Last updated: 2021-12-17
Checks: 7 0
Knit directory: sct2_revision/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20210706)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 8afc486. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: data/raw_data/
Ignored: data/rds_filtered/
Ignored: data/rds_raw/
Ignored: data/sampled_counts/
Ignored: output/snakemake_output/
Untracked files:
Untracked: code/02_run_seurat_noclip.R
Untracked: code/07AA_deseq2_muscat_simulate.R
Untracked: code/07A_muscat_simulate.R
Untracked: code/07A_simulate_muscat.R
Untracked: code/07BB_deseq2_muscat_process.R
Untracked: code/07B_muscat_process.R
Untracked: code/07B_process_muscat.R
Untracked: code/08_run_presto.R
Untracked: code/17A_HEK_SS3_dropseq.Rmd
Untracked: code/17A_HEK_SS3_dropseq_files/
Untracked: code/17C_HEK_Quartzeseq2_dropseq.Rmd
Untracked: code/17C_HEK_Quartzeseq2_dropseq_files/
Untracked: code/17_HEK_SS3_ChromiumV3.Rmd
Untracked: code/17_HEK_SS3_ChromiumV3.nb.html
Untracked: code/17_HEK_SS3_ChromiumV3_files/
Untracked: code/AA_process_muscat.R
Untracked: code/BB_process_muscat.R
Untracked: code/DD_simulate_muscat.R
Untracked: code/EE_simulate_muscat.R
Untracked: code/XX_process_muscat.R
Untracked: code/XX_simulate_muscat.R
Untracked: code/YY_simulate_muscat.R
Untracked: code/ZZ_simulate_muscat.R
Untracked: code/kang_muscat.R
Untracked: code/prep_sce.R
Untracked: code/prep_sce_ss3_dropseq.R
Untracked: data/azimuth_predictions/
Untracked: junk/
Untracked: mamba_update_changes.txt
Untracked: output/11C_VST/
Untracked: output/AAmuscat_simulated/
Untracked: output/BBmuscat_simulated/
Untracked: output/CCmuscat_simulated/
Untracked: output/CD4_NK_downsampling_DE.rds
Untracked: output/DDmuscat_simulated/
Untracked: output/EEmuscat_simulated/
Untracked: output/KANGmuscat_simulated/
Untracked: output/NK_downsampling/
Untracked: output/XXmuscat_simulated/
Untracked: output/YYmuscat_simulated/
Untracked: output/ZZmuscat_simulated/
Untracked: output/figures/
Untracked: output/kang_prepsce.rds
Untracked: output/muscat_simulated/
Untracked: output/muscat_simulation/
Untracked: output/seu_sct2_sim.rds
Untracked: output/simulation_HEK_QuartzSeq2_Dropseq_downsampling/
Untracked: output/simulation_HEK_SS3_ChromiumV3_downsampling/
Untracked: output/simulation_HEK_SS3_Dropseq_downsampling/
Untracked: output/simulation_HEK_downsampling/
Untracked: output/simulation_NK_downsampling/
Untracked: output/ss3_dropseq_prepsim.rds
Untracked: output/tables/
Untracked: output/vargenes/
Untracked: snakemake/.snakemake/
Untracked: snakemake/Snakefile_noclip.smk
Untracked: snakemake/Snakefile_presto.smk
Untracked: snakemake/cluster.yaml
Untracked: snakemake/install_glm.R
Untracked: snakemake/jobscript.sh
Untracked: snakemake/jobscript_ncells.sh
