Last updated: 2021-12-17

Checks: 7 0

Knit directory: sct2_revision/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210706) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 8afc486. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/raw_data/
    Ignored:    data/rds_filtered/
    Ignored:    data/rds_raw/
    Ignored:    data/sampled_counts/
    Ignored:    output/snakemake_output/

Untracked files:
    Untracked:  code/02_run_seurat_noclip.R
    Untracked:  code/07AA_deseq2_muscat_simulate.R
    Untracked:  code/07A_muscat_simulate.R
    Untracked:  code/07A_simulate_muscat.R
    Untracked:  code/07BB_deseq2_muscat_process.R
    Untracked:  code/07B_muscat_process.R
    Untracked:  code/07B_process_muscat.R
    Untracked:  code/08_run_presto.R
    Untracked:  code/17A_HEK_SS3_dropseq.Rmd
    Untracked:  code/17A_HEK_SS3_dropseq_files/
    Untracked:  code/17C_HEK_Quartzeseq2_dropseq.Rmd
    Untracked:  code/17C_HEK_Quartzeseq2_dropseq_files/
    Untracked:  code/17_HEK_SS3_ChromiumV3.Rmd
    Untracked:  code/17_HEK_SS3_ChromiumV3.nb.html
    Untracked:  code/17_HEK_SS3_ChromiumV3_files/
    Untracked:  code/AA_process_muscat.R
    Untracked:  code/BB_process_muscat.R
    Untracked:  code/DD_simulate_muscat.R
    Untracked:  code/EE_simulate_muscat.R
    Untracked:  code/XX_process_muscat.R
    Untracked:  code/XX_simulate_muscat.R
    Untracked:  code/YY_simulate_muscat.R
    Untracked:  code/ZZ_simulate_muscat.R
    Untracked:  code/kang_muscat.R
    Untracked:  code/prep_sce.R
    Untracked:  code/prep_sce_ss3_dropseq.R
    Untracked:  data/azimuth_predictions/
    Untracked:  junk/
    Untracked:  mamba_update_changes.txt
    Untracked:  output/11C_VST/
    Untracked:  output/AAmuscat_simulated/
    Untracked:  output/BBmuscat_simulated/
    Untracked:  output/CCmuscat_simulated/
    Untracked:  output/CD4_NK_downsampling_DE.rds
    Untracked:  output/DDmuscat_simulated/
    Untracked:  output/EEmuscat_simulated/
    Untracked:  output/KANGmuscat_simulated/
    Untracked:  output/NK_downsampling/
    Untracked:  output/XXmuscat_simulated/
    Untracked:  output/YYmuscat_simulated/
    Untracked:  output/ZZmuscat_simulated/
    Untracked:  output/figures/
    Untracked:  output/kang_prepsce.rds
    Untracked:  output/muscat_simulated/
    Untracked:  output/muscat_simulation/
    Untracked:  output/seu_sct2_sim.rds
    Untracked:  output/simulation_HEK_QuartzSeq2_Dropseq_downsampling/
    Untracked:  output/simulation_HEK_SS3_ChromiumV3_downsampling/
    Untracked:  output/simulation_HEK_SS3_Dropseq_downsampling/
    Untracked:  output/simulation_HEK_downsampling/
    Untracked:  output/simulation_NK_downsampling/
    Untracked:  output/ss3_dropseq_prepsim.rds
    Untracked:  output/tables/
    Untracked:  output/vargenes/
    Untracked:  snakemake/.snakemake/
    Untracked:  snakemake/Snakefile_noclip.smk
    Untracked:  snakemake/Snakefile_presto.smk
    Untracked:  snakemake/cluster.yaml
    Untracked:  snakemake/install_glm.R
    Untracked:  snakemake/jobscript.sh
    Untracked:  snakemake/jobscript_ncells.sh
    Untracked:  snakemake/local_run_downsampling.sh
    Untracked:  snakemake/local_run_glm.sh
    Untracked:  snakemake/local_run_ncells.sh
    Untracked:  snakemake/local_run_noclip.sh
    Untracked:  snakemake/local_run_presto.sh
    Untracked:  snakemake/local_run_time.sh
    Untracked:  snakemake/run_glm.sh
    Untracked:  snakemake/run_ncells.sh
    Untracked:  snakemake/sct2_revision_env.yml
    Untracked:  temp_figures/

