd3lcfKMcLeyxL9qQS4C+Pj8Fsm7py3l50CbPbT1ysw4QNhWhu7bg8LixE5jTp35362neJOge/RyQWX79L9fX1Ph3f2/NsXyJZuae73wJRB+Y1D3X3W+jxeG7u3bry9xuM59rO+vxCQtibpJ43cSgAzNhShD0lV31+L9My4pC/eBxOXKzD6LUH7R4TgxDv/qm4Ctt+MtqvGPjLch2mvHUEZodMkGPMbjCaoJBL7WJvX6x+KBOPDYvAP0qu4Kl/nLM+bhvb/+yTb7DukLZDvB9sfP0Z93U8l/VNffH37u5cyxnuIoiLi+sw8q9UKiGV9vwS+d5ekDhzs30k399GK/3CQvDBPEuXd8cO75+W3WpcYjIDj20/DsByceDLTGqZVIIvy3XI23TUYy06oREOT6BERF2rN59niYiIgkFPPtd60xDTlzhUKZfhv+5Ow95vr8Lk4/REYTZ7pPJWqkWsBpqOTVz9iYFPXKxD3qajHZLtANBiNGHOtmNYmqvB8omp1lXptrG3L/aX1eCxYRG4rb99vXbb2H7ZRA02FGo7xPvBhiu2ichXTLiTU75ekDgT1X6R4dhoxdcu71X/PRXNRhOaDG0wm82QSCTWzuwCu4uDSanQxKi86kK+82Q15rz/tdMLDkfBfhFARERERERE9vyJQ6cMicXSXA3WHdL69FpCol1IvIvZQNOxjrqzBLm7GLjRYETuG4ddTjQTeq1NTFWjrqUVxjYT5DIpfvHDIUdSM08AACAASURBVJBJJcg/69sAhPAziFB0zBc4q3cvPBbM5Vy9GdwhIgKA4B+upi7nTwdyZ6amxwXcaAUAEvuFYUhsOLIHRUEisTQ33fn4GPxsUiokNr1OTWZg3SEthvzuM0zfXIRdpy6h/FojGvRGNBna0KA3orquxbp9bZMBj+/4j1fJdsHW4vOobTJ4vwMRERERERF1G3/j0GUTNZBKPOzgQJjNXqFrAiBeA01XddStMfBrlhj441OXcOJiHb6/1oiT1XUw2MTzbx05hyZDx9hdKgF+NikV3//yHux9yjLpbWRiNOQyS7poypBY7H1qLL7/5T0dYnB3hMGHBievKdS7B4CFY5M7PEZE1NNxhjt14G8HckcLcpJwRFsbcKOVGJUCK3efwZnL9dZyNgOjQvH6zOHI1cTgse3H7QYGTGZg39mr1iY1tlY/lGkdjQ60EQ4REREREREFr0DiUNvZ196wnc2+pahK1AaanmJXVzGwbfzrrDSML73WNGqVyxjcGWHw4dz1ZqfP7y+rwcrJaUhtL11j+xgRUU/HGe5kx98LEmezvmNUCrx0X7p1G3+T2wAwPiUGBaU1+PmeEgx+9VM8t+s09MY2zM5OwAfzRns188BxOV8gteiIiIiIiIgouAUahwqzr70hzGbX6pqQplZh3yLx+n+JEbsKPdYEQq81ofHqc7tOI/E3+/HCnhIUlNbgq8rrfsfgtrH3h8cvON3GWb37eof3SETUUzHhTnYCvSBxdMegKACBXyDYjno7lrOZnZ2Ape1la9xxXM7neMHhLV4EEBERERERBb9A49DshEivtredzT4gUoENs7JES7YD4sSuUUr7AgeOvdZ8KSnrKQYXYu9ztY344vtrTrdxrHdv+xgRUU/HhDvZEXvWt7S9wFugFwjOTry+1NdztpzP8YLDW7wIICIiIiIiCn6BxqFDYsPx7IQUhIU4T56Hhcjw3IQUu9nsKoX48aIYsevU9hIvAETpteYqBreNvTcXVbnsmeZY7972MSKino6ZQ7Lj7oJE6Fq+ICcZaWoVIpRyNOiNKNc14atztW6PG+gFgqtZ5Z7q6wlL2dbMyOwww2BqehwKSn0fYOBFABERERERUfALNA6VSCR4c1YWXp8xHP8ouYJ3is6hrsWISKUc92XEYf6d4jRF9USM2HVBThJezi9Fc2sb8m6PD7jXmmMM7hh77zxZjXeKqpwew7HeveNjREQ9HRPuZMfZBYlUYllutixXA41NaRfByMRoa5MVVwK9QLAd9bZl28T0Dw8Ph+lvZtTrvbsAsr3g8BYvAoiIiIiIiLqPu8aeMQ6xn1iTrBRyKWZlJ2CWh7i3s4gRu8aoFJifk4SNhyuxIMdSmz6QkrIrJ6fhxSlpMJnNHWLvnSer8dMPT0AC4IfpsVgydZTdpD0A6K9SoELXiILSq9bP2BWDF0REXYEJdxHU1NTg2jX7umR6vR4KRc87WThekPjStdzx4sZWoBcIW1yMjAO3Opmnx0Ugf/G4Ds+bzWZIJPZr3a41GhAbfuuCw1u8CCAi6nq96TxLREQUjHrCuVZvbMOK3SXYWlTVodZ4QWkNXsovxfycJKy1Wd0caBy6cvcZnLlc71XM25lsk+Xecha7rp2RiZLL9Uhrn0gXSEnZlZPTMHlILCYPibU+XqFrxPpDWrxxWIulual4ND0Tt8WoMGDAAKfHiQ4NwbKJqThVXdehBCwRUU/GhLsINm/ejFWrVnV4PC6u55Uesb0gEbqWC41UfL24sRXIBYLtqLczQrmZBr0R311rRKRSjkaDEWYzMHxgBEJk9u+ntsmA//nie/zPg5nWCw5vatY5qwNve0x/BiKIiMiz3nSeJSIiCkbBfq4VGnu6i9uExp4ll+uRv9hSUz3QOPQPBytgMnsX83Y2MWJXpVyG/MVjcbPFEkOL0YxV0NrWhrVfVuDD4xfx55+OwezsBFy5cgXXmwx4/0C501hZHa7A6zOHo81khsxdUzYioh6GCXcRLFq0CI888ojdY3Pnzg2q2QDesr0gcexa7uvFjSN/LxDWH9LC5KLRCnCrvl71zRb8f//8FovG3YYHhg2AQu68J/DW4vNYc6AcY5P7Y3Z2AvIXj8WK3SV418VyOnd14AMdiCAiIs9603mWiIgoGAX7udafxp5vzMoCIF4c6k3M25mEZLm/savtceIiLM+J0YxVECKT4Y1ZWVg7YzgUcin0xjb8773fYsfxC9Aro+22ZaxMRL0dE+4iiIuL6zDyr1QqIZU6T/gGu7UzMnH2Sn1AXcuFixtb/lwg7DxZjfWFWrevKdTXS4+LwD8XdSwp4yhSKYMZwGPbjwOwlMt5c1YWfpuXgXeLz2N/WY1XdeDFGoggIiL3ett5loiIKNgE87k2kMaeMSqF6HGobcx7o7kVJrO5y1Y1K+Uyv2JXV8SqcW9LSLbnbSrCgVPtpWGVHbdjrExEvRkT7tSBcEESIpMFfHHj7NjeXiAIjVbMbma3O2ti6qm8y9N3pSA2XInHth/HnG3HsDRXg+UTU6FRq7BychpWTk7r8DoVukbsOXMFyyelWh8TayCCiIiIiIiInAu0sScgfhxqG/M+8u6/MSg61DpTuyvKo8SoFC5jV09qmww48L0Os7ITRGnG6gxjZSLq65hwJ6eEuudiXNw44+4CQWi0sr5Q6/YiB7hVX09ojCpcHHkq72JpAjsac7Ydw7pDWmwo1GJaRjwWjk1GqlqFSKUc9XojKnRN2FJUhYLSq7g3Pc6acBd7IIKIiIiIiIg6CrSxpy2x4lDbmPexHwzGj947ZjdT29hmglzW/asDbNmWQzW0mfD9L++BRq0SpRmrLcbKRERAcJ0BKOgEcnHjj9a2Niz6y0msO+T5Ise2vt7Hpy4BAEYPjoahzeR0e2HJWt6mIuiNbZidnYCl7WVzTGZg39mr+NF7xzB67UEMfe1zjF57ED967xj2nb0Kk9l+2VwgAxFERERERETknXfm3IETKyZh5xNjMH1YPLydPO6ssaczhVodpm8uwtDXPvcqDhUIMW+qWgXg1kxtALjR4l8z0s4ilHjZeLgSLUYTTGZYS+asnZGJyWlqr47jqhmrLcbKRERMuJMHYnYt90aITIZ/LhqLZyekICzEeQ23sBAZnpuQgn2Lxlrr6z3x0X9Q22RAqjoc0zLi3b6G7YXQsokary7YHJfNdfVABBERERERUV80uF8YRiZGY3Z2AvY+NRbf//Ie/GxSKiQe4jhnjT2defEf31onWflCiHltX2dr8XnUNhkQG65AfUurbwfsRM5KvKw/VIGPT12ylpT1JQZ3h7EyERFLypAHgXYtL6tpwLK/fWNXQ90Tf+rrtRhN1iV9C8cmY9/Zq25fQ1iyJiToPW3vuGzOl4EIqQTIuz0eC3KSkZ0Q6fV+REREREREfZG7vlwatQqvzxyOXE0MHtt+vEM5UYG7xp62hJjXNm5LU6sQoZSjQW9Eua4JW4urkO+QlBdiXtvJZralZm7qjYgMDfHzJyAeVyVeTGbgse3HAYzG7OwE0ZqxdvWkPSKiYMSEO7kVaNfy05fqUVBa06GGurtR8bePVGJaRrzHJqaO9fWEGn3Ckj53bC+EPCXonS2b82YgQioBlk1MxbJcDTRevCciIiIiIqK+zLbOuC99uRxnp3vT2FNwb3ochg2IdBm3CbPrtbomrC/UYt2hCphtSo5W6Jqs20olQITSEusmRof58Mk7j7sSLy1GE+ZsO4aluRosn5jqNgb3VqCT9oiIegP+ResB3I3ue9tUxN9jBNq1fEtRlfVxoYa6bTMZZ7Z9fQHP7TrtsYmp40WVsyV97ggJ+iGxzpPhwudY42SAwNNARKhcig/mjW6/CBTnd0hERERERNQT1TYZsPFwJQ5W6KBXRjmNh4Q6446lT2w5xpRCX651h7R223lq7Glraa4GCrnU+j69mVm/6C8nO8S8wRoDeirxYjID6w5psaFQaxeDD4hQYlB0qM+vF+ikPSKi3oAJ9yDmy+i+q+R1oMeIUSn87lpeoWtEQWnHmeNCDfU3ZmU53T9KKbc2MfVU6sWWsyV97gjbjRgYhdUPZfq0bM7dQIRUAmyfNxqzshNE+R0SERERERH1RHbxUF17Ij3cEkMVlNbg1wWlqPzvqYgNVzitM+6KbUy5bKIGGwq11glZ3jT2tKWQS32eWZ+mVtnFvMEcA3pb4sUxBh+f0h+Hl+b6/HqBTtojIuoNmHAXQU1NDa5du2b3mF6vh0Lh/6i1P6P7jidrMY4BWLqWl1yu9+rix/biZv0hrcvGM0INdduRfYPRBIVcGvCIuO2SPneEBL1MKvF52Zy7gYhlE1OtF1pi/PyJiPq6zjjPEhER0S3dFdPenaZGbLjCZZ1xdxz7ch0o17lcoRzo+3SM20YmRgO4FfP+bFLwxoBdXeIlkEl7RES9hbS730BvsHnzZowdO9buP61Wi9raWr+P6c/ofmccw2A0+dW1fOfJaqwv1DrdFrhVQx0ATGYznt91Gj9+/2sAlpOtq9dxxVUZG3cCXbK2dkYmJqep7R6TSoBluRoA4vz8iYioc86zREREdEt3xbQLcpIBuK8z7optTLnu4eG4+PJUvDEry+cEtr9xW4PeiDcOa4M+BpzqZ9wbSLzsLFZ2xdcVCUREPQFnuItg0aJFeOSRR+wemzt3rt+zAQIZ3RdmjItxDMCyvO7ExTqMSoz2umv5zpPV+OmHJ6zNTF0RaqhLJRJMGRKLxz88Dq2uCRq1SvQyNo7EWLImDESs2F2Cd9svEPNutzR7FevnT0RE4p9n3ZGs3CP6MYmIiIJdd8W0ae1NSj3VGXdFiCmHxkX4tX+gcdt96fGQSBDUMWB3lHgRYuVnthnw0YmLaHHzGr6uSCAi6gmYcBdBXFwc4uLsR3+VSiWkUv8WEAQyui+URRHjGILMARF4o1CLB4YNcNu1vELXiPWHtFhfqPWYbAdu1VA3m83WDvMbCrVYO3N4p5SxsSXWkjWlXGY3EDH2tn4AxP35ExH1dWKfZ4mIiMhed8W0Ee1lS7ytM+7I2/5drgQaty0cmyzasTpLICVerjUaEKmU+ZUQV8plWPXAMPxiShr2njP41DONiKin65RI9csvv0RUVBSioqIwffp0l9vV1NTgxRdfRHZ2NuLi4qDRaDBnzhwcOXLE7fG1Wi2effZZDBs2DLGxsRg6dCiefPJJnDlzxu1+p0+fxpNPPokhQ4YgNjYWmZmZeP7551FV5V0Jkq4SyOi+mMcQKOUyLBqXjDVfluORd/+Nj09dwomLddAbLRcThVodpm8uwtDXPse6Q94l24FbNeG+v9YIvbENs7MTYDab8fGpS36VsfmyXOe2jI2gM5asxagUWDk5Dbkay7I5MX/+REREREREPYm38VBDe8K8q+uMCwKN21LVKgyNDRflWLZqmwxYfaAceZuOYvyGQuRtOoo1B8pR22Tw6zX8LfHyf/aXIW9TkTX290f/9lg5f/E4HF6ai/zF47Di7jQm24moVxM94d7Y2Ihf/epXHrf77rvvMGHCBLz99tuorKyEXq+HTqdDfn4+7r//fmzevNnpfkVFRcjNzcUHH3yAixcvwmAw4MqVK9i1axcmTZqEvXv3Ot1vz549mDx5Mnbt2oWrV6/CYDDgwoUL2LZtG8aPH49///vfAX1uMYkxui/2DAGlXIY3ZmVhy4/vQGVtE36591t8VXkdAHD03A3sO3vVq5nltoSacKcu1Vtr1y2dqMHjHx63Jt3fnJWFCy9PxeqHMjEtIw7jU/pjWkYc1szI7FCjb9xt/bBkvPcJ+s7UXTM0iIiIiIiIupu38VC5rglA99QZBwKP2zQxKgwfGCnKsQBLA9fndp1G4m/244U9JSgorcFXlddRUFqDn+8pweBXP8Vzu077nAAPpC8b+40REflO1JIyDQ0NmDNnDk6fPu12O7PZjKeffhqXL18GAEilUtxxxx3QarW4ceMGzGYzfvGLX2DChAnIzLw1E7m5uRlPPfUU6uvrAQAKhQIjRoxAaWkpGhsb0draimeeeQZff/014uPjrftduXIFS5YsQWtrKwAgIiICQ4cOxZkzZ2AwGHDz5k0sXLgQRUVFCAsLE/NH4hcxRvfFnCGgN7Zh89EqlyVlAq0Jt6WoCgfKddYO83enxWLOtmNYmqvB8ompbsvY2HIs79KdS9a6a4YGERERERFRd/M2HtpaXIXZ2QndUmccCDxu6xcWItqxTGYz8jYVuS2r2tzaho2HK1FyuR75i32bSOZLvOzYl439xoiIfCPaDPcjR45gwoQJKCws9LjtZ599hmPHjlnv//Wvf8WXX36JkydPQqOxdPc2Go34/e9/b7ffjh07cO7cOQCWenJffPEFDhw4gKKiIvTrZ6mdXVdXh40bN9rt99Zbb+HmzZsAgNjYWBQXF+PLL7/E/v37ERJiOUFWVlZix44dfn56cYkxui/mDIEVu0uw9G/fYMhrn2H65iJrSRlLKRiTtSacLxybnNp2mF84NhkmM7DukNbpa5bVNLg9dkwQLFnrrhkaRERERERE3c3beCj/7FVodU0BxZSBEDNuC/RYJ6tvetXDDEBAs87dxcsVukb87JNvMOf9r9FiNFn3sY3XiYjIs4AT7nq9HjNnzkReXh60Ws/1swHgb3/7m/X26NGjce+99wIA+vfvj6efftr6XH5+PlpaWpzuN336dGRlZQEAkpOT8ZOf/MTpdgCwa9cu6+158+Zh8ODBAIBRo0Zh2rRp1uc++eQTr95/Z1uQk+RymZcrjqP7YhwDsO/abjID+85exY/eO4bRaw9i6Guf46V9ZwH4XxPOtsmpbR08gbPXXPa3b3z6XN1BrJ8/ERERERFRT+NtPGQyw9qHy9+YMhCBxm0v7TuLXacuiXKsV/9V5tO+W4vP+1XT/aV9Z+0mtJ24WIePT13y2JeN/caIiLwXcMK9ubkZX3zxhfX+/fffj/vvv9/tPsePH7feHjNmjN1z48aNs95ubGxEaWmp9f6JEye82k+r1eL6dUt98draWlRWVnq1n+3xu5MYo/tizRBw12ldKgHG3dYfgH814T4+VW3X5FSoXeeprEpPmAXeXTM0iIiIiIiIupsv8dD6QxXWHl6+xpRd+T4Ftqu1f/fZd/hf246hsjawWfo3mlux+8xln/b1d9b5Z99fs5vQNnrtQfzovWMe+7Kx3xgRkfdEKymjVquxatUqfPTRR+jfv7/L7UwmE7777jvr/YSEBLvnExMT7e4LCffq6mprWRgAGDhwoN12gwYNsrtfVlZm939v9qurq8OlS5dcvveuJMbovhjHcNdpfdnEVMzKToDe2IaD5Tqfm5werbxuN3IuJNrdnch70izw7pihQUREREREFAy8jYdMZmDz0XNoM5l9jim78n0CzldrC+VQAznWRycuuk12u+LPrHP2GyMi6nwBJ9wVCgX+8Ic/oKSkBM8++ywkEonb7evr62Ew3Fr2FBUVZfd8eHi43f3a2loAgE5nX8vMcb+IiAiv9ouOjvbq9bqbGKP7YhzDVad1qQRYlmupt79idwmmvHUEP/vkG2v9PXc14XaerAYALJmQAqnN10WYuV7R3qnemZ40C7w7ZmgQEREREREFA1/iob8vuBMym+CwK/ty+RO37Txpv1o70Fn67399wa/37s+sc/YbIyLqfAEPUapUKixYsMDr7Zua7JOpQtNSV/cbGxv92q+hocFuf4Fcbv+RXe3nSk5OjtvnBRUVFUhJScGVK1esj9XU+D76/PKEeCwd1Q8fnajGlxU6NOiNiFDKMTlNjbkjB6GfSoEbumuddgyl/ibQeL3D41PSY6Ey1uOsVoetX5yCqbUN6/KvY33BcUwZEoufjB6M2/qHIUIhQ4OhDeeuN+PD4xfwxffXoJTLMGLFJPRXKTA5QYbPv7uG0BAZHrxNgStXrmDj/hNOX3OCJgYvjlXb/Ux7AjF+h478+S4ROeL3iMTi63dJpVK5fC6Q8ywRdS/+ewwcz829W1f+foPpXCvEQ+98cRpfnbsOg8IccDzUGbyN2/acuYznd52G2aapqAnAvE2f4cbsbDyYOcDnGFDhIu72RKGX+fz7efA2BV4y3ESLi9KxztjG677g37S+ib/3vqkv/t7dnWu7fE2Q2Vn3DRuuZsh72k/s1wsm/VUKLJmQgiUTUrr8GJNS1TjwfceLn0dHWRrP7jhRbXeiNpuBz7+7hs+/c33B1NLaho9OVGPJhBT8ZPRgfP7dNTw6KhH9VAqcq23EFw6vFxoiw6OjEvHKtHS3s8CvNxmw40Q1DlboUK83IlIpx92paswdNcg6E8JgNEEhF62SktfE+B0SERERERH1RP1VCjyZk4wnc5IRFxe8M6XdxW3nahuxuagK7xRVAU7SDHqjCYv+8h8sHJuMFycP8SkGdBV3e3LPkFi7+97ExP1VCjz2g0S8c7TK69cR4vWu4M1nICIKdl2ecHfM/re2trq9L5R88bSf0Wi/lEooMeNYMsZxO8fjOJamcVRcXOz2eUFOTg6kUikGDBjQ4TlnjwWr5Xn98ftiXYfGqT9Ivw0DBkSj6JoWCHdds9+Vo9fMeGXAAIw2hmLKHQ1463HLcrqS+mu4b1S69cR6X0Yc5t/pvoyM3tiGFbtLsLWoCi3WWQYSAG04cOkq/qdYh/k5SVg7IxNKuQwnLtYhc0BEryjh0pO+SxS8+D0isXj7Xaqvr3f5nBjnWSLqHvz3KB7+LHu3rvj9BvO5tid9v7+/1oiT1TexpagKBaXtTUVVruNfM4B3TtfjYusF/HPROLS0tkEuk0AudT/py1Xc7U64QoYXHxwDhVzqc0z89uPxqGj+Cp9/r3P3EgAsteaFeN1f3vzOff0MFPx60r91Ek9f+r27O9d2ecI9MjIScrncmvh2LOHi+GZjYmIAoEMjVsf9bBuqutvP8fiuXo8shE7rGw9X2j0e0d4wxVWNd0+EWnODo0PtatdNGRKLKQ6j9O7ojW3I21SEA+WuLxSaW9uw8XAlSi7XI3/xWIxKjMYbhVosGpfMEzURERERERE59fiOE/iq0vdSL3Utlng31EUdd0eu4m533nt0pDXZ7mtMrJTLULB4HJb//QzeLT7vNNEfFiLDgpwkrOmCBLe/n4GIKFh1eW0NmUyGlJQU6/1Lly7ZPV9dXW13PyMjAwCQmJiIsLAwl/s53k9PTwcApKWl2T1++fJll/tFR0cjISHBm4/RpzjrtN7QnjAPtMN5XIQyoBPlit0lbk/Ktg6U67BydwkAYPqwePy8/bat2iYDVh8oR96moxi/oRB5m45izYFy1DYZOmxLREREREREvVeg8a4vnMXdrtwzVI1ZWZbchb8xsVwmxZuzsnDh5alY/VAmpmXEYXxKf0zLiMOaGZm4+PJUvDErq0sS2/5+BiKiYNX1xawBjBw50nq7qKjI7rljx45Zb4eHh1sT7lKpFFlZWV7tp9ForDPbBw4ciIEDB1qfO3r0qMv9Ro0a5fNn6QucdVov11ma2HZnh/PaJgPeLT7v0z5bi8+jtsmAVHU4LtS1WBPprW1teG7XaST+Zj9e2FOCgtIafFV5HQWlNfj5nhIMfvVTPLfrNPRG75f4ERERERERUc/V2fGu3tiG53edxienLzmNux2Fhcjw3IQU7Fs0FhKJJKCYWBCjUmDl5DTkLx6Hw0tzkb94HFbcndZl9dLF+AxERMGmWxLuDz74oPX2iRMnUFBQAACoq6vDH//4R+tz06ZNQ2hoqNP99u3bh1OnTgEALl68iO3bt1ufe/jhh+1e74EHHrDe3r59Oy5cuAAAOH36NPbt22d9bubMmQF9rt5MKZfZjX6fvFgHAFiQk+TyYsAVYWlaoLa6WPrmTnNrm/Vk/tgPBltvf1V5AxsPV9rUiuu438bDlcjbVMSkOxERERERUR/QmfGuUEblzcOVePSD4/j41KUOcberWechMst7CjQmDga94TMQETnqloT7jBkzMGzYMOv9H//4x7j77ruRnZ2N7777DoCl9MzPf/5zu/3mz59v7WhuMBhwzz33YPLkybjzzjuh01mWH0VFRWHJkiV2+y1fvtyauK+trUVOTg4mT56MH/7wh9Dr9QCA5ORkPProo53zgXsRYfT71ftvt96f72PyfEGO+yao3vq0rMav/fa375eqVllvR4Z6t+SPy9eIiIiIiIj6hs6Md23LqLQYTZiz7Rh+9sk30OqavJ51HmhMHAx6w2cgInLULQl3uVyO999/31rqxWQy4cSJE7h+/VYzktdeew0jRoyw2y86OhoffPABIiMjAQB6vR7Hjx+3NlANCQnBxo0b7UrIAEBKSgo2bdqEkJAQAJaGq8ePH7cm2yMjI7FlyxaoVKrO+cC9nC+15qYMUWPNjExRXjfQhq2RSrndbW9x+RoREREREVHf4C7elUos/cF2PjEGJ1ZMwoWXp2L9IyOcbmvLWRkVkxlYd0iLIa99humbi/DxqUs4cbEO319rxImLdfjkm8uob2m12yfQmDgY9IbPQETkyL8OICJIT0/HV199hTVr1mDv3r24ePEiIiIicOedd2L58uXIzc11ut9dd92Fo0ePYvXq1di/fz+uXr2Kfv36ITc3FytXrrSr827r4YcfRnp6OtasWYODBw+itrYW8fHxmDJlCl588UW7Rq7kG6HW3IrdJW47nC/MScLrM4dDLhNnnCfQBjb1eqPdbW8Jy9dWTk7zvDERERERERH1WM7iXakEWDYxFctyNdCofZ+4566MiskM7Dt7FfvOXu3w3OqHMu3i0K5s6tpZesNnICJy1Cl/od5++228/fbbHrdTq9X43e9+h9/97nc+HT8pKQnr1q3z+X1lZmZiy5YtPu/XG9U2GbC1+Dw+LavBTb0RUUo57k2Pw/ycJMT4Ue5FqDX327wMvFt8HvvLaqwJ7fsy4jD/TvtldWK8/tT0OBSU+r6MTGhgU6Frsrvti/1l1sZmegAAIABJREFUNUy4ExERERERiUDs+FRstvHu+8cu4AdJ0cjVWGa9+/PeAymjYhuHBhoTB4Pe8BmIiBxxSLCP0RvbsGJ3CbYWVXVoEFpQWoOX8ksxPycJa2dkQin3rTkMcKvGu6tktJivvyAnCS/nl/rUYMW2gc0HX1/A1h/fAQDYUlTl9TEALl8jIiIiIiIKVGfHp2KLUSmwfFIqgMDeu1hlVAKNiYNBb/gMRPT/2Lv/6Kjqe9//L/JjhgQIEBh+hdBENJRgEFwSlCAECwVtGw2tJVpOl0EjoFztAavnnHXq6W3XgvRytbWt1Jol3K/C4pxlFyhWCF+wxB9YEmg4FY1NUkgkgMAkgSSSMMkkuX9ws5vJ75nZk5nMPB9ruZz94z37M7M3ee/9nr0/H3RFwd0Edrtd1dXVLvMcDocsFv//Et9ZxyjoHQOz9KSppVXbjlaq5GKD8h+fb+pJjdnb7xjAZtvRygG3oWMAmzM11zR19HDj9cHS7o/r9YXH1wBg8AyVPAsAwFDlj1zr7+tTb3jbdrO6UfHmmjhQBMNnAICu/DJoarDJy8vT/PnzXf6rqKhQbW2tv5vmovMo6P0pOF2jTftKAn77ng7YeuBvl/W//9/rX39Yobb2Ab2FgcfXAGDwDJU8CwDAUOWPXOvv61NveNv2pR5eT/Z0HerpNXEgCYbPAACdUXA3QU5OjgoLC13+S0xMVGxsrL+bZuhpFPT+bC+qUm1jc0Bvv2MAmyfSEhQV2fPdDlGR4XoyLUEHcm7cVXDyfJ0emz9N1ohwNTvblOdmdzI8vgYAg2so5FkAAIaywc61/r4+9YYZbV+TGt/r9WtvRljCtX7B17rN9+SaONAEw2cAgM7oF8MENptNNpvrL81Wq1VhYYHze0Zfo6D3pqmlVTuKqkwZHNSX23dnwNZmZ5vmxo02Yi0RYXpkHo+vAUAgGwp5FgCAoWywc62/r0+9YUbb3e1GZXhEmD7akKZoy40STsdArR+crtY/L56uJTePH/A1caBy57oeAAIdBfcQYdYo6IG8/f4GbJVuFNi7ejEjWSUXGwb0SCCPrwEAAACAd/x9feoNs9o+0OvQsGHS/7/2Ts2JG93jQK3vfn5Z/2Nhop6++yYljovu95o40A3kuh4AAh0F9xBh1ijo7mpvb9ewYcP8tv2B6Hh8beO+Eu3o5W6Fjm5kXuhhhHkAAABIwza94+8m9Kv9he/4uwkA5L/rUzOY1faBXoe+8fAc3X3TuF4Ham1rl176sEK/+ahCy2dM0KPzp2n25FG6efwIDRs2zKO2AgC8Q8E9RJg1Crq7ztdd19QxUX7b/kDx+BoAAAAADI5Avz7si5ltd+c6tL+BWtvapQN/u6wDf7ssSXoyLUG/XZniUVsBAN7xf7bCoFiaZNPBUvcffetpFPSBqm1s1olzdZo6Jsov2/cEj68BAAAAgG8NlevDnvii7f1dh3o6UOvPVsxQLDeOAcCgY7SxEOHJKOgd3ah4antRlfKOfeG37QMAAAAAAs9Qvj7017W1pwO1AgAGHwX3ENExCro71qR270altrFZ/7vgtFa8ekwLfvORVrx6TC8UnFZtY3O3+MNlduX/7bIqahpN2z4AAAAAYGjz9/WhO9e1Xfmj7d4M1AoAGHx0KRNCBjoKuiQtuXmcXshINqZ7Gg29w8FSu36SX6rs1Hi92GlQ0XqHU23t0q8/qtAv75/l1fYBAAAAAMHDH9eHnlzXBkLbh/IgswAQiii4m8But6u6utplnsPhkMUSWHdnD3QU9DWp8Xqh0wlGb6Ohd9bU0qptRytVcrFB762/S2HDhhmDyfz6wzNamBir786e7NH2AQChbajkWQAAhip/5FpPr0895e51bf7j83vd5mC3fSgPMgsAoYi/vibIy8tTbm5ut/k2m/8HdOnKnVHQO/Q3GnpnBadr9MmFes2JG20MJtPWLq3eVSzpdn139mS3tw8ACG1DKc8CADAU+SvXenJ96il3r2s37SvRb1emBETbh/IgswAQiobV19e3+7sRQ11PdwNkZWXJYrHob3/7mzHv0qVLkqSJEycOavu8UdvYrKk/O+zWAC2Zt07Snux53WLDhkn/Y2Ginr77JiWOi+41vrWtXeFhw7xuezAbiscSAg/HEczi7rHU0NDg1vsPNM+aYdimd0x9PwCBpf2F7/i7CX0iNwe3wdy/gZhr/Xl8e3JdGxUZrnPPL1VsANwQ5mn7zz+/1K83tPE3LTSx30NTKO73vnItd7ibwGazdfvl32q1Kixs6I9J68lo6G9/dlF1TS3GYDLbjlZKktrapZc+rNBvPqrQ8hkT9Oj8abppXLRGWSPU4HDqTE2jLjU49ERagvkfBAAwZAVzngUAIBAEe6715Lq2qaVVO4qqtCl9uo9aNXBdr60HwsxBZgEA7qHgjj55Mhp6W7v0n/99XmvvSuhxMJm2dunA3y7rwN8uu8QtuXmcDuTM97rNAAAAAAB08OS6VpIOldkDouAu+WeQWQCAZ4Lj52r4jKejoe/8yzlJ/xhM5om0BEVF9jxQTFRkuJ5MS9CBnN4HpQEAAAAAwBOeXtc2eBjnC1xbA8DQwR3u6JOno6GPsPwjbjAHkwEAAAAAoDNPr2tHeRjnK1xbA8DQEFjZAwHHzNHQY6Mt2pQ+PWAeyQMAAAAABD8zr2sDAdfWABDYKLijT2tS4/V8fqnbo6GvSY33YasAAAAA9w3b9I6/mzAg7S98x99NCBpDYZ+zv32P61oAwGCiD3f0qWM0dHcwGjoAAAAAIFBwXQsAGEwU3NGvFzOSlT593IDWZTR0AAAAAECg4boWADBYKLijX4yGDgAAAAAYyriuBQAMFvpwN4Hdbld1dbXLPIfDIYsleB4/YzR0AIC/hEKeBQDAn0Il13JdCwAYDBTcTZCXl6fc3Nxu8222wBzR3BuMhg4AGGyhlGcBAPCHUMu1XNcCAHyJgrsJcnJylJmZ6TIvKysr6O4GAADAH8izAAD4FrkWAADzUHA3gc1m6/bLv9VqVVgYXeQDAOAt8iwAAL5FrgUAwDxkTwAAAAAAAAAATEDBHQAAAAAAAAAAE1BwBwAAAAAAAADABBTcAQAAAAAAAAAwAQV3AAAAAAAAAABMEOHvBqBvtY3N2l5UpcNldtU7nIqxRmhZkk3ZqfGKjbb4u3kAAAAATDZs0zv+bkK/2l/4jr+bgCGktrFZ245W6oMzNXJYY7iuBQAENQruAcrhbNXGfSXaXnhW151tLssOltr1k/xSZafG68WMZFkjwv3USgAAAAAAeuZyXVtXc2PmiFZJXNcCAIIXBfcA5HC2asWrhSo4XdPrOk0trdp2tFIlFxuU//h8Tk4AAAAAAAGD61oAQKii4G4Cu92u6upql3kOh0MWi2ePxm3cV9LnSUlnBadrtGlfiX67MsWjbQEAEOjMzrMAAMCVL3It17UAgFBFwd0EeXl5ys3N7TbfZrO5/V61jc3aUVTlVsz2oir9bMUM+r4DAAQlM/MsAADozuxcy3UtACCUUXA3QU5OjjIzM13mZWVleXQ3wPaiKjW1tLoV09TSqh1FVdqUPt3t7QEAEOjMzLMAAKA7s3Mt17UAgFBGwd0ENput2y//VqtVYWFhbr/X4TK7R204VGbnxAQAEJTMzLMAAKA7s3Mt17UAgFDm1yvVxYsXKyYmps///vCHP7jE2O12Pfvss5o9e7ZsNpsSExP1/e9/Xx9//HGf26qoqNATTzyhmTNnavz48brlllv0yCOP6LPPPvPlR3RbvcPpUVyDh3EAAAAAAJiJ61oAQCjzW8G9tbVVn3/+uVsx5eXlSktL0yuvvKLKyko5HA7V1NQoPz9f9957r/Ly8nqMKyws1MKFC7Vz506dP39ezc3NunTpkvbs2aNFixbp3XffNeMjmSLG6tlDB6M8jAMAAAAAwExc1wIAQpnfsll5ebmuX78uSRo+fLjuuOOOHtfreKytvb1da9eu1cWLFyVJYWFhuu2221RRUaGrV6+qvb1dzz33nNLS0pScnGzENzU16bHHHlNDQ4MkyWKx6NZbb1VpaamuXbumlpYWrVu3Tn/5y180YcIEX37kAVmaZNPBUvcfv1uWxMBxAAAAAAD/47oWABDK/HaH+6lTp4zXs2bN0v79+3v8b/HixZKk9957TydOnDBi3nzzTb3//vv661//qsTEREmS0+nU1q1bXbaze/duffHFF5Ju9EF35MgRFRQUqLCwUGPGjJEk1dXVadu2bT79vAO1JjVeUZHhbsVERYZrTWq8j1oEAAAAAMDAcV0LAAhlfiu4f/rpp8brm266qd/19+7da7y+/fbbtWzZMknS2LFjtXbtWmNZfn6+ced817j77rtPKSkpkqRp06bp4Ycf7nE9f4qNtijbzZOMNanxGhvt2ejxAAAAAACYietaAEAoC4g73DvuUO9LcXGx8bpr9zN33nmn8fratWsqLS01pk+ePDmguIqKCl25cmUALfe9FzOSlT593IDWXXLzOL2Qkdz/igAAAAAADBKuawEAoSog7nA/fvy4FixYoAkTJigxMVGrV692KbC3tbWpvLzcmJ48ebLLe8XFxblMdxTcL1y4oPr6emP+pEmTXNabMmWKy3RZWZmHn8Zc1ohw5T8+X0+kJfT6GF5UZLieTEvQgZz5ska496geAAAAAAC+xHUtACBU+WXQ1OrqamPwU0k6cuSI8fr69evat2+f9u/fr1/96lf64Q9/qIaGBjU3NxvrxMTEuLzfiBEjXKZra2slSTU1NS7zu8aNHDmyx7hAYI0I18srU/TzFTO0o6hKh8rsanA4NcoaoW/OsCl7Ho/bAQAAAAACV+fr2l/nn9T7Z2rUbI3huhYAENT8UnDv3J2MJIWFhSklJUXXrl3T6dOn1d7eLqfTqaefflpf//rXFR/v2vdbZGRkn9PXrl2TJDU2NroV99VXX/Xb9tTU1H7XkaQzZ84oISFBly5dMubZ7e6P0i5Jq2eO1OqZrj8ONDdc0aUGj94OQcDTYwnojOMIZnH3WIqOju51mTd5FgAwePj7ax5ffJeBmGu/lzRC30saIZvNZszjuja4cb0RmtjvoSkU93tfudZvXcrcfffdiouL07x581RcXKwPP/xQxcXF2rt3r1EIb21t1S9+8Qu1t7f3+V7Dhg3rcX5/cQAAAAAAAAAAmMUvd7gvWbJES5Ys6XHZPffco1WrVmnnzp2SpA8++KDbnegtLS19Tnd0MdP1l4au6zmdTpfprl3M9KSoqKjfdaQbdw2EhYVp4sSJ3Zb1NA/wBMcSzMBxBLMM9FhqaOj9VjYz8iwAwPf4+2seX3yXgZxrOXZCD/s8NLHfQ1Mo7fe+cq3f7nDvS0pKivHa4XCoqalJERH/+G2ga9cvXT9gbGysJGns2LEu87vGdR5QtXMcAAAAAAAAAADu8mvBvaGhoceBSrveiR4VFaWEhARj+ssvv3RZfuHCBZfpGTNmSJLi4uIUFRXVa1zX6aSkpIE3HgAAAAAAAACATvxScF+9erWmTJmiuLg4ZWdnd1teXFxsvJ4wYYJsNpvmzJljzCssLHRZ/8SJE8brESNGGAX3jsFYBxKXmJjY7Y54AAAAAAAAAAAGyi8F9+nTpxvduxw5ckSvv/66sWz//v166623jOlVq1ZJkr797W8b806ePKmDBw9Kkurq6vT73//eWLZ8+XINHz7cmO4cd+DAAX3yySeSpPPnz2vXrl3GsgceeMCUzwYAAAAAAAAACE1+KbivW7dOo0ePNqY3bNigOXPm6I477lBWVpba2tokSVOmTNEzzzwjScrIyNDMmTONmFWrVmnx4sWaPXu2ysvLJUnh4eHG+h2ys7Nls9kkSc3NzfrGN76h9PR0zZs3TzU1NZKkmJgYrV+/3ncfGAAAAAAAAAAQ9PxScJ88ebJ27drlUnQ/c+aMysrKXNbZu3ev0c1LRESE3njjDU2aNEmS1NbWppMnT+rKlStGzJYtW3Trrbe6bGv06NHauXOnRo0aJenGIKzFxcXGHfaRkZHatm2b8b4AAAAAAAAAAHjCb4OmLlq0SMeOHdOTTz6ppKQkDR8+XCNGjNCsWbP07LPPqqioyOWOdunGoKZ//vOftWHDBiUmJspisSg2NlbLly/X/v37tW7duh63ddddd+nYsWPKzs7W1KlTZbFYNGHCBK1cuVIFBQXKyMgYjI8MAAAAAAAAAAhiEf7ceFxcnLZs2aItW7YMOGbcuHHavHmzNm/e7Na24uPj9dJLL7nbRAAAAAAAAAAABsSvBfdgdu7cObW0tGjWrFnGPKfTKelG9ziANziWYAaOI5jF3WPpa1/7mv7rv/7Lq232lGdNsSLX3PcDgCBl+t9fXxkCf9d98V0GYq7l3DP0sM9DE/s9NIXifu8r14bOtzDIoqOj1djYaAwAK0mVlZWSpJtuuslPrequtbVVV65c0dixYxUeHu7v5gRce6TAbFOgHUuB+B3Rpv4F2nEkBd53JAVemwKtPZJ/jqWe8qwZvr7/WUm+/Z59vQ/PnDkjyXf7w9ft5/37xv4N7vcfSvu3p7++gfj9d/xd99X7u6O3/WtGJvNF283Otf489/T3+ZM/t+/Pbfv7eiNUv3d/b5/9zn4fbP7+3nsyrL6+vt3fjQgVqampkqSioiI/t+QfPv/8c82fP1+FhYXd+synPTcEYpsC7VgKxO+INvUv0I4jKfC+Iynw2hRo7ZEC81jyli+/Z1/vQ1/vD1+3n/fvG/s3uN+f/Rvc7+/L/RuI5wdd+fN8wd/fjz+3789t+/scMVS/d39vn/3Ofh9s/v7ee+K3QVMBAAAAAAAAAAgmFNwBAAAAAAAAADABBXcAAAAAAAAAAExAwR0AAAAAAAAAABOE/+u//utP/d2IUJGXlydJysnJ8XNLXEVHR+vuu+/WiBEj/N0USYHXHinw2hSIx1KgfUcSbepPIB5HUmB9Rx0CrU2B1p5APZa85cvv2ZfvPRj7w9fHIO/fO/ZvcL8/+ze439/X+zfQzg+68vf5gr+/H39u31/b9vc+l0Lze/f39tnv7Hd/8Pf33tWw+vr6dn83IlT4e6RmBA+OJZiB4whm4VgKLOyP4Mb+DW7s3+AW6vs31D9/KGKfhyb2e2hiv7uiSxkAAAAAAAAAAExAwR0AAAAAAAAAABNQcAcAAAAAAAAAwAT04Q4AAAAAAAAAgAm4wx0AAAAAAAAAABNQcAcAAAAAAAAAwAQU3AEAAAAAAAAAMAEFdwAAAAAAAAAATEDBHQAAAAAAAAAAE1BwBwAAAAAAAADABBTcAQAAAAAAAAAwAQV3AAAAAAAAAABMQMEdAAAAAAAAAAATUHAHAAAAAAAAAMAEFNwBAAAAAAAAADABBXcfWbVqlVatWuXvZgAAEJTIswAA+Ba5FgAAz0T4uwHBqqKiQmFhYRo1apQx79KlS5KkiRMn+qtZCBIcSzADxxHM4u6x1NDQ4PU2e8qzuIF/28GN/Rvc2L/BbTD3byDmWo7v0MM+D03s99AUivu9r1zLHe4AAAAAAAAAAJiAgjsAAAAAAAAAACag4A4AAAAAAAAAgAkouAMAAAAAAAAAYAIK7gAAAAAAAAAAmICCOwAAAAAAAAAAJqDgDgAAAAAAAACACSi4AwAAAAAAAABgggh/NyAY2O12VVdXu8xzOByyWCx+ahEAAMGDPAsAgG+RawEAMA8FdxPk5eUpNze323ybzeaH1gAAEFzIswAA+Ba5FgAA81BwN0FOTo4yMzNd5mVlZXE3AAAAJiDPAgDgW+RaAADMQ8HdBDabrdsv/1arVWFhdJEPAIC3yLMAAPgWuRYAAPOQPQEAAAAAAAAAMAF3uAMAgG5qG5u1vahKh8vsqnc4FWON0LIkm7JT4xUbzePlAAD0p2sutTrqtfimcXpqxVhyKQAAQYyCOwAAMDicrdq4r0TbC8/qurPNZdnBUrt+kl+q7NR4vZiRLGtEuJ9aCQBA4Oo1l167ooK/V+t/FdWQSwEACGIU3AEAgKQbBYIVrxaq4HRNr+s0tbRq29FKlVxsUP7j8ykUAADQCbkUAADQhzsAAJAkbdxX0meBoLOC0zXatK/Exy0CAGBoIZcCAAAK7gAAQLWNzdpRVOVWzPaiKtU2NvuoRQAADC3kUgAAIFFwBwAAunHB39TS6lZMU0ur24UFAACCFbkUAABIFNwBAICkw2V2j+IOeRgHAECwIZcCAACJgjsAAJBU73B6FNfgYRwAAMGGXAoAACQpwt8NCAZ2u13V1dUu8xwOhywWi59aBACAe2Ksnp0SjPIwzh3kWQDAUBDIubQ/5Nqhadimd/zdhAFpf+E7/m4CAAwq/2f2IJCXl6fc3Nxu8202mx9aAwCA+5Ym2XSw1P1H2pcl+T7XkWcBAENBIOfS/pBrAQAwDwV3E+Tk5CgzM9NlXlZWFncDAACGjDWp8Xo+v9Stwd6iIsO1JjVezQ1XfNgy8iwAYGjwJpf6G7kWAADzUHA3gc1m6/bLv9VqVVgYXeQDAIaG2GiLslPjte1o5YBj1qTGa2y0RZcafNcuiTwLABgavMml/kauBQDAPGRPAAAgSXoxI1np08cNaN0lN4/TCxnJPm4RAABDC7kUAABQcAcAAJIka0S48h+fryfSEhQVGd7jOlGR4XoyLUEHcubLGtHzOgAAhCpyKQAAoEsZAABgsEaE6+WVKfr5ihnaUVSlQ2V2NTicGmWN0Ddn2JQ9LzAefQcAIFD1lkstjnClTx+np5bPJZcCABDEKLgDAIBuYqMt2pQ+XZvSp/u7KQAADEldc+mlS5ckiWI7AABBji5lAAAAAAAAAAAwAQV3AAAAAAAAAABMQMEdAAAAAAAAAAATUHAHAAAAAAAAAMAEDJpqArvdrurqapd5DodDFguD4QAA4C3yLAAAvkWuBQDAPBTcTZCXl6fc3Nxu8202mx9aAwBAcCHPAgDgW+RaAADMQ8HdBDk5OcrMzHSZl5WVxd0AAACYgDwLAIBvkWsBADAPBXcT2Gy2br/8W61WhYXRRT4AAN4izwIA4FvkWgAAzEP2BAAAAAAAAADABBTcAQAAAAAAAAAwAQV3AAAAAAAAAABMQMEdAAAAAAAAAAATUHAHAAAAAAAAAMAEFNwBAAAAAAAAADABBXcAAAAAAAAAAExAwR0AAAAAAAAAABNQcAcAAAAAAAAAwAQR/m5AMLDb7aqurnaZ53A4ZLFY/NQiAACCB3kWAADfItcCAGAeCu4myMvLU25ubrf5NpvND60BACC4kGcBAPAtci0AAOah4G6CnJwcZWZmuszLysribgAAAExAngUAwLfItQAAmIeCuwlsNlu3X/6tVqvCwugiHwAAb5FnAQDwLXItAADmIXsCAAAAAAAAAGAC0wrux48f16OPPqqZM2dq/Pjxmj59un74wx/qk08+6TXGbrfr2Wef1ezZs2Wz2ZSYmKjvf//7+vjjj/vcVkVFhZ544gljW7fccoseeeQRffbZZ33GnTp1So888ohuvvlmjR8/XsnJydqwYYPOnj3r0WcGAAAAAAAAAKCDKQX33NxcLV26VG+++abOnz+v5uZm2e12vfXWW1qyZInefffdbjHl5eVKS0vTK6+8osrKSjkcDtXU1Cg/P1/33nuv8vLyetxWYWGhFi5cqJ07dxrbunTpkvbs2aNFixb1uC1Jeuedd5Senq49e/bo8uXLam5u1rlz5/T6669rwYIFOn78uBlfBQAAAAAAAAAgRHldcN+xY4c2b96s9vZ2SdKYMWM0Z84cRUZGSpJaWlq0fv161dTUGDHt7e1au3atLl68eKMRYWGaO3euxowZYyx/7rnnVFJS4rKtpqYmPfbYY2poaJAkWSwW3X777RoxYoSxrXXr1uny5csucZcuXdL69evV0tIiSRo5cqTmzp1rDABTX1+vRx99VE1NTd5+HQAAAAAAAACAEOVVwb2hoUHPP/+8Mf3AAw+ovLxcH3zwgQ4fPmwUtK9evao333zTWO+9997TiRMnjOk333xT77//vv76178qMTFRkuR0OrV161aX7e3evVtffPGFpBsDuBw5ckQFBQUqLCw0ivV1dXXatm2bS9zvfvc71dfXS5LGjx+voqIivf/++zp06JDxw0BlZaV2797tzdcBAAAAAAAAAAhhXhXc9+3bp7q6Okk37jb/9a9/LavVKkmaO3eu1q9frx/+8If6l3/5F82aNcuI27t3r/H69ttv17JlyyRJY8eO1dq1a41l+fn5un79eo9x9913n1JSUiRJ06ZN08MPP9zjepK0Z88e4/UPfvADTZ061Wjj8uXLjWVvvfWWu18BAAAAAAAAAACSpAhvgo8cOWK8njVrlnGXeYef//znPcYVFxcbr++44w6XZXfeeafx+tq1ayotLdVtt90mSTp58mSfcR13tldUVOjKlSsaO3asamtrVVlZ2WfcH//4x27vDwAAAAAAAACAO7y6w71zH+vx8fG6evWqtmzZou9973v6p3/6J73yyitqbGx0iWlra1N5ebkxPXnyZJflcXFxLtOlpaWSpAsXLhjdwkjSpEmTXNabMmWKy3RZWZnL/wcSV1dXpy+//LKHTwoAAAAAAAAAQN+8usO9c3G6trZWCxcu1NmzZ415b7/9tl5++WX94Q9/0IwZMyTd6Pe9ubnZWCcmJsblPTsGQO38vpJcBl3tKW7kyJEDihs9enS/2+v6IwAAAAAAAAAAAP3xquD+1VdfGa8/+uijHtf54osv9N3vflcfffSRxowZ0+2O945BS3ubvnbtmiS5HdfRto74DhERrh+5t7jepKam9rm8w5kzZ5SQkKBLly4Z8+x2+4Bigf5wLMEMHEcwi7vHUnR0dK/LvMmzuIF/28GN/Rvc2L/BbTD3byDmWo7v0MX5Wmjh33poCsX93leu9apLmdbWVpfpO++8U8ePH9cXX3yhn/3sZ8b8s2fPGv2rt7e39/mew4bu9QsYAAAgAElEQVQN63F+f3G98XR7AAAAAAAAAAC4w6s73EeOHKmrV69KksLCwrR9+3ZNnTpVkvSjH/1IH3/8sfLz8yVJf/zjH/Vv//Zv3ar/LS0tfU53dPnSX5zT6ezWts7xva3X9X26dk3TVVFRUZ/LO6SmpiosLEwTJ07stqyneYAnOJZgBo4jmGWgx1JDQ0Ovy8zIs7iB7ya4sX+DG/s3uA3G/g3kXMvxHXrY56GJ/R6aQmm/95VrvbrDfdy4ccbrKVOmGMX2DgsWLDBeV1RUSJJGjRrl0q1L1y5cujY2NjZWkjR27FiX+V3jOg+o2ldc1/fvbXsAAAAAAAAAALjDq4L7zJkzjdedB0Lt0Pnu8ra2NklSeHi4EhISjPmdB16VpAsXLrhMdwy2GhcXp6ioqF7juk4nJSVJkqZPn+4y/+LFi73GjR49mgFTAQAAAAAAAAAe8argftdddxmvL1++rDNnzrgs7zw9bdo04/WcOXOM14WFhS4xJ06cMF6PGDHCKLiHhYUpJSVlQHGJiYnGne2TJk3SpEmTjGXHjh3rNW7u3LndPiMAAAAAAAAAAAPhVcH9u9/9rkv3ME899ZTq6uokSX//+9+1a9cuY9myZcuM19/+9reN1ydPntTBgwclSXV1dfr9739vLFu+fLmGDx/eY9yBAwf0ySefSJLOnz/vsq0HHnjApZ3f+ta3jNe7du3SuXPnJEmnTp3SgQMHjGX333//gD43AAAAAAAAAABdeVVwnzJlip566ilj+oMPPtCsWbO0aNEi3XXXXcaAqmPGjNGGDRuM9TIyMly6o1m1apUWL16s2bNnq7y8XNKNrmeeeeYZl+1lZ2fLZrNJutGFzTe+8Q2lp6dr3rx5qqmpkSTFxMRo/fr1LnFPP/20Ubivra1Vamqq0tPTdc8998jhcEi6cQf+Qw895M3XAQAAAAAAAAAIYV4V3CXp3//93/Xggw8a0/X19frv//5vo5A9evRo7dy5U1OmTDHWiYiI0BtvvGF09dLW1qaTJ0/qypUrxjpbtmzRrbfe6rKtjvcaNWqUJMnhcKi4uNgYQDUyMlLbtm1z6UJGkhISEvTqq68qMjJS0o0BV4uLi402jho1Sq+99pqio6O9/ToAAAAAAAAAACHK64J7RESEXnvtNb3xxhtasmSJxowZI4vFooSEBOXk5Ojjjz/WokWLusUlJSXpz3/+szZs2KDExERZLBbFxsZq+fLl2r9/v9atW9fj9u666y4dO3ZM2dnZmjp1qiwWiyZMmKCVK1eqoKBAGRkZPcY98MAD+vDDD/Xggw9q4sSJioyMVFxcnFavXq2jR49q/vz53n4VAAAAAAAAAIAQFtH/KgNz//33u90H+rhx47R582Zt3rzZrbj4+Hi99NJLbsVIUnJysl577TW34wAAAAAAAAAA6I/Xd7gDAAAAAAAAAAAT73APZXa7XdXV1S7zHA6HLBaLn1oEAEDwIM8CAOBb5FoAAMxDwd0EeXl5ys3N7TbfZrP5oTUAAAQX8iwAAL5FrgUAwDwU3E2Qk5OjzMxMl3lZWVncDQAAgAnIswAA+Ba5FgAA81BwN4HNZuv2y7/ValVYGF3kAwDgLfIsAAC+Ra4FAMA8ZE8AAAAAAAAAAExAwR0AAAAAAAAAABPQpQwAACGqtrFZ24uqdLjMrnqHUzHWCC1Lsik7NV6x0fTZCgDAQJFTAQBABwruAACEGIezVRv3lWh74Vldd7a5LDtYatdP8kuVnRqvFzOSZY0I91MrAQAIfO7kVAAAEBoouAMAEEIczlateLVQBadrel2nqaVV245WquRig/Ifn0/RHQCAHribU/+/+xPIqQAAhAD6cAcAIIRs3FfSZ2Ggs4LTNdq0r8THLQIAYGhyN6f+9GCZj1sEAAACAQV3AABCRG1js3YUVbkVs72oSrWNzT5qEQAAQ5MnOXX3yfO6Qk4FACDoUXAHACBEbC+qUlNLq1sxTS2tbhcUAAAIdp7k1OstrfrPkxd81CIAABAoKLgDABAiDpfZPYo75GEcAADBytOc+v6ZgXVBAwAAhi4GTTWB3W5XdXW1yzyHwyGLxeKnFgEA0F29w+lRXIOHcWYhzwIAAo2nOfUrP+fU3pBrAQAwDwV3E+Tl5Sk3N7fbfJvN5ofWAADQsxirZ2l/lIdxZiHPAgACjac5daSfc2pvyLUAAJgnMLP9EJOTk6PMzEyXeVlZWdwNAAAIKEuTbDpY6v4j8MuS/HuxTZ4FAAQaT3Pq4pvG+aA13iPXAgBgHgruJrDZbN1++bdarQoLo4t8AKGptrFZ24uqdLjMrnqHUzHWCC1Lsik7NV6x0Vy4+cua1Hg9n1/q1iBvUZHhWpMa78NW9Y88C2AoIQeGBk9y6vDIcD00d4oPW+U5ci0AAOah4A4AMI3D2aqN+0q0vfCsrjvbXJYdLLXrJ/mlyk6N14sZybJGhPuplaErNtqi7NR4bTtaOeCYNanxGkuBCAD6RQ4MLZ7k1IfmxmkMORUAgKDHz9UAAFM4nK1a8Wqhth2t7FZo6NDU0qptRyu14tVCOZwDvyMM5nkxI1np0wf2OPuSm8fphYxkH7cIAIY+cmBocjen/nR5ko9bBAAAAgEFdwCAKTbuK1HB6ZoBrVtwukab9pX4uEXoiTUiXPmPz9cTaQmKiuz5DsuoyHA9mZagAznzuQsTAAaAHBiayKkAAKAndCkDAPBabWOzdhRVuRWzvahKP1sxg/5s/cAaEa6XV6bo5ytmaEdRlQ6V2dXgcGqUNULfnGFT9jy6kQGAgSIHhjZyKgAA6IqCOwDAa9uLqtwaNEy68Wj9jqIqbUqf7qNWoT+x0RZtSp/OPgAAL5ADIZFTAQDAP9ClDADAa4fL7B7FHfIwDgCAQEEOBAAAQGcU3AEAXqt3OD2Ka/AwDgCAQEEOBAAAQGcU3AEAXouxetZD2SgP4wAACBTkQAAAAHTGWZ4J7Ha7qqurXeY5HA5ZLAyOAyA0LE2y6WCp+4/GL0uy+aA1CDbkWQCBjByIYECuBQDAPBTcTZCXl6fc3Nxu8202TqIBhIY1qfF6Pr/UrUHjoiLDtSY13oetQrAgzwIIZORABANyLQAA5qHgboKcnBxlZma6zMvKyuJuAAAhIzbaouzUeG07WjngmDWp8Robzd9J9I88CyCQkQMRDMi1AACYh4K7CWw2W7df/q1Wq8LC6CIfQOh4MSNZJRcbVHC6pt91l9w8Ti9kJA9CqxAMyLMAAh05EEMduRYAAPOQPQEAprBGhCv/8fl6Ii1BUZHhPa4TFRmuJ9MSdCBnvqwRPa8DAMBQQw4EAABAB+5wBwCYxhoRrpdXpujnK2ZoR1GVDpXZ1eBwapQ1Qt+cYVP2PB6hBwAEJ3IgAAAAJAruAAAfiI22aFP6dG1Kn+7vpgAAMKjIgQAAAKGNLmUAAAAAAAAAADABBXcAAAAAAAAAAExAwR0AAAAAAAAAABNQcAcAAAAAAAAAwAQU3AEAAAAAAAAAMAEFdwAAAAAAAAAATBDh7wYEA7vdrurqapd5DodDFovFTy0CACB4kGcBAPAtci0AAOah4G6CvLw85ebmdptvs9n80BoAAIILeRYAAN8i1wIAYB4K7ibIyclRZmamy7ysrCzuBgAAwATkWQAAfItcCwCAeSi4m8Bms3X75d9qtSosjC7yAQDwFnkWAADfItcCAGAeU7Ln4sWLFRMT0+d/f/jDH1xi7Ha7nn32Wc2ePVs2m02JiYn6/ve/r48//rjPbVVUVOiJJ57QzJkzNX78eN1yyy165JFH9Nlnn/UZd+rUKT3yyCO6+eabNX78eCUnJ2vDhg06e/as158fAAAAAAAAAACvC+6tra36/PPP3YopLy9XWlqaXnnlFVVWVsrhcKimpkb5+fm69957lZeX12NcYWGhFi5cqJ07d+r8+fNqbm7WpUuXtGfPHi1atEjvvvtuj3HvvPOO0tPTtWfPHl2+fFnNzc06d+6cXn/9dS1YsEDHjx93+3MDAAAAAAAAANCZ113KlJeX6/r165Kk4cOH64477uhxvY7H09rb27V27VpdvHhRkhQWFqbbbrtNFRUVunr1qtrb2/Xcc88pLS1NycnJRnxTU5Mee+wxNTQ0SJIsFotuvfVWlZaW6tq1a2ppadG6dev0l7/8RRMmTDDiLl26pPXr16ulpUWSNHLkSN1yyy367LPP1NzcrPr6ej366KMqLCxUVFSUt18HAAAAAAAAACBEeV1wP3XqlPF61qxZ2r9/f5/rv/feezpx4oQx/eabb2rZsmW6cuWK0tPTVVFRIafTqa1bt2rHjh3Gert379YXX3wh6UZfcn/605+UkpKis2fPauHChbp69arq6uq0bds2/fSnPzXifve736m+vl6SNH78eH3wwQeaOnWqTp48qaVLl6qlpUWVlZXavXu31qxZ4+3XAQAAAAAAAAAIUV53KfPpp58ar2+66aZ+19+7d6/x+vbbb9eyZcskSWPHjtXatWuNZfn5+cad813j7rvvPqWkpEiSpk2bpocffrjH9SRpz549xusf/OAHmjp1qiRp7ty5Wr58ubHsrbfe6rftAAAAAAAAAAD0xuuCe+c73BMTE/tdv7i42HjdtfuZO++803h97do1lZaWGtMnT54cUFxFRYWuXLkiSaqtrVVlZeWA4jq/PwAAAAAAAAAA7jL1Dvfjx49rwYIFmjBhghITE7V69WqXAntbW5vKy8uN6cmTJ7u8V1xcnMt0R8H9woULRrcwkjRp0iSX9aZMmeIyXVZW5vL/gcTV1dXpyy+/7OVTAgAAAAAAAADQN68K7tXV1cbgp5J05MgRffrpp7p+/bpqamq0b98+LV26VK+//rokqaGhQc3Nzcb6MTExLu83YsQIl+na2lpJUk1Njcv8rnEjR44cUNzo0aMHtD0AAAAAAAAAANzl1aCpnbuTkaSwsDClpKTo2rVrOn36tNrb2+V0OvX000/r61//uuLj413Wj4yM7HP62rVrkqTGxka34r766iuX+A4REa4ft7e4vqSmpva7jiSdOXNGCQkJunTpkjHPbrcPKBboD8dS4LjS2KzdJy/ogzM1anA4NcoaocU3jVPW3CkaG23xd/P6xHEEs7h7LEVHR/e6zJs8ixv4tx3c2L/BzZ39O5TPQULVYP77DcRcy9+v0MX5Wmjh33poCsX93leu9argLkl33323zpw5oylTpigvL88YOPVPf/qTHnzwQbW0tKi1tVW/+MUv9Jvf/KbP9xo2bFiP89vb2z1qW39xvW0PAPrjcLbqPw6WaXfxOTmcbS7LCv5erV8c+buy5sbpfy5PkjUi3E+tBAAAwYZzEAAAgMDmVcF9yZIlWrJkSY/L7rnnHq1atUo7d+6UJH3wwQfd7ihvaWnpc7qjy5euvxh0Xc/pdLpMd3Qx07XLmK7rdX2frl3T9KSoqKjfdaQbdw2EhYVp4sSJ3Zb1NA/wBMeSfzicrVrxaqEKTjdI1tGStfs61yX9n88aVHm9UvmPzw/oC16OI5hloMdSQ0NDr8vMyLO4ge8muLF/g1tv+zfYzkFC1WD8+w3kXMvfr9DDPg9N7PfQFEr7va9c6/WgqX1JSUkxXjscDjU1Nbl069K1C5euDY2NjZUkjR071mV+17jOA6r2Fdf1/XvbHgD0ZeO+EhWcrul/RUkFp2u0aV+Jj1sEAABCAecgAAAAgc+UgntDQ0OPA452vYM8KipKCQkJxvSXX37psvzChQsu0zNmzJAkxcXFKSoqqte4rtNJSUmSpOnTp7vM7zzAa9e40aNHa/Lkyd0+AwB0VtvYrB1FVW7FbC+qUm1jc/8rAgAA9IJzEAAAgKHBq4L76tWrNWXKFMXFxSk7O7vb8uLiYuP1hAkTZLPZNGfOHGNeYWGhy/onTpwwXo8YMcIouHcMxjqQuMTEROPO9kmTJmnSpEnGsmPHjvUaN3fu3D4+KQDcsL2oSk0trW7FNLW0un2BDAAA0BnnIAAAAEODVwX36dOnG927HDlyRK+//rqxbP/+/XrrrbeM6VWrVkmSvv3tbxvzTp48qYMHD0qS6urq9Pvf/95Ytnz5cg0fPtyY7hx34MABffLJJ5Kk8+fPa9euXcayBx54wKWN3/rWt4zXu3bt0rlz5yRJp06d0oEDB4xl999//4A/N4DQdbjMs5G3D3kYBwAAIHEOAgAAMFR4VXBft26dRo8ebUxv2LBBc+bM0R133KGsrCy1tbVJkqZMmaJnnnlGkpSRkaGZM2caMatWrdLixYs1e/ZslZeXS5LCw8ON9TtkZ2fLZrNJkpqbm/WNb3xD6enpmjdvnmpqbvRjGBMTo/Xr17vEPf3000bhvra2VqmpqUpPT9c999wjh8MhSZo2bZoeeughb74KACGi3uHsf6UeNHgYBwAAIHEOAgAAMFR4VXCfPHmydu3a5VJ0P3PmjMrKylzW2bt3r9HNS0REhN544w2jq5e2tjadPHlSV65cMWK2bNmiW2+91WVbo0eP1s6dOzVq1ChJNwZhLS4uNu6wj4yM1LZt21y6kJGkhIQEvfrqq4qMjJR0Y8DV4uJio9g+atQovfbaa4qOjvbmqwAQImKsEf2v1INRHsYBAABInIMAAAAMFV4Pmrpo0SIdO3ZMTz75pJKSkjR8+HCNGDFCs2bN0rPPPquioiKXO9qlG4Oa/vnPf9aGDRuUmJgoi8Wi2NhYLV++XPv379e6det63NZdd92lY8eOKTs7W1OnTpXFYtGECRO0cuVKFRQUKCMjo8e4Bx54QB9++KEefPBBTZw4UZGRkYqLi9Pq1at19OhRzZ8/39uvAUCIWJpk8yhumYdxAAAAEucgAAAAQ4UptzvExcVpy5Yt2rJly4Bjxo0bp82bN2vz5s1ubSs+Pl4vvfSSu01UcnKyXnvtNbfjAKCzNanxej6/1K1By6Iiw7UmNd6HrQIAAMGOcxAAAIChwes73AEglMRGW5Tt5oXrmtR4jY22+KhFAAAgFHAOAgAAMDRQcAcAN72Ykaz06eMGtO6Sm8fphYxkH7cIAACEAs5BAAAAAh8j6JjAbrerurraZZ7D4ZDFwt0kQDCyRoQr//H52rivRDuKqnp8tLvjEe4XMpJljQj3QyuB4EGeBYAbOAeBr5BrAQAwDwV3E+Tl5Sk3N7fbfJuNAYqAYGWNCNfLK1P08xUztKOoSofK7GpwODXKGqFvzrApex6PcANmIc8CwD9wDgJfINcCAGAeCu4myMnJUWZmpsu8rKws7gYAQkBstEWb0qdrU/p0fzcFCFrkWQDojnMQmIlcCwCAeSi4m8Bms3X75d9qtSosjC7yAQDwFnkWAADfItcCAGAesicAAAAAAAAAACag4A4AAAAAAAAAgAkouAMAAAAAAAAAYAIK7gAAAAAAAAAAmICCOwAAAAAAAAAAJqDgDgAAAAAAAACACSi4AwAAAAAAAABgAgruAAAAAAAAAACYIMLfDQgGdrtd1dXVLvMcDocsFoufWgQAQPAgzwIA4FvkWgAAzEPB3QR5eXnKzc3tNt9ms/mhNQAABBfyLAAAvkWuBQDAPBTcTZCTk6PMzEyXeVlZWdwNAACACcizAAD4FrkWAADzUHA3gc1m6/bLv9VqVVgYXeQDAOAt8iwAAL5FrgUAwDxkTwAAAAAAAAAATEDBHQAAAAAAAAAAE1BwBwAAAAAAAADABPThDiDg1TY2a3tRlQ6X2VXvcCrGGqFlSTZlp8YrNpqBnAAAQM84hwAAAMBgo+AOIGA5nK3auK9E2wvP6rqzzWXZwVK7fpJfquzUeL2YkSxrRLifWgkAAAIN5xAAAADwFwruAAKSw9mqFa8WquB0Ta/rNLW0atvRSpVcbFD+4/O5YAYAAJxDAAAAwK8ouAMhaCg8Xr1xX0mfF8qdFZyu0aZ9JfrtyhQftwoAAAQ6ziEwFAyF83EAAOAZCu5ACBkqj1fXNjZrR1GVWzHbi6r0sxUzuEABACCEcQ6BQOdwturJPacC/nwcAAB4LszfDQAwODoer952tLLbyX2HjserV7xaKIezdZBb+A/bi6rU1OLe9ptaWt2+wAYAAMGFcwgEMoezVQ+9UTwkzscBAIDnuMPdBHa7XdXV1S7zHA6HLBbukkHgGEqPVx8us3sUd6jMrk3p001uDQB/I88CGCjOIRDI/uNgmT6urJVGjO133cE+HyfXAgBgHgruJsjLy1Nubm63+TabzQ+tAbobao9X1zucHsU1eBgHILCRZwEMFOcQCFS1jc36z5Pn3YoZzPNxci0AAOah4G6CnJwcZWZmuszLysribgAEDG8er/bH3V4xVs/+NI3yMA5AYCPPAhgoziEQqLYXVel6AJ+Pk2sBADAPZ5YmsNls3X75t1qtCguji3wEhqH2ePXSJJsOlrrf5mVJ3IEDBCPyLICB4hwCgSrQz8fJtQAAmIfsCYSAofZ49ZrUeEVFhrsVExUZrjWp8T5qEQAAGAo4h0CgGmrn4wAAwHMU3IEQMNQer46NtijbzQvfNanxGuuH/uYBAEDg4BwCgWqonY8DAADPUXAHQsBSDx+T9ufj1S9mJCt9+rgBrbvk5nF6ISPZxy0CAABDAecQCERD8XwcAAB4hoI7EAKG4uPV1ohw5T8+X0+kJfTa9qjIcD2ZlqADOfNljXDv8wEAgODEOQQC0ZrUeA0fYufjAADAMzyfBoSAjsertx2tHHBMIDxebY0I18srU/TzFTO0o6hKh8rsanA4NcoaoW/OsCl7nv/bCAAAAg/nEAg0sdEWZc2N0/8pOjvgmEA4HwcAAO6j4A6EiBczklVysUEFp2v6XTfQHq+OjbZoU/p0bUqf7u+mBJTaxmZtL6rS4TK76h1OxVgjtCzJpuzUeMVycQYACAE95cJvJtm0dsHXNMISwTkEAsr/XJ6ksstf6WN7e7/rBtr5OAAAGDgK7kCI6Hi8euO+Eu0oqlJTS2u3dToeW30hI5nHqwOYw9mqjftKtL3wrK4721yWHSy16yf5pcpOjdeL7EcAQJDqLxf+e36p1qTG65f3JysynFyIwGCNCNfuf7pdvyis4XwcAIAgRsEdCCE8Xj30OZytWvFqYZ9PKjS1tGrb0UqVXGxQ/uP0TQsACC4DzYUvH63UZ+RCBBjOxwEACH4U3E1gt9tVXV3tMs/hcMhi4UQJgYnHq4eujftKBtQtkCQVnK7Rpn0l+u3KFB+3CvAt8iyAzsiFCAaBdj5OrgUAwDwU3E2Ql5en3NzcbvNtNpsfWgMgWNU2NmtHUZVbMduLqvSzFTPo0x1DGnkWQAdyIeAb5FoAAMxDwd0EOTk5yszMdJmXlZXF3QAATLW9l74++9LU0qodRVUBc/cU4AnyLIAO5ELAN8i1AACYh4K7CWw2W7df/q1Wq8LCwvzUIgDB6HCZ3aO4Q2V2igwY0sizADqQCwHfINcCAGAeCu4ABk1tY7O2F1XpcJld9Q6nYqwRWpZkU3ZqPI95D0C9w+lRXIOHcQDgK+QDeIpcCAAAgEDns4J7eXm50tLSdP36dUnSqVOn9LWvfc1lnYaGBv3qV7/S22+/rbNnz2r48OG67bbbtG7dOn3rW9/q9b3tdru2bt2q/Px8ffnllxo5cqTmzZunH/3oR1qwYEGvcRUVFdq6dauOHDkiu92usWPHKi0tTT/+8Y81a9Yscz44gG4czlZt3Fei7YVndd3Z5rLsYKldP8kvVXZqvF7MSJY1ItxPrQx8MVbP/mSP8jAOAMxGPoC3yIUAAAAIdD55Pqy9vV1PPfWUUWzvid1u1z333KOtW7eqrKxM169f19WrV/X+++/roYce0vPPP99jXEch/5VXXlFlZaUcDodqamqUn5+ve++9V3l5eT3GFRYWauHChdq5c6fOnz+v5uZmXbp0SXv27NGiRYv07rvvmvLZAbhyOFu14tVCbTta2a240qGppVXbjlZqxauFcjjd65c1lCxN8mzQqmUexgGAmcgHMAO5EAAAAIHOJwX3HTt26OjRo32u88wzz6i0tNSYTklJ0cSJE43pX/3qVzp06JBLTHt7u9auXauLFy9KksLCwjR37lyNGTPGWP7cc8+ppKTEJa6pqUmPPfaYGhoaJEkWi0W33367RowYIUlqaWnRunXrdPnyZQ8/MYDebNxXooLTNQNat+B0jTbtK+l/xRC1JjVeUZHu3fEZFRmuNanxPmoRAAwc+QBmIBcCAAAg0JlecP/yyy/1H//xH32uU1ZWpr179xrTv/zlL3X06FF9+umnSk1NNebn5ua6xL333ns6ceKEMf3mm2/q/fff11//+lclJiZKkpxOp7Zu3eoSt3v3bn3xxReSbgz8cuTIERUUFKiwsNAo1tfV1Wnbtm0efGIAvaltbNaOoiq3YrYXVam2sdlHLRraYqMtynazYLAmNV5j6Q8ZgJ+RD2AWciEAAAACnekF92eeeUZ1dXV9rtO52D5x4kRlZ2dLulEM/+d//mdj2fHjx3Xu3Lke426//XYtW7ZMkjR27FitXbvWWJafn+/SnU3nuPvuu08pKSmSpGnTpunhhx/ucT0A3tteVKWmFve6BGhqaXW7KBNKXsxIVvr0cQNad8nN4/RCRrKPWwQA/SMfwEzkQgAAAAQyUwvub7/9tt555x1JMu4c70lxcbHxeu7cuQoL+0cz7rzzTpd1T5482WPcHXfc4bJe57hr1665dFfT+T36iquoqNCVK1d6bTcA9xwus3sUd8jDuFBgjQhX/uPz9URaQq+P1EdFhuvJtAQdyJnPoIMAAgL5AGYiFwIAACCQRZj1RlevXtWPf/xjSTf6SH/++ee1cePGHtftXAyfPHmyy7Jx48bJarXK4XAY637nO99RW1ubysv/L3t3HxdVmfcP/MPMMAPDkzIMiIoyYJAoKN4KlWiaGfzSxcS2tIdtJbEtH2rFnu7d2rbuLX+b2Krllm7Yam77u2utW9cV1h40tYRcudONAhVQUpEBFFBkYPPhJzYAACAASURBVIDfHzgjwzwwM+cMDDOf9+vVK+acc805zIx8r3PN9/peJ622GzFihNk5JkyYgPPnz6Opqcm4fdiwYSbHDR8+3ORxeXk5UlNTbf6uRGSfJp3eqXbNTrbzFgqZFG9lJeKVjHhsLa7GvnItmnV6BClkuCtejcVTOHWeiNwL4wGJjbGQiIiIiNyVaAPuL7zwgnEx01/+8peIj4+3emxDQ4Px5+DgYLP9AQEBxgF3w7HNzc1oa2uz2s6wAGrvc9TXmy7O1btdYGCg1WsjImGCFc79iQlysp23CVXKkTsjFrkzYgf6UoiIbGI8IFdhLCQiIiIidyPKXczBgwexbds2AMCYMWOwevVqFBcXWz3+6tWrxp99fX3N9vfcZji2paXF6jGWHjvb7sqVK1avG4DJoq62VFRUIDo6GhcvXjRu02o5LZrEMVg+S6lhPig85niZplvCwk3+7ZBrDJbPEbk/Rz9LSqXS6j4hcZa6ueO/bcYD8bjj+0vi4fvr2frz/XXHWMvPt/diLPcu/LfunbzxfbcVawXXcG9tbcWKFSvQ1dUFAFi/fj0UCoXNNoZjrfHx8RGljT3tiMh1FiUPh5+V2qrW+PlKsSh5eN8HEhHRoMF4QERERERE3kJwhvtrr72GiooKAMDDDz+MadOm9dkmICAAjY2NAID29naz/T23GUrF9P7WoHe73o/tbafXm9YG7V1ipjdbmfs9paSkQCKRICIiwmyfpW1EznD3z1IEgOyZSdh0uMruNo9OjUa8Jspl10Tm3P1zRIOHvZ+l5uZmq/vEiLPUzZ1eG8YD8bnT+0vi4/vr2frj/XXnWMvPt/fhe+6d+L57J296323FWkEZ7sePH8fGjRsBAGFhYXjllVfsajd06FDjz5ZKuPS84NDQUABAUFAQZDKZ1Xa9f0lDu57nstSu54KqPdsRkTjWZSZgRqzKrmNnjlEhLzPBxVdEREQDgfGAiIiIiIi8gaAB9z179hgzxOvq6hAdHY3g4GAEBwdjzpw5JscmJiYiODgYO3bsQExMjHH7hQsXTI6rr683WRzVsPiqVCpFdHS01Xbnz583eWxoN2LECPj7+1tt1/txXFyc9V+YiBymkElRsDQVT0yNhr+VcgL+vlIsmxqNvTmpUMgcKzlARESDA+MBERERERF5A0ElZZytj56cnIzPP/8cAHD06FF0dHRAKu2+qfrmm2/MjjWYOHEiTp06BQAoKioyOe7o0aPGnwMCAowD7hKJBImJicZpc0VFRVi+fLnFdhqNxiwjnoiEU8ikeCsrEa9kxGNrcTX2lWvRrNMjSCHDXfFqLJ4ShaFK+UBfJhERuRjjAREREREReTpBA+6jR49GWlqaxX2NjY04ceKE8fHkyZPh5+eH8PBwxMfHIy8vDwBQW1uL/Px85OTkoK2tDevXrzdpM3LkSOPjuXPn4qOPPgIAlJSUoLCwEOnp6WhsbMQ777xjPC49PR1+fn4m7QwD7nv37sXx48eRlJSEc+fOYceOHcbj7rnnHiEvBxH1IVQpR+6MWOTOiB3oSyEiogHEeEBERERERJ5K0ID7gw8+iAcffNDivoMHD5qUldm6dStGjx5tfDxr1ix89tlnAIDc3Fy899570Gq1qKmpMR7z7LPPmjxnZmYmxo4di++//x4AcP/992PChAmoqqrCpUuXAHSXnlm9erVJu8WLF2Pjxo3QarVoa2vDrFmzMG7cOJSXlxtrugcHB+Pxxx939qUgIiIiIiIiIiIiIi8nqIa7EG+//bax7AsAnDhxwmSwfcWKFUhPTzdpI5PJsH37dgwbNgwA0NnZiZKSEuNgOwC89tprGD9+vEm7kJAQvP/++wgKCgIA6HQ6HDt2zDjY7uvri02bNhmfl4iIiIiIiIiIiIjIUQM24B4REYEDBw7gP//zP3HzzTfDz88PISEhmD59Ot5//3387ne/s9guLi4OX3/9NZYvXw6NRgO5XI7Q0FCkp6fjH//4B37xi19YbHfrrbfiyJEjWLx4MUaOHAm5XI7w8HBkZWVh//79yMzMdOWvS0REREREREREREQeTlBJGVumTZuGpqYmm8colUo899xzeO655xx6bpVKhVdffRWvvvqqQ+2ioqJMasQTEREREREREREREYllwDLciYiIiIiIiIiIiIg8icsy3L2JVqtFXV2dyTadTge5XD5AV0REROQ5GGeJiIhci7GWiIhIPBxwF8GWLVuwZs0as+1qtXoArsa7NLS0Ib+4Gp+Wa9Gk0yNYIcPsODUWp0QhVMnOIRGRJ2CcJXI99qmIvBtjLRERkXg44C6CnJwczJ8/32TbwoULmQ3gQjp9B1btKkV+0Vm06jtN9hWWafFCQRkWp0RhXWYCFDLpAF2lZ+ANOBENNMZZItdhn6pv7AuRN2CsJSIiEg8H3EWgVqvNvvlXKBSQSFgi3xV0+g5kbC7C/tP1Vo+51t6BTYerUFrTjIKlqV57gygEb8CJyF0wzhK5BvtUtrEvRN6EsZaIiEg8jJ406KzaVWrzxrCn/afrkbur1MVX5HkMN+CbDleZ3WAaGG7AMzYXQafv6OcrJCIiIqHYp7KOfSEiIiIichYH3GlQaWhpw9biaofa5BdXo6GlzUVX5Jl4A05EROTZ2KeyralVjzfmjcNHj0zG3WPDIfGxfiz7QkRERETUE0vK0KCSX1yNa+2OZRBda+/A1uJq5M6IddFVeRZnb8BfzohnHVMiIqJBgn0q29SBCqgDFZg4IgQLkiJRWd+CDYcqsf5gBbq6zI9nX4jI8/jk7h7oSyAiokGKGe40qHxarnWq3T4n23kjITfg1LeGljas3X8aGZuP4LaNh5Cx+Qjy9p/2moxBIiJyD+xTmbMVozUqJd6YNw4f/mwy/GTmt1DsCxERERGRATPcaVBp0umdatfsZDtvJOQG3Bsy3pzFhdeIiMidsE91gyMxekFSJIBJuG/bUXT2ynRnX4iIiIiIAGa40yATrHDuO6IgJ9t5I96Ai48LrxERkbthn6qbMzF6QVIkVqRpzI5jX4iIiIiIAA640yBzZ5zaqXaznWznjXgDLj4uQktERO6GfapuzsboldM0Zgupsi9ERERERAAH3GmQyU6Jgr+vY+U2/H2lyE6JctEVeR7egIvL2UVoWdOdiIhciX0qYTE6RhWA9Phwk33sCxERERERwAF3GmRClXIsdvBGLzslCkOVchddkefhDbi4uAgtERG5I/aphMfoR1NHGbezL0REREREBpz3KAKtVou6ujqTbTqdDnK559yQuJN1mQkorWm2a/rvzDEq5GUm9MNVeQ7DDfimw1V2t/G0G3AxcRFaIuEYZ4lcw9v7VEJjdIxKadzGvhANdoy1RERE4uGAuwi2bNmCNWvWmG1Xqzmt1BUUMikKlqZi1a5SbLWSmWTIMsrLTIBC5li2NvEGXExchJZIOMZZItfw9j6V0BhtqNnOvhB5AsZaIiIi8XDAXQQ5OTmYP3++ybaFCxcyG8CFFDIp3spKxCsZ8dhaXI195Vo06/QIUshwV7wai6cwy0gIb78BFxMXoSUSjnGWyHW8uU8lNEZfbdNj2dRo9oXIIzDWEhERiYcjOiJQq9Vm3/wrFApIJCyR72qhSjlyZ8Sy9IYLePMNuJjujFOjsMzxKetceI3oBsZZItfzxj6V0Bg9NjwIb2Ylin1ZRAOCsZaIiEg8HHAnIpu88QZcTNkpUXixoMyhRdm48BoREZHrCY3RchkHIomIiIjIHHuJREQuZFiE1hFceI2IiMj1GKOJiIiIyBU44E5E5GLrMhMwI1Zl17FceI2IiKj/MEYTERERkdg44E5E5GKGRWifmBoNf1/Li6r5+0qxbGo09uakcuE1IiKifsIYTURERERiYw13IqJ+wEVoiYiI3BNjNBERERGJiQPuRINIQ0sb8oursedoGZp1eoSpwzE7To3FKVEI5Y3goMBFaImIiG70aT4t16JJp0ewQjbgfRrGaCIiIiISAwfciQYBnb4Dq3aVIr/oLFr1ncDVS907GnxQWKbFCwVlWJwShXWZCZzqTERERG7LrE/TA/s0REREROQJOOBO5OZ0+g5kbC7C/tP1Vo+51t6BTYerUFrTjIKlrC9KRERE7od9GiIiIiLyBlw0lcjNrdpVavPGtKf9p+uRu6vUxVdERERE5Dj2aYiIiIjIGzDDXQRarRZ1dXUm23Q6HeRy1tQmYRpa2rC1uNqhNvnF1Xg5I5413YnIYzDOEg1+7NMQuTfGWiIiIvFwwF0EW7ZswZo1a8y2q9XqAbga8iT5xdW41t7hUJtr7R3YWlzNBb+IyGMwzhINfuzTELk3xloiIiLxcMBdBDk5OZg/f77JtoULFzIbgAT7tFzrVLt95VrenBKRx2CcJRr82Kchcm+MtUREROLhgLsI1Gq12Tf/CoUCEglL5JMwTTq9U+2anWxHROSOGGeJBj/2aYjcG2MtERGReBg9idxYsMK578SCnGxHRERE5Ars0xARERGRt+CAO5EbuzPOuZqJs51sR0REROQK7NMQERERkbfggDuRG8tOiYK/r9ShNv6+UmSnRLnoioiIiIgcxz4NEREREXkLDrgTubFQpRyLHbzRzE6JwlAlFzciIiIi98E+DRERERF5Cw64E7m5dZkJmBGrsuvYmWNUyMtMcPEVERERETmOfRoiIiIi8gYccCdycwqZFAVLU/HE1GirU7H9faVYNjUae3NSoZA5Nl2biIiIqD+wT0NERERE3kA20BdARH1TyKR4KysRr2TEY2txNf5+tAxXdHqo1GrcFa/G4imcck1ERETur3efZl+5Fs06PYIUMvZpiIiIiMgjcMCdaBAJVcqROyMWD40NBABEREQM8BUREREROc7Qp8mdETvQl0JEREREJCoOuItAq9Wirq7OZJtOp4Nczuwcd9fQ0ob84mp8Wq5Fk06PYIUMs+PUWJwShVBmVw0Yvi9E1BPjLLkbd4pT7nQtRDR4MdYSERGJhwPuItiyZQvWrFljtl2tVg/A1ZA9dPoOrNpVivyis2jVd5rsKyzT4oWCMixOicK6zATWD+1HfF+IyBLGWXIX7hSn3OlaiGjwY6wlIiISDwfcRZCTk4P58+ebbFu4cCGzAdyUTt+BjM1F2H+63uox19o7sOlwFUprmlGw1DsX7ervjDm+L0RkDeMsuZo9Mc+d4pQ7XQsReQbGWiIiIvFwwF0EarXa7Jt/hUIBiUQyQFdEtqzaVWrzBrWn/afrkburFG9mJbr4qtzHQGXM8X0hImsYZ8lV+op5vyksQ9Wv70RYgBzvFldjeZoGb8wbh0CFDFd0epyub0F+8VkU/FCLzq4bbV0dp35TWI79p5vtOpYxk4jswVhLREQkHkZP8ioNLW3YWlztUJv84mo0tLS56IrciyFjbtPhKrOBBwNDxlzG5iLo9B2inJfvCxER9Td7Yt7MMSqEBcjR0dmFJ26LxoKkSEwcEYIxYQGYOCIEC5IisWdJKk49PwtPTY+Bj8+Ntq6KU5da2vDXknMOtWHMJCIiIiLqP6INuJ85cwarV6/GxIkTER4ejqioKGRkZGDHjh3o7LR8E9Pc3IxXXnkFkydPRnh4OEaNGoWf/OQn2LNnj81zabVaPPPMM0hKSoJarYZGo8F9992Hr776yma7yspKPPHEExg7dizCwsJw00034ec//zm+++47p39vGlzyi6txrd2xQeJr7R0ODwaLqaGlDWv3n0bG5iO4beMhZGw+gj8ersIlF9w4O5NlLgZH3heJD3D32HBsfyAZ+p7phERERA7oK+b5ySR4+94kAIBU4mMxHuftP42GljZoVEq8MW8cPvzZZPjJurvXruo/fFByHq0WYqYhPn70yGSUrJqOk8/fgZJV0/HRI5Mxc4wK7w1gX4aIiIiIyJuIUlLmn//8Jx5++GFcu3bNuK21tRVfffUVvvrqK+zevRvbt2+Hr6+vcb9Wq8Xdd9+NsrIykzYHDhzAgQMH8NRTT+Hll182O9fJkycxZ84c1NTUGLfpdDoUFBSgsLAQa9euRU5Ojlm7oqIiZGVlobn5xvTbixcvYufOndi9eze2bduGOXPmCH4tyL19Wq51qt2+ci1yZ8SKfDW22ZzmfuwS/u8Xp5A9M0m00i7OZpm/nBEvuKa7Pe+LxAdYOS0GK9M00KiUgs5HRETera+YJ/EBdjw4CSNC/B0qtbYgKRLAJNy37Sg6u1zTf/iywvRLgr7ioyETv6apVdTrICIiIiIiywQPuF+6dAmPPvqocbBdLpcjISEB1dXVqK/vviH4xz/+gd/97nd46aWXjO1Wr15tMtiemJiI2tpaXLx4EQDwhz/8AdOmTcPs2bONx3R1deGxxx4zDrZLJBJMmDABlZWVuHz5Mrq6uvDss89i6tSpSEhIMLa7du0alixZYhxsl8vlGD9+PMrKynD16lW0t7fjF7/4Bf71r38hPDxc6EtCbqxJp3eqXbOT7Zxlz2JorSIvhiYk+1/oYEJf74ufTIL3H5x0fSCj/xd0Je/EzxmR5+or5q2cFoOspEinFiddkBSJFWkarD9Y6ZL+Q8/ndCQ+Dgv2E/1ayP0wdhERERENPMElZXbs2IHGxkYAQHBwMA4ePIgvv/wS3333HVJTU43HbdmyBe3t7QCA8vJyfPzxx8Z9b7zxBg4fPox///vfSElJMW5fs2aNybk+++wzHD161Pj4ww8/xIEDB/Dtt99Co9EAAPR6PV5//XWTdh988AHOnDkDoHvhly+++AL79+9HUVERhgwZAgBobGzEpk2bhL4c5OaCFc59xxTkZDtnDURpFyHZ/0LZel8MWYYLrg98LNt5AiN+uw9P7y5FYZkWX1ddQmGZFqt3l2Lky59i2c4TotWWJ+/EzxmR57MV8yQ+wMq07n6ls/F45TQNJD6u6T8YnpPxkXriZ4CIiIjIfYhSw33SpEkICAjAww8/jLFjxwIAlEolFixYYDymubkZWm33zU3PwfaIiAgsXrwYQPdg+C9/+Uvjvm+++QY//vij8XHPdpMmTTJmvw8dOhSPPfaYcV9BQQFaW1sttrv77ruRmJgIABg1ahQeeOABi8eRZ7ozTu1Uu9lOtnPGQC0gOpDZ/7bel95Zhv29oCt5F37OiLyDrZiXcXM4NCqloHgcowpAeny4S/oP02NUABgf6QZ+BoiIiIjci+AB9+XLl2P//v04f/48fvOb35jsq6ioMP7s5+dnLNdy7Ngx4/bk5GRIJDcu45ZbbjF5jpKSEuPPPdtNnjzZ5Lie7a5evWpSrqbnc9hqV1lZiUuXLln6NclDZKdEwd/XsdIr/r5SZKdEueiKzA3Uwq4Dmf1v7X0RI8uQyBH8nBF5h+2LkvHRI5Nx99hwSHxM92WnjAIgPB4vvXW0S/oPi5KHQymXMj6SET8DRERERO5FlAx3APDx8YGfX3dtyNraWrz99tt49913jftzcnIgk3UPzPUcDI+MjDR5HpVKBYVCYXxsOLazsxMnT5602m7EiBEmjw3tzp8/j6amJuP2YcOGmRw3fPhwk8fl5eW2fk0a5EKVcix28Ob30ZQoDO3HmpcDVdplILP/rb0vYmQZEtmLnzMi7xEbFoAFSZHYsyQVp56fhaemx8Dn+sB77PWFR4XG4/8YGeKS/sNQpRwv3BXH+EgAGLuIiIiI3JHohSX37t2L+++/32Tbfffdh9/+9rfGxw0NDcafg4ODzZ4jICAAOp3O5Njm5ma0tbVZbRcQEGDy2NDOsHCrtXaBgYEW25HnWpeZgNKaZouZQBKf7kHe7JRRiFUpER6oQGTwjS+A+mMhqoEq7ZKdEoUXC8ocyuYTM/vf0vsiRpah0AVdyXvwc0bkuWzFb41KiTfmjUOaJhQP7TiGwOszt4TG45Ehrluk9Gf/0R17+XeL+BkgIiIicj+iD7ifPXvW5HF0dDTuu+8+Y3Y70F3yxcDX19fsOXpuMxzb0tJi9RhLj51td+XKFbPr6annoq62VFRUIDo6GhcvXjRuM9Swp4H353nR+E1hG/5acg6t7R3w8QGW3DIaS1JGYXSo8vpRrUBrK2pvLAeAs5daUH7mRxSWnAG6urcVHivHr/8mxcLkEfhtehwUMsdK1vSm0DUBV/sobdTSaLZJrpOafN6ccX+cEu8Vn+37wOsWpoxCW/MlXGwWdFqj3u/LkM4ruHjxIvYcLev7NbHg70fL8NDYwL4P9FL8m2SKnzPnOfpZUiqVVvcJibPUjf+2b9DpO/CbwnJ8cOxH6HrVtu4dv9MipHgzIwpnfjyPoI5g++KxBWLEY1sM769U4sO/Wx7I0X+//AwMLv3599kdYy3jk/dif8278N+6d/LG991WrBV9wL2urg7JyclobGxERUUFqqqqcO+99+KRRx7Bhg0b4OPjg66uLpvP4ePjY7bNmTb2tCPvpJBJsWbOWDw7MxYffXsBScODkDo6FABwqaUNH5Scx5cV9WjW6RGkkOH2GBUWJg/HqKFKvJJxM1JHDcWyvx033ry3tnfgveKzKK+9gg8eniRo0H16jAr7T9U53O7264uoCfHb9DiU117BV1V9z/SYqgnFS+lxgs/ZU8/35a8l5xEW0D1rwNns/SsiLOhK3oOfMyLPotN3YNH2YzZjWu/4PTchAt/VdJciFDMe2+pbCCk7w79bxM8AERERkfsRfcD9V7/6FX71q18BALZs2YLc3FwAwJ///GekpaXh/vvvR0BAABobuzN029vbzZ6j5zZDqZje3xr0btf7sb3t9HrTzmbvEjO9FRcX29xvkJKSAolEgoiICLN9lrbRwIgA8GtN97Rsnb4Dq3aVIr/oLFqNWXA+ADqw/0Itfl9cj8UpUViXmYBHZ0ZgiEqN+7YdRWeP73S+0nbh90X1eDMr0elrejJjKF4vrrdvenDAUADdpV2ezEgWpVbs56sjsGpXKbZamaJsKCOTl5kgOJvfmggAL2lulKoJU4cDDZa/VLNFpVbz35sd+Bp14+dMOHtfh+Zm69NixIiz1M3bX5tlO0/gK22XMVba0jN+d/qHICLYz7F4fF3veOxI38LRmBoREcG/Wx7M3veHn4HBqT9ee3eOtfzseR++596J77t38qb33VasFW3RVEtycnKQlJRkfPzXv/4VADB06I0bH0slXHpecGhod9ZxUFCQSVma3u16/5KGdj3PZaldzwVVe7Yjz9DQ0oa1+08jY/MR3LbxEDI2H0He/tNmC0Xp9B3I2FyETYeretwQm7rW3oFNh6uQsbkIOn0HFiRFYkWaxuw4oQtRObOwa7aIC7sqZFK8lZWIH1+8E2t/koD0eDVuix6K9Hg18jITcO7FO/FmVqLLBtstGcgFXcl78HNG5Hr2xmUxzuPsQpKRwX641NImOB4707dwFP9uET8DRERERO5HlAH31tZWnD592uKCo6NHjzb+XF3dfeMTExNj3HbhwgWT4+vr600WR42PjwcASKVSREdHW213/vx5k8eGdiNGjIC/v7/Vdr0fx8WJWyKDBoZO34FlO09gxG/34endpSgs0+LrqksoLNNi9e5SjHz5UyzfecJYcmjVrlKLi6hasv90PXJ3lQIAVk7TQNIrqciwEJUQ6zITMCPWvhIxM8eokJeZIOh8loQq5cidEYuCpbfg8Io0FCy9BatujxVtYN8R2SlR8Pd1bIBfzAVdyTvwc0bkOvbE5WU7Tzg16GyJkIUkARhjnZB47GzfwhEr0zT4Nvd2nHz+DpSsmo6PHpmMu8eGm/VNeuLfLc/C2EVERETkfgQPuE+cOBHh4eFITk7Gpk2bTPZ1dXXhhx9+MD4ODw8HACQnJxu3HT16FB0dN26IvvnmG5Pn6HnsxIkTjT8XFRWZHHf06FHjzwEBAcYBd4lEgsTERLvaaTQas4x4GnzszSirbGiBj4+PoCy4GFUA0uPDzfbvKxe2WIRCJkXB0lQ8MTXa6k2Un68Uy6ZGY29Oar9mmw+Egc76J+/AzxmRa/RHpndvnzoZh3vHb3visb+FeCykb+EIuUyCpOHBGBMWgIkjQrAgKRJ7lqTi1POz8NT0GFha4oh/tzwLYxcRERGR+xE84D5+/Hjjz2+//TZKSkqMj19//XWcPHnS+DgjIwMAMGfOHOO22tpa5OfnAwDa2tqwfv16477Jkydj5MiRxsdz5841/lxSUoLCwkIAQGNjI9555x3jvvT0dPj5+Vlst3fvXhw/fhwAcO7cOezYscO475577rH79yb3ZW9GWXbKKADCs+AeTR1ltt+eBaz6mlZvq7TLS+nx+N9V0/u9tMtAcoesf/J8/JwRia8/Mr17a3JyQUhL8duZUmtC+xb2sNWP0KiUeGPeOHz4s8nwk93o7vPvlmdi7CIiIiJyL4IXTX366afxj3/8A3q9Hk1NTbjjjjuQkJCAy5cvG0vIAN1lZJYsWQKgeyB91qxZ+OyzzwAAubm5eO+996DValFTU2Ns8+yzz5qcKzMzE2PHjsX3338PALj//vsxYcIEVFVV4dKlSwC6S8+sXr3apN3ixYuxceNGaLVatLW1YdasWRg3bhzKy8uNNd2Dg4Px+OOPC305aIA5klEWq+peUFdIFlzujFjEqJRm+4IU1v9pWV5ArVthmRYvFJQhOyUKf5g3DjKpxFjaJXdGrPG4ixcvOnXNg5khy3CgF3Qlz8bPGZG4nM30fjkjHqECMnCDbcRhW2zFb0vx2BqhfQtbdPoO/KawHH8tu2q1H2FYiHVBUiSASXjkgxL8fAr/bnkqxi4iIiIi9yJ4wH3ChAl45513sGzZMrS2tqKjowMnTpwwOeamm27Chx9+CKXyxsDk22+/jblz56KsrAwAzNqsWLEC6enpphcrk2H79u2YO3cuampq0NnZaZJRDwCvvfaaSdY9AISEhOD999/Hvffei+bmZuh0Ohw7dsy439fXF5s2bcKwYcOcfyHILTiSURZ4/aZaaBacpZtzawtRGabV28r0u9begbcOOcC7nwAAIABJREFUV+G7mmYULPX8cjGOMGQZvpIRj63F1dhXrkWzTo8ghQx3xauxeAqnSJNw/JwRiUdIprc9A9vW3BmnRmGZ44PeYi0kKWaGfU86fQcWbT+Gr6oagADLZRAN5XlKr/cjFiRF4v/crIZSLrjbT26MsYuIiIjIfYjS8/7pT3+KiRMn4q233sLnn3+O8+fPw9fXF3FxccjKysKSJUsQEBBg0iYiIgIHDhzAhg0bsHPnTlRVVUGhUGDChAlYunQpMjMzLZ4rLi4OX3/9NfLy8rBnzx6cO3cOgYGBmDJlCp588kmkpaVZbHfrrbfiyJEjWLt2Lfbt24fa2loMGTIEaWlpyM3NNanzToOXIxllV67f1ArNgut9c2xrISpnptW/mcXPZm+OZBkSOYufMyLhXJnpbUt2ShReLChzaLBfzIUkXZFhD3T3I76qarDruXr2IzjY7j0Yu4iIiIgGnmi975tuugl/+MMfHGqjVCrx3HPP4bnnnnOonUqlwquvvopXX33VoXZRUVEmNeLJ8ziSUXa6vgUTR4QIzoKrqG8x2W5tIaqBmlZPREQ0UFyV6d0Xw0KSmw5X2d1GzIUkXZFhz34EEREREdHgIHjRVCJ34khGWX7xWQDdN9j+vo6VbemZBfdu0VnjdlsLUfXHAmpERETuxFWZ3vYYyIUkhfYtLGE/goiIiIhocOCAuwi0Wi2+//57k/90Oh06Ohy7KSLh7nSg9mrBD7WorG8xZsE5wpAFV1F/FYVltfD3lWLZ1GjszbFec13ItHoiIm/GODt4ORKXexKjlrphIcknpkZbHfy2J347qu5qm6C+hTXsRxCRKzHWEhERiYcFHUWwZcsWrFmzxmy7Wi3OwltkP0dqtnZ2ARsOVeKNeeOwLjMBpTXNdtVX75kF988yLV7/SYLNhag6OrsglfgM2LR6IqLBjnF28BroWur9vZBkQ0sbfv/FKfx+boLTfQtr2I8gIldirCUiIhIPB9xFkJOTg/nz55tsW7hwIeRy1svsb47WbN1wsAKPTB6JiSNCULA0Fat2lWKrlSnbhgGAvMwEYxbcL26L7vMc9S1tCA9UDOi0eiKiwYxxdvAa6FrqPa+jPxaSzC+uRt7+00gdNRQLkiKd6ltYw34EEbkSYy0REZF42AMXgVqtNvvmX6FQQCJhxZ6B4EhG2e2xKoyNCATguiy4cu0VhAcqXLKAGhGRN2CcHdzEzvR2Z5+Wa9HZBTy04xiASViQFCla34L9CCJyJcZaIiIi8XDAnTyOoWarsxllYmfBffLvGqRpVAM+rZ6IiGggCI3Lg4mh7EurvhP3bTuKFWkaPDktBhqV0mrfoqL+KnZ/dxFPTo+x+dzGfoQD18N+BBERERFR/+OAO3mk/q7ZaktpTTMq61ugUSndYlo9ERFRf3OnuOxKPcu+dHYB6w9WYuOhSqTHh+PR1FGIUSkRpJChWadHRX0L3i06i8KyWsyOU/c54G4sz/PPOruvh/0IIiIiIqL+xwF38mj9VbPVljtuUgtenJWIiMgTuENcdiVLZV86u4C9P9Ri7w+1VtvZW/ZlXWYC/rf8DL6qaujzWPYjiIiIiIgGBguyEblYdkoUthw5g78dv2CcVv/E1Gj4+1qeMu/vK8WyqdHYm5M6qKfVExEReZvslCir8d0aR8q+KGRSfPDwJPw8ZRT7EUREREREbooZ7kQuFqqU45EpUS5ZQI2IiIjch7HsiwvLxylkUqyZMxZ5C4eyH0FERERE5IY44E5eraGlDfnF1fi0XIsmnR7BChlmx6mxOCUKoSLerBpKydi7gFpXVxd8fHxEOz8REZE766943B/6q3ycp5fnISIiIiIarDjgTl5Jp+/Aql2lyC86i1Z9p8m+wjItXigow+KUKKzLTBBlOrahlMyqXaXYfOSsxQXUrrbp0dUFjBsWCF8pp4ATEZHn6+943B96xvytxdW41t5hdoyhjEzeIPq9iIiIiIjIPhxwJ6+j03cgY3ORzcyza+0d2HS4CqU1zShYKk4NVIVMalZKZt2B05wCTkREXmmg4nF/sBTzWfaFiIiIiMg7cMCdvM6qXaV2TfMGgP2n65G7qxRvZiWKdn5OASciIhr4eNwfGPOJiIiIiLwPB9xFoNVqUVdXZ7JNp9NBLmfmkrtpaGnD1uJqh9rkF1fj5Yz4QVdDlojIUzDOeh7GYyIi98JYS0REJB4OuItgy5YtWLNmjdl2tVo9AFdDtuRbqaVqy7X2DmwtrmZ2GhHRAGGc9TyMx0RE7oWxloiISDwccBdBTk4O5s+fb7Jt4cKFzAZwQ5+Wa51qt69cyxt8IqIBwjjreRiPiYjcC2MtERGReDjgLgK1Wm32zb9CoYBEIhmgKyJrmnR6p9o1O9mOiIiEY5z1PIzHRETuhbGWiIhIPIye5FWCFc59xxTkZDsiIiIyx3hMRERERESeigPu5FXujHOuBuFsJ9sRERGROcZjIiIiIiLyVBxwJ6+SnRIFf1+pQ238faXIToly0RURERF5H8ZjIiIiIiLyVBxwJ68SqpRjsYM369kpURiq5GJBREREYmE8JiIiIiIiT8UBd/I66zITMCNWZdexM8eokJeZ4OIrIiIi8j6Mx0RERERE5Ik44E5eRyGTomBpKp6YGm11Oru/rxTLpkZjb04qFDLHprwTERFR3xiPiYiIiIjIE8kG+gKIBoJCJsVbWYl4JSMeW4ursa9ci2adHkEKGe6KV2PxFE5bJyIicjXGYyIiIiIi8jQccCevFqqUI3dGLHJnxA70pRAREXktxmMiIiIiIvIUHHAXgVarRV1dnck2nU4HuZwZWUREREIxzhIREbkWYy0REZF4OOAugi1btmDNmjVm29Vq9QBcDRERkWdhnCUiInItxloiIiLxcMBdBDk5OZg/f77JtoULFzIbgIiISASMs0RERK7FWEtERCQeDriLQK1Wm33zr1AoIJFIBuiKyN00tLQhv7gan5Zr0aTTI1ghw+w4NRanRCGUi8EREdnEOEt0oy+x52gZmnV6hKnD2ZcgItEw1hIREYmHA+5ELqTTd2DVrlLkF51Fq77TZF9hmRYvFJRhcUoU1mUmQCGTDtBVEhERkbsy60tcvdS9o8GHfQkiIiIiIjfEAXfyGO6WRa7TdyBjcxH2n663esy19g5sOlyF0ppmFCxN5Y0yERHZ5G6xjlyLfQkiIiIiosGHA+406LlrFvmqXaU2b5B72n+6Hrm7SvFmVqKLr4qIiAYjR2IdeQ72JYiIiIiIBh8WZKNBzZD5telwldkAhIEh8ytjcxF0+o5+ua6GljZsLa52qE1+cTUaWtpcdEVERDRYuWusI9diX4KIiIiIaHDigDsNas5kfvWH/afqHR7wuNbe4fCNNREReT5HY91LheUuviLqD/nF1bjWzr4EEREREdFgwwF3GrTcOfMrKykSp56fhaemx8DHx/52+8q1rrsoIiIadJyJdR+UnMMlZjkPep862SdgX4KIiIiIaGCxhjsNWkIyv3JnxIpyDbYWr9OolHhj3jikaULx0I5jVssA9NSs04tyXURE5BmciXWt7R34a8l5vKSJctFVeY+BXKS2yck+AfsSREREREQDiwPuNGhZyvyS+AAZN4cjO2UUYlVKBCpkuKLT43R9C/KLz6Lgh1rsK9cKHnB3ZPG6BUmRACbhvm1H0dll+3mDFPwnSURENzib5Xygwr4SNGSZPXE+OyUKb8xLgK/UNQuyBzvZJ2BfgoiIiIhoYLFHToNWz8wviQ+wcloMVqZpoFEpzY6dOCIEC5IiUVnfgt2lNYLOa1i8zlY9XcPidaU1zShYmooFSZFYkabB+oOVNp97dpxa0LUREZFncTbL+QqznJ3WV5yX+ACP3ToaK9M0LhtsB4A749QoLHP8Cxf2JYiIiIiIBhYH3EWg1WpRV1dnsk2n00Eud+1UY29nyPzyk0nw/oOTrmeS913mZeW0GEHndWah1jezErFymgYbD1VazXL395UiO4XT/4mIevPmOOtslnMgs5ydZivOO9LnEFpyJjslCi8WlDlUUoh9CSJyljfHWiIiIrHxbkwEW7ZswZo1a8y2q9XMMHKlO+PU2FeuxY4HJyErKdKhMi8KmXMZac4u1PpyRjxiVAFIjw/H3h9qzY6R+AB5mQkY6uJ6sEREg5E3x1lns5xvj1G54Go8n604L/FBv/Y5QpVyLE6JwqbDVXa3yU6JYl+CiJzizbGWiIhIbBxwF0FOTg7mz59vsm3hwoXMBnCx7JQo1F7RGW98HS3zYu0G2FK22ob54xGnDrS4eJ09deMNC7U+mjrKZMDdUArnmZmxiAz2E+eFISLyMN4cZ53JcvbzlWJR8nAXXpV7E5J1bmuR2pXTYkTvc/RlXWYCSmua7ZpZN3OMCnmZCU6dh4jIm2MtERGR2DjgLgK1Wm32zb9CoYBEIhmgKxp8nLk5DlXK8czMMQCcL/PSk61stZa27pvvnovXOVI3/p/l3YPsE4cH46NHJiNWpUSQQoawADlC/H2dfg2IiLyBN8dZZ7KcFyWPwJB+jBvuEr/EyDq3tkitxAdYmaYBIE6fw14KmRQFS1Oxalcptlr5MsBQRiZPQDa9M9zlfScicXhzrCUiIhKbaAPuJ0+exKZNm/DFF1/g/PnzkEqlGD16NDIyMrB8+XKEhYWZtdFqtXj99ddRUFCACxcuIDAwEFOmTMFTTz2F2267zeq5Kisr8frrr+OLL76AVqvF0KFDMXXqVDz99NMYN26c1XYnTpxAXl4eDh06hMuXLyM8PBx33HEHnnnmGYwaNUqU14EcI/TmOCxALqjMi+GGsK9sNUMtXMPidY7WjX/s1mgAQGxYAGLDAkR9DYiIyLM5muX8Unq00+dyZBDVneKXWFnn1hapzbg5HBqVUpQ+h6MUMineykrEKxnx2Fpcjb8fLcMVnR4qtRp3xauxeEr/lpFxp/ediIiIiMgdiTLg/pe//AUrV65EW1ubyfbS0lKUlpZix44d+PjjjzF+/HjjvpMnT2LOnDmoqakxbtPpdCgoKEBhYSHWrl2LnJwcs3MVFRUhKysLzc3Nxm0XL17Ezp07sXv3bmzbtg1z5swxa7d79278/Oc/R3t7u3Hbjz/+iG3btuGTTz7Bxx9/jClTpgh6HcgxYt0c25r+bet5DWVegL6z1a5cvwEPVsgE1XDt7OrCGwcqEKiQ4rFbo/t1WjoREQ1OjmY5X66vs/Astjkazzo6u3D3liJ8fso94pdYWefWFqnNTulOzBCjz+GsUKUcuTNi8dDYQABARESEoOdzRn/3W5hFT0RERESDkeD5Yd999x2WL19uHGz39fVFUlISRo8ebTzm4sWLWLRoEVpbWwEAXV1deOyxx4yD7RKJBMnJyRgyZIhx/7PPPovS0lKTc127dg1LliwxDrbL5XJMmjQJAQHdGcPt7e34xS9+gdpa00UpL168iMcff9w42B4YGIjk5GRjPbqmpiY8+uijuHbtmtCXgxxguDmW+AB3jw3HR49MRsmq6Tj5/B0oWTUdHz0yGXePDYfE58bNsSXWpn/3Zd/1dvrOzj6z1U7XtwDoXryudw3XTYerzAYnDAw3nRmbi6DTd0Di44MfG6/hrrhwk9fAHrZeAyIi8myGLOcfX7wTa3+SgPR4NW6LHor0eDXyMhNw7sU78WZWolODm87EM6nEB4mRwYJjuBiczTpvaGkz235nnOXFAWOvl44T2ucY7Pqr36LTd2DZzhMY8dt9eHp3KQrLtPi66hIKy7RYvbsUI1/+FMt2noBO79iXH0RERERE/UHwgPtbb70Fvb47+zcwMBBffvklDh06hBMnTuBXv/qV8bgzZ85g586dAIDPPvsMR48eNe778MMPceDAAXz77bfQaLrrY+r1erz++usm5/rggw9w5swZAN315L744gvs378fRUVFxsH6xsZGbNq0yaTdH//4RzQ1NQEAwsLCUFxcjAMHDmDfvn3w9e2un11VVYUPPvhA6MtBdmpoacOfv6nGU9NjcOr5WdizJBULkiIxcUQIxoQFGOuf71mSilPPz8JT02Ow9RvLN8fWpn/3pfl6u2ZdR5/ZavnFZwF0L1735DTna7gCwLMzxwialm7pNSAiIu9gyHIuWHoLDq9IQ8HSW7Dq9lhBJUWcjWcvzI4THMPFICTrvLfslCj4+5p/adG7tJyjmp1s5076q9/izBdARERERETuRPCA+xdffGH8+ac//alJDfXVq1fDz8/P+Phf//oXAODjjz82bps0aRJmz54NABg6dCgee+wx476CggJjVnzvdnfffTcSE7unAo8aNQoPPPCAxeMAGAf6AeDBBx/EyJEjAQDJyclIT0837vvkk0/s+p1JuG1Hf8SfFyXjjXnjjIPPa/efRsbmI7ht4yFkbD6CvP2n0dDSBo1KiTfmjcO2RcnYfvRHs+eyNv27L0HX29Vf7ftGsOCHWlTWtyBUKUd0qLDB8mHBfsbHYg0QDBRb7xsREbk/IfFMFSAXFMPFiiFiZp0bFqntrWdpOWcEOdlODGK9zv3Vb+HsPyIiIiIa7AT3/l944QVcuHABFy5cwMyZM032SaVS+Pn5GQfNDSVdjh07Zjxm8uTJJm1uueUW489Xr15FWVkZJkyYAAAoKSmx2c6Q2V5ZWYlLly5h6NChaGhoQFVVlc12f//7382en1xrStQQTNWEOlQzdkFSJA5Vmt+A3RmnRmGZ4zfbs69PG6++3Hcpoc4uYMOhSrwxr/sLJTFquAoZIDDUbx0oXDCNiMgzCI1nJecacduGQw7F8M6uLqz4+N+ixRCxs857L1Ir8QGutnW/RkL7HP1J7FgtpN9ib/36gViUloiIiIhIbIIz3B944AHk5uZi7dq1ZouVlpSU4PLly8bHo0ePRmdnJ06ePGncFhkZadJmxIgRJo/LysoAAOfPnzeWhQGAYcOGmRw3fPhwk8fl5eUm/7enXWNjIy5cuGDhtySxGQbbHZ0ynKZRmR1jbfq3LYbF5QDg85P2LS634WAFLl/r/tJIjGy6wTotnVO9iYg8hxjxzNEYfqGpVdQYInbWuWGR2mVTo/H0zFicen4WpmpCAQjvc/QXV8Tq/ui3eMLsPyIiIiIiwQPu1uj1epMa7gBw1113obm52bjAKgAEBwebHGNYANWgoaEBAFBfb5rZ3LtdYKBpxq+1diEhIXadj1xPrCnD1qZ/25KdEmWsdzvE39euNp1dN8rPiHHTORinpQOc6k1E5EmExjN7YlLvWFB7xb5SJvbGEGsLnfbFVta5QibFm1mJ+P3cBGPZnMZr7YL7HP3FFbG6P/ot3r4oLRERERF5BpeM3HV2duKxxx7DoUOHjNvuuusuJCYmmmWQGxYttfb46tWrAICWlhaH2l25csWkvYFMZvorW2tnTUpKis39BhUVFYiOjsbFixeN27Ra3gwYXGppQ/4XxwEHspje/aIJy5OHWLxpfTZVhf8tP4Ovqvr+wmSqJhTPpKqM782c0XL8uq0JrXZcS9WP5xHYEQyFrgm4esnuazeQ66TG86aG+aDwmOPPcUtY+IB9lsR+32hg8W8SicXRz5JSqbS6T0icpW6OvB9C41nVBfva94wFP567ZPc57Ykhc0fL8YKdcdzAz1eKuaPlfX5+dPoO/KawHB8c+xE/mxKFVzJuFtTnEENf76+rYrWQfou9v3+dtha4ernvA3up13Z5zN8CxmbP1p/vrzvGWn6+vZen/I0m+/DfunfyxvfdVqwVPcO9o6MDOTk5+PDDD43bgoODsW7dOgBAV1eXzfY+Pj4Wt/fVzhpnz0eu9UHJeYdujAGgtb0Dfy05b7a9o7MLCpkUHzw8CT9PGQU/K1O9/XylWJwyCn95aJJJrdKhSjkWJo+w2Ka3qkvd9d6nx5iXtrHH7T3aLUoebvVarfHzlWJR8vC+D3QRMd83IiIaeELj2ZlLfa+DAjgfC+xp50gcN1iUPAJD+vgiWKfvwKLtx/Be8Vno9J3405Ez+HvpRUF9jv7gqljdH/0WZ2fxBQ7w7D8iIiIiop5E7Z22t7cjOzsb//M//2Pc5uvri/z8fIwaNQqA+ei/YSFVa48NJV/6aqfXm06JNpSY6V0ypvdxvZ+nd2ma3oqLi23uN0hJSYFEIkFERITZPkvbvE1RXSUQMNThdkfquvBSr9fvqU/+jWkxKixIGo6t2cORd33BrX3lWjTr9AhSyHBXvBqLp1if0v32z8JQ1VrU5/Trnaev4dGZEXgyYyheL653qM6ov68UT2YkY6hSjotNrbg5wg/ZM5Ow6XCV3c/x6NRoxGuicPFi9+/R358lMd83ch/8m0Risfez1NzcbHWfGHGWutnz2giNZ3/bVWWMCxIfIOPmcGSnjEKsSolAhQxXdHqcrm9BfvFZFNd3x4KRej+HYok9McTeOA4AM8eo8MefpfY5EL5s5wl8pe0yXmsXgOUF1RiiUgvqc1jS0NKG/OJqfFquRZNOj2CFDLPj1FicEmV1MVBr76+rYnUE4HS/xV5zJsdj/wXH136ZOzne4/4WeNrvQ6b64/1151jLz7f34Xvunfi+eydvet9txVrRBtzb29vx0EMPYe/evcZtcrkcW7duxV133WXcFhQUBJlMZhz47l3CpffFhoZ2L1I1dKjpjUPvdj0XVLXVrvfzWzsfuZZYC281tLRh85Gz2HioEivSNHhyWgw0KiVyZ8Qid0asWfuK+qv441dn8PysMSY3sIYF0lbtKsVWKwt2+ftKEROqRFdXl7GGqyM3nT1ruNZcaUNEsB/WZSagtKbZ7gGCvMwEu8/nCoN1oVciIrJMSDyrqL+KwrJaSHyAldNisDJNA43KfFrlxBEhWJAUifONrQAcz2K2J4bYG8ezU6KQl5nQ52B7w/WB9N5a9Z24b9tRu/oc9tDpO7BqVynyi86aLW5aWKbFCwVlWJwShXV2XLOBK2O1q/st2SlReLGgzOEvgPp7UVoiIiIiIltEGXDv6upCTk6OyWC7v78/tm/fbjLYDgBSqRTR0dE4deoUAJjVdD9/3nQ6a3x8PABgxIgR8Pf3x7Vr1yy26/04Li4OABAba3oDVFNTY7VdSEgIIiMjbfymJBaxFt7K73FTvf5gJTYeqkR6fDgeTR2FGJUSQQoZmnV6VNS34N2isygsq0VnFzAsSGF2c6yQSfFWViJeyYi3K1vN2ZtOfUcnJgwPxrfnGzFheIioAwSuNlgXeiUiIuucjWcbDlZCLpXg/QcnYUFSd//JVqb28BA/AEBYgBx+MonZALM11mKI4Vxfnq7DL2+PxcwxYQ7FcVvyrcRkoHsRdWt9jmCFDOFBCrvOodN3IGOz7az8a+0d2HS4CqU1zShY2ndWPuDaWC32Fxu9CU1oICIiIiJyB6KMgv3Xf/0Xdu7caXzs7++P//7v/8btt99u8fiJEycaB9yLiopM9h09etT4c0BAgHHAXSKRIDEx0Tj9raioCMuXL7fYTqPRGDPbhw0bhmHDhhkH2o8cOYKf/OQnFtslJyc78FuTEHfGqVFY5viCCrPj1CaPPy03fY7OLmDvD7XY+0OtzefZV661mo0WqpRbzVbr6urC345fgK/UB/PGRzp80/nRt+dx4HQ9NmYlIljhi78dv4AFSZGiDRC4mljvGxERuQ9nBlE/+vY83jxcif9+eDKykiIdytQe4u+L9x+chPu2HUWnHUv09I4hls615/ta0bLOAfP+hSWW+hzp8WoULL3FrnOs2lVq15ccALD/dD1yd5XizazEPo91dax2NEHBUYNt9h8RERERUW+CB9yLi4uRl5dnsm3z5s1WB9sBYO7cufjoo48AACUlJSgsLER6ejoaGxvxzjvvGI9LT0+Hn5+fSTvDgPvevXtx/PhxJCUl4dy5c9ixY4fxuHvuucfkfHPmzMG7774LANixYwcef/xxjBw5EidOnDDJyp83b56jvz45Sawpw/1Z4qS9ozsT7fNT9bhnfATmjY906Kbzo2/P4+G/lMDHxwe/zYiHRqXEio9P4GBFPZ6aHoPoUOEDBK7Gqd5ERJ7JkXjWpu/E0g+PY0VajHGw3dFM7QVJkViRpsH6g5U2r6t3DGnv6EDRmcvISR2FX06PMakRv/GQadZ5UmQQxoQFwMfHx+HXw9X9C2sla2zJL67GyxnxfR7XX7HaVoKCEK7OoiciIiIicjXBA+6///3v0dl5I5PJz88P77zzjsnAucHMmTPx9NNPIzMzE2PHjsX3338PALj//vsxYcIEVFVV4dKlSwC6S8+sXr3apP3ixYuxceNGaLVatLW1YdasWRg3bhzKy8uNNd2Dg4Px+OOPm7R78sknsWPHDrS2tqKhoQEpKSmIi4vDd999B51OBwAYNWoUFi1aJPTlIDuFKuU4vGIqfr33BxT8UGtXhpulKcP9WeLkqf8pxeen6iHxAV5KvxkA8PmpOmiGKvusG7/hYCU2HKpE1/Xfc2txNXJnxOK5WWNQfPYyQvwGR8kVTvUmIvJs9gyiymUSPDBpBFamaQA4n6m9cpoGGw9V2uwD9I4hvlIppseqTI4x1IivrG/BhkOV2HioAj4+QHbKKPj7SjFyiL9d19aTq/sXtkrWWHOtvQNbi6vx0NhAm8d5Qqx2dRY9EREREZErCRrlq6mpwb59+0y2tba24tChQxaPHz58ePdJZTJs374dc+fORU1NDTo7O1FSUmJy7GuvvYbx48ebbAsJCcH777+Pe++9F83NzdDpdDh27Jhxv6+vLzZt2oRhw4aZtIuOjsbmzZvx6KOPor29HVeuXDFpFxQUhHfffRdKpflCX+Q6ySNCsGdJqvEGef3BCuOAdG+9pwy36Tshl0n6rcSJIRPNT9Zdq3bC8GAAwO8/P4V95Vq76sb3ZChpk6ZRIU2jsnBG98Wp3kRE9Ma8BPhKpYIytWNUAUiPD7daBs5SDLFVI16jUuKNeePwX/8nHgFyYV9ku7p/YU/JGkvn0I80AAAgAElEQVT2lWv7HHAHPCdWuyqLnoiIiIjIlQTdjRQVFaHL2ghpH+Li4vD1118jLy8Pe/bswblz5xAYGIgpU6bgySefRFpamsV2t956K44cOYK1a9di3759qK2txZAhQ5CWlobc3FwkJlqubXnPPfcgLi4OeXl5+PLLL9HQ0IDw8HDMnDkTzzzzDKKjo536Pcg+9twgp2lC8dCOYya1X61NGf576UVkJUX227Tp/OJq6PQd+PBn3bVqu7q64OPjgyad3u668T05U9LGXXCqNxER+Uq7/7YLydTOnRGLR1NHmcVPSzGkrxrxv/v0JD57/FYkjwhBgFxms98RaiMzur2jA75Sqcv7F64uWcNYTUREREQ0cAQNuM+bNw9NTU1Ot1epVHj11Vfx6quvOtQuKioK69evd/h8CQkJxlru5FodnV2QSnwcWkRtQVIkIoJuwfN7vkeA3PaU4T8VnUHyiBBoVMp+mTb9abkWK6fdqFVbfbkVY8IC+rWkjTvhVG8iIgKEZWrnzojFNE0o0uPVNmNIXzXiJT7An+6bgOQRIQ71O3oPMuv0Hbh7SxH+dN9El/cv+qP/wFhNRERERDQwBveoH7klfUcnZFKJU4uopWlUOLjc8uyGnpp0emw4VIk35o3rl2nTLe16k1q1d4wJw5iwgH4raeOuONWbiMi7PXvHGEglPnavx2JgyNQOD1KgYOktZvsNM8mAvmvE9/xC3NF+R89B91W7utdq6Y/+RX/2HxiriYiIiIj6l2SgL4A8z+XW7ptoZxZRs9dHP5sMHwB/O37BOG36ianR8Pe1PCXa31eKZVOjsTcn1alp058/fhs0KiX0nZ2YHafGiQvdMzuyU6KsntMaZ0raEBERuaOZY8KwZ0kqTj0/C09Nj8H1MfI+GTK1L19rR8m5Rpyqu4qSc4342/ELuHtLEd75+gwA9FkjXuIDQYu3GvQ8z4aDFS7vX7D/QERERETkuZjhLgKtVou6ujqTbTqdDnK5903TbW5tR1iAXNAiaobaqrbqrw4L9sO6eePwyYkL+PjEBcxPjBQ8bdpwvs9PapF+czjunzAcw4L9AAAyicT4/3vGD8M944ehvaMToUo5slOi8JaLS9oQEXkzxln34Ox6LJYYMrU/O1mHe/981Gz/0ltHA+i7RnzGzeHQqJSC+x1fnKo3nqezC3hoxzEAk7AgSXj/wpJQpdzpkjUXmx0+HRFRnxhriYiIxMMBdxFs2bIFa9asMduuVntG2RBHXGjWIcjPV/AiaiXnGnHbhkN91l+9JzESO49fwC8/+TdWTouBRqW0Om26sr4FEUFyKOWmH/ue9V4B4P0Hu2+wAduDC4YvBtbfMx4ntVfxTzvq2Dpb0oaIyJsxzg4sR9djASbhvm1HrZaY6Zmp/e712Ntb9FB/AH3XiM9OGQVA+OKtEUGmA0qt+k7ct+0oVqRp8GQf/Qtn9UdJPEucXVCWiDwbYy15O5/c3QN9CXbpyvvJQF8CEdmBA+4iyMnJwfz58022LVy40CuzAaTX55ILXUQNgNXsuN71V7OSIvFlRT3GvPYZ0uPD8WjqKMSolAhSyNCs06OivgXvFp1FrEqJjVmJJs/Vs96rxAf48GeTjXVgHVl07R85qXjyk39bveE3DC7kWVikjYiIbGOcHTjO1EVfkBSJFWkarD9YafF4Q6Z2Rf1VFJbVWjwm8HrJmabrtd6tiVUpAQjvd4QHKsz2dXYB6w9WYuOhSqv9i6+rGrA2c5xT5zaUrFm1qxRb+6H/IGRBWSLyfIy1RERE4uGAuwjUarXZN/8KhQISifeVyFfIun/nvm6QrTEsomao7WqLof7qm1mJWDlNg42HKrH3h1rs/cH85n3mGBXWWsgM61nvVeiia29mJeJlO6acH6yox7QYlV2vBxERMc46S4xMZmfqoveMy72z3Htmam84aL7f4Mr1/kBwH/0BewfmrTH0OwLl1s/T2QWr/Yv0eGGZnwqZ1CUla3oTuqAsEXk+xloiIiLxcMCdRKW7njHV1w2yNYaB9mY7b5wN9VdjVAFIjw83uxm2lRnWs96r0EXX3sxKNNZ0tzXl/NvzjSg+e5kD7kRE5DI6fQd+U1iOv5ZdFZTJLKQueu+43Dsef/TteWw4ZDkDHgBO17dg4ogQ3BmnRmGZ9ex1ewfmrTH0O6QSO1d77cVQi16ovvoPQjnbtyEiIiIiIsfx62oSVUdXd6ranU7egBpuXCvqW+w63lB/FQD+cM84pMercVv0UKTHq5GXmYBzL96JN7MSLQ4o9Cz/InTRtYaWNvhKJXix4Af87fgFlJxrxKm6qyg514hP/l2D5tZ2AMBLheXGurVERERi0+k7sGj7MbxXbF42xOBaewfe/qoKfzpyFl1dVlLMIawuOgA8MzPWYjz+6NvzePgvJbBxauQXd9d2z06Jgr+v9S8FTl/vLwjtdwz197V5Hkt61qJ3Z0L6NkRERERE5DhmuJOoIoO6a6Bmp0ThxYIyh27U7VlEzRJD/dU4dSAKlt5itv9CUyu0V3S4OTwIctmN75huGT0Ed48NR8EPtaItujZheAju/fNRk/3LpkbjnvHDUFF/FVEhfoKmhhvKA+w5WoZmnR5h6nAudEZEREardpXiq6oGm8f4ySQ2FwjfvigZsWEBguuizxgThhljwozbK+qvYsPBSmw4VImuru7ZZRk3hyM7ZRRiVUoEKmS4otPjdH0L/nLsR3R0diFUKcfilChsOlxl8Vz5xWexIClScL9DLpPYPI8lhlr07qamqRX/79vz+I+RIUjTqAT3bYiIiIiIyDEccCdRBfn5ou5qG8ICbN8gW2LPImqWGMrPdHV14cfGVrTpO9F0fTGz+qttmB2vRtLwELN2aRoV9ixRobK+BXKpOIu9xlxfvM2gZ63af5Zp8cY94437HKmta7bQ2dVL15/EhwudERERAPsymSU+wI4HJ9lcINyQeC60LnpbRye6urrXd9l0uAorPj6BzusD7U9Oj8HKNA00veImAEwcEWL8MgAA1mUmoLSm2WJJlIIfalFZ3wKNSil4wNzWeXrrGd8HwqWWNmzff9piH2JYsB+enBaDy9e6Z9eJsZA9ERERERHZjwPuJLohft0fK2dvXG0tomaJof7qqbqruPn/foGMm8OxJHUUZt0UhiH+vgBsD273vNm3Nv2+L70Xe+1dq7bkXCNybhkNqcTH6gAHYLm2bkdnF+7eUoTPT3GhMyIiss6eTGZ7Fgj//+zde3wU9b0//tduNrvJhiSQZBNiCOQCpESIQiFBAcUiEkFQoIfiUVsDBgt4BdvqOT+txfN9yGkFFZX2kBpOrdS2KvZANaGgclUTKakgkQRIAuGaTQK5Z5PN7u+PsEs2e53Z2fvr+Xj4eJDdmdnZnXXfn3nPZ95vqeqiH7/UhncOn8Or996I5XmpeP+bC/jqzBWHs+ttXXxWKcJQuiIPa3ZUYuug92gwApsO1uLVe290O2Hu6HVMHPWG8Qadvg/Pfvwd3jtyDjqV5WSCwWMI0xjI3QsnREREREQkDBPuJDlFmBx9BqOoE1dnTdRsMdVf7ew14NRzsywS6EKT2/91dxZuf+sLQQl/4HpyAQA2LMhGwZTrs+Z69AZMTIk174+9BIeJreT5hOQYhwl3EzY6IyIKXc5mMrvaINzVhqX2DOzHsulADaanx2FxTjJKV+Thu8vtuDklVnB8VinC8NaiCXgpPwtby+uxu1qLNp0e0SoFRg6NQI/eIEnC3NHr3JWlsYjv3mYeQxy9VnZPZb3MwDHEpytvgVwmc/vCCRERERERCcORNEnu81ONuONazVYhJ649egNWvH/UYRO1wQbWX73phhgAQEePHlFKhajk9vT0eDw+PR2vHxCX9B+dEIU1t1vefj2wbryjBMdgA5PnT8xIxxsHXZv5X1xej3X5WazpTkQUYpzNZHa1QbhUddHfLjsLgxF4cNsRAP2z2k3JdjEXn3X6PsSplVg7M9NmqZOePoNkCXNHr+MrQscQRy+0SnLhhIiIiIiIhJE7X4RImJPadjR19Fg8ZjpxLV0xFYcen47SFVOx5vZM80mv0WiEUiHH/ZNSBL3WwPqrOn0fHtt+DNr2/tcWk9wGgCdnZEAuc30fBiYXHHGltu5gxeX1aO7sQUZ8FOZkJbq0jqnRGRERhRZnM5ldbRBuqotualgqhK1+LN16A5b+8TBau/triouNz7ZmpBuMRlScb8F9xeWIevZjPPW3b837bm/coTcY8EVtM1qu1TgPBGLGEOv+UQ2g/5hEhgsrf+Pq2IaIiIiIiKxxhrsEtFotGhsbLR7T6XRQKgNzhrGQZp62rLglzWI7n53UYlxSNBZOGI6xCUMQH6VE2ICMtk7fh99/dRarp6eLrr+q7zMgf0sZ1MowpMU5n71ni2lmeHq8GnOyElFywrXGrYObrjnavpBZgsD15PnamZlYnjfS5X1iozMiCibBFmc9xdlM5sxrJdeclZ6Roi764H4sd2UlIiYi3K34bKuh+OCZ8q8fqMUbB2sxJysRy/NGIiNejWiVAkajERnxUQiTy3C5TYdb0+MAuD/m8RYxY4j/O34JLV295gsn7jSUJaLgx1hLREQkHSbcJVBUVIT169dbPa7RBNatuELrqQrZTskJLTbuqwHQP2tq4HYqL7fjqf/7FsNjIsw1XoXWX33q/45j7+kmfPCTyQDcT24/+4PRLiW3bTVds8dZgsMeU/I8Y0BtemfY6IyIgkmwxFlPM5eAsfP8kGsz4F1pojm49rq7/VhcnV1vy8D4rNMbABjN44f9NdYXAgxGoOREg1UcXz0tDW8umoCU2EjJxjzeImYMYTACf/7XeTx6S5rbDWWJKPh5M9bK1u6UfJvk33jMiSjUMOEugcLCQixcuNDisaVLlwbUbACx9VSl2M7ElFisnpZuUeNVSP1V0+w0wPXZe/aYktvTM+Kwalqa6KZrtriS4LDFlDwX0ryMjc6IKJgEQ5z1BvNM5n802ny+/Vo8caWJ5uDa667G5Q++uYCH/lRh1Y9FqvisUsjx7N8r8av8LExMiRXUd2XgTPlfllY5nPHtypjHm8SOId795zk8ekuaJA1liSi4MdYSERFJh1k5CWg0Gqsr/yqVCnJ54JTIF9vMU6rtmJqCLnnnMB6fno4nZ2QgPV5tt2HZ1a5eDI0MB2A5W840e298cjQKp45CZrwaQ1QKtOv0ON3UieLysyg90WC3+agpuS2XySRpujaQKwkOW0zJcyGz1tnojIiCSTDEWW95/d4b8U31GRyqa7Z67nRTp6Ammt16g8txuaapA5sO1GLTwVqbzc+jJYrPADBl5DBRTcUHzpSfMnKY8xXgeMzjTWLHEFHK/vVM4yapxzZEFDwYa4mIiKTDhDtJVk/Vne2YmoKWnGiwW3+1TadHTVMn3i47C8CITwqnArg+W04uAyIV/QPCV+bfaPVaN6fEYnFOMmqbOrHpYC1eP1BjlRQwJQTOt3RheHSEuemavXron3x3Gf9vz0lEu1Dz1dUEx2Cm5HlNU6dLy7PRGRFR8HJWc1wRJsdffzIZv9x1AttOdFrMZC4uP4vFOcnXS8+4UNrFYOyvi/77srO4+MvZiI7ov9itbdfhXEu3OS7vqrKfLJfLgPio/vXcjc8AkBGvxkN/sh4/uEJMmTZ7NeS9yd0xxKcnG3GgpglP3ZaBtDj7F06IiIiIiMh9TLiT2/VUpdrOwKag9uqvmtyadn1mWqtOjwiFHO8+MAkpQyMBOE5IpMer8eq9N2J6ehwe3HbEonar6cS0rrkLf624gKdnZuJ8Sxca2nsskv4yAItyktHVa8AXdVcAOK/5KiTBYTIwed5/ocE5NjojIgo+QmqOh8ll+K+7x+G/lwyzmMlsNBpFN9F8eEqqOdkOADERCqx557jTu9oiFHLsenQqhkb2xyV34zPQn3wX21RcTJk2W2Meb5NiDFFyogF9BiPe8PFsfSIiIiKiYMeEO7ldT1Wq7QiZbTbwRHlohALbHpiERTnJghISi3OSAUzCkncOw2C0PDGdlh5nrjfb0N6DSRv3m7cjlwH/OWsMFuUk4+7vJeLkcz+wuCX+d1/YrvkqJsFhSp5faOnGrippm7gSEVFgENof5Q/39tfsdnSXlrtNNF2pCR6lDMPBx6bh5pRYyeIzcD1p7s74QWhz8cFjHm9zZwxR09SBXVUNuGN0PF7hGIGIiIiIyOOYcCe3m3lKtR0hs80GznT72R2jccfoBFENWxfnJJsbrplOTK929cJgNGJ4TAQAIDspGupwObr1BjwxIwNPTE9H+rWTe7UyDKMTogBY3xL/zI5Kq1lkYhMciUOU+Omt0jZxJSKiwCC0P8qLu3rw8rxxDpeToommShGGtxZNwKsLbsTV7l7o+4zo6NHjcrsO2vYezMnSQK1USBqfh0aGm0usuTN+cLVMm4nQBL0nmMcQR684XXbgGOK3X5zBylvTOEYgIiIiIvISJtzJ7WaeUm3H1ZPZwTPdbsuIB+Bew9ZvL7WaT0xf3FWFLV+dtSgN0/CrOTjd1ImcG2IAuHZL/N++vYTmzh6Lmq9iExyKMLlFo7O/H65Cu06PeI2Gjc6IiIKYmP4o71Wcx8/vyESSk+VMCXN3m2gqFXIkDlGZ/x6jGWLxvFTxWRkmA3C9xJo74wdXy7SZCEnqO+OsDr89pjHET9/pwZ8rzqPbxjKDxxDV2nb8x6zRHCMQEREREXkRE+7kdiMuqbbj6myzwTXKw+Qytxu2lhTmITwsDB98cwGbDtbCaITFTLsolQI5N8QIuiX+vvHDUa1ttzp5difBYSoP8OC4/mRGUpKzdAoREQUyMf1Runv78OeKC3gx3bUG2s4ahDtiL3m8YupIREeESxafK863YGJKrLk8CiB+/NDY0eNSmbaBBo95xBAyhrA3E12lCMP6eePwizsy8fGZHqdjiLGDLn4QEREREZHnMeFObjfikmo7rsw2s1ej3N2GraZk+0N/qoDReH2Zvaeb8PfKy1icc4OoW+Idnei6k+AgIqLA5uosZ7H9UfbVuDajXCxnyePMhCjcN364JPF53+kmTB01FACw6UCtVV13oeMHmaC9sT3mEUrMGMJR+ZdhaiXWzkzlGIKIiIiIyA/Jfb0D5HumRlxCDJ5l7u52jEYjMuLViAy3fXIZGR6G1dPSUFJo+wTUnYatAHDuaheW/PGfVkkDuQz4/oj+k3wxt8QTERENpNP3YfX2Y0j51W78bGcldlVp8WXdFeyq0uKZnZUYsW4PVm8/BuO1q79i+6O0e7DmuCl5vPlQnVXcNEkbFgnA/fh8pasXU0cNhUpx/S40QPz4oUdvQHyUEnOyEl3eF1tjHqE4hiAiIiIiCh2c4U4AxDfzlGo7MpkMby6agHUi68i627C1W2+wmNlukv+9RKTFqd26Jd5RPVYiIgodQmY5P31bBkYnRInujzJEwprjg7mSPDa9vrvxeVhkOABY3IUmdvzwwTcXcL6lG0/eloFnfzAaJSecl5VxNOZxFccQREREREShhQl3CWi1WjQ2Nlo8ptPpoFQGzkmS2GaeUmznw6MXcLCmGU/MyEB6vFpUmRVPNWxdljsSgPsla4iISLxgiLOAsFnO31xoxeiEKNH9UW6/1lBcaq4mj00z7N2Nzzp9H37x9++w6WAtIhT9s9WFjh9qmjqw6UAtNh2sxV1jNXjytgxMz4jDqmlpbo15XMUxBBEFgmCJtURERP6ACXcJFBUVYf369VaPazTuN9jyJneaeYrdjmnGWrfegE0Ha7HgxuH4y0Pfh1IhrNqRpxq2ZsarAbh3SzxPlomI3BMMcVboLOfi8rNYnJMsqj9KRHgY7p94g5jddGG/XEsen27qxM0psW7H5y/PXMGJhna8Mj/bYvzw+alGPLjt+vhhTlYilueNREa8GtEqBdp0etQ0deLtsrPYVdUAw7W72EwX2OUymSRjHldwDEFEgSAYYi0REZG/YMJdAoWFhVi4cKHFY0uXLg3Y2QBSNfN0tJ2Bs81MpVwMRuBv317CGwdrBb+2pxq2SnVLPBERiRcMcVboLOfSEw2obepEerwaBbmp2HyozuV175+YgqEeKkXiavLYnQsGA+PzzMwEzMxMMD+n0xugUsjx689OmevHG4xAyYkGl0rERA+ace+NBuYcQxBRIAiGWEtEROQvmHCXgEajsbryr1KpIJeHdk/a50tO4OaUWKezzQYTM6PL1LBVSELC1AStpqkDu6psn6RLdUs8ERGJFwxxVugsZ4MR2HSwFq/ee6Pg/igvzkkTuZfOuZo8dueCgSk+6/QG1F/tutYYNQphchmqte2YkByDWWM1KHVj5rw3cQxBRIEgGGItERGRv2D0JI/59FQjfviHw5i0cT/GvPwZJm3cjx/+4TBKTthPtgPiZ3RtXJCNmZmu1awd2ARNFSbHX388GXPHJUIus1zu9LVSM3eKPEH3xYk9ERH5HzGznDcdqMHeU43m/iirpqUhMtx2PfHI8P765iWFeW7XHHfE1eSx6YIBID4+/+LvlRjz8mcYu/5zPPm3bwEA2UnRAPqT8vY+C3sGzpz3Jo4hiIiIiIhCCxPuJEhzZw9e2Xsa+Vu+wq1vHET+lq+wYe9pNHf2WC3r7RldYhMSKUMjsTgnGR8/kodTz83CU7dlQHYt8V5c3l9qJpBO7ImIyP+IiYkGI7Bx32kA1/ujnHvhTrwyPxtzsjS4NW0Y5mRpsGFBNs6/cCfeXDQBKkUYevQGbPnyjEuxWighyeNNB2rw4dGLouLzB99cMCfsgf6SPM2dPQiTy6A3GMx3tgmxPFe6uuxCcAxBRERERBRaeK8quUSn78OaHZUoLjtrrplqsqtKi+dLq1CQm4qNC7LNiezZbjZKE0NIw9YDNU14vrQKEQo5Zo/VoCA3Fenxarx6742Ynh6HB7cdgU7fB6PR6FbJGiIiIrHNQ28fUL8ccFxz3Gg04sOjF/HQ7z9Dd68BiBpmfs5erBZKSE12gxF4cNsRhMm/j/vGDxfcUN044G64rt4+bC2vx9qZmai81I6cG2IEldqZk6XBa/eNN//d3NmD4vJ67KnWolWnR4xKYR4LxEkcuzmGICIiIiIKLUy4k1M6fR/yt5Q5PKHt6u3D5kN1qLzUhtIV/bPTfnrrKDzvRqM0dzhKSNQ2deL1AzUWDVsHJyIW5yQjM346xiUNgezadHehNXRNt8QTERG52zzUmd6+/lj92akmoNdgcxlbsVooocnjbr0Bn1Zrcd/44eb1hTRUH8jU46Xv2oWFxTnJKF2RhzU7KrHVTlPayPAwLM9NxWv3jUeYXCZqAoEUxI4h9H0GKMJ4QyoRERERUSBhwp2cWrOj0qUTRADYe7oJa3dU4s1FExClVGBZbire8sGMrs2H6pAUrULeyKEYMTQSBqMRB2uasf6zU3Ybtg5ORNycEgugf6adQi7DfRNcO7FflpuKDRKfqBMRUWBzZ5Zzn8GI1/bXYLeD2dhP/V9lf7LdBQNjtRhCk8evDLoA/fmpRgyNDBfUUB243uMlWqXAg9uOAJiExTnJLs+cFzuBwBahM+RNZXWEjCE++OYC9p1uwhsijxMREREREfkGE+7kUHNnD7aW1wtap7i8HuvysxCnVuLVe7Nx3Muzwps7e/DMzkro9H049dwsAMDjH33rcpJjYCKisaMHBX/5Fx7JHYn5Nw4XVLKGiIhoILGznJ/9uBKv7K2xeH5XlRaHapuxvWCK27FaKDHJ44H++7NTosrrmHq8tOn06NYbsOSdw3h8ejqenJGB9Hi1w1I7MplM9ASCgdyZIS9kDGEqqyOTyfArkceJiIiIiIh8gwl3cqjYzom0IwPrrIaHuXdS7s4+zx2XiPR4tVuJiIQoJS68MBvREeEAgFONHciMVzu8JZ6IiMgWsbOcN+yrsbE14IHvjwDgfqwWw50L0GLr2Zt6vNQ0dQLorxH/+oFavHGwFnOyErE8byQy4tUWM+cjFHLMy06S5KKEuzPkPzvViPRhaocXB2yV1XHnOBERERERkfcx4U4O7akWfkIMXK+zCrh3Uu7OPi/LHQnA/UREdES4xQnw6lvTeHs3ERGJImaWs6165gCQGa8GIE2sFkvMBWh369l/ffaKxXMGI1ByogElJxosHr9jdDx2P3oLAGkuSrg7Q/7Xn53C7mqt3YsD9srqSHGciIiIiIjIe5hwJ4dar9VLFarNxnremhVu2mepEhGnGzswdv1n5hPgt8vreXs3ERG5xVFM7DMY8ezH32HDvtN2k+0AMORaiRUpY7U3uFPPHgB+lZ+Ftp4+l+4SCJP3Nz53dyygNxjcniHfqtPbvTjgiK+OExERERERicOEuwS0Wi0aGxstHtPpdFAqAz8hG6MS9xWJFrmeFEz7LFUiwghYzDZz9zZ8IiISJpjjrC2v7a/BK3tPO12u/VqcCsRYLbaePSDuzjl3xwJtuj63Z8gH4nEiotARarGWiIjIkziCl0BRURHWr19v9bhGo/HB3kjL3TqrvmDaZ6kSEbZmlvH2biIi7wnmOGvLbhdnY59u6sTNKbEBGavdbbwKCLtzzt2xQFNHj6j1B44XAvE4EVHoCLVYS0RE5ElMuEugsLAQCxcutHhs6dKlQTEbwN06q75g2mepEhGm5mwD8fZuIiLvCeY4a4urs7GLy89icU5yQMZqwLs9XtwdC9Rf7RL1ugPHC4F6nIgoNIRarCUiIvIkJtwloNForK78q1QqyOVyH+2RdNyps9pnMOK1/TXYXa1Fq06PGJUCs8dqUJCb6rH655dauzE8JgIFuamSJSLeLjtr9Txv7yYi8p5gjrO2uDobu/REA2qbOpEer3arJrqvOZqpfr6lGzuPX0JHT59b4wd3xwKfnWx0srRtA8cL7tauJyLypFCLtURERJ7kkei5b98+xMTEICYmBnPnzrW7nFarxc9//nPk5ORAo9EgPT0dS5YswRdffOFw+5ga9WQAACAASURBVLW1tVi1ahXGjRuHhIQEjBkzBg8//DCOHz/ucL1jx47h4YcfxujRo5GQkIDs7Gw89thjOHvWOqFK121ckI2ZmfEuLTuwzuqzH1fimZ2V2FWlxZd1V7CrSotndlZixLo9WL39GHR6YbVQXfFdQ7t5n7t7+1Db1Gk+wRXCdIJb09SBXVXWjc14ezcREXnKnS7GGIMR2HSwFoD4WO1PDEYjtO06/Ot8Cz48ehFzi8ow8qXdWPnhMbfHD+6MBQBgaGS44NcErMcLwXCciIiIiIjIMckT7h0dHfiP//gPp8udPHkS06ZNw+9+9zvU1dVBp9OhqakJpaWluPvuu1FUVGRzvbKyMkyfPh3vvvsuzp8/j56eHly+fBnbt2/Hbbfdho8//tjmejt37sTMmTOxfft2NDQ0oKenB+fOncM777yDW2+9FV9//bVb7zuYmeqsrpqWhshw6xqqQP8ssNXT0lBSmAeVIgwffHMBG/bV2Fy2q7cPmw/VIX9LmeRJ95tuiMHfvr0ElSIMnxTm4Z/nrwIQf4K76UCtRcNUgLd3ExGRZy3LTbUbbwfbdKAGHx69aBGrI2ysK5cBC8cPR8Wa27Dnp7fYrInuSzp9H2b99ksk/vIfmLhxP374h8MoOdFg1bTcnfGDO8nuAgHHxMTWeEHMmIqIiIiIiAKLpHUx2tvbsWTJEhw7dszhckajEY8++iguXboEAJDL5bjppptQW1uLq1evwmg04he/+AWmTZuG7OzrJztdXV145JFH0NbWBgBQKpUYP348qqqq0NHRgd7eXvz0pz/FP//5TyQmJprXu3z5MlauXIne3l4AwJAhQzBmzBgcP34cPT09aG1txfLly1FWVobIyEgpP5KgIaTO6gffXMBDf6qADMDd4xKxLHckMuPVGKJSoF2nx+mmThSXn0XpiQas3VGJNxdNkGw/49RK7D3ViD6DEYtzkvHDnBvQozeIas72wTcXzDMHB+Lt3URE5ElCSo8YjMCD244gM346bk6JxVuLJuDxiUPx54oL+KrRiI4ePR78/ggsvTkFsSJnaXvDmh2V2Hu6yaVl955uEjV+cKdRq5TlYLxZu56IiIiIiLxPsoT7F198gZUrV6K21jpBOdinn36Kw4cPm/9+//33MXv2bFy5cgUzZ85EbW0t9Ho9fvOb32Dr1q3m5d577z2cOXMGQH89uc8++wwTJkzA2bNnMX36dFy9ehUtLS3YvHkzXnzxRfN6v/3tb9Ha2goASEhIwP79+zFixAhUVFTgzjvvRG9vL+rq6vDee+9h2bJlEn0iwclRndU+gxHPfvwdXt1/Go9Pz8AT09ORHq+2Wu7mlFgszklGbVMnfvtlHZo7eySt6f7f94zD3KIyHKhpwpMzMsz7IOaigXHQ7Haxt3c3d/aguLwee7xYz56IiALXxgXZqLzU5lIS+pa0YRiXNMT89zC1EiunpeHFpCSL5fw1FjV39mBreb2gdYrL67EuP0vwfruT7BZyTFwZLzgaUxERERERUeByO+Gu0+mwZMkSfP755y6v89FHH5n/PWnSJMyePRsAMGzYMDz66KN49tlnAQClpaXo7u5GRESE1Xpz587FhAn9M5tGjhyJf//3f8fmzZvNyw1MuG/fvt387wceeAAjRowAAEycOBFz5szB3//+dwDA3/72Nybc3fDa/hq8ebAWf3loMhbnJANwfHKfHq/Gr+/JRrW2XdITfVM5mTU7KjHhlb24LSMey/NGIm/kUCRFqxye4NY2deL1AzXYdLDWItlub8abMzp9H9bsqERx2Vl06w0Wz+2q0uL50ioU5KZio8DtEhFRcHNnNvZg/h6Liu28P0e6evuwtbzepWS1aSzy2Ukt7spKxNKbb8DwmAjByW4pjwkREREREQUvtxPuXV1dFsn2u+++GwBQUlJid50jR46Y/z158mSL56ZOnWr+d0dHB6qqqnDTTTcBACoqKhyuZ0q419bW4sqVKxg2bBiam5tRV1fncD1Twn3g9km4T09qse2BSViUkyzo5H6sZoidLYo3eAZb0VdnsHHfacRGKFA4dRTmjUuCUmHdwiA2UoHUoZG4a6zG7du7dfo+5G8pczgTzlSPtvJSG0pXsFYrERFdJ0XpkUCIRXuqtaLW212tdZgwtzUWKTmhxdodxzEnKxErbhmF74+IxYjYCMhkMpdek+VgiIiIiIjIGclKysTHx+NnP/sZVq5ciZUrV9pdzmAw4OTJk+a/k5OTLZ5PSUmx+NuUcL9w4YK5LAwADB8+3GK5G264weLv6upq5OXlobq62uJxR+u1tLTg4sWLVvtErpnzvURzst3Ryb1c1n+r9Q9GJ6D+ajcy49WQyWQwGo346Ngl/L7sDK52S3Oru9DbtaW8vdsb9WiJiCj4uRObAiEWter0otZrc7Ceo7GIwQiUnGhAyYkGAMDMzHjBFxpYDoaIiIiIiOyxnuIrkFKpxGuvvYbKykqsWrXK6QyhtrY29PT0mP+OiYmxeD4qKsri7+bmZgBAU5PlCdPg9YYMsZwlbW+92NhYl16PhPvRTf0XL+yd3MtlwFO3ZeDUc7Pw8SN5WJyTjNEJUebvjEwmw6KcZLy1KAd5I4fhH9VaPLOzEiPW7cHq7ceg0wu73dyXxNajbe7scb4gERGRCwIlFsWoxM3/iHawnpgLDURERERERFJwe4a7Wq0WVPe8s7PT4u/w8HCHf3d0dIhar7293WJ9E4XC8i3bW8+e3Nxch8+b1NTUIC0tDZcvXzY/ptWKu2U6UMgAnGjSovjzo8CguqYqhRxvLc7BPdkJgL4NJ2qb8F7FBeyvaTLfin17RjyWTrwBw9RKPDs1AeNj+rD6w6Po6jBg8z8a8a/qM3jvoUkBUXZl86E6dF1tFLROF4BNpRVYOS3N6bLB/l0i7+D3iKQi9LukVls31DZxJ84GuiudPQ5jo6tMx+N9D8ciqeQlyLDryBXB601NSLR5/K909tgcizjy9ueteGzi0IAoB8Pf7uDG4xvcvHl8/THW8vtN5L5AGPvy//XQFIrH3VGslaykjKuMAztR2mBvhryz9aR+PRLnvYoL6B50giuTAZsX52BedhJ0+j78clc13jtyDrpBtd33nmrEf39+CksnpuBXc8binuwkADko/Ou/YDQCX9Q148Vd1Xh53jgvviNx9te4NqtusH01TV5NchARke8JiY1CLjoHSiy6f+IN+PXnp6zGD45EhIfh/ok32HzO1ljEme7ePvy54gJjMBERERERuc3rCffB2f/e3l6Hf5tKvjhbT6+3rONpKjEzuGTM4OUGb2dwaZrBysvLHT5vkpubC7lcjqSkJKvnbD0WLMoaa4GoYRaPPXlbBpbdceOAeqptgCoWUFmv3w3gf4+3oa67DqUr8rD8jiQca5Hj9QO1AIA/V3filaXDRNd09xadKgaIEl4Cp0cVI+j7EczfJfIefo9IKq5+l9ra2uw+J0WcDSRiYqOzpHufwYgwuQw61VWvxCJ7mjt7UFxejz3VWrTq7PdmSQKw7I4cbD5U5/K2l09LQ1Z6qs3nbI1FXPFVoxEvBtD3KdC/++QYj29w88bx9e9YWyvx9ohCRyDFh0DaV5JOKB13R7HW6wn36OhoKBQKc+J7cAmXwTsbFxcHABg2zPLEafB6AxuqOlpv8PbtvR6JMz45GoVTRyEzXo0hKgXadXqM0fRf9BDbuO2JGel442AtDEagq7cPW8vr/b5JmSfq0RIRUfDxRFNTg9GIMMh8Fot0+j6s2VGJ4rKz6B40Y39XlRbPl1ahIDcVGxdkmy8ebFyQjcpLbS59FneMjseGBdl2n/dEE1YiIiIiIiJXud00VaiwsDCkpaWZ/7548aLF8xcuXLD4OysrCwCQkpKCyMhIu+sN/nvs2LEAgMxMy8TspUuX7K4XGxuL5ORkV94G2fHK/BuxOCcZN6fEYnRCFG5OiUWUUuFW47aM+CjMyUo0P7672v/rQt05ViNqvdki1yMiosDjqaam4WH9wztfxCLTjP3Nh+qsku0mXb192HyoDvlbyswN0VWKMJSuyMOqaWmIDLc9gz8yPAyrp6WhpNDxLH9e9CYiIiIiIl/yyZnFzTffjFOnTgEAysrKLJ47fPiw+d9RUVHmhLtcLseECRPMt7+VlZXhscces7leenq6eWb78OHDMXz4cHOi/auvvsL8+fNtrjdx4kRJ3l8wc+X28GptO57ZcRyNnb349T3jMD09HsXl9egSWE914Gz2oiU50Lb3YIhKIbqevzcty03FC6VVgt5zZHgYluXavj2eiIiCj7ux0WRwbJ4aD/xi1hi3Y9H5li7EqBSIjgh3stZ1a3dUQq0Mwwc/mWxxt9vppk4Ul59F6YkGGK6F8cEz9lWKMLy1aAJeys/C1vJ67K7WmpvH3pWlQcGUVJeamt45VoNdVcIvzvOiNxERERERScHrM9wB4J577jH/u6KiArt27QIAtLS04H/+53/Mz82ZMwcRERE21yspKcHRo0cBAOfPn8e2bdvMz913330Wrzdv3jzzv7dt24Zz584BAI4dO4aSkhLzc/fee69b7yuY6fR9WL39GFJ+tRs/21mJXVVafFl3BbuqtHhmZyVGrNuD1duPQafvw1jNEPxkykiUnbmCIcr+azp7RM5KN81mT4mNNM+aH6NxXGffH8SplSgQmDxflutaIoGIiIKDu7HRYDTajM2vHajBmeZOt2NRSmwkoiPC0djRA32f7dnqA3X06PHMzEx8/Eie1d1ui3OS8fEjeTj13Cw8dVsGTD3rbc3Yj1MrsXZmJkpXTMWhx6ejdMVUrLk90+UYuSw31e4seXt40ZuIiIiIiKTik4T7ggULMG7cOPPfP/rRj3D77bcjJycHJ0+eBNBfeuaZZ56xWK+goAAaTf/so56eHsyaNQszZ87ElClT0NTUX/MzJiYGK1eutFjvySefNCfum5ubkZubi5kzZ+IHP/gBdDodAGDkyJG4//77PfOGA5yY28MX5yRjzW0ZGJ3QX7/d3XqqV7p6kb/lK9z6xkHkb/kKG/aednpLva9tXJCNmZnxLi3rrB4tEREFH3dj48XWbpux2WgEfl9+FoD4WPS7L+rMsTYhSglFmBx9Bsd3mEUpFUiLU6O5swev7D1tM26nx6vx6r034v0fT0aEQm6esS8lXvQmIiIiIiJf8knCXaFQ4I9//COGDx8OADAYDKioqMCVK1fMy7z88ssYP368xXqxsbF49913ER0dDQDQ6XQ4cuSIuYFqeHg4Nm/ebN6uSVpaGrZs2YLw8P5botvb23HkyBFzsj06Ohpvv/021Gq1Z95wgBPT0A0AXpyThSHX6qG6W0+1rrnT4ax6fyRlPVoiIgo+7sbGhnb7F55//9UZfHj0oqhY9ME3F7Bq+zGrWBsmlzncLyF3wy3OSca7D0yCXOaZ3iy86E1ERERERL7ik4Q70N/U9Msvv8Rjjz2G9PR0KJVKxMXFYc6cOfjkk0/w05/+1OZ6t9xyC7766isUFBRgxIgRUCqVSExMxKJFi7B3714sWLDA5nr33XcfDhw4gH/7t39DUlISwsPDkZKSggcffBCHDh1CXl6eJ99uwBLb0K2jR48olcI8G87dxm01TZ1Wz9lquuZvTPVoz71wJ16Zn405WRrcmjYMc7I02LAgG+dfuBNvLprAZDsRUQjyRGw0MRqBB7cdMSfdXY1FH3xzAQ/9qQKmdimuxlqxd8M9Pj3dPGNfSrzoTUREREREviJrbW31/w6UASg3NxdyuRzHjx83P3b58mUAQFJSkq92S7BX9p7Gz3b2z1iXy4D87yViWe5Ih43Q5DKg+aV8xEaGY/MXdVh1axqaO3swYt0ewY3bzr9wJ4aplZhbVIaSEw12l109Lc3cdC0UBOJ3ifwPv0ckFaHfpba2Nrdf01acDTQei40d1+4YjBoGuQx4fHo6npyRgfR4+3fy1TR1YNOBWrx5qBZzsmzH+oZ2HVbemmZz/dXbj2HzoTqX34cpbtc0deCx7cfwSeFUl9cVyjR5QGwTVn/D3+7gxuMb3Lx5fP0x1pre//Bfl0uyPaJQZNww39e74BRjWWgKxePuKNaKu5eZQsaeai3kMuCJGRl4Ynq6zZN1UzO02qZObDpYi5PadsRGhqO5swc/31mJu7MSkR6vRkFuqqCTcVM91ZqmDuyqsp9sB/pn1a/Lz0JcAJ44ExFRaDLVGvdUbAQAgxF4/UAt3jpUi+If3YyHJvfXNjcajejWG9Dc2YMtX57B+s9OYtW0DJx8dpbdWA8AfQajVWkZsXfDrcvPQkZ8FB7JGyVoXaFMTVjXzsz06OsQEREREREBTLiTE916A/7648lYnJMMoP+kuri8HnuqtWjV6RGjUmD2WA0KclPNjdDOt3QBMJWW6cOmg7V49d4bsXFBNiovtblUD35gPdVNB2rhpE+buekaT6aJiCiQeDI2ArB70VwmkyEyPAwpsZH4Vf738PMfjEaUsn9Y6CjW27qwXVxeL2iWPmAZt+/Jtj0LRuh+EBERERER+QMm3CWg1WrR2Nho8ZhOp4NS6T8ng2JPWv/f3d/DtPQ46PR9WLOjEsVlZ61qs+6q0uL50ioU5KZi44JspMRGAgA+O9nfBG3TgRpMT4/D4pxklK7Iw5odldhq5+Q8MjwMy3JTsWFBtrmW7KaDtS69x93VWibciYiCUCDEWbFMtcaFxMYDNU0uxcYIhRzvPjDJpYvmprFAxfkW/GDzF7jabVlXfXCsH1jzfI/IpqemuK1UWLYUEjLmYO11IiJpBHOsJSIi8jYm3CVQVFSE9evXWz2u0YhrhiYld09aTcn2/C1lDmffmRqhVV5qQ+mK/uZjd2UlouSEFoZrjduA/pP+txZNwEv5WU7rqbbr9BaN25wR23SNM+iIiPybP8dZKZiamroSGwHgn+danMZGmQzY9sAkLMpJFjQWmJgSi9//6GYseeew1Qx6W7EeAFpFxl9bcVvsmIOIiNwT7LGWiIjIm9g0VQK2ZgMsXboUSqUSJ06cMD/m7QYCrpy0mszMjLd70iq2EdrF1m6MWLfbfMLuauO2i63dSI6JQMX5FkzauN/l152TpUHpCtebrjlKQAD9Mwr9dQZdKDajIOnxe0RS8XTTVFfjbKhw2my14woKbxmFLT+5XfRY4Km/fYvXD9ifRT+wWfncoq9QckL4LHdbcVvsmCOU8Lc7uPH4Bjd/bprqjVjLpqlE7mPTVPJXoXjcHcVaud1nyGUajQbjxo2z+E+lUiEszLdJ2jU7Kl06wQaAvaebsHZHpdXjYhuhNXf2IDkmAnOyEs2Pmxq3jX75U8wtKsOHRy+i4nwLTjV2oOJ8Cz48ehFzi8rw3pHzAICapk5Brzt7rOuzL0wJiM2H6mwm24HrM+jyt5RBpxdWm5aIiKTjr3HWV0zNVu2RyYBHckcCED8WeGJGOgb1RrVgivUAsFxk09PBcdudMQcREbmHsZaIiEg6TLgHKalOWt1phAYAK26xPgk3GIGSEw344R8OY9LG/Rjz8meYtHE/fviHw9h7usmcRHi77KzLr2mqb+sqKS5GEBER+crGBdmYmRlv87kfjEnAqDi1W2OBjPgoi4vmgw2M9fOzkxAZLiwhYytuuzvmICIiIiIi8gdMuAcpd09ajdeKw7rTCA0Avj8iVtB6y3L769Q2dvRgV1WD4PVcwRl0REQU6EzNVldNS7NKdt8/cQQA98cCy/NGOlzWFOuVCrnDGfe22Irb7o45iIiIiIiI/AET7kHK3ZPW3muF191thDYiNsLuDLzB7hgdjw0LsgEAQyMUuC1D+Hqu4Aw6IiIKBqZmq+deuBOvzM/GnCwNbk0bhvFJQwC4PxbIcNBvBbBseupoxv1g9uK2lM1XiYiIiIiIfEXh6x0gz3D3pNU0wz1GJe4rEn1tPZlMhtIVeVizoxJbryW65TIg/3uJWJY7EpnxakSrFFAp5EiOiUDYtYKxijC51XqDmW5H3yCwqak7CYi1MzNFrUtERKGpubMHxeX12FOtRatOjxiVArPHalCQm4o4F+/MciZOrcTamZnmGGVqWOTuWCDawRhALgNmjU4AAPQZjFApwvDpylvwzYVWvPSPavzf8UvmpukmzuK2u2MOIiIiIiIif8AzlCDl7klrV68BKkUY7hyrwa4q4QlqUyO08y1dSImNxFuLJuCl/Cx8c6EV4xKHYHhMhNNtmGbuvZSfha3l9dhdrUWbTo9olQJ3ZWlQMMX1MjIDcQYdERF5mk7fhzU7KlFcdtaqOfeuKi2eL61CQW4qNgq8aCyEu2MBW3FPLgOemJGBJ6anI/3aDHjTxXK5TIaJKbHYXjAFLV29+PO/zuOPh89hiItx290xBxERERERkT9gwj1IuXvSevxSG6alx2FZbipeKK0SVIJlYCO0R98/itEJUXhqRgbS4tW449psOCEz/gbP3HMXZ9AREZEn6fR9yN9S5rA5d1dvHzYfqkPlpTaUrsjzSNLd3bFATVOnxeMRCjnefWASFuckA3Aeyx+9JQ2P3pLm8uu6O+YgIiIiIiLyB6zhHqSW5aZaNVFzZuBJ6/rPTqK3z4A4tVJ0I7Sapg6UnGjAGwdrUXGhBUB/EmL19mNI+dVu/GxnJXZVafFl3RXsqtLimZ2VGLFuD1ZvPwadXliNdSHuFDkTjjPoiIjIFWt2VDpMtg+093QT1u6o9Mh+uDsWeLvsrPlxuQzYdi3Z7qlY7s6Yg4iIiIiIyF8w4R6k3E2UA0B4WP/XQ2wjtE0HamEw9t96vnBCsnnG3+ZDdVa315uYZvzlbynzWNLd3QQEERGRPc2dPYKbbBeX16O5s0fyfXF3LLCrqsH8+BMzMrAox/OxXIrmq0RERERERL7EhLsEtFotvvvuO4v/dDod+vo8N0vbFe4kyh+eMhIAUK1th0oRhtIVeVg1Lc1uojoyPAyrp6WhpLD/tviK8y0oKjvbX+t1ejoA/5nxxxl0RESBxV/jrC3Fdhp9O9LV2yc4Se8qdy+aA/BqLBcz5iAiIvcFUqwlIiLydyxKLYGioiKsX7/e6nGNxrclSEwnrWt2VGKrnQSAaeb2hmtN26q17dh0sBYPT+lPSD+z4zh+MmUkFuckC2pgOjElFvXP34m9p5qQHq8WPeNvXX6WVU13KWxckI3KS20uJQ04g46IyLf8Nc7asqdaeM10ANhdrZWsV8lAYsYCPXoDUodGYk6WBm06PWaNTvBqLPdU03QiIrIvkGItERGRv2PCXQKFhYVYuHChxWNLly6FUun7k0GhJ60JUUpEKMIw5FqD0MbOXix55zAen56OJ2dkID1ebbeBaU1TB944WAsYgZ/dMRo3xEZg0bXGau7M+POXBAQREfmGP8fZwVp1elHrtYlczxVCxwJKhdxmrPd2LJe6aToREdkXSLGWiIjI3zHhLgGNRmN15V+lUkEu95+KPa6etJrKrbRfO/GPUSlgMAKvH6jFGwdrMScrEcvzRiIjXo1olQJtOj1qmjrxdtlZ7KpqMN9+XqVtxyeFU83b9bcZfwBn0BERBYpAiLMmMSpxQ6tokesJISaB3WcwwmA0IjxM7pexnIiIpBFIsZaIiMjfMeFOVjYuyEbZmasAgDvHarCrqv8E22AESk40oOREg6PVAQCzxlgO1vxxxp8JZ9AREZFUBsZNIWaP9c9b9sPkMoRBBsC/YzkREREREZG/4OVqsqJShOGWtKEA+puF2mtaZo+pFMtA/jzjj4iISCpSxU1/xFhORERERETkHBPuZFN4WH+ywFRiRohludalWO4UOXPPX2f8ERER2SJV3PRHjOVERERERETOMeFOTm1ckI2ZmfEuLXvH6HhsWJBt9Xgwz/gjIiIaSIq46Y8Yy4mIiIiIiJxjwp2cUinCULoiD6umpdk90Y4MD8PqaWkoKcyDSmG9TDDP+CMiIhpIirjpj6SK5c2dPXhl72nkb/kKt75xEPlbvsKGvafR3Nkj5e4SERERERH5BItqkktUijC8tWgCXsrPwtbyeuyu1qJNp0e0SoG7sjQomOI8Ob5xQTYqL7Vh7+kmp68XSDP+iIiIBpMibvojd2K5Tt+HNTsqUVx2Ft16g8Wyu6q0eL60CgW5qdi4IDtgLkIQERERERENxoQ7CRKnVmLtzEysnZnp8jo6fR/KzlzFbZnxKF2RhzU7KrG1vB5dvX1Wy5puPd/Ak20iIgoCYuKmPzPN3hcay3X6PuRvKXOYqO/q7cPmQ3WovNSG0hWBM/OfiIiIyFtka3f6eheChnHDfF/vAgUxJtzJ40yz2d59YBIW5yQH5Yw/IiKiUCFm9v6aHZUuzYoHgL2nm7B2RyXeXDTBE7tPRERERETkUUy4kyDNnT0oLq/HnmotWnV6xKgUmD1Wg4LcVMTZSJQ3d/Zga3k9uvUGLHnnMB6fno4nZ2QgPV5td8ZfbVMnEqOViFLy60lEROQrtmL+XWM1ePTWUYhSKlyevW8aCwhRXF6PdflZNscWRERERERE/owZTQlotVo0NjZaPKbT6aBUBs9Joti6q8UDbjc3GIHXD9TijYO1mJOViOV5I5ERr0a0SoE2nR41TZ14u+wsdlU14Nf3ZAfN7fdEROSeUIiz/sRZzP//SquwLDcVr96bjfAw52Vfiu2UnnGkq7cPW8vrORYgIvISxloiIiLpMOEugaKiIqxfv97qcY1G44O9kZ47dVf3VGutljUYgZITDSg50WB3e7urtTzJJiIiAMEfZ/2JqzH/rUN1OO5irXVbYwFXcCxAROQ9jLVERETSYcJdAoWFhVi4cKHFY0uXLg2a2QDu1F1t1elFvWabyPWIiCj4BHuc9SeeqLXOsQARkf9jrCUiIpIOE+4S0Gg0Vlf+VSoV5HK5j/ZIOmLrrr52341QyOWIUYn7ikWLXI+IiIJPMMdZf+KpWuscCxAR+T/GWiIiIukwepJDQuuuymXAHaPj0dXbX/P1zrHibkGcgyAj2wAAIABJREFULXI9IiIiEmfvqSbo9OJqrTvCsQAREREREYUSJtzJIVfrrsplwFO3ZeDUc7Pw8SN55llpy3JTERnuvKHaQJHhYViWmyp4X4mIiEi8RTnJOPXcLDx1WwZkMtfX2+1krMCxABERERERhRLeq0sOuVJ3NUIhx7sPTMLinGQA129Jf2BSCobHRKAgNxWbD9W5/JrLclMxzMGt6URERCRec2cPisvrsadai1adHjEqBWaP1aAgNxXp8Wq8eu+NmJ4ehwe3HUG33uB0e85qrceplRwLEBERERFRyGDCnRxyVndVLgO2PTAJi3KSodP3Yc2OShSXnUW33oBzLd149d4bsXFBNiovtbnUhO2O0fHYsCBbqt0nIiKiawbH6YF2VWnxfGkVCnJTsXFB9rWL6JOw5J3DMBgdb9eVWuscCxARERERUahgSRlyyFnd1SdmZJiT7flbyrD5UJ35JH7TgRp8ePQiVIowlK7Iw6ppaXZvKY8MD8PqaWkoKcyDSiHstnMiIiJyzFacHqyrtw+bD9Uhf0sZdPo+LM5JxuPT051u25Va6xwLEBERERFRqOAM9xDl6HbyuAG3cC/LTcULpVU2G6fKZcAT107E1+yotJq1ZjACD247AqC/3MxbiybgpfwsbC2vx+5qLdp0ekSrFLgrS4OCKbx1nIiIQpursVkMW3Hanr2nm7B2RyXeXDQBT8xIxxsHa+3OchdSa12lCONYgIiIiIiIgh4T7iFGyO3kKkUY4tRKLMtNxVs26q7mfy8R6fFqc812W7r1Bix55zAen56OJ2dkID1ejbUzM7F2ZqYn3h4REVHAERqbhXIUp+0pLq/HuvwsZMRHYU5WIkpONNhcTkyt9Ti1kmMBIiIiIiIKWiwpE0LE3E4OAK/deyNmZsZbLbssdySA/pNyWzPgTQxG4PUDtRj98qeYW1SGD49eRMX5Flzp6pXgXREREQUusbFZCGdx2t5rmpL0y/NG2lyGtdaJiIiIiIiscYa7BLRaLRobGy0e0+l0UCr967ZosbeTK8LkKF2RhzU7KrF1wEl7ZrwaALCnWuvSNg1GoOREg3mW3JwsDUpXTBXxToiIKJQESpwVQ2xsFsLVOD3Y7mot1s7MRMa1eG9iKiOzQeSMeyIi8j/BHGuJiIi8jQl3CRQVFWH9+vVWj2s0zpuIeYs7t5PHqZU2664mRPUPvlp1elH71CZyPSIiCi2BEGfFcDc2u8rdOJ00RIVb04ax1joRURAL1lhLRETkC0y4S6CwsBALFy60eGzp0qV+NRvAndvJB9ZYtVV3NUYl7msULXI9IiIKLYEQZ8WQKjY7426cviE2Aoceny5qG0REFBiCNdYSERH5AjOeEtBoNFZX/lUqFeRy/ymR7+7t5I7cOVaDXVXCtz97LGdLEBGRc4EQZ8XwZGweiHGaiIicCdZYS0RE5AuMniHCk2VfluWmIjJcWA1XU/1XIiKiUOWtkmyM00RERERERN4TUgn3trY2vPTSS5g8eTISExMxcuRIzJ8/Hx9//LGvd83jPFn2JU6tRIHAk/Jluaz/SkREoc1bJdkYp4mIiIiIiLwnZErKaLVazJ07F1VVVebHuru7sW/fPuzbtw9PPfUU1q1b58M9tK25swfF5fXYU61Fq06PGJUCs8dqUJCbKqhhmqdvJ9+4IBuVl9qw93ST02XvGB2PDQuyBe8LERGRJ0gVa4XyZqkXxmkiIiIiIiLvCJkZ7s8884xFsn3ChAlISkoy//3aa69h9+7dvtg1m3T6Pqzefgwpv9qNn+2sxK4qLb6su4JdVVo8s7MSI9btwertx6DTu9ZszdO3k6sUYShdkYdV09Lsvk5keBhWT0tDSWEeVAph+0JERCQ1qWOtUN4q9dJnMDJOExEREREReUlIzHCvrq7GRx99ZP771VdfxfLly6HT6TBv3jyUl5cDANavX4/Zs2f7ajfNdPo+5G8pczgLrau3D5sP1aHyUhtKVzg/MTbdTr75UJ3L+yH0dnKVIgxvLZqAl/KzsLW8HrurtWjT6RGtUuCuLA0KpvD2dCIi8g+eiLVCeSM26/R9WPD211hxyygszklmnCYiIiIiIvKwkEi4D0y2JyUloaCgAEB/1/Wnn34a999/PwDg66+/xrlz5zBixAif7KfJmh2VLt3yDQB7Tzdh7Y5KvLlogtNlvXU7eZxaibUzM7F2Zqao9YmIiDzNU7FWKE/H5jU7KvGPai32nNTi8enpeHJGBtLj1XbjdGNHDxKimHQnIiIiIvI12dqdvt4Flxg3zPf1LvidkCgpc+TIEfO/J06cCLn8+tueOnWqxbIVFRVe2y9bmjt7sLW8XtA6xeX1aO7scbocbycnIiLybKwVypOxeeD7NBiB1w/UYvTLn2JuURk+PHoRFedbcKqxAxXnW/Dh0YuYW1SGtP/a45H3SUREREREFCpCYob7wNrtycnJFs/Fx8dDpVJBp9OZl50/33dXZorL69HVK6xWbFdvH7aW17s0o5xlX4iIKNR5OtYK5anYbOt9GoxAyYkGlJxosLuep94nERERERFRKAiJhHtzc7P53zExMVbPR0VFmRPuA5f1hT3VWlHr7a7WCjo5ZtkXIiIKVd6KtUJJHZv99X0SEREREREFs5BIuHd0dJj/HR4ebvX8wMcGLmtLbm6uS69ZU1ODtLQ0XL582fyYVuv8xLdR2wB0XHXpNQZq0hotXouCmyvfJSJn+D0iqQj9LqnVarvPuRNnXRXssdZ0PIL9fYYq/nYHNx7f4ObN4+vrWGsLv99E5E843pXO5cuXQ/I33lGsDYka7kaj0eHzMpnMS3viXLRK3DWQISLXIyIiCjWhEmtD5X0SERERERH5k5A4o4qKikJLSwsAoLe31+r5gY9FRUU53FZ5eblLr5mbmwu5XI6kpCSr52w9ZjJvchb2XhRWVxYA7pmc5XC7FJx4zEkK/B6RVFz9LrW1tdl9Too460yoxNp5kyND4n2GKh6j4MbjG9y8cXx9HWsdq5V4e0REwjHWSmfgZxlKn6ujWBsSM9yHDRtm/nd7e7vV8wM/oLi4OK/skz3LclMRGR4maJ3I8DAsy0310B4REREFl1CJtaHyPomIiIiIiPxJSCTcMzIyzP++ePGixXNNTU3o6ekx/52VleW1/bIlTq