Untracked: snakemake/local_run_downsampling.sh
Untracked: snakemake/local_run_glm.sh
Untracked: snakemake/local_run_ncells.sh
Untracked: snakemake/local_run_noclip.sh
Untracked: snakemake/local_run_presto.sh
Untracked: snakemake/local_run_time.sh
Untracked: snakemake/run_glm.sh
Untracked: snakemake/run_ncells.sh
Untracked: snakemake/sct2_revision_env.yml
Untracked: temp_figures/
Unstaged changes:
Deleted: analysis/04_PBMC68k.Rmd
Modified: code/02_run_seurat.R
Modified: code/03_run_vst2_downsample.R
Modified: code/04_run_vst_ncells.R
Modified: code/06_run_sct.R
Modified: data/datasets.csv
Modified: snakemake/Snakefile_downsampling.smk
Modified: snakemake/Snakefile_glm_seurat.smk
Modified: snakemake/Snakefile_metacell.smk
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/02_Mereu.Rmd
) and HTML (docs/02_Mereu.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | d736ec8 | Saket Choudhary | 2021-07-07 | Build site. |
Rmd | 400797a | Saket Choudhary | 2021-07-06 | workflowr::wflow_git_commit(all = TRUE) |
html | 400797a | Saket Choudhary | 2021-07-06 | workflowr::wflow_git_commit(all = TRUE) |
suppressPackageStartupMessages({
library(Seurat)
library(SingleCellExperiment)
})
set.seed(42)
download_dir <- here::here("data/raw_data/Mereu")
dir.create(download_dir, showWarnings = F, recursive = T)
dir.create(here::here("data/rds_raw"), showWarnings = F, recursive = T)
file_location <- here::here(download_dir, "sce.all_classified.technologies.RData")
if (!file.exists(file_location)) {
download.file("https://www.dropbox.com/s/i8mwmyymchx8mn8/sce.all_classified.technologies.RData?dl=0", file_location, method = "wget", extra = "--content-disposition")
}
load(file = file_location)
sce
class: SingleCellExperiment
dim: 23381 20237
metadata(0):
assays(2): counts logcounts
rownames(23381): TSPAN6 DPM1 ... RPL31P58 RP11-553E24.1
rowData names(0):
colnames(20237): 10X2x5K_64221_AAACCTGCACTTCGAA
10X2x5K_64221_AAACCTGCAGTACACT ...
SMARTseqFINAL_allLanes_TTGTCGTGTCTCGGAA
SMARTseqFINAL_allLanes_TTGTCGTGTGATCCGA
colData names(3): nnet2 ident batch
reducedDimNames(2): UMAP PCA
mainExpName: NULL
altExpNames(0):
metadata <- as.data.frame(colData(sce))
metadata$nnet2 <- as.character(metadata$nnet2)
metadata$ident <- as.character(metadata$ident)
metadata$batch <- as.character(metadata$batch)
head(metadata)
nnet2 ident batch
10X2x5K_64221_AAACCTGCACTTCGAA B cells B cells Chromium
10X2x5K_64221_AAACCTGCAGTACACT CD4 T cells CD4 T cells 2 Chromium
10X2x5K_64221_AAACCTGTCCACTGGG CD4 T cells CD4 T cells 1 Chromium
10X2x5K_64221_AAACGGGAGAGCTTCT HEK cells HEK cells 2 Chromium
10X2x5K_64221_AAACGGGAGGTGGGTT HEK cells HEK cells 2 Chromium
10X2x5K_64221_AAACGGGCACACGCTG CD4 T cells CD4 T cells 1 Chromium