Unstaged changes:
    Deleted:    analysis/04_PBMC68k.Rmd
    Modified:   code/02_run_seurat.R
    Modified:   code/03_run_vst2_downsample.R
    Modified:   code/04_run_vst_ncells.R
    Modified:   code/06_run_sct.R
    Modified:   data/datasets.csv
    Modified:   snakemake/Snakefile_downsampling.smk
    Modified:   snakemake/Snakefile_glm_seurat.smk
    Modified:   snakemake/Snakefile_metacell.smk

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/13_SuppFigure-VST.Rmd) and HTML (docs/13_SuppFigure-VST.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 8afc486 Saket Choudhary 2021-12-17 workflowr::wflow_publish("analysis/*")
html d736ec8 Saket Choudhary 2021-07-07 Build site.
Rmd 052425f Saket Choudhary 2021-07-07 Update template
Rmd 400797a Saket Choudhary 2021-07-06 workflowr::wflow_git_commit(all = TRUE)
html 400797a Saket Choudhary 2021-07-06 workflowr::wflow_git_commit(all = TRUE)

datasets <- readr::read_csv(here::here("data", "datasets.csv"), col_types = readr::cols())

datasets$key_cleaned <- clean_keys(datasets$key)
dataset_keys <- datasets$key
datasets$datatype <- factor(datasets$datatype, levels = c("technical-control", "cell line", "heterogeneous"))
datasets <- datasets %>% arrange(datatype)
datasets
# A tibble: 59 × 7
   key      sample_name   technology  tissue datatype raw_data      key_cleaned 
   <chr>    <chr>         <chr>       <chr>  <fct>    <chr>         <chr>       
 1 Technic… TechCtrl1 (C… ChromiumV1  TechC… technic… https://data… TechnicalCo…
 2 Technic… TechCtrl2 (C… ChromiumV1  TechC… technic… https://data… TechnicalCo…
 3 Technic… TechCtrl (in… inDrops     TechC… technic… https://data… TechnicalCo…
 4 3T3__Ch… 3T3 (Chromiu… ChromiumV3  3T3    cell li… https://data… 3T3__Chromi…
 5 Ding-Mo… 3T3-r1 (CEL-… CEL-seq2    3T3    cell li… https://www.… Ding-MouseM…
 6 Ding-Mo… 3T3-r1 (Chro… ChromiumV2  3T3    cell li… https://www.… Ding-MouseM…
 7 Ding-Mo… 3T3-r1 (Drop… Drop-seq    3T3    cell li… https://www.… Ding-MouseM…
 8 Ding-Mo… 3T3-r1 (inDr… inDrops     3T3    cell li… https://www.… Ding-MouseM…
 9 Ding-Mo… 3T3-r1 (sci-… sci-RNA-seq 3T3    cell li… https://www.… Ding-MouseM…
10 Ding-Mo… 3T3-r2 (CEL-… CEL-seq2    3T3    cell li… https://www.… Ding-MouseM…
# … with 49 more rows
colors <- brewer.pal(3, "Set2")
names(colors) <- c("technical-control", "cell line", "heterogeneous")