1EgcAT3WW5qRimVnpoj4iIiIJLqMTaUHmfRERERERE/iQkEu4TJ040//vw4cPo67t+e/XXX39td1lf2bggGzMz411a9o7R8diwINvDe0RERBRcQiXWhsr7JCIiIiIi8hchkXCfN2+e+d8NDQ0oLi4GAPT09OD11183Pzd58mSMGDHC6/s3mEoRhtIVeVg1Lc3ureCR4WFYPS0NJYV5UCmE3S5OREQU6kIl1obK+yQiIiIiIvIXIdE0dfLkyZg1axY+/fRTAMDatWvxv//7v9Bqtbh06ZJ5uV/84he+2kUrKkUY3lo0AS/lZ2FreT12V2vRptMjWqXAXVkaFEzhLd9ERETuCJVYGyrvk4iIiIiIyB+ERMIdAH73u9/hnnvuQVVVFQDg2LFjFs8//vjjmDNnji92zaE4tRJrZ2Zi7cxMX+8KERFRUAqVWBsq75OIiIiIyBnZ2p2+3oWgEQifpXHDfK++Xsgk3JOSkrBv3z5s2rQJ27dvR11dHVQqFW666SasWLECCxYs8PUuEhEREREREREREVEAC5mEOwCo1Wo8++yzePbZZ329K0REREREREREREQUZEKiaSoRERERERERERERkaeF1Ax3T9FqtWhsbLR4TKfTQalkAzIiIiJ3Mc4SERF5FmMtERGRdJhwl0BRURHWr19v9bhGo/HB3hAREQUXxlkiIiLPYqwlIiKSDhPuEigsLMTChQstHlu6dClnAxAREUmAcZaIiMizGGuJiIikw4S7BDQajdWVf5VKBbmcJfKJiIjcxThLRETkWYy1RERE0mH0JCIiIiIiIiIiIiKSABPuREREREREREREREQSYMKdiIiIiIiIiIiIiEgCrOHuIefOnUNvby9uvPFG82N6vR4AoFDwYyf38LtEUuD3iKQi9Ls0atQo/OUvf3HrNW3FWerH/7eDG49vcOPxDW7ePL7+GGtN7x/3vCLJ9oiIiFzlifNGR7GWIzkPUavV6OzshMFgMD9WV1cHAMjIyPDRXlnr6+vDlStXMGzYMISFhfl6d/xufwD/3Cd/+y7542fEfXLO375HgP99RoD/7ZO/7Q/gm++SrTgrJU9+zp4+hp4+Hp7ef27fMR7f4N4+j29wb9+Tx9cT+y51rDW9/+998nNJtieEr8dPvnx9X752TU0NAN+db4Tq5+7r1+dx53H3Nlfet2fOGu2Ttba2Gr38miErNzcXAFBeXu7jPbnuu+++Q15eHsrKyjBu3Dhf747f7Q/gn/vkb98lf/yMuE/O+dv3CPC/zwjwv33yt/0B/PO75C5Pfs6ePoaePh6e3n9u3zEe3+DePo9vcG/fk8fXH8cHg/lyvODrz8eXr+/L1/b1GDFUP3dfvz6PO4+7t/n6c7eFNdyJiIiIiIiIiIiIiCTAhDsRERERERERERERkQSYcCciIiIiIiIiIiIikgAT7kREREREREREREREEgh77rnnXvT1ToSKoqIiAEBhYaGP98SSWq3GjBkzEBUV5etdAeB/+wP43z7543fJ3z4jgPvkjD9+jwD/+oxM/G2f/G1//PW75C5Pfs6e3LY3joenv4Pcvn08vsG9fR7f4N6+p4+vv40PBvP1eMHXn48vX99Xr+3rYw6E5ufu69fncedx9wVff+6DyVpbW42+3olQ4etOzRQ8+F0iKfB7RFLhd8m/8HgENx7f4MbjG9xC/fiG+vsPRTzmoYnHPTTxuFtiSRkiIiIiIiIiIiIiIgkw4U5EREREREREREREJAEm3ImIiIiIiIiIiIiIJMAa7kREREREREREREREEuAMdyIiIiIiIiIiIiIiCTDhTkREREREREREREQkASbciYiIiIiIiIiIiIgkwIQ7EREREREREREREZEEmHAnIiIiIiIiIiIiIpIAE+4e1tbWhpdeegmTJ09GYmIiRo4cifnz5+Pjjz/29a6Rj5w8eRJPP/00br75ZiQmJiI5ORlTp07Fiy++iMbGRpvraLVa/PznP0dOTg40Gg3S09OxZMkSfPHFFw5fq7a2FqtWrcK4ceOQkJCAMWPG4OGHH8bx48c98dbIx06ePInExETExMQgJiYGZ86csVpG7G+S2O8gBYavv/4ay5cvN/9WZGZm4sc//jGOHj1qdx3+Lklr37595v93586da3c5b3/ux44dw8MPP4zRo0cjISEB2dnZeOyxx3D27FlR7zNUBEKs57EV78yZM3jmmWfMxzc1NRX5+fnYtm0bDAaDzXW8HX/5WysNfxxbBdqx5fmw/2PMIoC/d6EiEM77guX/d1lra6vR1zsRrLRaLebOnYuqqiqbzz/11FNYt26dl/eKfOlPf/oTnnjiCfT09Nh8PikpCR999BHGjx9vfuzkyZOYN28eLl26ZLW8TCbDK6+8gsLCQqvnysrKsGjRIrS1tVk9Fx4ejnfeeQfz5s1z492QPzEajZg7dy4OHTpkfuzYsWMYNWqU+W+xv0liv4MUGNavX4+XX34ZRqP1cMDebwV/l6TV0dGBu+66C8eOHQMATJ8+HZ988onVct7+3Hfu3ImHH34Yvb29Vs/FxMTgo48+wpQpU1x6j6EkEGI9j614//jHP/DQQw+hq6vL5vNz587FH//4R4SHh5sf83b85W+tNPxxbBVox5bnw/6PMYsA/t6FikA47wum/9+ZcPegn/zkJ/joo4/Mf0+YMAENDQ24fPmy+bEPP/wQs2fP9sXukZcdP34cM2bMgF6vB9D/IzNu3Di0tLRYXD0eNWoUvv76a0RERMBoNGLWrFk4fPgwAEAul+Omm25CbW0trl69CgBQKBQ4ePAgsrOzzdvo6upCbm6uebtKpRLjx49HVVUVOjo6AACxsbH45z//icTERK+8f/Ks4uJiPPXUUxaPDR4kiflNEvsdpMCwdetWPPnkk+a/hw4dirS0NBw/ftw8yBk6dCgqKioQHx8PQPx3gr9LtrW3t2PJkiU4ePCg+TFbCXdvf+6XL1/G97//fbS2tgIAhgwZgjFjxuD48ePmk/K0tDSUlZUhMjJS6o8lYAVCrOexFe/KlSvIyclBS0sLgP7PPDs7G/X19WhqajIvt2bNGrz44ovmv70Zf/lbKx1/G1sF4rHl+bB/Y8wiE/7eBb9AOO8Ltv/fWVLGQ6qrqy1+jF599VUcOnQI3377LXJzc82Pr1+/3he7Rz7w1ltvmQczQ4YMwf79+3Hw4EEcO3YM//mf/2le7syZM9i+fTsA4NNPPzX/uAHA+++/j3379uGbb75Beno6AECv1+M3v/mNxWu999575h83lUqFzz//HHv37kVZWRmGDh0KAGhpacHmzZs994bJay5evIhf/vKXDpcR+5sk9jtI/q+trQ0vvPCC+e/77rsPJ0+exP79+7Fnzx4olUoAwNWrV/H++++bl+PvknS++OILTJs2zSLZbo+3P/ff/va35sFuQkICysvLsW/fPuzevds8c7eurg7vvfeeyHcfnAIh1vPYirdt2zZzsj0mJgYHDhzA/v37cfz4ceTl5ZmXKyoqMp+8ejv+8rdWGv44tgq0Y8vzYf/HmEUAf+9CQaCc9wXb/+9MuHvIwB+jpKQkFBQUAOj/sj399NPm577++mucO3fO6/tH3vf555+b//1v//b/t3fnQVFciR/Av5yCyHAZUC5RvABBQVZQiS7uekRNMOKJR0UtxDsumo2J+ou3cTWuqFGi4mpc8HbVeB/lRQxBBRcUEaKAMUYROQ2iCPz+oHg7PYMH4zDMwPdTNVX9uvvN9HT3vGtevzcUHh4eIjx79myYmJiI8LVr1wBI7yMfHx/xb7GVlRXCwsLEthMnTqCkpESE5eP1798fnp6eAABnZ2eEhIRUux/prtmzZ4sGgFdRNU1S9R4k7Xf48GFJL821a9eiUaNGAABvb29MnjwZY8eOxZw5cyTpFdOld/f8+XMEBQWhX79+yMjIeKs4mj7vVRVrABg1ahQcHR0BVN4bffv2FdsOHjz4VsffUOhCXs9r+258fHxgZmaGMWPGwM3NDQDQuHFjBAcHi32Kiorw+PFjAJrPf5nWqoc2lq107dqyPqz9mGcRwPSuIdCVel99+72zwb2WJCQkiGVvb2/o6//vVPv7+0v2TUxM1NhxUd2ZP38+vvrqK0ycOBF9+vSRbDMwMJAUaKp6RcnfR76+vpI48vfRH3/8IRlLTf6eel28jIwM5OXlqfJ1SEscOnQIP/zwAwCIf4uro2qapOo9SNpPvpLl4eGhdP8sXrwY69evx5dffon3339frGe69O6ePXsmOf8ffPABPvjgg9fG0eR5z83NRWZm5lvFYxlGStvzel7bdzNt2jScP38eDx48UOoNePfuXbFsYmIiHpHWdP7LtPbdaWvZSteuLevD2o95FjG9axh0od5XH3/vbHCvJfI3W/PmzSXbbGxsxL9JivtS/RUSEoJZs2Zh1apVSpNDJCYmijGwgMpx8srLy5Geni7WKd5HDg4OknDVffTgwQPxGA4ANGvWTLKfvb29JJyWlqbCtyFtkJ+fj88++wxA5T/V8o+JKVIlTVL1HiTdkJKSIpadnJyQn5+P5cuXY8iQIRgzZgwiIyNRXFwsicN0Sb1sbGzw9ddfY9euXbCysnrlfpo+74rn/3XxCgoK8Pvvv7/y2Bsabc/reW3VQ09PTzREZWdnIzIyElFRUWJ7aGgoDA0NAWg2/2Va++60tWyli9eW9WHtxzyrYWN613DoQr2vPv7eDev6AOqr3NxcsSyTyZS2m5mZ4fnz50r7UsPz8uVLyRh5ANCnTx8UFRVJZotXvI/MzMwk4ar7SH7SruriNWnSpNp4pHvmz58vZgv/29/+hnbt2r1yX1XSJFXvQdIN8oWU3NxcBAQE4N69e2LdoUOH8O2332Lfvn3i3mK6pB7GxsZYs2YNRo4c+VYT/mj6vCvGs7CweOPnKRbCSUpb8npeW/U6fvw4hg8fLlk3bNgwLFy4UIQ1mf8yrX132lq20sVry/qw7mKe1TAwvWs4dKHeVx9/7+zhXkuqZt4FIAb3lye/Tn5faljKy8sRFhYmmTCvT58+8PT0VPqHUfE+UgxX3Uc1jff06VPVDp7q1KVLl/D9998DAFq3bo3Zs2e/dn9V0iRV70HSDfK//djYWEmhq0pWVhaCg4NFDyemS+rRuHFjjB8//q0a2wHNn3fF33JVT903xaPqaVNez2urXorppouLC4YNGyY5r5rMf5nWvhttLlvp4rVlfVg3Mc9qGJjeNSy6UO+rj793NrjXkoqKitdu19PT09CRkLYqKytDaGioZBZomUyG1atXA1D9HnpTPNJ9JSUlmD59urjWERERksf4qqPK/cR0rH4rKyuThP39/XHlyhVkZWVh0aJFYv29e/fEDPJMl+qGps87f/vqo215Pa+teuXk5MDb2xutWrUCAGRmZmLIkCGSPFqT+S/TWtVpe9lKF68t0xvdwzyrYWB61/DoQr2vPv7e2eBeS+Qfd6iaYESe/DrFRyOo/istLcUnn3wiKcwYGRlh69atcHZ2BlDZA1IxzuvCVffRm+K9fPlSElZ8pIe03/Lly8XkbGPGjJFMbPIqqqRJqt6DpBvkf/v6+vrYunUr2rVrBysrK8ycORP9+vUT248cOQKA6VJd0fR5V/wtK+6n+D68XtXTxrye11a95s6diwsXLuD69ev45ptvxPrt27djz549ADSb/zKtVZ22l6108dqyPqxbmGc1HEzvGh5dqPfVx987G9xrifzkZ9U96lBUVCSWra2tNXJMpB1KS0sxevRoHDp0SKwzNjbGtm3bJLPDm5ubSx6jUbyP5O8h4H/3keLEe4rx5CewkI9HuiEpKQnr1q0DADRt2hSLFy9+q3iqpEmq3oOkG2xsbMSyvb09HB0dJdu7desmljMyMgAwXaormj7vivEU35+//TfT1rye17b2hIaGwsvLS4R37doFQLP5L9Na1ehC2UoXry3rw7qDeVbDwfSuYdKFel99/L2zwb2WVD1aCkBp9twnT55IJh943eQUVL9UVFQgNDQUx48fF+tMTU0RExODDz/8ULKvgYEBXFxcRFjxPnrw4IEkXHUfOTg4SMYFVoynGG7btm3NvwjVmaNHj4p/e3NycuDi4gKZTAaZTIYBAwZI9vX09IRMJkN0dLRKaZKq9yDpBjc3N7Esf/2ryPcyKC8vB8B0qa5o+ry7urpK1ldNqFVdPAsLC62fsEjTtDmv57V9dyUlJbhz5061k7S1aNFCLP/6668AVKsTMK3VLF0oW+nitWV9WDcwz2pYmN41TLpQ76uPv3c2uNcSb29vsXz16lXJmElXrlx55b5Uvy1ZsgQHDhwQYVNTU+zZs0fSc0Bep06dxPLPP/8s2Xb16lWxbGZmJhI4fX19eHp6vlW8li1bKv2TSNpN1THRVE2TVLkHSTd07dpVLGdnZ4tHS6vIh6seJQaYLtUVTZ73Zs2aoVmzZmJbXFzcK+OxDKNMm/N6Xtt306lTJ9ja2sLb21uMcVqloqICqampImxrawtAs/kv01rV6ELZShevLevDuoF5VsPC9K5h0oV6X338vbPBvZbI/zuYnZ2NrVu3Aqj8NykiIkJs8/X1VXqcg+qn+Ph4yfieALBp0yb07NnzlXEGDhwolhMTE3Hy5EkAQEFBAb777juxrW/fvjAxMak23vHjx5GUlAQA+O233xAdHS22DRo0SMVvQ3WlRYsWCAgIqPYln7EBlelLQEAAbG1tVU6TVL0HSfsFBwdLHhOcMWMGCgoKAAC//PKLJK3o3bu3WGa6VDc0fd7l04zo6Gjcv38fAJCcnCzpBRcUFPRO36u+0YW8ntdWdR06dBDLkZGRSExMFOGVK1ciPT1dhKvGQ9V0/su0tuZ0pWyla9eW9WHtxzyr4WF61zDpSr2vvv3e9QoLCzkFcC35+OOPcfbsWRH29PTE48ePJY9G7N27F3379q2LwyMNGzJkCE6dOiXCJiYm8PX1rXbfwMBAfPbZZ3j58iW6d++OW7duAaj8t7Bjx47IzMxEXl4egMpHfS5duiSpBBYUFMDHxwePHz8GADRq1AgeHh5IS0sTY2jJZDJcvXpV8i8i6bZLly5JMqnk5GTJ4+2qpEmq3oOkGxYsWIDVq1eLsEwmQ6tWrXDr1i08f/4cAGBpaYm4uDjY29sDUP2eYLr0epMmTUJMTAwAICAgAMeOHZNs1/R5z8zMRJcuXVBSUgKgcmKitm3b4ubNm+LecHZ2Rnx8vNLkSA2ZLuT1vLaq++9//4vAwEDxOL6BgQHc3d2Rn58vhpABKofSuHz5sjh/msx/mdaqlzaVrXTx2rI+rN2YZ5E8pnf1my7U++rb75093GtRZGSkZIiF5ORkSWI0ffp0Fi4aiIcPH+L06dOSdSUlJYiNja32dfv2bQCAoaEhduzYIRKh8vJyJCYmisQNqJxlXLGh08LCAv/+979hbm4OAHj+/DkSEhJE4mZkZIQNGzYwc2pgVEmTVL0HSTfMmzcPQ4cOFeHCwkJcv35dFGiq0pKqQhfAdKmuaPq8u7i4YNOmTTAyMgJQOeFRQkKCuDfMzc0RFRWlE4VdTdGVvJ7XVnUdO3bEd999J3pxlZWVITk5WdLY3qZNGxw4cEBy/jSZ/zKt1Sxe29djfVh7Mc+immJ6p9t0od5X337vBl988cWCuj6I+qpJkyYYPXo0jI2N8fjxYzx9+hRmZmbw8/PD0qVLMWXKlLo+RNKQs2fPSsbGexMPDw989NFHACpnlA4JCUFZWRkeP36M4uJiWFhYoEePHli3bh0GDx5c7Xs4OTlh2LBhePbsGXJyclBSUgLXTLw9AAARpElEQVQbGxv07dsXmzZtQo8ePdTy3Uh73Lt3T/SQBYApU6bA0tJShFVNk1S9B0n76evrIygoSPTQzM/PR3l5OZycnDB06FBs3rwZXl5eSvGYLqnfkSNHkJycDKCy58aoUaOU9tH0eW/fvj0+/PBDFBQUiAmxmjdvjqCgIGzdupV/tCnQpbye11Z1Hh4eGDRoEF6+fIm8vDwUFxfDxMQEHTp0wNSpU7Fu3TrY2dlJ4mg6/2Vaqz7aVrbStWvL+rD2Yp5Fipje1W+6Uu+rT793DilDRERERERERERERKQGHFKGiIiIiIiIiIiIiEgN2OBORERERERERERERKQGbHAnIiIiIiIiIiIiIlIDNrgTEREREREREREREakBG9yJiIiIiIiIiIiIiNSADe5ERERERERERERERGrABnciIiIiIiIiIiIiIjVggzsRERERERERERERkRqwwZ2IiIiIiIiIiIiISA3Y4E5EREREREREREREpAZscCciIiIiIiIiIiIiUgM2uBMRERERERERERERqQEb3ImIiIiIiIiIiIiI1IAN7kREREREREREREREasAGdyIiIiIiIiIiIiIiNWCDOxHVS5cuXYJMJhOvrKysuj4kIiIinRUdHS3JV4mIiAjIy8vDnTt36vowiEjLsMGdiIiIiIiIiIjoLb148QLr169Hx44dERcXV9eHQ0RaxrCuD4CIqDZYWFggICBAhE1MTOrwaIiIiHSbra2tJF8lIiJqqJ48eYJevXohIyOjrg+FiLSUXmFhYUVdHwQREREREREREZG2u3PnDry9vUV448aNGDVqVB0eERFpGw4pQ0RERERERERERESkBmxwJ6I6IT+pafv27QEAx48fx4ABA+Do6AhHR0cMHDgQR48eVYorP2lbWloaFi5ciJYtW8LW1hY+Pj64ffv2W02a+uTJEyxevBgBAQFwcHBA8+bN4evri7CwMCQlJb3y2GNjYxESEgJXV1fY2NigdevWGDZsWLXHSkREpI0ePnyIuXPnolu3brC3t4eVlRUcHR0REBCAhQsXIicnR7L/qyZNVVz/uld0dLTkPQsLC7F8+XJ07doVzZo1g729Pfz9/fF///d/yM7O1sh5ICIiqolJkyZJercDwOTJkyGTydC/f3+x7vbt25g6dSo6deoEOzs7WFlZwdnZGT179sSqVatQUlIi9r1//z6cnZ1FfmlnZ4e7d++K7S9evIC/v7/Y/t577yE5OVlyDNnZ2Zg7dy58fHxga2sLR0dH9OzZE//4xz9QUFBQ7XepaVmAiN4ex3AnIq2wePFirFy5UrLu4sWLuHjxIqZNm4Zly5ZVG2/OnDk4c+aMCBcUFMDV1fWNFfW4uDiEhIQoFSLS0tKQlpaGnTt3YunSpZg+fbpk+6JFi7Bq1SrJuuzsbJw4cQInTpxAcHAwNm/eDENDJq9ERKSdUlJS0L9/f+Tm5krWFxYWIikpCUlJSThw4ABOnDiB5s2b18oxpKenIzg4GJmZmUrHlpKSgu3bt2Pnzp3o1q1brXw+ERFRbYmPj8egQYPw9OlTyfr8/HwkJiYiMTERhw8fxsmTJ2FqagpHR0f885//xLhx4wAAz549w8yZM3H48GEAwLJly5CSkiLe56uvvoKnp6cI//zzzxgxYgSePHki1pWUlIjP2r59O/bv3y86ugHaURYgqs/Yw52I6tyjR4+wcuVK6OnpwdXVFa1bt4aenp7Yvn79eqVecVXOnDkDQ0NDeHt7w8bGBoMHD35jY/eDBw8wYsQISWO7s7MzvL29YWxsLNbNmzcPly9fFuHvv/9e0tguk8ng4+MDOzs7sW7//v1YunTp2395IiIiDZs9e7aoYOvp6aF9+/bw8/OTVKgzMjIQHh7+xveqmkxV8eXm5ibZz8DAAK1btwYAFBcXY/jw4ZLG9jZt2sDLywtGRkYAgLy8PISEhODhw4fv+nWJiIjUpm3btujcubNkXZs2bRAQEABPT0+UlZVh/PjxorG9qq7q7e2Nxo0bizjXr1/H/v37RTg4OBgjR44U4fPnz2PHjh24evUqIiIixPpevXph6tSpIvzo0SOMHDlSNLbr6+vD3d0d7u7uok7966+/YsSIESguLhbx1FkWICJlbHAnojpXVlYGS0tLHD16FImJiUhISMDBgwdhZmYm9vn6669RUaE8x7OhoSFOnDiBCxcuIDU1FZ9//vkbP2/NmjWicGFgYICoqCjcuHEDFy5cwNWrV9GsWTMAQEVFhWhgf/HiBZYsWSLeY8CAAbh16xbOnz+P1NRUzJ49W2zbsGGDUk8BIiIibXHlyhWxvH//fsTHx+P06dNITU1FeHg4DAwM0KpVKwCVvexep3fv3jh27JjkFRMTI/njHACWL18OPz8/AMCOHTvwyy+/AAAaNWqEQ4cO4dq1a4iNjUV8fDzs7e0BALm5udiwYYPavjcREdG7Cg8Px5YtW5TWHTt2DCtWrMCNGzdgbGwMfX19mJqa4tKlS7hw4QIuXLiA5ORkWFlZiXg3b96UvM+qVavg4uIiwnPnzkVYWBjKysoAADY2NoiMjJTksWvXrhUdyaytrXHx4kXExcUhLi4OZ8+ehbm5OQDg7t27iImJEfHUWRYgImVscCcirTBr1iwEBASIcGBgIKZMmSLCWVlZuHXrllK8Xr16oUuXLgAqK+1NmzZ942cdOXJELAcFBWHo0KEi7OLiguXLl+Orr77C7t27RW+C+Ph4SS+7xYsXi8KLgYEB5s2bJ3osPHv2DOfOnXur701ERKRp8r3XIiMjcfz4cRQVFUFPTw/z5s3Do0ePcP36dezcuROmpqY1eu/S0lKMHj1a8uj7hAkTMGnSJBGuekQeAD766CMEBgaKsKurKyZOnCjCx44dq9HnExER1aWOHTsiISEBv//+O+Li4uDh4SG2lZeXS56OLioqksQ1NzfHli1bxBPb+fn5SE9PF9u//fZb0TmsinyeOn78eHh5eYmwr6+vpK4rn6fWZlmAiDiGOxFpiR49eiit+/Of/ywZ1z09PR3u7u6SfTp16lSjzykqKsL9+/dF2NfXV2mf4OBgpXWKvQ98fHxe+znJycnVvg8REVFdCw8Px4wZMwAAp06dwqlTp8Qj6P7+/vjrX/+Kv/zlL2jUqFGN33vGjBm4ePGiCAcGBirN0SKfp+7duxd79+595fulp6fj2bNnrOwTEZFOMTU1RWFhITZu3IiEhAQkJCRIGs8B4OXLl0rxunTpgr///e9Kc5hNmDBBMikrADx9+hRZWVkivGrVKqX5xuTJT7Ram2UBImIPdyLSEra2tkrrFCdnUZx0Bqh8rK4mFHsRyI+j9zqFhYU1+hwOKUNERNrqk08+wb/+9S+lXnc3btzAli1bMGLECLi7u2Pnzp01et/Vq1dL5lxp27Yttm/frjS3Sk3y1IqKCuTn59foOIiIiOrS2bNn4ePjg/fffx+ff/45du/ejTt37sDNze2t6q/Dhw+Hvr60uU5x3Hig5nXUvLw8sVxbZQEiqsQe7kSkFbKzs+Hg4CBZp1iAsLCwUIr3tg3mVaqGgakiX+ioUlFRoTT2rGLPusTExNcWluQnXyUiItI2wcHBCA4ORnp6Os6dO4fLly8jPj5ePAX2+PFjhIWFwcnJSTLk26scOnQICxcuFGFra2vs2bMHlpaWSvs2btxY5PFjx46VzJFSHZlMVpOvRkREVGcSEhIwbNgwlJaWQk9PDxMmTEBQUBA6d+6MJk2aoF+/frh8+fIr45eXl2PKlCkoLy+XrJ8zZw569OgBZ2dnsU6xjvrll19KhnB7E3WXBYjof9jDnYi0wsmTJ5XWKRZE2rVrp7SPYq+5NzE3N4ejo6MI//TTT0r7rF27Fi4uLujTpw8+/fRTlJWVoX379pJ90tLSYGlpKV5lZWWIjIzE+fPn8fDhQxgZGdXouIiIiDShtLQUaWlpOHLkCCIiIuDi4oKJEydi27ZtSElJwcWLFyV5mPzYsK+SkJCAsLAwMbl5o0aNEBMTIyZbUySfnyclJUnyU0tLS5w5cwb79u3DjRs38PLlS6VefkRERNqkKv8DgKioKJSWlgKonFh89erV6NmzJ5o0aQIAknnBqrN27Vr8+OOPSusLCwsRFhYmaYi3srKSjAl/48YNpTx1//79OHToEG7fvi32q42yABFJsfRKRFphzZo1OHr0qAjHx8fjm2++EeHWrVujTZs2avmsgQMHiuXTp09j27ZtInzv3j1s3LgRubm5iIuLw+3bt2FgYIDu3btLeul98cUXuHPnDoDKXgiLFi3CsmXLMHbsWPj5+SmNz0dERKQNDhw4AF9fX4SEhGD+/PlYunSpZAxZAwMDyf5vauy+f/8+RowYgeLiYrH/5s2b0a1bt1fGGTBggFi+fv06VqxYIRorUlNTMXPmTISHh6N///4IDw+v8XckIiKqTYpPMz958gRAZb3wt99+E+tTUlKQk5MDAHjx4gWWLVuGu3fviu2KY7gnJydLnvrq1asXQkNDRfjHH39ERESEJI58nnr48GHJ0G6xsbGYPXs2pk+fjt69e4vx3dVdFiAiZXqFhYUVb96NiEi9Ll26JCkcVHFxcYGJiQnS0tIk/95HRUWJGdblHy3fuHEjRo0a9cb3T05ORosWLQAADx48QNeuXSXDydjb28POzg4pKSl4/vy5WH/w4EH06tULABAREYH58+eLbUZGRnBzc0Nubq5kItbBgwdLGvGJiIi0RWlpKbp16ybp6da0aVO0bNkSRUVFuH37tmj81tPTw6lTp+Dn54fo6GhMnjxZxKkaEqZv376Sp8VkMhm8vLyq/WxPT0+sWLECBQUF+NOf/iTp5WdnZwd7e3vcvHkTL168AFCZz164cAEdOnRQ3wkgIiJ6R3/88QccHBxEfbVRo0Zwd3eHiYkJOnfujPXr14t9zc3N0bZtW2RkZCjN89W/f3/s2rULAFBSUoKePXvi1q1bIl5cXBysrKzQtWtXMTmqsbExzp49i44dOwIAsrKy4OfnJ/74BgBnZ2dYW1sjKSlJHKNMJkNCQgJsbW1VLgsQ0dvj31REpBWqxprLzMxEamqqpLH9008/FY3t6mBvb4/du3fD2tparHvw4AESExNFY7uenh4WLFggGtsBYMaMGRg/frwIl5aWIikpSdLY7u/vLylgERERaRMjIyPs2rULLVu2FOtycnJw5coVpKamigq2vr4+li5d+sYKtnxPPqCyIT42NrbaV3JyMoDKOVn27duH9957T8R79OgREhMTRWO7gYEBoqKi2NhORERax8zMDN27dxfh58+fIzExEenp6Zg+fbpkmJeioiJcu3ZNNLbLj8Eu/1T0ggULRGM7ACxZsgROTk5o0qQJ1q5dK9a/ePECoaGhKCkpAQC0aNECMTExMDMzE/vcu3cP169fF3VqMzMz7N27F7a2tgDUXxYgImVscCcirTB16lT85z//Qbdu3WBmZgZzc3P06NEDu3fvxuLFi9X+ef7+/rhy5QpmzZoFDw8PNG7cGEZGRnBycsKQIUNw6tQppcfY9fT0sGbNGhw8eBAff/wx7O3tYWxsDDMzM/j4+GDZsmX44YcfxPh8RERE2sjV1RU//fQTli1bhu7du8Pa2hoGBgZo3Lgx2rRpg7Fjx+L8+fOYNm1arR2Dl5cXrl69ijlz5qBTp06wsLCAoaEh7O3tMXToUJw7dw6DBg2qtc8nIiJ6F1VPYFtbW8PY2BgODg7o2bMnmjVrhnPnziEkJAR2dnYwNDSEpaUlAgICsHXrVsTExIj3SE9Px40bN3D+/Hls3LhRrA8MDMS4ceMk4bFjx4pwamqq5MnrXr16ISEhAdOnT4ebmxvMzc1hZGSEFi1aYNy4cYiNjUXXrl0lx68NZQGi+oxDyhBRnXjdkC9ERERERERERES6iD3ciYiIiIiIiIiIiIjUgA3uRERERERERERERERqwAZ3IiIiIiIiIiIiIiI1YIM7EREREREREREREZEacNJUIiIiIiIiIiIiIiI1YA93IiIiIiIiIiIiIiI1+H+oT9cAkDGVmAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "tags": [], "image/png": { "height": 750, "width": 750 } } } ] }, { "cell_type": "code", "metadata": { "colab_type": "code", "id": "CeYDZmSOMAJP", "colab": {}, "outputId": "c2da0f54-5258-4718-ab8b-9ecde2af68ef" }, "source": [ "from statsmodels.stats.anova import anova_lm\n", "\n", "fit1 = smf.ols(formula=\"\"\"price ~ size + new + baths + beds\"\"\", data=house_df).fit()\n", "fit2 = smf.ols(\n", " formula=\"\"\"price ~ (size + new + baths + beds)**2\"\"\", data=house_df\n", ").fit()\n", "fit3 = smf.ols(\n", " formula=\"\"\"price ~ (size + new + baths + beds)**3\"\"\", data=house_df\n", ").fit()\n", "fit6 = smf.ols(\n", " formula=\"\"\"price ~ (size + new + baths + beds)**6\"\"\", data=house_df\n", ").fit()\n", "\n", "anova_results = anova_lm(fit1, fit2)\n", "anova_results" ], "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