counts_matrix <- counts(sce)
counts_matrix <- as(object = counts_matrix, Class = "dgCMatrix")
common_cols <- intersect(rownames(metadata), colnames(counts_matrix))
counts_matrix <- counts_matrix[, common_cols]
metadata <- metadata[common_cols, ]
colnames(counts_matrix) <- paste0("cell-", colnames(counts_matrix))
rownames(metadata) <- colnames(counts_matrix)
dim(counts_matrix)
[1] 23381 20237
seu <- CreateSeuratObject(counts_matrix, meta.data = metadata, project = "Mereu_2021_scBenchmark_Rdata", min.cells = 1, min.features = 1)
seu
An object of class Seurat
23381 features across 20237 samples within 1 assay
Active assay: RNA (23381 features, 0 variable features)
nonumi.techs <- c("C1HT-medium", "C1HT-small", "ICELL8", "Smart-Seq2")
table(seu@meta.data$batch)
C1HT-medium C1HT-small CEL-Seq2 Chromium Chromium(sn) ddSEQ
2216 1606 1083 1604 1515 2109
Drop-Seq ICELL8 inDrop MARS-Seq mcSCRB-Seq Quartz-Seq2
2261 1927 686 1481 1684 1333
Smart-Seq2
732
table(seu@meta.data$ident)
Ambiguous B cells
165 1562
CD14 and FCGR3A Monocytes CD14 Monocytes
55 262
CD14+ and FCGR3A+ Monocytes CD14+ Monocytes
849 2113
CD4 T cells 1 CD4 T cells 2
602 270
CD4+ cells CD4+ T cells
432 797
CD8 T cells CD8+ T cells
140 88
CD8+ T cells and NK Cytotoxic T cells
1336 2885
Cytotoxic T cells 1 Cytotoxic T cells 2
1022 400
FCGR3A Monocytes FCGR3A+ Monocytes
37 181
HEK cells HEK cells 1
1665 1265
HEK cells 2 HEK cells 3
579 132
HEK cells1 HEK cells3
519 58
NK and Cytotoxic T cells NK cells
2244 249
unclear unknown
294 36
table(seu@meta.data$nnet2)
B cells CD14+ Monocytes CD4 T cells CD8 T cells
1657 2782 5693 2522
Dendritic cells FCGR3A+ Monocytes HEK cells Megakaryocytes
274 897 4942 45
NK cells
1425
Idents(seu) <- "ident"
hek <- subset(seu, idents = c("HEK cells", "HEK cells 2", "HEK cells1", "HEK cells 1", "HEK cells3", "HEK cells 3"))
table(hek@meta.data$ident)
HEK cells HEK cells 1 HEK cells 2 HEK cells 3 HEK cells1 HEK cells3
1665 1265 579 132 519 58
table(hek@meta.data$nnet2)
B cells CD14+ Monocytes CD4 T cells CD8 T cells
88 216 243 38
Dendritic cells FCGR3A+ Monocytes HEK cells Megakaryocytes
9 59 3526 7
NK cells
32
Idents(hek) <- "nnet2"
hek <- subset(hek, idents = c("HEK cells"))
table(hek@meta.data$ident)
HEK cells HEK cells 1 HEK cells 2 HEK cells 3 HEK cells1 HEK cells3
1435 996 454 124 467 50
table(hek@meta.data$nnet2)
HEK cells
3526
Idents(hek) <- "batch"
hek.umi <- subset(hek, idents = c(nonumi.techs), invert=TRUE)
table(hek.umi@meta.data$batch)
CEL-Seq2 Chromium Chromium(sn) ddSEQ Drop-Seq inDrop
101 326 47 517 473 49
MARS-Seq mcSCRB-Seq Quartz-Seq2
88 74 269
umi_techs <- sort(unique(hek.umi$batch))
umi_techs
[1] "CEL-Seq2" "Chromium" "Chromium(sn)" "ddSEQ" "Drop-Seq"
[6] "inDrop" "MARS-Seq" "mcSCRB-Seq" "Quartz-Seq2"