Collect SCT(v2) output

sct_thetas <- lapply(dataset_keys, FUN = function(x) {
  theta_file <- here::here("output", "snakemake_output", "seurat_output", clean_keys(x), "vst2", "gene_attr.csv")
  if (file.exists(theta_file)) {
    theta_df <- read.csv(theta_file)
    theta_df$key <- x
    return(theta_df)
  } else {
    message(x)
    return(NULL)
  }
})
sct_thetas_df <- bind_rows(sct_thetas, .id = "dataset")
sct_thetas_df <- left_join(sct_thetas_df, datasets)
sct_thetas_df <- sct_thetas_df %>% arrange(datatype) # , key, technology)
sct_thetas_df$sample_name <- factor(sct_thetas_df$sample_name, levels = datasets$sample_name)
head(sct_thetas_df)
  dataset      X detection_rate       gmean    variance residual_mean
1       1 TSPAN6    0.010555556 0.007343385 0.010449941            NA
2       1   DPM1    0.063888889 0.046754565 0.074336360   0.008296842
3       1  SCYL3    0.007222222 0.005018614 0.007174047            NA
4       1    CFH    0.008888889 0.006180328 0.008814774            NA
5       1  FUCA2    0.029444444 0.020848957 0.030227904            NA
6       1   GCLC    0.015555556 0.010840628 0.015322093            NA
  residual_variance     theta X.Intercept.  log_umi genes_log_gmean_step1
1         0.2612045       Inf    -12.26490 2.302585                 FALSE
2         1.0799444 1.4921383    -10.43712 2.302585                  TRUE
3         0.1792645       Inf    -12.64439 2.302585                 FALSE
4         0.2200920       Inf    -12.43675 2.302585                 FALSE
5         0.7518610 0.6254603    -11.22856 2.302585                  TRUE
6         0.3827187       Inf    -11.87714 2.302585                 FALSE
  step1_theta step1_.Intercept. step1_log_umi                           key
1          NA                NA            NA TechnicalControl1__ChromiumV1
2    1.030067         -10.40856      2.302585 TechnicalControl1__ChromiumV1
3          NA                NA            NA TechnicalControl1__ChromiumV1
4          NA                NA            NA TechnicalControl1__ChromiumV1
5    7.253456         -11.22535      2.302585 TechnicalControl1__ChromiumV1
6          NA                NA            NA TechnicalControl1__ChromiumV1
             sample_name technology      tissue          datatype
1 TechCtrl1 (ChromiumV1) ChromiumV1 TechControl technical-control
2 TechCtrl1 (ChromiumV1) ChromiumV1 TechControl technical-control
3 TechCtrl1 (ChromiumV1) ChromiumV1 TechControl technical-control
4 TechCtrl1 (ChromiumV1) ChromiumV1 TechControl technical-control
5 TechCtrl1 (ChromiumV1) ChromiumV1 TechControl technical-control
6 TechCtrl1 (ChromiumV1) ChromiumV1 TechControl technical-control
                               raw_data                   key_cleaned
1 https://data.caltech.edu/records/1264 TechnicalControl1__ChromiumV1
2 https://data.caltech.edu/records/1264 TechnicalControl1__ChromiumV1
3 https://data.caltech.edu/records/1264 TechnicalControl1__ChromiumV1
4 https://data.caltech.edu/records/1264 TechnicalControl1__ChromiumV1
5 https://data.caltech.edu/records/1264 TechnicalControl1__ChromiumV1
6 https://data.caltech.edu/records/1264 TechnicalControl1__ChromiumV1
top_genes <- list()
NTOP <- 10
for (key in dataset_keys) {
  data_subset <- sct_thetas_df[sct_thetas_df$key == key, ]
  data_subset$gene <- data_subset$X
  top_genes[[key]] <- subset(data_subset, rank(-residual_variance) <= NTOP)
}
top_genes_df <- bind_rows(top_genes, .id = "sample_nameX")