df_residssrdf_diffss_diffFPr(>F)
095.0279624.0772030.0NaNNaNNaN
189.0217916.3686476.061707.7085554.2003770.000913
\n", "
" ], "text/plain": [ " df_resid ssr df_diff ss_diff F Pr(>F)\n", "0 95.0 279624.077203 0.0 NaN NaN NaN\n", "1 89.0 217916.368647 6.0 61707.708555 4.200377 0.000913" ] }, "metadata": { "tags": [] }, "execution_count": 6 } ] }, { "cell_type": "code", "metadata": { "colab_type": "code", "id": "yduZd2rDMAJa", "colab": {}, "outputId": "79052fbd-3440-4385-d45d-f05f228cf76b" }, "source": [ "anova_results = anova_lm(fit2, fit1)\n", "anova_results" ], "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
df_residssrdf_diffss_diffFPr(>F)
089.0217916.3686470.0NaNNaNNaN
195.0279624.077203-6.0-61707.7085553.494115NaN
\n", "
" ], "text/plain": [ " df_resid ssr df_diff ss_diff F Pr(>F)\n", "0 89.0 217916.368647 0.0 NaN NaN NaN\n", "1 95.0 279624.077203 -6.0 -61707.708555 3.494115 NaN" ] }, "metadata": { "tags": [] }, "execution_count": 7 } ] }, { "cell_type": "code", "metadata": { "colab_type": "code", "id": "eQ2ec-I-MAJj", "colab": {}, "outputId": "76dad6af-4dba-4ea5-d8ca-50243947246c" }, "source": [ "anova_results" ], "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
df_residssrdf_diffss_diffFPr(>F)
089.0217916.3686470.0NaNNaNNaN
195.0279624.077203-6.0-61707.7085553.494115NaN
\n", "
" ], "text/plain": [ " df_resid ssr df_diff ss_diff F Pr(>F)\n", "0 89.0 217916.368647 0.0 NaN NaN NaN\n", "1 95.0 279624.077203 -6.0 -61707.708555 3.494115 NaN" ] }, "metadata": { "tags": [] }, "execution_count": 8 } ] }, { "cell_type": "code", "metadata": { "colab_type": "code", "id": "kUpCGWWeMAJs", "colab": {}, "outputId": "674033d5-9c78-4f17-ab9d-e09c2fde9fc7" }, "source": [ "print(fit6.summary())" ], "execution_count": null, "outputs": [ { "output_type": "stream", "text": [ " OLS Regression Results \n", "==============================================================================\n", "Dep. Variable: price R-squared: 0.804\n", "Model: OLS Adj. R-squared: 0.771\n", "Method: Least Squares F-statistic: 24.85\n", "Date: Tue, 23 Jun 2020 Prob (F-statistic): 3.27e-24\n", "Time: 00:47:30 Log-Likelihood: -521.77\n", "No. Observations: 100 AIC: 1074.\n", "Df Residuals: 85 BIC: 1113.\n", "Df Model: 14 \n", "Covariance Type: nonrobust \n", "=======================================================================================\n", " coef std err t P>|t| [0.025 0.975]\n", "---------------------------------------------------------------------------------------\n", "Intercept -195.2928 159.474 -1.225 0.224 -512.369 121.783\n", "size 0.2512 0.126 2.001 0.049 0.002 0.501\n", "new 121.6101 119.714 1.016 0.313 -116.412 359.633\n", "baths 151.0111 73.643 2.051 0.043 4.589 297.433\n", "beds 39.8477 54.614 0.730 0.468 -68.740 148.435\n", "size:new -1.8379 1.430 -1.285 0.202 -4.681 1.005\n", "size:baths -0.1003 0.044 -2.268 0.026 -0.188 -0.012\n", "size:beds -0.0370 0.035 -1.050 0.297 -0.107 0.033\n", "new:baths 827.9218 717.935 1.153 0.252 -599.525 2255.368\n", "new:beds -488.2639 407.026 -1.200 0.234 -1297.540 321.012\n", "baths:beds -39.5669 24.330 -1.626 0.108 -87.942 8.809\n", "size:new:baths 0.3423 0.241 1.423 0.158 -0.136 0.821\n", "size:new:beds 0.7990 0.594 1.345 0.182 -0.382 1.980\n", "size:baths:beds 0.0261 0.011 2.354 0.021 0.004 0.048\n", "new:baths:beds -75.5298 76.579 -0.986 0.327 -227.788 76.729\n", "size:new:baths:beds -0.1896 0.135 -1.402 0.164 -0.459 0.079\n", "==============================================================================\n", "Omnibus: 36.737 Durbin-Watson: 1.581\n", "Prob(Omnibus): 0.000 Jarque-Bera (JB): 90.717\n", "Skew: 1.339 Prob(JB): 2.00e-20\n", "Kurtosis: 6.822 Cond. No. 1.23e+20\n", "==============================================================================\n", "\n", "Warnings:\n", "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n", "[2] The smallest eigenvalue is 2.04e-30. This might indicate that there are\n", "strong multicollinearity problems or that the design matrix is singular.\n" ], "name": "stdout" } ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "8i1KcAoPMAJ2" }, "source": [ "### Gamma GLMs for House Selling Price Data" ] }, { "cell_type": "code", "metadata": { "colab_type": "code", "id": "H6IfhiFaMAJ3", "colab": {}, "outputId": "00987b92-7fe1-4200-d31a-81407bba9d4f" }, "source": [ "formula = \"\"\"price ~ size + new + beds + size:new + size:beds\"\"\"\n", "\n", "response, predictors = dmatrices(formula, house_df, return_type=\"dataframe\")\n", "fit = sm.GLM(\n", " response, predictors, family=sm.families.Gamma(link=sm.families.links.identity())\n", ").fit()\n", "print(fit.summary())" ], "execution_count": null, "outputs": [ { "output_type": "stream", "text": [ " Generalized Linear Model Regression Results \n", "==============================================================================\n", "Dep. Variable: price No. Observations: 100\n", "Model: GLM Df Residuals: 94\n", "Model Family: Gamma Df Model: 5\n", "Link Function: identity Scale: 0.10951\n", "Method: IRLS Log-Likelihood: -517.66\n", "Date: Tue, 23 Jun 2020 Deviance: 10.263\n", "Time: 00:47:30 Pearson chi2: 10.3\n", "No. Iterations: 21 \n", "Covariance Type: nonrobust \n", "==============================================================================\n", " coef std err z P>|z| [0.025 0.975]\n", "------------------------------------------------------------------------------\n", "Intercept 44.3850 48.599 0.913 0.361 -50.867 139.637\n", "size 0.0740 0.040 1.849 0.064 -0.004 0.152\n", "new -60.0295 65.765 -0.913 0.361 -188.927 68.868\n", "beds -22.7158 17.632 -1.288 0.198 -57.273 11.841\n", "size:new 0.0538 0.038 1.432 0.152 -0.020 0.127\n", "size:beds 0.0100 0.013 0.796 0.426 -0.015 0.035\n", "==============================================================================\n" ], "name": "stdout" } ] }, { "cell_type": "code", "metadata": { "colab_type": "code", "id": "yEq7CcH2MAJ_", "colab": {}, "outputId": "e41c1304-4e75-4115-b10c-d6810ee38462" }, "source": [ "formula = \"\"\"price ~ size + new + baths + beds\"\"\"\n", "response, predictors = dmatrices(formula, house_df, return_type=\"dataframe\")\n", "fit_g1 = sm.GLM(\n", " response, predictors, family=sm.families.Gamma(link=sm.families.links.identity())\n", ").fit()\n", "\n", "formula = \"\"\"price ~ (size + new + baths + beds)**2\"\"\"\n", "response, predictors = dmatrices(formula, house_df, return_type=\"dataframe\")\n", "fit_g2 = sm.GLM(\n", " response, predictors, family=sm.families.Gamma(link=sm.families.links.identity())\n", ").fit()\n", "\n", "\n", "def anova_glm(model1, model2):\n", "\n", " # Source: https://static1.squarespace.com/static/58332d815016e1b4077fe29f/t/5d3f1d90ed639e00011487c8/1564417425253/5.2_GLM+-+Comparing+Models-+F+Test+-+Errata.pdf\n", " df_numerator = model2.df_model - model1.df_model\n", " f_stat = (model1.deviance - model2.deviance) / (df_numerator * model2.scale)\n", " df_denominator = model2.fittedvalues.shape[0] - model1.df_model\n", " p_value = stats.f.sf(f_stat, df_numerator, df_denominator)\n", " names = [\"df_resid\", \"resid_deviance\", \"df_diff\", \"deviance\", \"F\", \"Pr(>F)\"]\n", " data = []\n", " data.append((model1.df_resid, model1.deviance, \" \", \" \", \" \", \" \"))\n", " data.append(\n", " (\n", " model2.df_resid,\n", " model2.deviance,\n", " df_numerator,\n", " model2.deviance,\n", " f_stat,\n", " p_value,\n", " )\n", " )\n", " return pd.DataFrame(data, columns=names)\n", "\n", "\n", "anova_results = anova_glm(fit_g1, fit_g2)\n", "print(anova_results)" ], "execution_count": null, "outputs": [ { "output_type": "stream", "text": [ " df_resid resid_deviance df_diff deviance F Pr(>F)\n", "0 95 10.441719 \n", "1 89 9.872775 6 9.87278 0.843782 0.539286\n" ], "name": "stdout" } ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "cQKNAV_LMAKK" }, "source": [ "### TODO: Fix the anova_glm output " ] }, { "cell_type": "code", "metadata": { "colab_type": "code", "id": "mfxiQlBPMAKL", "colab": {}, "outputId": "916cea9a-4d37-4653-84d6-de0853c522f9" }, "source": [ "formula = \"\"\"price ~ size + new + size:new\"\"\"\n", "response, predictors = dmatrices(formula, house_df, return_type=\"dataframe\")\n", "fit = sm.GLM(\n", " response, predictors, family=sm.families.Gamma(link=sm.families.links.identity())\n", ").fit()\n", "print(fit.summary())" ], "execution_count": null, "outputs": [ { "output_type": "stream", "text": [ " Generalized Linear Model Regression Results \n", "==============================================================================\n", "Dep. Variable: price No. Observations: 100\n", "Model: GLM Df Residuals: 96\n", "Model Family: Gamma Df Model: 3\n", "Link Function: identity Scale: 0.11020\n", "Method: IRLS Log-Likelihood: -519.05\n", "Date: Tue, 23 Jun 2020 Deviance: 10.563\n", "Time: 00:47:30 Pearson chi2: 10.6\n", "No. Iterations: 11 \n", "Covariance Type: nonrobust \n", "==============================================================================\n", " coef std err z P>|z| [0.025 0.975]\n", "------------------------------------------------------------------------------\n", "Intercept -7.4509 12.974 -0.574 0.566 -32.880 17.978\n", "size 0.0945 0.010 9.396 0.000 0.075 0.114\n", "new -77.9046 64.582 -1.206 0.228 -204.483 48.674\n", "size:new 0.0649 0.037 1.769 0.077 -0.007 0.137\n", "==============================================================================\n" ], "name": "stdout" } ] }, { "cell_type": "code", "metadata": { "colab_type": "code", "id": "vzcIkjQwMAKU", "colab": {}, "outputId": "4a06aa5f-0f4e-4c58-af32-9e5bc7b3069d" }, "source": [ "formula = \"\"\"price ~ size + new + size:new\"\"\"\n", "response, predictors = dmatrices(formula, house_df, return_type=\"dataframe\")\n", "fit = sm.GLM(\n", " response, predictors, family=sm.families.Gaussian(link=sm.families.links.identity())\n", ").fit()\n", "print(fit.summary())" ], "execution_count": null, "outputs": [ { "output_type": "stream", "text": [ " Generalized Linear Model Regression Results \n", "==============================================================================\n", "Dep. Variable: price No. Observations: 100\n", "Model: GLM Df Residuals: 96\n", "Model Family: Gaussian Df Model: 3\n", "Link Function: identity Scale: 2703.8\n", "Method: IRLS Log-Likelihood: -534.97\n", "Date: Tue, 23 Jun 2020 Deviance: 2.5957e+05\n", "Time: 00:47:30 Pearson chi2: 2.60e+05\n", "No. Iterations: 3 \n", "Covariance Type: nonrobust \n", "==============================================================================\n", " coef std err z P>|z| [0.025 0.975]\n", "------------------------------------------------------------------------------\n", "Intercept -22.2278 15.521 -1.432 0.152 -52.649 8.193\n", "size 0.1044 0.009 11.082 0.000 0.086 0.123\n", "new -78.5275 51.008 -1.540 0.124 -178.501 21.446\n", "size:new 0.0619 0.022 2.855 0.004 0.019 0.104\n", "==============================================================================\n" ], "name": "stdout" } ] }, { "cell_type": "code", "metadata": { "colab_type": "code", "id": "SyhyZoJjMAKc", "colab": {}, "outputId": "57ce8684-0c50-4f46-f506-47ceafd6ac23" }, "source": [ "formula = \"\"\"price ~ size + new + size:new\"\"\"\n", "response, predictors = dmatrices(formula, house_df, return_type=\"dataframe\")\n", "fit = sm.GLM(\n", " response, predictors, family=sm.families.Gaussian(link=sm.families.links.identity())\n", ").fit()\n", "print(fit.aic)" ], "execution_count": null, "outputs": [ { "output_type": "stream", "text": [ "1077.9469818936216\n" ], "name": "stdout" } ] }, { "cell_type": "code", "metadata": { "colab_type": "code", "id": "coFWrci9MAKk", "colab": {}, "outputId": "accbf3f7-85e2-49d5-93e8-5b7266e999c4" }, "source": [ "formula = \"\"\"price ~ size + new + beds + baths + size:new + size:beds + new:baths\"\"\"\n", "response, predictors = dmatrices(formula, house_df, return_type=\"dataframe\")\n", "fit = sm.GLM(\n", " response, predictors, family=sm.families.Gaussian(link=sm.families.links.identity())\n", ").fit()\n", "print(fit.aic)" ], "execution_count": null, "outputs": [ { "output_type": "stream", "text": [ "1068.5650280217183\n" ], "name": "stdout" } ] } ] }