clean_named_techs <- c("CEL-seq2", "ChromiumV2", "ChromiumV2_sn", "ddSeq", "Drop-seq", "inDrops", "MARS-seq", "mcSCRB-seq", "Quartz-Seq2")
names(clean_named_techs) <- umi_techs
clean_named_techs
CEL-Seq2 Chromium Chromium(sn) ddSEQ Drop-Seq
"CEL-seq2" "ChromiumV2" "ChromiumV2_sn" "ddSeq" "Drop-seq"
inDrop MARS-Seq mcSCRB-Seq Quartz-Seq2
"inDrops" "MARS-seq" "mcSCRB-seq" "Quartz-Seq2"
hek_split <- SplitObject(hek.umi, split.by = "batch")
for (given_tech in names(hek_split)){
seu <- hek_split[[given_tech]]
seu[["percent.mt"]] <- PercentageFeatureSet(seu, pattern = "^MT-")
clean_tech <- clean_named_techs[[given_tech]]
saveRDS(seu, here::here("data/rds_raw", paste0("Mereu-HEK__", clean_tech,".rds")))
gc()
}
sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.3 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] parallel stats4 stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] SingleCellExperiment_1.14.1 SummarizedExperiment_1.22.0
[3] Biobase_2.52.0 GenomicRanges_1.44.0
[5] GenomeInfoDb_1.28.4 IRanges_2.26.0
[7] S4Vectors_0.30.2 BiocGenerics_0.38.0
[9] MatrixGenerics_1.4.3 matrixStats_0.61.0
[11] SeuratObject_4.0.4 Seurat_4.0.5
[13] workflowr_1.6.2
loaded via a namespace (and not attached):
[1] Rtsne_0.15 colorspace_2.0-2 deldir_1.0-6
[4] ellipsis_0.3.2 ggridges_0.5.3 rprojroot_2.0.2
[7] XVector_0.32.0 fs_1.5.2 spatstat.data_2.1-0
[10] leiden_0.3.9 listenv_0.8.0 ggrepel_0.9.1
[13] fansi_0.5.0 codetools_0.2-18 splines_4.1.2
[16] knitr_1.36 polyclip_1.10-0 jsonlite_1.7.2
[19] ica_1.0-2 cluster_2.1.2 png_0.1-7
[22] uwot_0.1.11 shiny_1.7.1 sctransform_0.3.2.9008
[25] spatstat.sparse_2.0-0 compiler_4.1.2 httr_1.4.2
[28] assertthat_0.2.1 Matrix_1.4-0 fastmap_1.1.0
[31] lazyeval_0.2.2 later_1.3.0 htmltools_0.5.2
[34] tools_4.1.2 igraph_1.2.9 GenomeInfoDbData_1.2.6
[37] gtable_0.3.0 glue_1.5.1 RANN_2.6.1
[40] reshape2_1.4.4 dplyr_1.0.7 Rcpp_1.0.7
[43] scattermore_0.7 jquerylib_0.1.4 vctrs_0.3.8
[46] nlme_3.1-152 lmtest_0.9-39 xfun_0.28
[49] stringr_1.4.0 globals_0.14.0 mime_0.12
[52] miniUI_0.1.1.1 lifecycle_1.0.1 irlba_2.3.5
[55] goftest_1.2-3 future_1.23.0 zlibbioc_1.38.0
[58] MASS_7.3-54 zoo_1.8-9 scales_1.1.1
[61] spatstat.core_2.3-2 promises_1.2.0.1 spatstat.utils_2.3-0
[64] RColorBrewer_1.1-2 yaml_2.2.1 reticulate_1.22
[67] pbapply_1.5-0 gridExtra_2.3 ggplot2_3.3.5
[70] sass_0.4.0 rpart_4.1-15 stringi_1.7.6
[73] bitops_1.0-7 rlang_0.4.12 pkgconfig_2.0.3
[76] evaluate_0.14 lattice_0.20-45 ROCR_1.0-11
[79] purrr_0.3.4 tensor_1.5 patchwork_1.1.1
[82] htmlwidgets_1.5.4 cowplot_1.1.1 tidyselect_1.1.1
[85] here_1.0.1 parallelly_1.29.0 RcppAnnoy_0.0.19
[88] plyr_1.8.6 magrittr_2.0.1 R6_2.5.1
[91] generics_0.1.1 DelayedArray_0.18.0 DBI_1.1.1
[94] mgcv_1.8-38 pillar_1.6.4 whisker_0.4