Plots

DoPlot <- function(sample_name) {
  sct_thetas_df_subset1 <- sct_thetas_df[sct_thetas_df$sample_name == sample_name, ]
  max_resvar <- max(sct_thetas_df_subset1$residual_variance) + 30
  top20_df_subset1 <- top_genes_df[top_genes_df$sample_name == sample_name, ]
  p <- ggplot(sct_thetas_df_subset1, aes(gmean, residual_variance)) +
    geom_scattermore(pointsize = 4, shape = 16, alpha = 0.5, color = "#43a2ca") +
    geom_smooth(color = "red", method = "loess", span = 0.1, size = 0.9, formula = "y ~ x") +
    geom_hline(yintercept = 1, color = "darkgreen", size = 0.9, linetype = "dashed") +
    geom_point(data = top20_df_subset1, size = 0.6, shape = 16, alpha = 1.0, color = "deeppink") +
    geom_text_repel(
      data = top20_df_subset1, aes(label = gene), size = 2.2, color = "gray25",
      nudge_y = max_resvar - top20_df_subset1$residual_variance,
      direction = "x",
      angle = 90,
      vjust = 0.5,
      hjust = 0.5,
      segment.size = 0.2,
      segment.alpha = 0.2
    ) +
    scale_y_continuous(trans = "sqrt", breaks = c(0, 1, 10, 25, 50, 100, 150), limits = c(0, max_resvar + 1)) +
    scale_x_continuous(trans = "log10", breaks = c(0.001, 0.01, 0.1, 1, 10, 100), labels = MASS::rational) +
    xlab("Gene mean") +
    ylab("Residual variance") +
    theme_pubr() +
    theme(
      legend.position = "none"
    ) +
    ggtitle(sample_name)
  p
}

split_keys <- split(datasets$sample_name, ceiling(seq_along(dataset_keys) / 15))
for (index in names(split_keys)) {
  keys <- split_keys[[index]]
  i <- 1
  plots <- list()
  for (key in keys) {
    px <- DoPlot(key)
    plots[[i]] <- px
    i <- i + 1
  }
  p <- wrap_plots(plots, ncol = 3)
  p
  ggsave(here::here("output", "figures", paste0("SCT2_variance_stabilization-", index, ".pdf")), width = 12, height = 15)
}
DoMuThetaPlot <- function(sct_thetas_df_subset){
  p <- ggplot(sct_thetas_df_subset, aes(gmean, step1_theta, color = datatype)) +
  scale_color_manual(values = colors, name = "") +
  geom_scattermore(pointsize = 4, alpha = 0.5) +
  geom_smooth(color = "red", method = "loess", span = 0.1, size = 0.9, formula = "y ~ x") + # , se = FALSE) +
  facet_wrap(~sample_name, scales = "free", ncol = 3, labeller = label_wrap_gen(width = 10)) +
  scale_x_continuous(trans = "log10", breaks = c(0.001, 0.1, 10, 1000), labels = MASS::rational) +
  scale_y_continuous(trans = "log10", breaks = c(0.001, 0.1, 10, 1000), labels = MASS::rational) +
  theme_pubr() +
  theme(
    legend.position = "bottom",
    legend.direction = "horizontal",
    legend.background = element_blank()
  ) +
  guides(col = guide_legend(ncol = 3)) +
  xlab("Gene geometric mean") +
  ylab(expression(theta[NB]))
p
}
sct_thetas_df_subset <- sct_thetas_df[sct_thetas_df$sample_name %in% datasets$sample_name[1:15],]

p1 <- DoMuThetaPlot(sct_thetas_df_subset)
p1

Version Author Date
400797a Saket Choudhary 2021-07-06
ggsave(here::here("output", "figures", "SCT_theta_unregularized1.pdf"), width = 12, height = 15, dpi = "print")

sct_thetas_df_subset <- sct_thetas_df[sct_thetas_df$sample_name %in% datasets$sample_name[16:30],]
p2 <- DoMuThetaPlot(sct_thetas_df_subset)
p2

Version Author Date
400797a Saket Choudhary 2021-07-06
ggsave(here::here("output", "figures", "SCT_theta_unregularized2.pdf"), width = 12, height = 15, dpi = "print")


sct_thetas_df_subset <- sct_thetas_df[sct_thetas_df$sample_name %in% datasets$sample_name[31:45],]

p3 <- DoMuThetaPlot(sct_thetas_df_subset)
p3

Version Author Date
400797a Saket Choudhary 2021-07-06
ggsave(here::here("output", "figures", "SCT_theta_unregularized3.pdf"), width = 12, height = 15, dpi = "print")


sct_thetas_df_subset <- sct_thetas_df[sct_thetas_df$sample_name %in% datasets$sample_name[46:59],]

