pywsi.stats package¶
Module contents¶
-
pywsi.stats.
welford_simulatenous_update
(prev_avg, prev_M2, new_value, count)[source]¶ Perform Welford’s simulatenous update on mean and variance
M2 = n*sigma_n^2
Parameters: - prev_avg: array_like
Vector of (count-1)th step averages
- prev_M2: array_like
Vector of (count-1)th step M2 stats
- new_value: array_like
New incoming values vector
- count: int
Current count (count starts from 1)
Returns: - new_avg: array_like
Updated average
- new_M2: array_like
Updated M2 stats
- new_var: array_like
Population variance
- new_samplevar: array_like
Sample Variance
-
pywsi.stats.
welford_update_M1
(prev_avg, new_value, count)[source]¶ Welford’s updated mean.
mu_{n} = mu_{n-1} + 1/n(x_n - mu_{n-1}).
Parameters: - prev_avg: array_like
Vector of (count-1)th step averages
- new_value: array_like
New incoming values vector
- count: int
Current count (count starts from 1)
Returns: - new_avg: array_like
Updated average
-
pywsi.stats.
welford_update_M2
(prev_M2, new_value, prev_avg, new_avg)[source]¶ Welford’s updated variance.
S_n = S_{n-1} + (x_n-mu_{n-1})(x_n-mu_n)
Parameters: - prev_M2: array_like
Vector of (count-1)th step M2 stats
- new_value: array_like
New incoming values vector
- prev_avg: array_like
Vector of (count-1)th step averages
- count: int
Current count (count starts from 1)
Returns: - new_M2: array_like
Updated M2 stats