[97] fitdistrplus_1.1-6 RCurl_1.98-1.5 survival_3.2-13
[100] abind_1.4-5 tibble_3.1.6 future.apply_1.8.1
[103] crayon_1.4.2 KernSmooth_2.23-20 utf8_1.2.2
[106] spatstat.geom_2.3-1 plotly_4.10.0 rmarkdown_2.11
[109] grid_4.1.2 data.table_1.14.2 git2r_0.29.0
[112] digest_0.6.29 xtable_1.8-4 tidyr_1.1.4
[115] httpuv_1.6.3 munsell_0.5.0 viridisLite_0.4.0
[118] bslib_0.3.1
sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.3 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] parallel stats4 stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] SingleCellExperiment_1.14.1 SummarizedExperiment_1.22.0
[3] Biobase_2.52.0 GenomicRanges_1.44.0
[5] GenomeInfoDb_1.28.4 IRanges_2.26.0
[7] S4Vectors_0.30.2 BiocGenerics_0.38.0
[9] MatrixGenerics_1.4.3 matrixStats_0.61.0
[11] SeuratObject_4.0.4 Seurat_4.0.5
[13] workflowr_1.6.2
loaded via a namespace (and not attached):
[1] Rtsne_0.15 colorspace_2.0-2 deldir_1.0-6
[4] ellipsis_0.3.2 ggridges_0.5.3 rprojroot_2.0.2
[7] XVector_0.32.0 fs_1.5.2 spatstat.data_2.1-0
[10] leiden_0.3.9 listenv_0.8.0 ggrepel_0.9.1
[13] fansi_0.5.0 codetools_0.2-18 splines_4.1.2
[16] knitr_1.36 polyclip_1.10-0 jsonlite_1.7.2
[19] ica_1.0-2 cluster_2.1.2 png_0.1-7
[22] uwot_0.1.11 shiny_1.7.1 sctransform_0.3.2.9008
[25] spatstat.sparse_2.0-0 compiler_4.1.2 httr_1.4.2
[28] assertthat_0.2.1 Matrix_1.4-0 fastmap_1.1.0
[31] lazyeval_0.2.2 later_1.3.0 htmltools_0.5.2
[34] tools_4.1.2 igraph_1.2.9 GenomeInfoDbData_1.2.6
[37] gtable_0.3.0 glue_1.5.1 RANN_2.6.1
[40] reshape2_1.4.4 dplyr_1.0.7 Rcpp_1.0.7
[43] scattermore_0.7 jquerylib_0.1.4 vctrs_0.3.8
[46] nlme_3.1-152 lmtest_0.9-39 xfun_0.28
[49] stringr_1.4.0 globals_0.14.0 mime_0.12
[52] miniUI_0.1.1.1 lifecycle_1.0.1 irlba_2.3.5
[55] goftest_1.2-3 future_1.23.0 zlibbioc_1.38.0
[58] MASS_7.3-54 zoo_1.8-9 scales_1.1.1
[61] spatstat.core_2.3-2 promises_1.2.0.1 spatstat.utils_2.3-0
[64] RColorBrewer_1.1-2 yaml_2.2.1 reticulate_1.22
[67] pbapply_1.5-0 gridExtra_2.3 ggplot2_3.3.5
[70] sass_0.4.0 rpart_4.1-15 stringi_1.7.6
[73] bitops_1.0-7 rlang_0.4.12 pkgconfig_2.0.3
[76] evaluate_0.14 lattice_0.20-45 ROCR_1.0-11
[79] purrr_0.3.4 tensor_1.5 patchwork_1.1.1
[82] htmlwidgets_1.5.4 cowplot_1.1.1 tidyselect_1.1.1
[85] here_1.0.1 parallelly_1.29.0 RcppAnnoy_0.0.19
[88] plyr_1.8.6 magrittr_2.0.1 R6_2.5.1
[91] generics_0.1.1 DelayedArray_0.18.0 DBI_1.1.1
[94] mgcv_1.8-38 pillar_1.6.4 whisker_0.4
[97] fitdistrplus_1.1-6 RCurl_1.98-1.5 survival_3.2-13
[100] abind_1.4-5 tibble_3.1.6 future.apply_1.8.1
[103] crayon_1.4.2 KernSmooth_2.23-20 utf8_1.2.2
[106] spatstat.geom_2.3-1 plotly_4.10.0 rmarkdown_2.11
[109] grid_4.1.2 data.table_1.14.2 git2r_0.29.0
[112] digest_0.6.29 xtable_1.8-4 tidyr_1.1.4
[115] httpuv_1.6.3 munsell_0.5.0 viridisLite_0.4.0
[118] bslib_0.3.1