p5 <- DoMuThetaPlot(sct_thetas_df_subset)
p5

Version Author Date
400797a Saket Choudhary 2021-07-06
ggsave(here::here("output", "figures", "SCT_theta_unregularized4.pdf"), width = 12, height = 15, dpi = "print")
sct_thetas <- lapply(dataset_keys, FUN = function(x) {
  sct_theta_local <- list()
  for (method in c("offset-Inf", "offset-100", "offset-10",  "vst2")) {
    theta_file <- here::here("output", "snakemake_output", "seurat_output", clean_keys(x), method, "gene_attr.csv")
    if (file.exists(theta_file)) {
      theta_df <- read.csv(theta_file)
      theta_df$key <- x
      sct_theta_local[[method]] <- theta_df
    }
  }
  if (length(names(sct_theta_local)) >= 1) {
    sct_theta <- bind_rows(sct_theta_local, .id = "method")
    return(sct_theta)
  }
  return(NULL)
})
sct_thetas_df <- bind_rows(sct_thetas, .id = "dataset")
sct_thetas_df <- left_join(sct_thetas_df, datasets)
sct_thetas_df <- sct_thetas_df %>% arrange(datatype)

methods <- c(
  "offset-Inf", "offset-100",
  "offset-10",  "vst2"
)
names(methods) <- c(
  paste("theta==infinity"),
  paste("theta==100"),
  paste("theta==10"),
  paste("SCT")
)
sct_thetas_df$method <- factor(sct_thetas_df$method, levels = methods, labels = names(methods))
sct_thetas_df$sample_name <- factor(sct_thetas_df$sample_name, levels = datasets$sample_name)
length(unique(sct_thetas_df$key))
[1] 59

Plot residual variances

global_labeller <- labeller(
  sample_name = label_wrap_gen(15),
  method = label_parsed
)

DoPlot <- function(gene_attrs_df) {
  p <- ggplot(gene_attrs_df, aes(gmean, residual_variance)) +
    geom_scattermore(pointsize = 1.1, shape = 16, alpha = 0.5) +
    geom_hline(yintercept = 1, color = "#4daf4a", size = 0.9, linetype = "dashed") +
    geom_smooth(aes(color = "red"), method = "loess", span = 0.1, size = 0.9, formula = "y ~ x") +
    scale_y_continuous(trans = "sqrt", breaks = c(0, 1, 10, 25, 50, 100, 150), limits = c(0, max_resvar + 1)) +
    scale_x_continuous(trans = "log10", breaks = c(0.01, 1, 100), labels = MASS::rational) +
    facet_grid(sample_name ~ method, labeller = global_labeller) +
    xlab("Gene mean") +
    ylab("Residual variance") +
    plot_layout(guides = "collect") & theme(
    legend.position = "none",
    legend.key = element_rect(fill = NA),
    legend.background = element_blank()
  )
  return(p)
}

split_keys <- split(dataset_keys, ceiling(seq_along(dataset_keys) / 10))
for (index in names(split_keys)) {
  keys <- split_keys[[index]]
  gene_attrs_df <- sct_thetas_df[sct_thetas_df$key %in% keys, ]
  max_resvar <- 25
  p1 <- DoPlot(gene_attrs_df)
  p1
  dir.create(here::here("output", "figures"), showWarnings = F)
  ggsave(here::here("output", "figures", paste0("full_residvar-", index, ".pdf")), width = 8, height = 12, dpi = "print")
}
sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.3 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] scattermore_0.7    reshape2_1.4.4     readr_2.1.1        RColorBrewer_1.1-2
 [5] patchwork_1.1.1    here_1.0.1         ggridges_0.5.3     ggrepel_0.9.1     
 [9] ggpubr_0.4.0       ggplot2_3.3.5      dplyr_1.0.7        workflowr_1.6.2   

