pywsi

https://travis-ci.com/saketkc/pywsi.svg?token=GsuWFnsdqcXUSp8vzLip&branch=master

Features

See the Notebook.

Training InceptionV4 on Tumor/Normal patches

We currently rely on InceptionV4 model for training. It is one of the deepest and most sophesticated models available. Another model we would ideally like to explore is Inception-Resnet, but later.

Step 1. Create tissue masks

pywsi create-tissue-masks --indir /CAMELYON16/testing/images/ \
--level 5 --savedir /CAMELYON16/testing/tissue_masks

Step 2. Create annotation masks

pywsi create-annotation-masks --indir /CAMELYON16/testing/images/ \
--level 5 --savedir /CAMELYON16/testing/annotation_masks \
--jsondir /CAMELYON16/testing/lesion_annotations_json

Step 3A. Extract tumor patches

pywsi extract-tumor-patches --indir /CAMELYON16/testing/images/ \
--annmaskdir /CAMELYON16/testing/annotation_masks \
--tismaskdir /CAMELYON16/testing/tissue_masks \
--level 5 --savedir /CAMELYON16/testing/extracted_tumor_patches

Step 3B. Extract normal patches

pywsi extract-normal-patches --indir /CAMELYON16/training/normal \
--tismaskdir /CAMELYON16/training/tissue_masks --level 5 \
--savedir /CAMELYON16/training/extracted_normal_patches

Dataset download

Ftp