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.7       lattice_0.20-45  tidyr_1.1.4      assertthat_0.2.1
 [5] rprojroot_2.0.2  digest_0.6.29    utf8_1.2.2       R6_2.5.1        
 [9] plyr_1.8.6       backports_1.4.1  evaluate_0.14    highr_0.9       
[13] pillar_1.6.4     rlang_0.4.12     rstudioapi_0.13  car_3.0-12      
[17] whisker_0.4      jquerylib_0.1.4  Matrix_1.4-0     rmarkdown_2.11  
[21] splines_4.1.2    stringr_1.4.0    bit_4.0.4        munsell_0.5.0   
[25] broom_0.7.10     compiler_4.1.2   httpuv_1.6.3     xfun_0.28       
[29] pkgconfig_2.0.3  mgcv_1.8-38      htmltools_0.5.2  tidyselect_1.1.1
[33] tibble_3.1.6     fansi_0.5.0      crayon_1.4.2     tzdb_0.2.0      
[37] withr_2.4.3      later_1.3.0      MASS_7.3-54      grid_4.1.2      
[41] nlme_3.1-152     jsonlite_1.7.2   gtable_0.3.0     lifecycle_1.0.1 
[45] DBI_1.1.1        git2r_0.29.0     magrittr_2.0.1   scales_1.1.1    
[49] cli_3.1.0        stringi_1.7.6    vroom_1.5.7      carData_3.0-4   
[53] farver_2.1.0     ggsignif_0.6.3   fs_1.5.2         promises_1.2.0.1
[57] bslib_0.3.1      ellipsis_0.3.2   generics_0.1.1   vctrs_0.3.8     
[61] tools_4.1.2      bit64_4.0.5      glue_1.5.1       purrr_0.3.4     
[65] hms_1.1.1        parallel_4.1.2   abind_1.4-5      fastmap_1.1.0   
[69] yaml_2.2.1       colorspace_2.0-2 rstatix_0.7.0    knitr_1.36      
[73] sass_0.4.0      

sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.3 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] scattermore_0.7    reshape2_1.4.4     readr_2.1.1        RColorBrewer_1.1-2
 [5] patchwork_1.1.1    here_1.0.1         ggridges_0.5.3     ggrepel_0.9.1     
 [9] ggpubr_0.4.0       ggplot2_3.3.5      dplyr_1.0.7        workflowr_1.6.2   

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.7       lattice_0.20-45  tidyr_1.1.4      assertthat_0.2.1
 [5] rprojroot_2.0.2  digest_0.6.29    utf8_1.2.2       R6_2.5.1        
 [9] plyr_1.8.6       backports_1.4.1  evaluate_0.14    highr_0.9       
[13] pillar_1.6.4     rlang_0.4.12     rstudioapi_0.13  car_3.0-12      
[17] whisker_0.4      jquerylib_0.1.4  Matrix_1.4-0     rmarkdown_2.11  
[21] splines_4.1.2    stringr_1.4.0    bit_4.0.4        munsell_0.5.0   
[25] broom_0.7.10     compiler_4.1.2   httpuv_1.6.3     xfun_0.28       
[29] pkgconfig_2.0.3  mgcv_1.8-38      htmltools_0.5.2  tidyselect_1.1.1
[33] tibble_3.1.6     fansi_0.5.0      crayon_1.4.2     tzdb_0.2.0      
[37] withr_2.4.3      later_1.3.0      MASS_7.3-54      grid_4.1.2      
[41] nlme_3.1-152     jsonlite_1.7.2   gtable_0.3.0     lifecycle_1.0.1 
[45] DBI_1.1.1        git2r_0.29.0     magrittr_2.0.1   scales_1.1.1    
[49] cli_3.1.0        stringi_1.7.6    vroom_1.5.7      carData_3.0-4   
[53] farver_2.1.0     ggsignif_0.6.3   fs_1.5.2         promises_1.2.0.1
[57] bslib_0.3.1      ellipsis_0.3.2   generics_0.1.1   vctrs_0.3.8     
[61] tools_4.1.2      bit64_4.0.5      glue_1.5.1       purrr_0.3.4     
[65] hms_1.1.1        parallel_4.1.2   abind_1.4-5      fastmap_1.1.0   
[69] yaml_2.2.1       colorspace_2.0-2 rstatix_0.7.0    knitr_1.36      
[73] sass_0.4.0